
 
 
 

GRRC Technical Report 2010-02

Dynamic Simulation and Collision Modeling of
the Packbot Manipulator

Author: John Hall
Supervisor: Joshua Langsfeld
Advisors: Prof. Dawn Tilbury
 Prof. Ella Atkins

Date of completion: August 11, 2010
UNCLASSIFIED: Dist. A. Approved for public release

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
11 AUG 2010

2. REPORT TYPE
Journal Article

3. DATES COVERED
 11-08-2010 to 11-08-2010

4. TITLE AND SUBTITLE
DYNAMIC SIMULATION AND COLLISION MODELING OF THE
PACKBOT MANIPULATOR

5a. CONTRACT NUMBER
w56h2v-04-2-0001

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
John Hall

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Universtiy of Michigan | Automotive Research Center,Ground Robotics
Research Center,2350 Hayward Street,Ann Arbor ,MI,48109-2125

8. PERFORMING ORGANIZATION REPORT
NUMBER
; #21387

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
U.S. Army TARDEC, 6501 E.11 Mile Rd, Warren, MI, 48397-5000

10. SPONSOR/MONITOR’S ACRONYM(S)
TARDEC

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)
#21387

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The Packbot is a ground robot commonly used by the US military for explosive ordnance disposal. It is
prone to failure in the field for various reasons [1]. When a single joint of the Packbot EOD manipulator
fails, the entire arm is rendered useless despite the fact that it has redundant degrees of freedom. We are
designing reconfigurable control systems and strategies to regain manipulator function in the face of joint
failure, but we lack any way to test these strategies. Either a copy of the arm or a software model is needed,
and this report describes the software route.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT

Same as
Report (SAR)

18. NUMBER
OF PAGES

22

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2 
 

Table of Contents

1 Introduction.……………………………………………………………………….……... 3

2 The Goal…………………………………………………………………………….……. 3

3 Modeling…………………………………………………………………………….…… 3

 3.1 Geometry and Kinematics………………………………………………….…..... 3

 3.2 Dynamic Modeling………………………………………………………….…… 4

 3.3 Collision Detection………………………………………………………….…… 4

 3.4 Collision Behavior and Simulation…..…………………….……………….……. 5

4 Results……………………………………………………………………………………..7

5 Future Work………………………………………………………………………….…... 8

6 Summary………………………………………………………………………….……… 8

7 References………………………………………………………………………..………. 9

8 Appendix A: Details and Limitations of the SolidWorks Model……………………..…10

9 Appendix B: Notes on Collision Detection Implementation…………………………… 11

 9.1 Basic Concepts………………………………………………………………….. 11

9.2 Speed Concerns…………………………………………………………………. 12

10 Appendix C: Code Documentation…..…………………………………………………..13

10.1 Data Storage and Indexing……………….……………………………………... 13

 10.2 Calling Structure………...……………………………………………………… 15

 10.3 Function Overviews…………………………………………………………….. 15

 10.4 Known Issues………………………………………………………………….…22

3 
 

 
1 Introduction
 
The Packbot is a ground robot commonly used by the US military for explosive ordnance disposal. It is
prone to failure in the field for various reasons [1]. When a single joint of the Packbot EOD manipulator
fails, the entire arm is rendered useless despite the fact that it has redundant degrees of freedom. We are
designing reconfigurable control systems and strategies to regain manipulator function in the face of joint
failure, but we lack any way to test these strategies. Either a copy of the arm or a software model is
needed, and this report describes the software route.

2 The Goal

The purpose of this research project is to model of the physical behavior of the Packbot EOD arm in order
to enable the design of reconfigurable control systems. The behavior described in the robot dynamic
equations is important, as are the contact forces between the links of the robot and its static environment.
A complete model will include kinematics, dynamics, and collision physics. Such a model will allow us
to study failures in the Packbot arm without a physical example of the arm. This report describes efforts
to study and model the Packbot arm and the development of virtual tools to aid this and future studies of
the Packbot.

3 Modeling

Initial work on control reconfiguration of the Packbot manipulator can be divided into three tasks:
describing the geometry and kinematics of the real Packbot arm with software tools, creating dynamic
models to predict the behavior of the arm, and using these dynamic models to simulate failures and new
control schemes.

3.1 Geometry and Kinematics

SolidWorks was used to create a visual and geometric model of
the Packbot, shown here. This model is based on length
measurements taken by hand. Because the measurements were
taken by hand, the accuracy uncertainty is noticeable. Detailed
notes on the model’s fidelity may be found in Appendix A. The
focus in creating this model was to define the manipulator enough
to accurately determine its Denavit-Hartenberg (DH) parameters.
These parameters can be used to fully describe the kinematic
behavior of the manipulator.

Each link of the arm is also designed to have inertial properties
similar to the actual link. Each of the first two major links is
represented by a hollow tube encasing a computer chip and a

Figure 1: SolidWorks model

4 
 

motor. The ends are capped with solid parts meant to represent the joint casing and gearings. The third
major link has, like the first two, a tube containing a chip. The gripper wrist and the camera wrist are
described as solid objects. The motors in this link are assumed to be contained in the wrist parts. Each
CAD part is considered to be uniform in density, but since the mass and location of each object in the link
is true to reality, the overall inertia and center of mass for each link should be relatively accurate.

