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Abstract

Some key features of a mathematical description of an immune response are an estimate of the number of
responding cells and the manner in which those cells divide, differentiate, and die. The intracellular dye CFSE
is a powerful experimental tool for the analysis of a population of dividing cells, and numerous mathematical
treatments have been aimed at using CFSE data to describe an immune response [29, 30, 31, 36, 37, 40, 46,
47]. Recently, partial differential equation structured population models, with measured CFSE fluorescence
intensity as the structure variable, have been shown to accurately fit histogram data obtained from CFSE flow
cytometry experiments [18, 19, 50, 52]. In this report, the population of cells is mathematically organized
into compartments, with all cells in a single compartment having undergone the same number of divisions. A
system of structured partial differential equations is derived which can be fit directly to CFSE histogram data.
From such a model, cell counts (in terms of the number of divisions undergone) can be directly computed and
thus key biological parameters such as population doubling time and precursor viability can be determined.
Mathematical aspects of this compartmental model are discussed, and the model is fit to a data set. As
in [18, 19], we find temporal and division dependence in the rates of proliferation and death to be essential
features of a structured population model for CFSE data. Variability in cellular autofluorescence is found to
play a significant role in the data, as well. Finally, the compartmental model is compared to previous work,
and statistical aspects of the experimental data are discussed.

Key words: Cell proliferation, cell division number, CFSE, label structured population dynamics, partial
differential equations, inverse problems.
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1 Introduction

The human immune response is a complex process in which the behavior of individual cells in the lymphatic
system is altered by a multitude of intra- and extracellular signals. The mathematical analysis of lymphocyte
activation and division can be performed on a wide range of scales, from the molecular level (antigen presentation
and recognition) to the population level. This report focuses on the latter. To that end, one can look at the
total number of divisions a cell has undergone since activation and how cells in different generations differ in
phenotype.

The development by Lyons and Parish [53] of the intracellular dye carboxyfluorescein succinimidyl ester
(CFSE) for use in proliferation assays has resulted in an essential experimental tool for researchers studying these
complex processes. CFSE is nonradioactive and provides long-lasting, bright, and relatively uniform labeling of
all cells in a population without adversely affecting the internal machinery of the cells. When cells divide, the
dye is partitioned approximately in half. Thus, when labeled cells are stimulated to divide, the CFSE content
of individual cells in the population can be assessed via flow cytometry and the number of divisions a cell
has undergone can be determined by comparing the measured fluorescence intensity of a cell to the measured
fluorescence intensity of an undivided cell [54, 53, 59, 60, 70, 72]. When individual cell fluorescence intensity
measurements for all cells in a given population are binned into a histogram, each generation of cells appears
as a “peak” in the histogram data. The data set used in this report is the same as that from [18, 66] and the
experimental protocol is discussed at length there. The data is depicted in Figure 1.

While the quantitative modeling of CFSE data has traditionally focused on the deconvolution of the data
into numbers of cells per generation [29, 30, 31, 36, 37], recent efforts [18, 19, 50, 52] have used a structured
population model in order to fit the CFSE histogram data directly. Using this technique, we have produced
a strong, physically and biologically motivated model which is quite capable of replicating the observed CFSE
histogram data obtained via flow cytometry. The most recent partial differential equation (PDE) model is a
fragmentation equation which relates the structured population density n(t, x) to the rates of proliferation α(t, x)
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Figure 1: Data set for a CFSE-based proliferation assay. Note that the data is presented in the logarithmic
coordinate z = log10(x), in units log UI. As cells divide, CFSE is diluted and the initially unimodal population
density becomes multimodal. While it is easy to distinguish the various peaks in the data, the overlap between
peaks results in some systematic error when attempting to identify a region of the horizontal axis with a specific
division number. In addition to this overlap, the slow drift to the left over time (as a result of intracellular
turnover of CFSE) further weakens the correlation.
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and death β(t, x) under the assumption of Gompertz decay of label and is given by

∂n(t, x)

∂t
− ce−kt ∂[(x− xa)n(t, x)]

∂x
= −(α(t, x) + β(t, x))n(t, x) + χ[xa,x∗]4α(t, 2x− xa)n(t, 2x− xa). (1)

The structure variable x is the fluorescence intensity (in arbitrary units of intensity, UI) of the cells. Because this
fluorescence intensity arises primarily from CFSE within the cell, we refer to this as a label structured population
model (as opposed to age or size structure, etc. [56]). It is known that cells lose FI in time even in the absence
of division as a result of the natural decay of CFSE and the turnover of intracellular proteins to which the
fluorescent conjugates bind. The advection term in the equation above accounts for this phenomenon using a
Gompertz [38] decay velocity v(t, x) = −c(x − xa)e

−kt with characteristic parameters c and k, which has been
shown [18] to accurately describe the biphasic decay [55, 59, 70] of CFSE FI observed in data sets. The parameter
xa represents the natural autofluorescence intensity of cells in the absence of CFSE, assumed for the moment in
(1) to be constant across the cell population.

The goal of such a mathematical model is to provide biologists with simple yet intuitive and meaningful
parameters with which a population of dividing cells can be described. In particular, information such as average
rates of division and cell viability are essential to the analysis of the effects of changing experimental conditions
(e.g., differences in donors, differences between diseased and healthy cells) on proliferative behavior. The motiva-
tion for the use of FI as a structure variable is that the serial dilution of CFSE by cell division creates a correlation
between measured FI and the number of divisions a cell has undergone. Thus the proliferation and death rate
functions α(t, x) and β(t, x), which are estimated in terms of the structure variable x as well as time, can be used
to compute average division rates in terms of the number of divisions undergone [18]. (For instance, if x > 1000
UI corresponds to undivided cells, then the average proliferation rate, as a function of time, for undivided cells is
the average value of α(t, x) in the region x > 1000.)

This motivating assumption is accurate to a degree, as one can clearly discern the distinct generations of cells
in the data set depicted in Figure 1. However, the peaks corresponding to particular generations of cells overlap
slightly and drift to the left in time (as a result of CFSE decay), thus weakening the correlation between the state
variable and division number. In [7, 18], it is shown that the proliferation and death rates can be parameterized
with respect to a ‘translated variable’ which accounts for the loss of measured FI in time, and that this translated
variable is more strongly correlated with division number than the original structure variable x. Yet, the overlap
between distinct peaks in the data remains problematic, and it is not clear how much error may be introduced
into the estimated proliferation and death rates by this overlap of distinct generations.

Furthermore, while the model (1) is advantageous in being able to estimate average proliferation and death
rates without any deconvolution of the data into cell numbers, it cannot be used to accurately assess the number
of cells in a particular generation. This information could be approximated by integrating the structured density
n(t, x) over a region [x1, x2] (corresponding approximately to the location of a given peak in the histogram data),
but this approximation is limited by the extent to which distinct generations of cells in the histogram data overlap.
Traditional deconvolution techniques (such as fitting peaks with normal or lognormal curves) impose particular
forms on the experimental data which may bias the computed number of cells in each generation.

While all these efforts to date correspond to several iterations in an iterative modeling process (for a philosoph-
ical discussion see [20, Chapter 1]) to attempt to understand cell proliferation using CFSE labeling of populations,
we clearly have not yet reached a satisfactory understanding of the complex phenomena involved. The fragmen-
tation models used with the CFSE data can be considered as what have been termed Aggregate Data/Aggregate
Dynamics or Type II inverse problems as presented in [1, Chapter 14] and [5]. Such problems are also common in
investigations with models for electromagnetic propagation in inhomogeneous dielectric materials including bio-
tissue [13, 14], vibrational dissipation in viscoelastic materials [16], and HIV cellular progression models [1, 4, 5].
To better understand rates at the generation number cohort or division number cohort level, one should at-
tempt to develop individual (cohort) dynamics to investigate the CFSE data in a Type I framework of Aggregate
Data/Individual (Cohort) Dynamics inverse problems such as those discussed in [1, Chapter 14] and [5]. Similar
approaches have been successfully pursued in marine and insect population models [3, 6, 10, 12, 21] as well as in
physiologically based pharmacokinetic (PBPK) models in toxicology [5, 17]. Fortunately, a simple reformulation
of (1) allows such an approach and permits both the accurate quantification of total cells per division number
and the accurate estimation of proliferation and death rates in terms of division number in such a framework.
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Rather than modeling the population with a single differential equation, one can model each individual generation
of cells with a single equation,

∂ni

∂t
+
∂[v(t, x)ni(t, x)]

∂x
= −(αi(t) + βi(t))ni(t, x) +Ri(t, x),

with the generations linked through the division mechanism Ri(t, x) as a source term (see the next section).
This is a common technique in existing ordinary and delay differential equations models for dividing cells (see
[25, 29, 30]). Because each generation of cells is assigned to a particular compartment (indexed by i) with unique
proliferation and death rates, it is not necessary to estimate these rates in terms of the structure variable x, so
that peak overlap and label decay no longer affect the accuracy of the estimated rates. This is in contrast to
previous work [18, 19] in which considerable space is devoted to answering the question of how to parameterize
the structural dependence of the proliferation and death rates. As an added advantage, the number of parameters
necessary for the parameterizations of the proliferation and death rates is reduced (because there is no longer a
need to parameterize the functions αi and βi in terms of the structure variable). Furthermore, the existence of
multiple compartments makes it possible to accurately determine cell numbers in terms of divisions undergone,
even though the computed densities (for the distinct compartments) will still overlap when placed simultaneously
on the x axis. Because this model does not rely upon any assumptions as to the shape (normal, lognormal, etc.)
of the generation peaks (instead starting from an initial condition and fitting directly to the CFSE histogram
data) systematic bias should be avoided.

In this report, we begin with a careful formulation of the compartmental model. The solution to this model is
then presented and computational aspects are discussed. Next we establish an inverse problem for the estimation
of the AutoFI and Gompertz parameters, as well as the proliferation and death rate functions αi(t) and βi(t). As
in previous work [18, 19], multiple parameterizations of the proliferation and death rate functions are considered
with the goal of determining how these rates depend on both division number and on time. After presenting
results which demonstrate the enhanced capabilities of the compartmental model, the statistical properties of
the flow cytometry data are considered and ramifications for the quantification of uncertainty in the estimated
parameters are discussed.

2 The Compartmental Model

The derivation of the compartmental model follows immediately from the derivation of the fragmentation model
(1) in [18], which is itself a variation of the structured population models of Bell-Anderson [22] and Sinko-
Streifer [63]. A complete derivation of the compartmental model can be found in Chapter 3 of [66]. Let ni(t, x),
0 ≤ i ≤ imax be the label structured population density of a population of cells stained with CFSE and having
undergone i divisions. The structure variable x is the fluorescence intensity (FI) of a cell (in arbitrary units of
intensity, UI) satisfying x ≥ xa where xa is the natural autofluorescence intensity (AutoFI) of cells; t is time (in
hours). While it is known that AutoFI increases significantly when cells become activated, this increase is not
believed to be significant for the current modeling effort (as AutoFI contributes minimally to the measured FI of
a labeled but unactivated cell). Thus, the parameter xa should be understood to describe AutoFI for activated
cells. It is known that FI scales linearly with the concentration of CFSE used to label a population of cells, and
that this measurement does not change significantly when cells increase in size [54]. Thus we assume FI is a
mass-like quantity.

The label-structured density of a population of dividing cells is modeled by the system of PDEs

∂n0

∂t
+
∂[v(t, x)n0(t, x)]

∂x
=− (α0(t) + β0(t))n0(t, x)

∂n1

∂t
+
∂[v(t, x)n1(t, x)]

∂x
=− (α1(t) + β1(t))n1(t, x) +R1(t, x)

...

∂nimax

∂t
+
∂[v(t, x)nimax(t, x)]

∂x
=− βimax(t)nimax(t, x) +Rimax(t, x) (2)
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where v(t, x) is the natural rate of CFSE FI decay (as a result of the turnover of CFSE within individual cells)
and Ri(t, x) = 4αi−1(t)ni−1(t, 2x − xa) for 1 ≤ i ≤ imax represents the influx of newly divided cells. Note the
assumption that αimax = 0. While there is no mathematical limit to the number of generations which can be
computed, experimental data generally exhibits fewer than 10 divisions. In an inverse problem setting (see Section
3), the parameter imax can be easily fixed in advance by simply counting the number of generations which appear
in the data. Because it is then known that there are no cells with generation number imax + 1, there must be
no proliferation in generation imax, and the model can be simplified by setting αimax = 0. Of course, the process
of determining imax could be automated via model refinement statistical tests, but that seems unnecessary given
the ease with which the parameter can be identified from data.

There is an additional mathematical justification for setting αimax = 0. The total quantity of CFSE FI in the
population is

M(t) =

∫ ∞

xa

x

(

imax
∑

i=0

ni(t, x)

)

dx.

Using the definition of M(t) and the system of equations (2), we can show that

dM

dt
=

∫ ∞

xa

v(t, x)

(

imax
∑

i=0

ni(t, x)

)

−
∫ ∞

xa

x

(

imax
∑

i=0

βi(t)ni(t, x)

)

+ xa

∫ ∞

xa

(

imax
∑

i=0

αi(t)ni(t, x)

)

−
∫ ∞

xa

x (αimax(t)nimax(t, x)) .

While the first three terms on the right side of this equation are physically relevant and expected (loss of FI
by Gompertz decay, loss of FI by death, and the additive role of AutoFI, respectively) the final term is not
experimentally valid because cells do not recognize a maximum division number after which they must leave the
measured population. The requirement that αimax = 0 eliminates this term.

The initial condition must be prescribed for each i,

ni(0, x) = Φi(x). (3)

It will generally (but not necessarily always) be true that Φi(x) = 0 for i ≥ 1 (that is, all cells in the population
are undivided at t = 0). These initial condition curves are determined from data taken at t = 0 (see Section 2.2).
The left (x = xa) boundary conditions are the no-flux boundary conditions

v(t, xa)ni(t, xa) = 0 (4)

for all 0 ≤ i ≤ imax. Because the problem is defined on the semi-infinite domain x ≥ xa, these conditions are
sufficient to compute a solution. This is in contrast to previous work [18, 19, 50, 52] in which a zero-recruitment
boundary condition, n(t, xmax) = 0, is imposed at the right boundary of the computational domain. As discussed
in the next section, under appropriate conditions these two formulations are equivalent.

2.1 Model Solution

For many decay velocities v(t, x) of interest, the system of equations (2) can be solved analytically using the
method of characteristics. As discussed previously, we assume that the rate at which cells naturally lose FI is
described by the same function, v(t, x), for all cells independent of division number. As such, the characteristic
lines are the same for each generation of cells. Furthermore, it will be assumed that this rate of FI loss is adequately
described by a Gompertz decay process [38]; this has been shown [18] to effectively describe the biphasic decay
[55, 59, 70] characteristic of proliferation assay data when the intracellular label is CFSE. Thus we have

v(t, x) = −c(x− xa)e
−kt (5)

where c > 0 and k > 0 (both with units 1/hr) are parameters to be estimated using the data. In effect, this
function describes cellular FI which decreases exponentially (with initial rate c) to the level of cellular AutoFI,
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while the exponential rate itself decreases (exponentially) with rate k. The assumption of Gompertz decay of
cellular FI has the additional benefit of trivially satisfying the left boundary condition (4) for all i, provided
ni(t, xa) is finite (so that the flux at the boundary is well-defined).

Incorporating the Gompertz decay process, we can rewrite the system (2) as

∂n0

∂t
− ce−kt(x− xa)

∂n0

∂x
=− (α0(t) + β0(t)− ce−kt)n0(t, x)

∂n1

∂t
− ce−kt(x− xa)

∂n1

∂x
=− (α1(t) + β1(t)− ce−kt)n1(t, x) +R1(t, x)

...

∂nimax

∂t
− ce−kt(x− xa)

∂nimax

∂x
=− (βimax(t)− ce−kt)nimax(t, x) +Rimax(t, x). (6)

The characteristic lines (for all i) are described by

dx

dt
= v(t, x) = −c(x− xa)e

−kt, (7)

and hence the characteristic line emanating from the point (0, s) in the tx-plane is

x(t; s) = xa + (s− xa)exp
[

− c

k

(

1− e−kt
)

]

, (8)

where s ≥ xa parameterizes the line along which the initial condition is prescribed.
Define

fi(t) = αi(t) + βi(t)− ce−kt.

For undivided cells (i = 0), the solution along a characteristic line emanating from a point (0, s) in the tx-plane
is given by

∂n0

∂t
= −f0(t)n0(t, x(t; s))

with n0(0, x(0; s)) = n0(0, s) = Φ0(s). Thus the solution along characteristic lines is

n0(t, x(t; s)) = Φ0(s)exp

(

−
∫ t

0

f0(τ)dτ

)

. (9)

As written above, the system of equations (6) is defined on the semi-infinite domain x ≥ xa. In general, the initial
condition function Φ0(x), can be determined from data (see Section 3) only on some finite segment [xa, xmax] of
the domain. However, there is no loss of generality in extending the initial condition curve by assuming Φ0(x) = 0
if x > xmax. This is in contrast to [18, 19, 50, 52] in which a PDE was defined only on the finite interval [xa, xmax]
and a zero-recruitment boundary was imposed. In fact, the two formulations are equivalent provided Φ(xmax) = 0
(in the former models; Φi(xmax) = 0 for all i in the compartmental model) and v(t, x) < 0. As the semi-infinite
formulation is notationally simpler and easy to implement, we use it here.