Since SolidWorks is ill-suited to kinematic analysis, a MATLAB model was created using the geometry
of the first model as a reference. Specifically, we used the MATLAB Robotics Toolbox [2] created by
Peter Corke to make this model. In addition to describing the kinematics of serial-link manipulators, the
toolbox also includes features for dynamic analysis.

3.2 Dynamic Modeling

While kinematics is useful for studying the workspace of the manipulator and for mathematically
describing its movement, a dynamic model is needed to simulate mechanical behavior, like forces and
inertia. We used SolidWorks to calculate the inertia and center of mass of each link. Information about
the mass data may be found in Appendix A. iRobot provided the gear ratios for each of the arm joints.

All this data applies to the behavior of the
normal arm, but we are also interested in
the behavior of a failed arm. Two common
types of electromechanical failure in the
manipulator are a frozen joint and a loose
joint (that cannot exert any torque). A loose
joint is modeled easily by restricting the
torque exerted by that joint to zero. We
modeled a frozen joint by redefining the
arm as a five-link manipulator, with the
two links connected by the frozen joint
considered to be one link. For the frozen
joint case, the new DH parameters are
geometrically calculated, but the inertial
properties of the combined link are
interpolated across all possible joint angles. We used this more complicated method – instead of simply
restricting the proper joint variable – in order to simplify the design of the reconfigurable control system.
For kinematic analysis this extra calculation is not needed.

3.3 Collision Detection

The normal interactions of the links (at the joints) are described by the dynamic and kinematic models,
but it is also possible for the movement of the links to be restricted by interference with each other, the
Packbot chassis, or the environment. To prevent physical impossibilities like intersecting solid bodies and

Figure 2: MATLAB dynamic model with colliding joints

5 
 

to model the reaction forces due to any collision between the solid bodies in the model, collision detection
software is needed.

Our collision detection algorithm approximates each solid body as a combination of convex polyhedra, as
shown in Figure 3 below. This approach not only follows the real geometry of the Packbot very closely,
but also allows the algorithm to use simpler and more robust geometric computations. The algorithm uses
the Gilbert-Johnson-Keerthi (GJK) algorithm as a basic primitive test for collision between two
polyhedra, and this method would not be valid for concave polyhedra. The GJK algorithm is described in
Christer Ericson’s book [3], as well as in his presentation to SIGGRAPH 2004 [5]. To prune out
unnecessary primitive tests and streamline the collision detection code as much as possible, we also
implemented a bounding volume hierarchy. This works by enclosing certain combinations of polyhedra
(all those in a given link, in this case) in a virtual box. By testing all these boxes against each other before
testing the more complicated geometries, the number of primitive tests required decreases dramatically.

Most of this code is written in MATLAB so that it
meshes well with the other components of the models and
is easy to edit. MATLAB is an interpreted language,
however, and as such can be fairly slow. Speed is a major
problem because the geometric tests include many if-
statements and loops, both of which run slowly in
MATLAB. In order to speed things up, as many loops
and conditional statements as possible were coded in C++
and compiled as MATLAB executables (MEX files).
These are called from the MATLAB command line, but
run much faster than an equivalent m-file. More details
concerning the collision detection software may be found
in Appendix B.

3.4 Collision Behavior and Simulation

But detecting the collisions is only solves half the
problem; a useful simulation will not only detect
collisions but react to them. Our dynamic simulator
(collisionDynamics.m) implements ode45 with event
detection. An event function runs at every solver step and

halts execution if any of the polyhedra described in the previous section intersect. Based on which bodies
are colliding, the simulation resets certain joint velocities to reflect the impact and limits the acceleration
of those joints as long as the colliding bodies are in contact. The joints that represent degrees of freedom
between two colliding polyhedra will be called the ‘relevant joints’ in this report.

The main drawback to this joint-based algorithm is that if there is more than one degree of freedom
between the colliding bodies the algorithm cannot tell which combination of those degrees of freedom
caused the collision. Mathematically speaking, these positions of the relevant joints represent a space of

Figure 3: Packbot approximated by polyhedra

6 
 

joint positions, and our current algorithm cannot calculate which subset of that space to avoid. Therefore
it constrains every joint in that space in one direction based on joint velocities at the time of the collision.
This works in most cases, but a more rigorous algorithm would limit movement in the joint space only
along the basis vector normal to the surface (in the joint space) defined by the collision.

In rare cases, using joint velocities to decide the direction in which to limit acceleration also gives an
erroneous result. For instance, consider a collision with two relevant joints. The net movement from these
two degrees of freedom is obviously towards collision, but it is possible that one joint was not
contributing to this movement; the movement of the second joint was simply overwhelming the effect of
the first. Using joint velocities to determine a direction in which to limit acceleration would result in
constraining the first joint in the wrong direction.

Another method we tried before using the above solution was to calculate joint torques that affect the arm
in the same way Cartesian impact forces would. This method does not use the joint velocities at the time
of collision, but it requires a minimum norm vector between the two colliding polyhedra. This method
circumvents both major difficulties associated a purely joint space method while introducing three more
problems, each of which is arguably larger.

First, the using torques to create collision behavior means using large, discontinuous torque inputs to
mimic impacts, and the solver will drastically decrease its step size to deal with the new stiffness in the
problem. Detailed explanations for this behavior may be found in the first two sections of Appendix B.
Second, the torques would be calculated from an impact force that should depend on many factors,
including gravity, coriolis and centripetal forces, inertia and any disturbances or control inputs. These
calculations are so complex that understanding and checking one force at one step by hand could take
hours, and any mistake could cause the objects to pass through each other or rebound with excessive
velocity.

The third major problem with involves the direction of the force rather than its magnitude. The direction
should be found from a normal vector at a point of tangency, where the polyhedra intersect but do not
overlap. It is impossible to find that extremely specific time and state with no numerical error. Instead, the
algorithm would use a vector of minimum norm in a non-intersecting state. The polyhedra that make up
the arm model are geometric approximations that could lead to large, chaotic discrepancies in this vector
between similar time steps, as shown below.

Figure 5: Error in vector of minimum norm due to     
approximation of smooth geometry (green line is 
the correct vector, red line is the erroneous one) 

7 
 

All these issues considered along with development time, using the relatively simple method described in
the first paragraph provides the most realistic behavior in a reasonable time frame.

4 Results

This section describes one of the scenarios used to test our simulation. All joint torques are set to zero,
simulating a total collapse of the arm. The initial position is the standard drive position, which is shown in
Figure 6, and all initial joint velocities are zero. Using only the dynamic model and the simulator
provided in the Robotics Toolbox, the arm falls through the chassis and continues to swing chaotically. A
snapshot is shown in Figure 7.

In contrast, using the simulator we have written for collision dynamics yields an intuitive static result,
pictured in Figure 8. The third link remains upright because it is longer than the second link and thus
becomes propped up on the shoulder joint casing. Graphs of joint position and velocity over time verify
our result is static; these graphs may be found below in Figures 9 and 10.

Figure 6: Drive Position  Figure 7: Result 
without collision 

detection 

Figure 8: Static result 
with collision detection 

Figure 9: Planar joint positions  Figure 10: Planar joint velocities 

8 
 

5 Future Work

Before control simulations can be run, however, the models need to be refined to more accurately reflect
real-world behavior. For instance, the effects of motor inertia and frictional forces (both static and
viscous) should be added to the dynamic model. These parameters will be deduced from publicly
available specifications of the maximum weight the manipulator can support. Torque limits would also
serve to make simulations more realistic, although torque can be checked with a post-processor.
Unfortunately, these torque limits are not publicly available, and so we will need to either negotiate the
information from iRobot or deduce approximations from what specifications are publically available.

The next step in making the model realistic is to design a more intelligent joint constraint algorithm. One
option is to keep the current algorithm but give it the ability to self-diagnosis faults. Misbehavior of the
collision code can be detected by watching for secondary intersections – intersections that occur between
two bodies that are already constrained. Another option is to calculate the Jacobian matrix that describes
the relationship between Cartesian space and the space of relevant joints. Taking the inverse of the
Jacobian and identifying the subset of joint space that is responsible for the collision would allow us to
limit motion in that direction without completely constraining every relevant joint.

Whether or not we implement a more intelligent joint constraint algorithm, we will simulate dynamic
transitions between failed equilibrium poses and other control challenges. The results of this research
should allow us to design a reconfigurable controller that can recover function in a damaged manipulator
arm. The implementation of such a controller would improve the reliability of the Packbot by mitigating
the effect of failure in the field. This is the most important work that remains to be done.

Another possible use of the collision software is to detect camera occlusion. If the function to be
recovered from the arm is the camera’s ability to see a target, creating long, thin polytopes between the
camera and its target could allow us to test whether the camera’s view is blocked.

6 Summary

In order to improve the reliability of the Packbot manipulator through control reconfiguration, we have
created various computer models of the manipulator. The kinematic models created in SolidWorks and
MATLAB describe the geometry, position, and velocity of the arm. The kinematic model forms the basis
for a dynamic model that can describe forces and collisions – the real behavior of the arm. This dynamic
model will be used to formulate and test new control strategies with the goal of recovering function from
a failed arm. This reconfigurable control system could improve the reliability of the Packbot by
preventing minor failures from affecting the success of a mission.

But there is still more to do in refining the models should more realistic behavior prove necessary. Torque
limits and the effects of motor inertia and friction should be represented in the models. Also, the
algorithms that determine collision behavior could be refined to work in all cases instead of just most of

9 
 

them. These changes, especially the second one, would take time but could vastly improve the model’s
usefulness in control design.

7 References

[1] Phuoc-Nguyen Nguyen-Huu, Joshua Titus, “Reliability and Failure in Unmanned Ground Vehicle

(UGV)”, GRRC Technical Report 2009-01, 2009.
[2] Peter I. Corke, “A Robotics Toolbox for MATLAB”, IEEE Robotics and Automation Magazine, Vol.