The solutions for i ≥ 1 along the same characteristic lines (8) are described by

∂ni

∂t
= −fi(t)ni(t, x(t; s)) +Ri(t, x(t; s)) (10)

with ni(0, x(0; s)) = Φi(s) and the solutions are

ni(t, x(t; s)) = Φi(s)exp

(

−
∫ t

0

fi(τ)dτ

)

+

∫ t

0

Ri(τ, x(τ ; s))exp

(

−
∫ t

τ

fi(ξ)dξ

)

dτ. (11)

It is worth noting that the solution by the method of characteristics involves the construction of an integral
surface in the coordinates t and s. The change of coordinates from t and x to t and s has Jacobian

J =

∣

∣

∣

∣

∂t
∂t

∂t
∂s

∂x
∂t

∂x
∂s

∣

∣

∣

∣

= exp
(

− c

k

(

1− e−kt
)

)

,

6



0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

24

48

72

96

120

144
Characteristic Lines, k > 0

Fluorescence Intensity [UI]

T
im

e 
[h

rs
]

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

24

48

72

96

120

144
Characteristic Lines, k = 0

Fluorescence Intensity [UI]

T
im

e 
[h

rs
]

Figure 2: Characteristic lines given by Equations (7)-(8) when c = 1 × 10−2 and k = 2 × 10−2 (left) and in the
limiting case when k = 0 (right). Notice that distinct characteristic lines will remain separated by some positive
distance for all time in the former case, while in the latter case the lines asymptotically converge to x = xa. The
horizontal broken line along the bottom of both graphics is the line along which the initial condition data is given.
It is clear that this initial condition curve is nowhere tangent to a characteristic line, hence the local existence of
a unique solution is guaranteed.

which is nonsingular along the initial condition curve (t = 0). Hence we are guaranteed (by the construction
above) that a unique solution exists at least locally near the initial condition curve. Note that in the limit as
k → 0+, the Jacobian is Jk↓0 = e−ct, which becomes singular asymptotically in time (reflecting the asymptotic
convergence of the characteristic lines). In such a case, one might observe solutions which grow without bound.
This is only of minimal concern, however, as the total label loss resulting from decay is small over the duration
of a typical experiment. Possible characteristic lines (for k > 0 and k = 0) are shown graphically in Figure 2.

For the remainder of this document, it will be assumed that all cells are undivided at t = 0, so that Φi(x) = 0
for i ≥ 1. This condition is satisfied by essentially all experimental data. Thus, the only nontrivial initial condition
for the PDE system (6) is Φ0(x). As this model is motivated by an attempt to fit and explain experimental data,
this smooth initial condition must be constructed from data taken at the beginning of the experiment. Our
process for doing so is described below, followed by the numerical algorithm for computing the solutions (9) and
(11).

2.2 Initial Condition Construction

For the construction of the initial condition, we use experimental data (which is noisy histogram data in the
logarithmic coordinate z = log10(x)) collected at t = 0 hours in order to determine Φ0(x). The data consist of
ordered pairs (z0k, n

0
k), which denote the number of cells n0

k counted into the histogram bin (subject to measurement
error) with its left boundary at z0k when t = 0. In order to obtain a smooth initial condition function from the noisy
data (z0k, n

0
k), a smooth line is drawn through the original histogram data which is taken to represent the ‘true’ cell

counts in the absence of noise. The numerical values are recovered from the smooth line using DataThief [67] to
form the ‘noiseless’ counts (z0k, n̂

0
k), which are then easily transferred from the logarithmic coordinate resulting in

new ordered pairs (x0k, n̂
0
k) (because the n̂0

k are approximate numbers of counted cells as opposed to a structured
density, the values do not need to be rescaled when changing from z to x).

Finally, we must use these ‘noiseless’ cell counts in the x coordinate in order to determine the structured
density initial condition Φ0(x) for (9). To do so, we first define the function

ϕ(x) =
∑

k

n̂0
klk(x),
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Figure 3: Left: Smooth curve drawn through the experimental data taken at t = 0 hours. Right: Initial condition
function Φ0(x) computed from the smooth line using the algorithm of Section 2.2.

where lk(x) are piecewise linear functions satisfying

lj(x
0
k) =

{

1, j = k
0, j 6= k

.

Thus the function ϕ(x) is a piecewise linear function such that ϕ(x0k) = n̂0
k. Next, we compute the total measured

FI in the population at t = 0 using the original noisy data,

FIdata =
∑

k

x0kn
0
k.

Similarly, the total FI in the smooth data function ϕ(x) is

FIsmooth =

∫

xϕ(x)dx,

where the integral is approximated using the composite trapezoidal rule. The initial condition function is then
constructed as

Φ0(x) =
FIdata
FIsmooth

ϕ(x).

The results of this technique are shown in Figure 3. This method ensures that the total measured FI in the initial
condition curve is equal to the total measured FI in the original noisy data. Because the mathematical model (2)
is derived from conservation principles (considering FI as a mass-like quantity), this provides a useful comparison
between the data and the model, as well as a method to assess the accuracy of the numerical simulations. It is
worth noting that such a complex procedure is unnecessary in the event the histogram bins are evenly spaced
(in the logarithmic coordinate z). In such an event, a smooth density function (in z) can be computed from
the smooth cell counts (z0k, n̂

0
k) simply by dividing the counts by the bin spacing. The function Φ0(x) can then

be computed as a simple change of variables from z to x. However, this method of computation may result in
discontinuous jumps in the computed density if there are abrupt changes in the sizes of adjacent histogram bins.
Moreover, total measured FI for the initial condition curve will not necessarily be equal to the total FI in the
noisy data (although the two values should still be close) if such a method were to be used. Thus, we find the
rescaling method above to be preferable even in the case of evenly spaced bins.

2.3 Numerical Solution

Given the initial condition function Φ0(x) as computed above, it now remains to numerically compute the solutions
(9) and (11) for n0(t, x) and ni(t, x), 1 ≤ i ≤ imax, respectively. In the structure variable, the solutions are
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computed on a fixed (i.e., one that does not change with division number) mesh {x(k)}, 1 ≤ k ≤ Nx (these

should be distinguished from the xjk = 10z
j

k used to describe the data). While it is not strictly necessary for each
compartment to be computed on the same grid, there seems to be little advantage in varying the structure variable
mesh with division number. Because the major features (the ‘peaks’) of the structured density solution shrink by
approximately a factor of two with each division, it is advantageous to choose the points {x(k)} so that they are
logarithmically spaced (that is, so that the collection {log10(x(k))} is evenly spaced). This ensures an increasing
density of nodes as x decreases, and hence as the major features of the solution become more condensed. The
uneven spacing of the nodes for the structural variable does not cause any numerical difficulties as the algorithm
presented below requires only interpolation (i.e., no finite-difference derivatives) in the structural dimension.
Because the model presented in this report uses distinct compartments for each generation of cells, and because
each generation of cells remains in a relatively small region in the structure variable (see [18, 19, 50, 52], which
were motivated by this fact), it is certainly true that the use of a single structural mesh for all compartments
results in some unnecessary storage and computations. However, the value of Nx has only a small effect on
computational time (see below) so that this is of little concern.

In time, the solutions are computed on a fixed, evenly spaced mesh {t(m)}, with spacing ht. Unlike time-
stepping finite difference methods (such as the Lax-Wendroff method used in [18, 19, 52] which require storage of
the solution at only the most recent time steps, the method of characteristics solution (11) requires an integration
along characteristic lines over the history of the solution (see Equation (13) below). This integration is computed
via the trapezoidal rule, using quadrature nodes which correspond to the time mesh {t(m)}. While this method
of computing the solution is storage-intensive, the requirements are not unreasonable, even when running in
MATLAB on a 32-bit desktop machine.

It is obvious from Equations (9) and (11) that the system (6) can be solved inductively on i. For time t(m)

and FI x(k), we find from Equation (8)

s(t(m), x(k)) = (x(k) − xa)exp
( c

k

(

1− e−kt(m)
))

+ xa. (12)

The solution n0(t, x) (Equation (9)) is then computed by multiplying the values of Φ0(s) by the scalar

exp

(

−
∫ t(m)

0

f0(τ)dτ

)

= exp

(

−
∫ t(m)

0

(

α0(τ) + β0(τ)− ce−kτ
)

dτ

)

.

For all parameterizations of the functions αi(t) and βi(t) considered in this report, the integral above can be
computed exactly.

As noted above, it is assumed Φi(x) = 0 for i ≥ 1. Thus the solutions ni(t, x) can be rewritten

ni(t, x) =

∫ t

0

Gi(τ ; t, x)dτ (13)

where

Gi(τ ; t, x) = 4αi−1(τ)ni−1(τ, 2x(τ, s)− xa)exp

(

−
∫ t

τ

fi(ξ)dξ

)

.