3, March 1996.
[3] Christer Ericson, Real-Time Collision Detection. Morgan Kaufmann, 2005.
[4] John Nagle. “Re: Collision points with SOLID.” comp.graphics.algorithms usenet newsgroup article,

Message-ID <3C4089BC.80907@animats.com>. January 12, 2002.
http://groups.google.com/groups?selm=3C4089BC.80907%40animats.com

[5] Christer Ericson (2004). “The Gilbert-Johnson-Keerthi (GJK) Algorithm”, SIGGRAPH.
[6] “MATLAB – Documentation”, The Mathworks, 2010.

http://www.mathworks.com/access/helpdesk/help/techdoc/

10 
 

8 APPENDIX A: Details and limitations of the SolidWorks model

The following dimensions are known to within 5 mm:
• full length definition of the chassis
• wheel width, radius, and location
• location of the arm with respect to the chassis
• camera dimensions
• manipulator link lengths, offsets, and diameters
• joint casing diameters
• wrist lengths and widths
• full length dimension of the arm attachment plate

These dimensions are based on estimates and memory:

• motor length
• computer chip width and thickness
• hollow tube thickness
• wrist thickness

The masses of these parts are known to within 100 g:

• motors
• joint casing/gearings
• overall arm
• camera
• camera wrist
• end effector wrist
• arm attachment plate
• overall robot

The masses of these parts are based on estimates and memory:

• computer chips
• hollow tubes
• wheels
• chassis

11 
 

•
9 APPENDIX B: Notes on Collision Detection Implementation

This Appendix is meant to provide notes on the collision detection software described in Sections 3.3 and
3.4. The collision detection software is a collection of MATLAB and C++ code meant to work with the
MATLAB Robotics Toolbox [2]. Currently the code is specific to the Packbot, though I may generalize it
at some later date.

This version of the collision software only models the interactions between the links of the packbot and
between the arm and its static environment. The simulation cannot yet handle external moving objects,
though there is a possibility that such functionality will be added in the future.

9.1 Basic Concepts

Primitive Tests
The basic way to tell if objects in an environment are colliding is to test each shape in the model against
every other shape for collision status and distance. Whatever test that is used is called the primitive test.
In this package, the shape of the manipulator is approximated by a collection of convex polygons, and the
primitive test used is the Gilbert-Johnson-Keerthi (GJK) algorithm.

GJK works by iterating through different simplicies formed from the vertices of the Minkowski
difference of the two polyhedra. The Minkowski difference is a set of points with the property that a
convex hull of these points will include the origin if and only if the polyhedra are colliding. At each
recursive step, GJK calculates the point on the current simplex that is closest to the origin. Any points in
the simplex on which this closest point does not depend are removed from the simplex. Then GJK
multiplies the position vector of the closest point by negative one, and determines the supporting vertex of
the Minkowski difference polytope in that direction. The supporting vertex is then added to the current
simplex, and the process repeats. The recursion ends if the closest point on the simplex is the origin (the
polyhedra intersect), or if the supporting vertex of the Minkowski polytope is no closer to the origin than
the closest point found in that recursive step (the polyhedra don’t intersect). This method converges
asymptotically.

Bounding Volume Hierarchy
Even as fast as GJK converges, any collision detection code that simply tests each convex polyhedron
against every other will be fairly slow. There are just too many primitive tests. One solution to this
problem is to prune tests from the algorithm using a bounding volume hierarchy. The basic idea is to
create simple shapes that contain certain combinations of the main set of polyhedra. With the Packbot
manipulator, boxes fit well over the polyhedra defining each link. If a given pair of these bounding
volumes do not collide, then none of the polyhedra contained in the first box collide with any of the
polyhedra in the second box. This concept is used to prune tests from the collision detection algorithm.

Variable-step Numerical Solvers

12 
 

All of the ordinary differential equation (ode) solvers that come with Matlab are variable-step. This means
that instead of holding a time step constant, the solver controls error by varying step size. At each step the
solver estimates both the absolute error accumulated and the error relative to the last step. If either is
above a specified tolerance, the solver throws out that step and calculates a new one with a smaller time
increment. This continues until the error is within tolerance. Using a variable-step solver usually
guarantees that the solver has not missed any high-frequency behavior, but it does cause the step size to
become very small during such behavior.

Stiffness
Stiffness is a property of differential equations that has never been clearly defined. A problem or set of
equations is considered stiff if either numerical errors or high-frequency behavior cause a numerical
solver to diverge or become unstable. An example would be a trigonometric function operating at 10kHz
if the solver used has a fixed step greater than around 2e-6 to 5e-6 seconds. Even such a small fixed step
would ignore the function’s high-frequency behavior, causing the solver solution to diverge in most cases.
A variable-step solver applied to the same problem would be forced to use a very small step size that may
be undesirable if low-frequency behavior is also of interest.

9.2 Speed Concerns

Computational geometry is not MATLAB’s strong suit, but it does provide excellent high-level
programming features. In this package as many computing bottlenecks as possible have been replaced by
C++ MEX files. In this way we hope to balance speed of computation with MATLAB’s interface. The
most important use of MEX files is in gjksubmex.m. We attempted to implement the GJK algorithm
purely in C++, but the main WHILE loop (GJK is recursive) caused memory problems. So instead of pure
C++ code, gjksubmex.m is a MATLAB function that calls MEX files to do most of its heavy lifting. With
this MEX code gjksubmex.m can run in a fraction of a millisecond.

The collision physics of a robotic arm represent a stiff problem. The standard dynamics operate on a
much longer time scale than the collisions, which can require bodies to change velocity very quickly.
When the solver encounters an impact it drastically reduces the step size so as to stay within its error
tolerance. Even a relatively large error tolerance will cause this reduction in step size; an error of 10% is
still small compared to a change in sign (a change of at least -100%). The result is that a simulation scaled
in seconds is run with microsecond step sizes, and even a streamlined code can take hours to finish.

The solution is to separate the high- and low-frequency behavior with an event detector. Matlab solvers
allow a user to specify an event function that runs at each step and can halt the solver’s integration if it
detects high-frequency behavior. In this software package, the event function halts execution when it
encounters a new collision state. The pertinent velocities are changed, and the solver is restarted with the
new initial values. The solver will still decrease the step size immediately before the collision so that it
can pinpoint the time and state at which the collision occurs, but resetting the integration also resets the
step size. Thus event detection preserves both accuracy and a normal step size for this stiff problem.

13 
 

10: APPENDIX C: Code Documentation

This appendix is meant as a reference guide for the Matlab and MEX code I have written. It explains how
critical data is stored and how each function works, outlines the parent/child relationships between
functions, and documents known issues or problems with the current version of the code.

Anyone using this software package should have MATLAB 7.6 or later and the MATLAB Robotics
Toolbox Release 8 or later. The C++ source files are meant to be compiled as MEX files using the
MATLAB command line. There is a script – described below – that is meant to automate this setup
procedure. It is available on the GRRC-RA4 C-Tools site in the Resources section as a ZIP file.

There is very little exception handling in the code as it stands now. This means that the MATLAB scripts
will throw random errors if given the wrong input, and the MEX files will probably throw segmentation
faults. These are bad, so check this Appendix, the release notes in the ZIP file, or the comments at the top
of most functions before using them.

10.1 Data Storage and Indexing

This is a description of each important data variable used as an input or output to one of the functions in
Section 9.3 above. A ‘.mat’ suffix indicates a variable that is included in the collision detection package.
Each of the others is the result of a function.

polyhedra.mat – This is a data structure containing cross-referenced and indexed data on the verticies of

polyhedra, specifically those used to represent physical bodies in this software package.
The collision package includes a version of this variable for the Packbot EOD arm.
Different instances of polyhedra can be made using the createCollisionBodies function.

.points – This field is an nx3 matrix containing the vertices of all the polyhedra in the model. The

vertices are listed first by order of the reference frame to which that polyhedron is
attached and second by the individual polyhedron. All points are given with respect to the
local frame of reference – that is, with respect to the frame they are attached to.

.pointBody – This field is a vector length n that gives the body number of each point in the points

field. Bodies are numbered within each frame, so both Frame 1 and Frame 2 have a Body
1. A number independent of frame can be obtained from the location of the body’s index
in the field bodyIndex.

.pointFrame – An n length vector giving the frame number each row in the points field is

expressed in and attached to.

.bodyIndex – An m length vector in which each element gives the row index for the beginning of

a polyhedron in the points field. All indices are given in the order they appear in that

14 
 

field. The last element is the index for the first empty row (where the next polyhedron
would be if there was one).

.bodyFrame – An m length vector giving the frame number for each entry of bodyIndex.

.frameIndex – A vector length p that gives the indices for the beginning of each reference frame

in bodyIndex, in the same way that bodyIndex gives the beginning of each polyhedron in
the points field. As before, the indices are sorted in ascending order and the last index
gives the first empty element in bodyIndex.

.boundingBox – An (8(p-1))x3 matrix containing the vertices of all the bounding boxes calculated

by boundBox.m. The format is identical to that of the points field. The fact that each box
has the same number vertices, and each reference frame contains only one box, means
that the extensive cross-referencing used for the original polyhedra is not necessary here.

.boundingBoxIndex – This field serves the same purpose for boundingBox as bodyIndex serves

for the points field, and works in the same way. It is a vector length 8(p-1).

.boundingBoxFrame – An analog of bodyFrame for boundingBoxIndex that gives the frame

number of each bounding box. It has the same length as boundingBoxIndex.

collisions – This data structure is a global variable internal to collisionDynamics and its child functions

cdyn2 and intersection. It contains data about each collision detected by the simulation
that is still affecting the behavior of the arm. These are considered the active collisions.
Data is written by intersection and read mostly by intersection and cydn2.

.c – A vector of Boolean values, one for each active collision. An entry reads true if the two

polyhedra involved are currently colliding.