As above, the scalar 4αi−1(τ)exp
(

−
∫ t

τ
fi(ξ)dξ

)

is computed exactly. The values of the function ni−1(t, x),

though already computed, will only be available at discrete points (t(m), x(k)) and thus (13) must be computed
via quadrature. Because every solution ni(t, x) is computed on the same, evenly spaced time mesh, a simple
solution is to use this same time mesh (with the trapezoidal rule) in order to approximate the integral. Thus,
given a point (t(l), x(k)), l ≤ m, we must first determine s according to (12). This is then used to compute

x̃(l) = 2x(t(l), s)− xa,

for 0 ≤ l ≤ m, where x(t, s) is given in Equation (8). Thus we have

Gi(t
(l); t(m), x(k)) = 4αi−1(t

(l))ni−1(t
(l), x̃(l))exp

(

−
∫ t(m)

t(l)
fi(ξ)dξ

)

,

9



with the values of ni−1(t
(l), x̃(l)) determined by linear interpolation. Finally, from (13),

ni(t, x) =

∫ t

0

Gi(τ ; t)dτ ≈

=ht ·
m−1
∑

l=1

Gi(t
(l); t(m), x(k)) +

ht
2

(

Gi(t
(0); t(m), x(k)) +Gi(t

(m); t(m), x(k))
)

. (14)

We now consider how the computed solution changes as the mesh parameters Nx and ht are changed. As a
test case, nominal parameters (for xa, c, k, αi(t) and βi(t)) were used to compute a solution at t = 120 hours using
various combinations of values for Nx and ht. The results are shown in comparison in Figure 4. For convenience,
the solutions ni(t, x) have been summed together and graphed in terms of the log FI (z = log10(x)) coordinate.

As noted above, the algorithm does not require any quadrature or finite differences in the structural compo-
nent. At most, it is necessary to use interpolation (linear interpolation seems sufficient) in order to compute the
function Gi above in the likely event x̃(l) 6∈ {x(k)}. Thus, one would expect approximately second-order accuracy
in Nx. In fact, we find (computationally) this expectation is exceeded. The explanation lies in the iterative
manner in which the solution is computed. Consider computing n1(t, x) (Equation (13)), provided n0(t, x) is
already computed. On one hand, because this computation will require (linear) interpolation, we would expect
the resulting error to depend upon the mesh-spacing of n0(t, x). However, n0(t, x) is computed from the initial
condition function Φ0(x) which is defined (see Section 2.2) as a piecewise linear function. It follows that, as Nx

approaches the number of points used in defining Φ0(x), the error will no longer decrease (because a piecewise
linear function is being used to approximate a more coarsely defined piecewise linear function). In this report,
the function Φ0(x) is defined with 806 points. Thus, it is no surprise that we find little difference in the solutions
computed with Nx = 512 and Nx = 1024.

The use of the trapezoidal rule with step size ht to approximate the integral in (13) results in a numerical
solution which is second order in ht. Also, we see that, at each time step t(m) (0 ≤ m ≤ T/ht, for a solution
computed on t ∈ [0, T ]), Equation (14) requires m computations of the function Gi(τ ; t, x). Thus we expect
the computational time to scale as O(1/h2t ). Table 1 summarizes the average computational time for various
combinations of Nx and ht. As expected, computational time approximately quadruples as ht is halved. As the
algorithm in the previous section has been fully vectorized, Nx has only a minimal effect on computational time.

When fitting the compartmental model to data in an inverse problem setting, we must balance the need for
an accurate solution with the desire to quickly evaluate the model (given a set of parameters). As such, in the
results presented in Section 4, we use Nx = 512 with ht = 0.5 hours.

3 Inverse Problem Formulation

We now consider the inverse problem of calibrating the model (6) to a particular data set. As stated previously,
the data consist of ordered pairs (zjk, n

j
k) indicating the total number of cells nj

k counted into the histogram bins

with left boundary at zjk (in the log FI coordinate) at time tj . The notation is meant to emphasize the possibility
that the histogram bins need not share a common fixed width, nor need they be the same at each measurement
time. The data set we will use to calibrate the compartmental model is shown in Figure 5, with measurements
taken at t = 24, 48, 96, and 120 hours.

Let ni(t, x) be the solution of the compartmental model for cells having undergone i divisions. Then the total
population of cells is

n(t, x) =

imax
∑

i=0

ni(t, x).

Because this model solution is computed in the linear FI coordinate x while the data is given in the logarithmic
FI coordinate z = log10(x), we define

ñ(t, z) = 10z ln(10)n(t, x(z)) = 10z ln(10)n(t, 10z). (15)

The function ñ(t, z) is the structured population density in terms of the new structure variable z. The factor
10z ln(10) arises from the chain rule in the integral formulation of the model (see Section 2) and is needed to
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Figure 4: Left: Effect of changing the number of structure variable nodes Nx with the time increment fixed at
ht = 0.5 hours. The computed solutions are similar for all values of Nx shown (top). Zooming in (bottom),
we find that there is only a small difference (less than 2% max) in the computed solutions for Nx ≥ 256 with
solutions for Nx = 512 and Nx = 1024 virtually indistinguishable. Right: Effect of changing the time increment
ht with the number of structural variable nodes fixed at Nx = 512. While the difference between the solution
computed for ht = 2 and ht = 1 is large, there is a much smaller difference (approximately 1% max) between
ht = 0.5 and ht = 0.25, as expected. Note that the proximity of the ht = 2 solutions to the ht = 0.25 solution is
mere coincidence and does not hold more generally.

Table 1: Effects of ht and Nx on computational time. Computational times are shown in seconds, with ht
specified in hours. As expected, computational time is quadratic in ht. Meanwhile, Nx has a much smaller effect
on computational time.

Nx \ ht 2.00 1.00 0.50 0.25
128 2.1 7.5 29.8 120.0
256 2.3 8.9 35.6 150.7
512 2.7 10.9 44.8 199.7
1024 3.9 16.8 69.7 297.9
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Figure 5: CFSE data set for the compartmental model.

conserve the quantity of label after the change of variables. Finally, we need to convert this structured density
into cell counts for comparison with the data. Thus we define

I[ñ](tj , z
j
k) ≡

∫ z
j

k+1

z
j

k

ñ(tj , z)dz,

which is the observation operator for the compartmental model. In practice, because the transformed model
solution ñ(t, z) is computed only at discrete points (tj , z

j
k), we must approximate this observation operator,

I[ñ](tj , z
j
k) ≈ IA[ñ](tj , z

j
k) =

[

ñ(tj , z
j
k+1) + ñ(tj , z

j
k)

2

]

(

zjk+1 − zjk

)

. (16)

3.1 Ordinary Least Squares

Given an initial condition as constructed in Section 2.2, the solution n(t, x) (and hence, ñ(t, z)) is completely
determined by the parameters xa (AutoFI), c and k (Gompertz decay), as well as the proliferation rates {αi(t)}
and the death rates {βi(t)}. Let θ = {xa, c, k, {αi(t)}, {βi(t)}} ⊂ Θ, where Θ is some set of admissible values for
θ. (While it will be necessary to make some simplifying assumptions on Θ in order to render the inverse problem
computationally tractable, we postpone that discussion for the moment and proceed with a general overview of
the inverse problem procedure.) Thus we may write the model as n(t, x; θ). The goal of the inverse problem is to
determine some value of the parameter θ which minimizes the distance (in an appropriate sense) between the cell
counts determined by the model solution, I[ñ](tj , z

j
k), and the histogram data. For this report, we choose least

squares as the method of estimation. Following standard inverse problem procedure [20, 27, 28, 62], we define
the random variables

N j
k = I[ñ](tj , z

j
k; θ0) + Ekj , (17)

where Ekj are independent random variables satisfying E[Ekj ] = 0 representing measurement error and/or ‘noise’
in the data. The parameter θ0 is the ‘true’ parameter (given the model) which is assumed to exist and to describe
the data. The data, then, represent a single realization of these random variables,

nj
k = I[ñ](tj , z

j
k; θ0) + ǫkj .
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The assumption that the data are generated from the specified model, given a nominal truth parameter, is common
in inverse problem formulations [8, 20]. While θ0 is generally unknown, we can define the estimator

θWLS = argmin
θ∈Θ

∑

k,j

R2
kj

wkj

= argmin
θ∈Θ

∑

k,j

1

wkj

(

I[ñ](tj , z
j
k; θ)−N j

k

)2
, (18)

which minimizes the weighted sum (with weights w−1
kj ) of squared residuals Rkj . Because the N j

k are random
variables, so are the Rkj and, hence, so is θWLS . Using the data, we may obtain the estimate

θ̂WLS(n
j
k) = argmin

θ∈Θ

∑

k,j

r2kj
wkj

= argmin
θ∈Θ

∑

k,j

1

wkj

(

I[ñ](tj , z
j
k; θ)− nj

k

)2
.

In theory, the weights w−1
kj should be chosen to reflect the variance of the random variables N j

k . In fact,
the accurate, unbiased estimation of standard errors as well as confidence intervals around parameter estimates
is premised upon an accurate statistical model (hence accurate weights) for the error terms Ekj . In practice,
however, such a statistical model is rarely (if ever) known a priori, and some additional assumptions must be
made. For this report, we assume a constant variance (CV) error model, V ar(Ekj) = σ2

0 for all k and j. In this
case, wkj = 1 for all k and j and (18) becomes an ordinary least squares (OLS) problem,

θOLS = argmin
θ∈Θ

J(θ|N j
k ) =

∑

k,j

R2
kj = argmin

θ∈Θ

∑

k,j

(

I[ñ](tj , z
j
k; θ)−N j

k

)2
, (19)

with corresponding estimate
θ̂OLS(n

j
k) = argmin

θ∈Θ
J(θ|nj

k).

The function J(θ|nj
k) is the OLS cost of the model, given the data, and is often written simply as J(θ). The

expanded notation is meant to emphasize the dependence of the estimate on the particular data set used to fit
the model.