.bodies – A matrix with a row for each active collision. Each row is four elements – two pairs.
Each pair is associated with one of the colliding polyhedra, giving the first and last body
indicies into the points field from polyhedra.mat.

.frames – A matrix containing the frame numbers of each polyhedron involved in an active

collision. Each active collision has a row length 2, with each entry giving the frame of
one of the polyhedra.

.proximity – A vector with an entry for each collision that gives the smallest distance between the

two polyhedra.

.time – A vector the contains the simulation time at which each collision was recorded as active.

.joints – A vector of variable length that lists the joints that should have their accelerations

restricted by cdyn2.

15 
 

.direction – A vector the same length as the joints field that dictates the direction in which

acceleration is not allowed for each restricted joint. Each entry is -1 or 1.

10.2 Calling Structure

This outline shows which functions call which others. It is only intended to give an idea of how each
function relates to the others. Full descriptions are provided in the next section.

• makeCollision.m
• createCollisionBodies.m

o boundBox.m
• initializeCollision

o define_packbotv3.m
• collisionDynamics.m

o cdyn2.m
 taufun.m

o intersection.m
 collisionCheck.m

• ptfkin.m
• gjksubmex.m

o PtMinNorm.mexw32
o IndexandSupport.mexw32

 findRelevantJoints.m
• wireAnimate.m

o wireplot.m
• Rmatrix.m

10.3 Function Overviews

Below are detailed descriptions and notes on each finished function from Section 9.3 in the order they
appeared in that section. Variable names are given in the Input and Output fields; sometimes these are
figures created in MATLAB. Figures numbers do not refer to figures in this report; rather they give the
figure window in which the output will appear.

makeCollision.m
Script – no input or output arguments

Algorithm: This script compiles the all the MEX code needed to run collisionDynamics. It also

rearranges several files for convenience after you first download the collision package.

16 
 

Notes: Place this script in the same directory as both the collision and robot directories, and then
run it. It will ask you to choose a compiler first. You may have to try one or two of these
because certain compilers cannot handle MEX code.

createCollisionBodies.m
Input: Robot object
Output: polyhedra

Algorithm: This function iterates through each frame, asking the user to identify which workspace

variables hold the points to define the polyhedron for each body. The user should create
these variables beforehand. As it goes, it cross-references the data and stores this
indexing data in the proper fields of polyhedra. When all bodies are created,
createCollisionBodies will run boundBox to create bounding volumes around the bodies
of each reference frame.

Notes: I highly recommend using this function to create polyhedra data structures rather than

assigning everything manually. It will save time and ensure that all indexing and cross-
referencing is done correctly.

boundBox.m
Input: polyhedra
Output: polyhedra

Algorithm: This function iterates through each reference frame. At each frame, the function finds the

maximum and minimum values in each Cartesian dimension. It uses these to determine
the vertices of a box containing all bodies attached to that reference frame.

Notes: This function is not very streamlined, but doesn’t need to be. It only runs once: at the end

of createCollisionBodies.

initializeCollision.m
Script – no input or output arguments

Algorithm: Adds paths to the collision and robot directories, as well as the simulink and mex

directories within robot. It will then run define_packbotv3 to create a dynamic model of
the Packbot EOD arm, load polyhedra.mat, and set the joint variables q to put the EOD
arm in the standard drive pose.

Notes: This script was meant solely for my convenience and I encourage users to alter it for

theirs. It’s stored in the collision directory until you run makeCollision, which moves it
outside to the parent directory.

17 
 

define_packbotv3.m
Script – no input or output arguments

Algorithm: This script creates the robot and link objects for a complete dynamic model of the

Packbot EOD manipulator. Most parameters in this version are approximate, but close
enough to give good general results. See the Robot Toolbox guide for further
information.

Notes: none

collisionDynamics.m
Inputs: Robot object, Initial time (t0), Final time (t1), Function handle for a user-defined torque

function (torqfun), Initial joint positions and velocities (q0, qd0), polyhedra, any other
variables the user would like passed to the torque function

Outputs: Time vector (tout), Joint position and velocity results arranged in rows by time step (qout,
qdout), Event times (tcout), Joint positions and velocities at event times (qcout, qdcout)

Algorithm: This function is the main simulation loop for a collision dynamics simulation.

Initialization includes creating the data structure collisions as a global variable and
creating an ode options structure that alters error tolerances and sets intersection.m as the
events function.

 The simulation loop runs ode45 to solve the robot dynamic equations. The simulation

will terminate early if a collision event is detected. If this happens, the initial values will
reset to the time step before the collision, but with the velocities of all joints relevant to
the collision set to zero. The solver will then be called again to continue solving the robot
equations. This loop will continue until the simulation time has reached the final value
given by the user. The global variable collisions is cleared before collisionDynamics
terminates.

Notes: This function replaces fdyn from the Robot Toolbox as a dynamic simulation function

and wrapper for ode45. The torque function serves the same purpose as before, and the
outputs are formatted similarly. The main differences are the event detection features and
the addition of polyhedra as a required input. As in fdyn, extra arguments will be passed
through to the torque function.