It should be noted that, rather than consider constant variance errors in an OLS framework, one could alter-
natively consider a statistical model with constant coefficient of variation (CCV), V ar(Ekj) = σ2

0(I[ñ](tj , z
j
k; θ0))

2.

Then wkj = (I[ñ](tj , z
j
k; θGLS))

2 and (18) becomes the generalized least squares (GLS) problem defined implicitly
by

θGLS = argmin
θ∈Θ

∑

k,j

R2
kj

(I[ñ](tj , z
j
k; θGLS))2

= argmin
θ∈Θ

∑

k,j

(

I[ñ](tj , z
j
k; θ)−N j

k

)2

(I[ñ](tj , z
j
k; θGLS))2

, (20)

with corresponding estimate θ̂GLS(n
j
k). As noted above, the results presented in Section 4 will focus on parameter

estimation in an OLS framework. A more thorough consideration of the reliability of the assumptions for the
statistical error model in the inverse problem is postponed until the Discussion. For the moment, we focus on the
applicability of the compartmental model to a particular data set–that is, how well the compartmental model fits
the data. Of course, the measure of fit is assessed in an OLS framework, which may be slightly different than a GLS
or more general WLS framework. The misspecification of the error model is known to result in biased standard
errors (and hence inaccurate confidence intervals), and thus no such work is carried out here. (Related efforts on
determination of the precise form of measurement error, and hence the corresponding statistical error, in a family
of data sets similar to the one used here is being pursued and will be reported on in a separate manuscript.) In
spite of this drawback, a slight misspecification of the exact error model should have only minimal effect on the
estimated best-fit parameters (see, e.g., the computational example of Section 3.4.2 of [20]), and thus we proceed
with the OLS estimation of θ0.

3.2 Parameterizations of Proliferation and Death Rates

We have already defined the parameter θ = {xa, c, k, {αi(t)}, {βi(t)}} ⊂ Θ which describes a given model solution.
The parameters xa, c, and k are all elements of R (although in a generalization below, we consider estimation of a
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probability distribution on the parameter xa) and thus pose no problem for the estimation procedure. However, the
proliferation and death rates αi(t) and βi(t), 0 ≤ i ≤ imax, are contained in some (infinite-dimensional) function
space. Mathematically, the solutions (9) and (11) require only αi(t), βi(t) ∈ L2(0, T ) in order for the solution to be
well-defined. Because it can reasonably be assumed that these functions are bounded, this condition is naturally
met. However, as currently written, (19) contains a minimization over an infinite-dimensional space Θ. In order
to make the estimation problem amenable to computation, additional assumptions and/or approximations are
necessary.

The primary motivation for using a label-structured PDE model to analyze histogram data from CFSE-
based proliferation assays was an attempt to use measured FI as a surrogate for division number and hence to
investigate how the proliferation and death rates for a population of cells change with division number. In earlier
efforts [18, 19, 50, 52], this was accomplished by allowing the proliferation and death rates to depend explicitly
on the state variable (x or z). For the compartmental model formulated in this report, the number of divisions
undergone is accounted for directly, so that it is no longer necessary to have the αi and βi dependent upon the
structure variable (following the assumption that the interference of CFSE with the intracellular machinery is
negligible). Additionally, it was found in [18, 19] that explicit time-dependence of the rate of cell proliferation is
a significant feature of an accurate label structured PDE model. We would like to pursue this investigation using
the new compartmental model. Thus, as we consider possible parameterizations of the proliferation and death
rate functions, we do so with an eye toward determining the heterogeneity of the rates (that is, how they vary
with division number), as well as the possible time-dependence of the proliferation rates.

We begin with the death rate functions βi(t). It has long been observed that a significant proportion of
undivided cells die in the first few days in culture, and that this cell death occurs independent of cellular activation
[37]. Beyond these observations, we would like to explore how the death rates of cells depend on division number.
Specifically we consider the following possible parameterizations for the death rate functions βi(t):

B1 βi(t) = 0 for all i and for all t;

B2 βi(t) = β for all i and for all t;

B3 β0(t) = β0, βi(t) = 0 for i ≥ 1;

B4 β0(t) = β0, βi(t) = β for i ≥ 1;

B5 βi(t) = βi for each i.

The possibility B1 is included as a baseline for comparison, as a means of concluding the necessity of a
death term in the mathematical model. As noted above, it is expected that a model which lacks a mechanism
to describe cell death will predict far too many cells in the population when compared to the experimental
observations [31, 37]. Parametrization B2 assumes a constant death rate in the population for all cells regardless
of division number. Gett and Hodgkin [37] have shown that parametrization B3, in which undivided cells die
but all cells which proceed through the first division will remain in the population indefinitely, can be accurately
used to predict the number of cells in the population up to approximately 90 hours. More generally, one might
consider that cells which have divided at least once may die, but at a rate which is possibly different from the
rate for undivided cells. This parametrization B4 has also been successfully used to model proliferation assay
data [29, 30, 31]. Finally, in parametrization B5, we consider the possibility that the death rate is completely
heterogenous with respect to division number [29, 35, 42, 46].

While the model is derived in sufficiently general terms to include time-dependent death rate functions, we
do not consider any such parameterizations in this report. It is certainly possible that, for particular cell lines
and under particular culture conditions, feedback mechanisms such as activation-induced cell death may in fact
be time-dependent [37]. For a (hypothetical) population of cells which divides almost synchronously, such time-
dependence would be identical to division-number-dependence (i.e., a mechanism which does not appear until,
say, 90 hours could be equivalently modeled as a mechanism which does not appear until 3 divisions have been
completed). Thus it seems reasonable to conclude that, to some extent, the necessity of time-dependent death
rates in the mathematical model will depend on the degree of synchronicity observed in the experimental data.
At the very least, past experience [18, 19] as well as the results presented here (Section 4) seem to suggest little
need for such time-dependence, at least for the current data set.
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Table 2: Chosen nodes for the estimation of piecewise linear proliferation rates. Bold font indicates a node for
which the proliferation rate was set to zero rather than estimated. For each generation, the proliferation rate is
assumed to be zero outside the set of nodes shown. Thus the proliferation rate is estimated at three nodes for
each division number.

Generation (i) {t(q)αi }
0 24,48,60,72,96
1 48,60,84,108,120
2 48,60,84,108,120
3 60,72,96,120
4 60,72,96,120
5 60,72,96,120
6 60,72,96,120

Unlike for the death rate functions, past experience [18, 19] does indicate a potential need for explicit time-
dependence of the proliferation rate functions αi(t). (The fact that time dependence for cell death rates seems
to be sufficiently modeled with only division dependence while a similar result does not hold for the proliferation
rates may be explained if the time-dependence of the proliferation rates occurs on a scale faster than the aver-
age time a cell takes between subsequent divisions.) To explore possibilities we consider the following possible
parameterizations for the proliferation rate functions:

A1 α0(t) = α0; αi(t) = α for all i;

A2 αi(t) = αi for all t;

A3 α0(t) = α0χ[t>t∗]; αi(t) = α for all i;

A4 α0(t) = α0χ[t>t∗]; αi(t) = αi;

A5 piecewise linear functions of time (see below).

Previous authors [31, 37, 40] have emphasized a special importance for the time required for a cell to complete
its first division. In case A1, it is assumed that undivided cells divide at a rate which may be different than
the rate for divided cells, but that neither of these two rates depends on time [30]. Alternatively, we consider
the more general case A2 where each generation of cells divides with its own (time-independent) rate [47]. We
also consider a simple time-dependent mechanism in which there is a delay before cells begin to divide. A quick
glance at the data (Figure 1) reveals that no division occurs in the population for at least the first 24 hours.
Such a delay can be easily incorporated into the model with a step function at some specified time t∗. Previous
models [30] have found such a transient in the undivided population to be a significant feature of an accurate
mathematical model. The proliferation rates for subsequent generations may A4 or may not A3 vary with the
number of divisions undergone.

Finally, following the example of [18], we consider using piecewise linear splines to incorporate time-dependence

into the proliferation rates. Given a fixed set of nodes {t(q)αi }, we consider rates of the form

αi(t) =
∑

q

a
(q)
i l

(q)
i (t),

where l
(q)
i (t

(p)
αi ) = 1 if p = q and is zero if p 6= q. In Table 2 we list the nodes {t(q)αi } used for the estimation of

the proliferation rate functions. These particular nodes have been chosen based upon careful consideration of the
data in Figure 1 as well as past experience.

Independent of which parameterizations of the proliferation and death rates are used, it should be noted
that the current model formulation features proliferation and death rates which are essentially Malthusian in
nature (see Section 2). That is, the rates at which cells in a particular generation divide and die is assumed
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to be proportional to the total number of cells in that generation (with ‘constants’ of proportionality αi(t)
and βi for proliferation and death, respectively). Alternatively, a model can easily be derived with limiting
proliferation and death rates (e.g., logistic rates, Gompertz rates, etc.). Malthusian rates have been used with
some success in previous models and should be accurate for any population of cells which divides sufficiently
rapidly. Biologically speaking, a cell must proceed through several necessary activities (growth, DNA replication,
microtubule formation, etc.) between any two divisions, and this must induce some minimum cell cycle time.
Tools such as delay differential equations or stochastic processes have been used to mathematically model the
cell cycle (see, e.g., [29, 30, 33, 36, 40, 43, 44, 46, 58, 64, 73]) and have resulted in several successful models. We
find the current model with its Malthusian rates to be simple and intuitive while also fully capable of accurately
fitting the data (see Section 4). However, it is imperative that the parameters estimated when fitting the model
to a particular data set be interpreted in the context of the form of the model being used.

3.3 Probabilistically Distributed AutoFI

The derivation and solution of the compartmental model have been given so far under the assumption that the
natural brightness of cells in the absence of any CFSE molecules, i.e., the autofluorescence intensity or AutoFI,
can be modeled with sufficient accuracy by a single scalar parameter xa. However, it is known that the AutoFI
of a single cell changes as the cell becomes activated, and that AutoFI varies from cell to cell in the population,
even among activated cells.

The AutoFI of cells can be measured directly by setting aside a portion of cells from the PBMC culture
which are not labeled with CFSE (but which receive an otherwise identical treatment). The results of such a
measurement are depicted in Figure 6 for two donors, each at two different measurement times. These data sets
were taken independently of the data set shown in Figure 1, which is used to calibrate the model. Because FI
measurements are not absolute–they depend on the calibration and gain settings of the flow cytometer at the time
of the experiment–the data shown in Figure 6 are intended only to examine the shape of the AutoFI distribution
in the population, not its absolute magnitude. As time progresses, the distribution of AutoFI in the data from
both donors increases slightly in mean and is increasingly skewed to the right. These features are also found
in additional data sets for 24 < t < 144 (results unpublished) and appear to be the result of some unmodeled
biological processes. The most likely explanation is the known increase in AutoFI as cells become activated [54,
Fig. 6]. After a sufficient amount of time, essentially all cells in the culture have either become activated or have
died.

Following the discussion at the beginning of Section 2, we may consider only AutoFI for activated cells.
While we have thus far assumed that this AutoFI can be sufficiently modeled with a single parameter, Figure
6 suggests that we might need to consider a probability distribution on a range of values for the parameter xa.
Let n(t, x;xa) represent the structured population density of a cohort or subpopulation of cells all of which share
the same AutoFI parameter xa, subject to (6). Assume further that this parameter xa is distributed in the total
population of cells with some probability distribution P . Then it follows that the total population is described
by

η(t, x) = E[n(t, x;xa)|P ] =
∫ xmax

a

xmin
a

n(t, x;xa)dP (xa). (21)

It is now clear that the structured density η(t, x) for the total population of cells will depend upon the
probability measure P . Figure 6 depicts the experimental AutoFI data for each donor and measurement time
fitted (ordinary least squares) with a scaled lognormal curve. While such an assumption may possibly be of
limited validity early in the experiment (probably as a result of the activation process, as discussed above), most
cells are undivided at such times and hence the contribution of AutoFI to the total FI of those cells is minimal.
Thus we may assume that P is reasonably well-described by a lognormal distribution. Hence

dP

dxa
= p(xa) =

1

xaσ
√
2π

exp

(

− (log xa − µ)2

2σ2

)

,
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Figure 6: Experimentally determined AutoFI distributions with OLS best-fit scaled lognormal curves. PBMCs
of 2 blood donors were cultured without CFSE staining and without stimulation. After 24 (left) and 144 (right)
hours respectively, cells were stained for CD4 surface expression and analyzed by flow cytometry. Shown are the
histograms of CD4 cell counts as a function of CFSE FI. We see that a lognormal distribution for AutoFI is quite
accurate by t = 144 hours (right). Such an assumption is less accurate at t = 24 hours, when a significant portion
of cells in the population remain unactivated.
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where

µ = log(E[xa])−
1

2
log

(

1 +
V ar(xa)

E[xa]2

)

σ2 = log

(

1 +
V ar(xa)

E[xa]2

)

.

Under such a parametric assumption, the population density η(t, x) is uniquely described by the two parameters
E[xa] and STD[xa] =

√

V ar(xa) (in addition to the parameters θ discussed so far in this section).
The integral in Equation (21) can be easily computed via the midpoint rule. Let {xma } be a set of evenly

spaced points with spacing ∆xa. Then

η(t, x) ≈
M
∑

m=1

n(t, x;xma )p(xma )∆xa. (22)

As written, Equation (22) requires the computation of M forward solutions in order to approximate the total
population density. However, this computationally intensive approach can be avoided by a change of variables.
Define y = log10(x − xa) and n̂(t, y) = 10y log(10)n(t, x(y)) = 10y log(10)n(t, 10y + xa). Then the system (6)
becomes

∂n̂0

∂t
− ce−kt

log 10

∂n̂0

∂y
=− (α0(t) + β0(t)− ce−kt)n̂0(t, x)

∂n̂1

∂t
− ce−kt

log 10

∂n̂1

∂y
=− (α1(t) + β1(t)− ce−kt)n̂1(t, x) + 2α0(t)n̂0(t, y + log10 2)

...

∂n̂imax

∂t
− ce−kt

log 10

∂n̂imax

∂y
=− (βimax(t)− ce−kt)n̂imax(t, x) + 2αimax−1(t)n̂imax−1(t, y + log10 2). (23)

It is then clearly observed that the parameter xa no longer appears in the system of equations for the compart-
mental model in the structure variable y, while only the new initial condition,

Φ̂0(y) = 10y log(10)Φ0(10
y + xa), (24)

will now depend on xa. However, provided the initial uptake of CFSE in the experimental procedure results in
cells with measured FI significantly greater than their AutoFI (which is always the case for useful experimental
data), Φ0(x) = 0 unless x >> xa (and hence, unless 10y >> xa). As such, the dependence of the initial condition
on the parameter xa can be safely ignored. This fact is demonstrated with an example in Figure 7. In general,
it is expected that CFSE-labeled cells are approximately 100-1000 times brighter than unlabeled cells (see, e.g.,
[54, 60, 72]; as mentioned previously, the actual measured FI values depend on machine calibration, and hence
will vary from experiment to experiment). Given the initial condition data (Figure 3) for our particular data set
of interest, it is reasonable to assume E[xa] ∼ 10. In Figure 7, a sample lognormal distribution with E[xa] = 12
and STD[xa] = 4 is depicted on the left. (These values for the mean and standard deviation can be taken
as maximum, worst-case bounds. It is expected that the mean value of xa is no more than 12, with standard
deviation less than 4.) We can assess the effect of the parameter xa on Φ̂0(y) by computing Φ̂0(y) for extreme
values of xa (that is, values in the far-left and far-right tails of the density function). The resulting functions (as
well as a third function, showing Φ̂0(y) when xa = E[xa]) are shown on the right of Figure 7.

It is clear from Figure 7 that the initial condition function (for y as a structure variable) changes only minimally
for any reasonable values of xa. (Moreover, the original initial condition Φ0(x) was already approximate, having
been computed from data in Section 2.2.) Thus, computationally, when computing the structured population
density according to (21), we compute only a single initial condition from Equation (24) using xa = E[xa]. The
system (23) can then be solved to obtain n̂(t, y) (which does not depend on xa at all). Next, for each value of xa
in (22), one can compute

n(t, x;xa) =
n̂(t, y(x))

log(10)(x− xa)
=
n̂(t, log10(x− xa)

log(10)(x− xa)
,

18



5 10 15 20 25 30
0

0.05

0.1

0.15

Sample Lognormal Distribution for x
a

x
a

P
ro

ba
bi

lit
y 

D
en

si
ty

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

7x 10
7

Initial Condition in y for varying x
a

y = log
10

(x − x
a
)

S
tr

uc
tu

re
d 

D
en

si
ty

 

 

x
a
 = 3

x
a
 = 12

x
a
 = 30

Figure 7: Left: A hypothetical lognormal AutoFI distribution with E[xa] = 12 and V ar(xa) = 4. Right: Initial
conditions (in the structure variable y) computed for the mean value of xa (solid line) as well as two for two
extreme values of xa. One can see that the value of the parameter xa has very little effect on the initial condition
Φ̂0(y).

in order to determine the population structured density η(t, x). It should be noted that, while the change of
variables from x to y eliminates the parameter xa from the system of PDEs, and we have shown that the effect of
xa on the initial condition Φ̂0(y) is negligible, it is not true that the parameter xa can be ignored entirely. The
negligible effect of xa on the initial condition is the result of the brightness of CFSE-labeled cells at the beginning
of the experiment. However, as time progresses, CFSE intensity is lost as cells divide and CFSE degrades, so
that AutoFI constitutes a larger percentage of the measured FI. In other words, while it is reasonable to assume
n(0, x) = Φ0(x) = 0 unless x >> xa, this assumption does not hold more generally for n(t, x) (t > 0).