 When an event occurs and the solver terminates, the joint velocities relevant to the

collision do not have to be set to zero. This represents only the perfectly inelastic case.
Multiplying the velocities by a coefficient of elasticity will yield any sort of collisions the
user desires. However, the simulation will break if the sign of the velocity is not reversed
in the more elastic case.

The user is encouraged to tweak the error tolerances to ensure a reasonable run time. This
function reads from collisions, but does not write to it.

18 
 

cdyn2.m
Inputs: Current time and joint states (t, x), Robot object, Torque function (torqfun), polyhedra,

and undetermined extra arguments for the torque function
Outputs: Joint state derivatives for the next time step of ode45 (xd)

Algorithm: This function represents the robot dynamic equations for the solver. It takes in the current

state, runs the torque function to decide what joint torque to apply and runs accel from
the Robot Toolbox to calculate the state derivatives for the next time step. Before ending,
however, it restricts the acceleration of certain joints based on information stored in the
global variable collisions. These restrictions – in theory – should prevent further
intersections from a previously recognized collision event. The restrictions are decided by
findRelevantJoints.m and in their current version should work in most cases.

Notes: If the functioning of the acceleration restrictions is not acceptable, feel free to alter the

way these restrictions are decided in findRelevantJoints.m. See the guide entry for that
function for more details.

 This function reads from collisions, but does not write to it.

taufun.m
Inputs: Current time (t), Current joint positions and velocities (q, qd), Robot object
Outputs: Joint torques (tau)

Algorithm: This is a sample function used to set torques as a function of time and the current state of

a robot. Any code written to control a robot belongs here. This sample simply sets all
joint torques to zero, resulting in a collapse of the arm if run in a simulation.

Notes: User-written.

intersection.m
Inputs: Current time and joint states (t, x), Robot object, Torque function (torqfun), polyhedra,

and other undetermined inputs intended for the torque function
Outputs: Event function value (value), Boolean command on whether to terminate the solver for a

given event (isterminal), and the direction the Event function crossed zero (direction)

Algorithms: This function, as the event function for ode45, is run at each solver step. If the event

function crosses zero, an event is said to have occurred. See Matlab documentation for
more details.

 collisionCheck is run after initialization, followed by findRelevantJoints. These two

functions together completely define the global variable collisions. If any polyhedra are
intersecting, the sign of the event function value is changed from negative to positive and
isterminal is set to one, halting execution of the solver.

19 
 

Notes: This function writes to collisions.

collisionCheck.m
Inputs: Robot object, Current joint positions (q), polyhedra, [current time, collisions]
Outputs: Boolean value reading true if any polyhedra intersect, [or an updated copy of the global

variable collisions]

Algorithm: This is essentially two functions combined. The first function simply checks for any

polyhedron intersections. The second is meant to be run from intersection.m. This second
version is run if it is given the arguments in brackets above, and outputs the global data
structure collisions instead of just a Boolean value.

 Both versions of code run forward kinematics on the polyhedra, use the bounding volume

hierarchy to filter out most primitive tests, and then run those primitive tests. The more
basic version will terminate as soon as a pair of polyhedron primitives are found to be
intersecting.

 The advanced version called by intersection.m has more steps. Initialization includes

reading the optional variables from varargin and slightly different initial sizes for the
primitive check matricies, as well as setting a proximity tolerance for deactivating
collision states. The bounding hierarchy is the same, but at the primitive tests the
algorithm diverges significantly.

Old collisions states are automatically tested again for a new proximity value if nothing
else. Tests are sorted by whether the collision has or has not already been detected and
whether the polyhedra involved are colliding or not. In each case, the collisions data
structure is altered in different ways.

The advanced version of collisionCheck ends by deleting any collisions that have left
become inactive by leaving the proximity tolerance (the polyhedra are no longer close to
each other).

Notes: In the primitive test case of an old collision that has intersected again, the simulation is

probably broken. findRelevantJoints should be setting joint constraints so to prevent this.
The current version of the code does nothing special here, but the algorithm could be
made to self-diagnose faults by altering collisions in a new way when it encounters this
case.

Although this code is very long, most of the runtime is spent on gjksubmex. The rest of
the function is well vectorized. The user should feel free to alter the value set to
proximityTolerance during initialization if it results in unsatisfactory behavior.

20 
 

ptfkin.m
Input: Robot object, Current joint positions, polyhedra
Output: Polyhedron vertices in current position (transformedPoints), Bounding box vertices in

current position (transformedBoundingBoxes), Frame origins in current position
(frameOrigins)

Algorithm: The algorithm initializes by retrieving the manipulator’s DH parameters from the robot

object and creating the index vectors for bb. The function then iterates through each
frame of reference in reverse, transforming all points from polypts and bb into the base
frame to match the current position of the arm.