Finally, when using Equation (22) to approximate the total population density, one must make certain that
the parameter M is sufficiently large to provide desired accuracy. In Figure 8, a sample density is computed at
t = 120 hours using three different values of M . Given the discussion, above, there is essentially no difference
in computational time as M changes. While the solution is not accurately captured for M = 10, there is no
measurable difference between the solutions for M = 100 and M = 1000. Henceforth, if it is assumed that
AutoFI is distributed in the population of cells, the total population η(t, x) will be computed via Equation (22)
with M = 100.

3.4 Remarks on the Inverse Problem

At this point, we have considered numerous different parameterizations for the proliferation rate functions αi(t)
(A1-A5), and the death rates βi (B1-B5). Each of these parameterizations results in a distinct set of parameters
which will need to be estimated from the data. We also have the additional label loss parameters c and k, as
well as the AutoFI parameter which can be considered either as a fixed constant xa or as a lognormal probability
distribution with mean E[xa] and standard deviation STD[xa].

In the remainder of this report, we will refer to the model solution simply as n(t, x; θ) where θ ⊂ R
p is

a set of parameters which describes the model. (This includes the case that xa is described by a probability
measure, where η(t, x) was used in the previous exposition.) This is done to simplify notation, and it will always
be clear from context which parametrization is being used. Obviously, the value of p will vary depending upon
the parametrization. The various possibilities are summarized in Table 3.

We now return to the OLS formulation (19) of the inverse problem,

θOLS = argmin
θ∈Θ

∑

k,j

R2
kj = argmin

θ∈Θ

∑

k,j

(

I[ñ](tj , z
j
k; θ)−N j

k

)2
,

where now Θ is a closed bounded subset of Rp. Using the data {nj
k} as realizations of the random variables {N j

k},
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Figure 8: Effect of the number of nodes M used to approximate the total population density η(t, x) in Equation
(22). Using M = 100 seems more than sufficient.

we would like to compute the estimate

θ̂OLS({nj
k}) = argmin

θ∈Θ
J(θ|{nj

k}) = argmin
θ∈Θ

∑

k,j

(

I[ñ](tj , z
j
k; θ)− nj

k

)2
. (25)

However, we have only an approximate numerical solution with which to compare the data. Thus we actually
compute the approximate estimate

θ̂OLS(ht, Nx,M ; {nj
k}) = argmin

θ∈Θ
JA(θ|{nj

k}) = argmin
θ∈Θ

∑

k,j

(

IA[ñ](tj , z
j
k; θ)− nj

k

)2
, (26)

where we have now explicitly emphasized the dependence of the parameter estimate on the computational accu-
racy of the numerical solution. The continuous dependence of the model solution ñ(t, z; θ) on the parameter θ
(regardless of which particular parametrization is used) follows easily from the method of characteristics solution
of Section 2.1. Numerical convergence with respect to ht, Nx, and M follow directly from well-known results
regarding the trapezoidal rule for quadrature, linear interpolation of a smooth function, and the midpoint rule for
quadrature, respectively. As such, it can be shown (see, e.g., the arguments of [15, Ch. 3] that the approximate

estimates θ̂OLS(ht, Nx,M ; {nj
k}) will converge to some θ̂∗OLS which minimizes (25) as Nx,M → ∞, and ht → 0.

It should be noted that the possible nonuniqueness of the minimizer θ̂∗OLS is a common issue in inverse problems.
We forgo techniques such as Tikhonov regularization in this report, choosing to focus instead on the accuracy of
the best fit models n(t, z; θ̂OLS) in fitting a particular data set, regardless of uniqueness (although these issues
must be dealt with in order to establish standard errors, confidence intervals, etc.). For the remainder of this

report, we will not distinguish between θ̂OLS , θ̂
∗
OLS , or θ̂OLS(ht, Nx,M ; {nj

k}). It should also be noted that this
best-fit parameter, which is itself an estimate of the random variable θOLS , will be data-realization dependent.
However, for a good model and a sufficiently large data set, θ̂OLS is an unbiased estimator of θOLS [20, 28, 62].

The optimization (26) has been implemented in MATLAB using the fmincon function, which is a variation
of the BFGS-active set algorithm for bound-constrained parameters. The parameter constraints are summarized
in Table 4.
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Table 3: Summary of possible parameterizations for the compartmental model, with the set θ ∈ R
p of parameters

describing the model in each case.
Model Parameters p Model Parameters p

A1B1 θ = {xa, c, k, α0, α} 5 A1B1dist θ = {E[xa], STD[xa], c, k, α0, α} 6
A1B2 θ = {xa, c, k, α0, α, β} 6 A1B2dist θ = {E[xa], STD[xa], c, k, α0, α, β} 7
A1B3 θ = {xa, c, k, α0, α, β0} 6 A1B3dist θ = {E[xa], STD[xa], c, k, α0, α, β0} 7
A1B4 θ = {xa, c, k, α0, α, β0, β} 7 A1B4dist θ = {E[xa], STD[xa], c, k, α0, α, β0, β} 8
A1B5 θ = {xa, c, k, α0, α, {βi}} 12 A1B5dist θ = {E[xa], STD[xa], c, k, α0, α, {βi}} 13
A2B1 θ = {xa, c, k, {αi}} 9 A2B1dist θ = {E[xa], STD[xa], c, k, {αi}} 10
A2B2 θ = {xa, c, k, {αi}, β} 10 A2B2dist θ = {E[xa], STD[xa], c, k, {αi}, β} 11
A2B3 θ = {xa, c, k, {αi}, β0} 10 A2B3dist θ = {E[xa], STD[xa], c, k, {αi}, β0} 11
A2B4 θ = {xa, c, k, {αi}, β0, β} 11 A2B4dist θ = {E[xa], STD[xa], c, k, {αi}, β0, β} 12
A2B5 θ = {xa, c, k, {αi}, {βi}} 16 A2B5dist θ = {E[xa], STD[xa], c, k, {αi}, {βi}} 17
A3B1 θ = {xa, c, k, α0, t

∗, α} 6 A3B1dist θ = {E[xa], STD[xa], c, k,α0, t
∗, α} 7

A3B2 θ = {xa, c, k, α0, t
∗, α, β} 7 A3B2dist θ = {E[xa], STD[xa], c, k, α0, t

∗, α, β} 8
A3B3 θ = {xa, c, k, α0, t

∗, α, β0} 7 A3B3dist θ = {E[xa], STD[xa], c, k, α0, t
∗, α, β0} 8

A3B4 θ = {xa, c, k, α0, t
∗, α, β0, β} 8 A3B4dist θ = {E[xa], STD[xa], c, k,α0, t

∗, α, β0, β} 9
A3B5 θ = {xa, c, k, α0, t

∗, α, {βi}} 13 A3B5dist θ = {E[xa], STD[xa], c, k, α0, t
∗, α, {βi}} 14

A4B1 θ = {xa, c, k,α0, t
∗, {α}} 10 A4B1dist θ = {E[xa], STD[xa], c, k, α0, t

∗, {α}} 11
A4B2 θ = {xa, c, k, α0, t

∗, {α}, β} 11 A4B2dist θ = {E[xa], STD[xa], c, k, α0, t
∗, {α}, β} 12

A4B3 θ = {xa, c, k, α0, t
∗, {α}, β0} 11 A4B3dist θ = {E[xa], STD[xa], c, k,α0, t

∗, {α}, β0} 12
A4B4 θ = {xa, c, k,α0, t

∗, {α}, β0, β} 12 A4B4dist θ = {E[xa], STD[xa], c, k, α0, t
∗, {α}, β0, β} 13

A4B5 θ = {xa, c, k,α0, t
∗, {α}, {βi}} 17 A4B5dist θ = {E[xa], STD[xa], c, k, α0, t

∗, {α}, {βi}} 18

A5B1 θ = {xa, c, k, {a
(p)
i }} 21 A5B1dist θ = {E[xa], STD[xa], c, k, {a

(p)
i }} 22

A5B2 θ = {xa, c, k, {a
(p)
i }, β} 22 A5B2dist θ = {E[xa], STD[xa], c, k, {a

(p)
i }, β} 23

A5B3 θ = {xa, c, k, {a
(p)
i }, β0} 22 A5B3dist θ = {E[xa], STD[xa], c, k, {a

(p)
i }, β0} 23

A5B4 θ = {xa, c, k, {a
(p)
i }, β0, β} 23 A5B4dist θ = {E[xa], STD[xa], c, k, {a

(p)
i }, β0, β} 24

A5B5 θ = {xa, c, k,{a
(p)
i }, {βi}} 28 A5B5dist θ = {E[xa], STD[xa], c, k, {a

(p)
i }, {βi}} 29

Table 4: Summary of bound-constraints for the OLS parameter estimation problem (26). The parameters {αi},
{a(p)i }, and {βi} must be positive. The feasibility of the remaining bounds has been determined computationally.

Parameter Minimum Maximum
xa 1 20

E[xa] 5 12
STD[xa] 0 4

c 1× 10−4 1× 10−2

k 0 1× 10−3

{αi} or {a(p)i } 0 1
{βi} 0 1

3.5 Information Theoretic Model Selection

Each possible parametrization presented thus far gives rise to a distinct mathematical model which can be fit to
a data set in the prescribed manner. Based upon the results for each model, we would like to determine which
parametrization is most appropriate and use those results to draw conclusions regarding division-linked and/or
longitudinal changes in the behavior of the cell culture. In order to do this, we must establish some formal
mechanism which permits the objective comparison of different models.