Notes: This function may be a slight bottleneck in the collision functions. But the algorithm,

though computationally intensive, is well vectorized. The benefits of translating this
function to a MEX file are unclear. There may be a bug of some sort that causes all
objects to be rotated 180 degrees around the local z axis.

gjksubmex.m
Input: Vertices of two convex polyhedra (A, B)
Output: Collision status (c), Indices of points in A and B used in final simplex Q (I), Barycentric

coordinates in terms of Q for the final point (Bary)

Algorithm: This function applies the Gilbert-Johnson-Keerthi (GJK) algorithm [5] to a pair of convex

polyhedra. For details of the main algorithm, see that reference. PtMinNorm.mexw32 is
used to find the point on Q closest to the origin, and IndexandSupport.mexw32 is used to
remove old points from Q and find a new supporting vertex.

Notes: This implementation of GJK is basically a MATLAB skeleton for the MEX files it calls.

Since most of the heavy lifting is done in C, this MATLAB code will run relatively
quickly. It is used as the basic primitive test for the intersection of the polyhedra
composing the model and any bounding volumes.

PtMinNorm.mexw32
Input: Vertices of the current simplex (Q)
Output: Cartesian (Cart) and barycentric (Bary) coordinates of the point of minimum norm

Algorithm: This code finds the closest point on a simplex to the origin by determining the order of

the simplex and running the appropriate subroutine.

Notes: This function is designed for use in gjksubmex.m, but it may be useful elsewhere.

IndexandSupport.mexw32
Input: Vertices of the current simplex (Q), Vertices of the two convex polyhedra (A, B), the

Cartesian (Cart) and barycentric (Bary) coordinates of the point of minimum norm

21 
 

Output: Vertices of the new simplex (Q), The new supporting vertex (V), Indices into A and B of
the points whose difference resulted in the new supporting vertex (i, j)

Algorithm: This function removes unnecessary points from the simplex Q. A point is unnecessary if

the barycentric coordinate for that point is zero. It then calculates the next supporting
vertex by sampling the Minkowski difference of the two tested polyhedra. It does not
calculate the Minkowski sum outright.

Notes: This function is also designed for use in gjksubmex.m. Unlike PtMinNorm.mexw32,

there is probably no other use for it.

findRelevantJoints.m
Input: Current joint velocities (qd), collisions, polyhedra
Output: collisions

Algorithm: This function determines which joints actively affect a collision and decides how to

constrain them. This version considers only planar joints and ignores the effects of the
waist and camera pan. For each active collision, all the planar degrees of freedom
between the two colliding bodies are restricted. There are several exceptions written
explicitly into the code where under certain conditions a link may be discounted or an
extra one considered.

 When a new collision is detected, the direction of constraint is determined by the joint

velocity at the time of the event. Old collision states keep their directions. A constraint
set here causes cdyn2 to disallow any joint acceleration in that direction as long as the
collision is active.

Notes: This function writes to collisions.

 While this simple algorithm will prevent intersection in most cases, certain special cases

will break it. A case is considered to be broken if an active collision intersects after its
collision event. By coordinating this function with collisionCheck it is possible for the
simulation to self-diagnose these faults and adjust its behavior.

wireAnimate.m
Input: Robot object, Time vector (t), Joint position matrix with each row corresponding to a

time step (q), polyhedra, Mode keyword (mode)
Output: none

Algorithm: This algorithm preprocesses an animation of the polyhedra representing a robot, then runs

it. In the normal mode, every time step will be used. In the even mode, the largest step
size will determine the step size of the animation, and in the discrete mode the animation
step size is always set to 0.01. Preprocessing involves trimming the time vector and
running forward kinematics on polyhedra for all time steps. To run the animation,

22 
 

wireAnimate calls wireplot at each time step and waits as long as the new time vector
dictates.

Notes: The animations run very slow compared to real time because wireplot is not fast enough,

but in the even or discrete modes all time steps are at least even.

wireplot.m
Input: Vertices of polyhedra (v), Vector with indices indicating the beginning of each

polyhedron in v (e)
Output: A solid wireframe plot of all polyhedra in v (Figure 1)

Algorithm: The function iterates through each polyhedron. If four or more vertices are given, the

vertices are tessellated and plotted with the tetramesh function. If three or fewer vertices
are given, lines are plotted connecting each vertex with the others. The colors of the
polyhedrons rotate through a colormap. The axes for the figure are manually scaled to the
Packbot.

Notes: This function runs relatively slowly, but gives a high-quality visualization of the Packbot

model (or any other set of polyhedrons). The plot function included in the MATLAB
Robotics Toolbox [2] is a better choice for animations.

Rmatrix.m
Input: Three angles (a1, a2, a3), A string argument identifying the rotation system (system = ‘e’

for Euler angles or ‘rpy’ for roll-pitch-yaw)
Output: Rotation matrix (R)

Algorithm: This subroutine computes each element of the 3x3 rotation matrix described by the

inputs.

Notes: none

10.4 Known Issues

The primitive test function gjksubmex.m is still a bottleneck in the collision simulations, taking up
approximately half of the computation time. This problem does not have to be permanent because
although most of the computation involved in the GJK algorithm is done in MEX files, the recursive
while loop is still coded in Matlab. If the entire function was converted to C MEX it would cease to be a
bottleneck. That said, the simulation as it stands runs in a reasonable time unless the error tolerances are
extremely small. This bottleneck should not be a major problem.