One common approach is hypothesis testing for model refinements [8, 11]. However, such methods are
only useful for pairwise comparisons, and are better suited for comparison against an experimental control [23].
Moreover, such methods do not apply unless one of the two models in the comparison is contained within the
other model (for instance, our parametrizationB4 containsB3 as a special case). While several parameterizations
discussed in this document are indeed contained within other parameterizations, this is not universally the case
(e.g., there is no containment relationship between B2 and B3).
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A more general approach, based upon the premises of information theory, is found in the Akaike Information
Criterion (AIC). Briefly, for models with independent, homoscedastic, normally distributed errors, it can be shown
that (recall that p is the number of parameters estimated)

AIC = m log

(

J(θ̂OLS)

m

)

+ 2p, (27)

where m is the total number of data points, is an approximately unbiased estimate of the “expected relative
Kullback-Leibler distance” (information loss) when a model is used to describe a data set [23]. Given a set of R
models, the AIC can be computed for each model; we seek the model which results in the smallest AIC value.
It should be emphasized that the AIC is only an estimate of information loss, and this estimate depends on the
particular data set being used. (When comparing different models with the AIC, the same data set must be
used to fit each model.) As discussed in Section 3.1, we cannot ascertain a priori that the measurement errors
are normally distributed with constant variance. However, the use of an OLS framework already constitutes
an assumption of homoscedasticity. The assumption of normality does not seem to be a significantly greater
burden, and we proceed with the AIC in spite of these issues, recognizing that the use of the AIC will be only
suggestive. As will be shown in Section 4, there is a very clear preference among the models when ranked by
the AIC. As such, we do not expect our results to change significantly for a different error model. Similarly,
the derivation of the AIC assumes that any model which is fit to the data is sufficiently accurate so that the
assumption E[N j

k ] = n(tj , xj ; θ̂OLS) is valid. While this assumption may break down for the least accurate of the
models tested in this report (see Section 4), it is a standard assumption in the OLS framework (19), provided the

estimate θ̂OLS is sufficiently close to θ0 for each particular model.
There is an element of parsimony in the AIC, as a model which fits the data poorly (high J(θ̂OLS)) or which

contains a large number of parameters (high p) will have a comparatively larger AIC. Yet, rather than using the
AIC to determine a single ‘best’ model, additional theory is available. If AICmin is the smallest computed AIC
value, then we can define the AIC differences

∆r = AICr −AICmin, (28)

for 1 ≤ r ≤ R, where AICr is the AIC value computed when model r is fit to the data. Finally, we can compute
the Akaike weights

wr =
exp

(

−∆r

2

)

∑

r exp
(

−∆r

2

) . (29)

It can be shown (either by likelihood ratio tests or in a Bayesian framework, see [23]) that the AIC weight wr

can be interpreted as the probability that model r is the best model to describe the data (given the set of R
possible models). Thus, after each model from Table 3 is fit to a data set, we can compute the Akaike weights for
the set of candidate models and use these to assess the necessity of various mathematical features (e.g., division
dependence of cell death rates) in describing the data. A complete derivation of the AIC and Akaike weights, as
well as numerous examples and exhaustive references, can be found in [23].

4 Results and Discussion

The model calibration results for each possible parametrization of the compartmental model considered in this
report are summarized in Table 5. The approximate OLS costs JA(θ̂OLS) are shown for each parametrization,
as well as the computed AIC values and AIC differences. The models are also ranked in terms of their relative
information theoretic loss.

The AIC selected model is parametrization A5B5 with lognormally distributed AutoFI (henceforth, A5B5dist)

with a cost JA(θ̂OLS) = 3.0535× 1011. This parametrization resulted in a model with not only the smallest AIC
value, but also the lowest cost (meaning that the decrease in cost more than offset the additional parameters). The
optimal solution for parametrization A5B5dist is depicted in comparison to the data in Figure 9. The estimated
piecewise linear proliferation rates can be found in Figure 10, and the estimated death rates are summarized
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Table 5: Summary of results for the various models considered in this report. The AIC-selected best model,
parametrization A5B5 with lognormally distributed AutoFI, not only has the lowest cost, the OLS cost of this
model is so much smaller (compared to the other models tested) that its AIC value is significantly lower than for
any other model. The Akaike weights are not shown, as the weight assigned to model A5B5dist must be greater
than 1− 50exp(−43/2) > 1− 1× 10−7.

Model JA(θ̂OLS) AICr ∆r Rank Model JA(θ̂OLS) AICr ∆r Rank

A1B1 48.9309×1011 89459 11850 50 A1B1dist 44.5493×1011 89059 11450 45
A1B2 48.5765×1011 89430 11821 49 A1B2dist 26.0134×1011 86753 9144 31
A1B3 46.0968×1011 89205 11596 48 A1B3dist 18.9754×1011 85400 7791 26
A1B4 46.0439×1011 89202 11593 47 A1B4dist 18.9754×1011 85402 7793 27
A1B5 35.5868×1011 88107 10498 40 A1B5dist 17.9868×1011 85183 7574 24

A2B1 30.8384×1011 87487 9878 37 A2B1dist 42.3075×1011 88845 11236 43
A2B2 30.4566×1011 87436 9827 36 A2B2dist 21.2095×1011 85886 8277 29
A2B3 28.6677×1011 87176 9567 33 A2B3dist 14.8563×1011 84359 6750 16
A2B4 28.6677×1011 87178 9569 34 A2B4dist 14.8562×1011 84361 6752 17
A2B5 28.6677×1011 87188 9579 35 A2B5dist 14.8562×1011 84371 6762 18

A3B1 45.4019×1011 89140 11531 46 A3B1dist 42.9086×1011 88900 11291 44
A3B2 37.3875×1011 88309 10700 42 A3B2dist 11.9759×1011 83428 5819 11
A3B3 34.8434×1011 88007 10398 38 A3B3dist 13.5090×1011 83945 6336 12
A3B4 34.8376×1011 88008 10399 39 A3B4dist 10.5215×1011 82875 5266 10
A3B5 18.7334×1011 85357 7748 25 A3B5dist 6.9142×1011 81084 3475 8

A4B1 25.3453×1011 86648 9039 30 A4B1dist 36.6830×1011 88236 10627 41
A4B2 16.8159×1011 84890 7281 22 A4B2dist 5.5690×1011 80152 2543 7
A4B3 17.1422×1011 84973 7364 23 A4B3dist 8.3562×1011 81893 4284 9
A4B4 16.6846×1011 84859 7250 21 A4B4dist 5.0699×1011 79752 2143 6
A4B5 16.4652×1011 84812 7203 20 A4B5dist 4.5712×1011 79318 1709 5

A5B1 19.6228×1011 85572 7963 28 A5B1dist 27.3143×1011 86993 9384 32
A5B2 15.0638×1011 84440 6831 19 A5B2dist 3.5086×1011 78193 584 4
A5B3 14.6710×1011 84327 6718 13 A5B3dist 3.2607×1011 77879 270 3
A5B4 14.6740×1011 84330 6721 14 A5B4dist 3.0918×1011 77653 43 2
A5B5 14.6727×1011 84339 6730 15 A5B5dist 3.0535×1011 77609 0 1

23



0 0.5 1 1.5 2 2.5 3 3.5
0

2

4

6

8

10x 10
4 Calibrated Model, t =24hrs

Log UI

C
el

l C
ou

nt
s

 

 

Data
Model

0 0.5 1 1.5 2 2.5 3 3.5
0

1

2

3

4

5

6

7

8

9x 10
4 Calibrated Model, t =48hrs

Log UI

C
el

l C
ou

nt
s

 

 

Data
Model

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5x 10
5 Calibrated Model, t =96hrs

Log UI

C
el

l C
ou

nt
s

 

 

Data
Model

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

3

3.5x 10
5 Calibrated Model, t =120hrs

Log UI

C
el

l C
ou

nt
s

 

 

Data
Model

Figure 9: Best-fit solution IA[ñ](t, z; θ̂OLS) for parametrization A5B5dist. Total cost JA(θ̂OLS) = 3.0535× 1011.

Table 6: Estimated death rates βi in terms of the number i of divisions undergone.
Divisions Death Rate (1/hr)

0 0.0165
1 0.0000
2 0.0000
3 0.0000
4 0.0012
5 0.0544
6 0.1572

in Table 6. For the AutoFI distribution, the best-fit lognormal distribution has mean E[xa] = 8.739 UI and
STD[xa] = 3.534 UI. The estimated Gompertz label decay parameters are c = 5.641× 10−3 and k = 1× 10−9.

As can clearly be seen in Figure 9, the compartmental model (with suitable parametrization) is capable
of accurately describing the particular data set used for model calibration in this report. The most notable
shortcoming of the model occurs at t = 24 hours, where a distinct cohort of cells with high CFSE FI can be
seen in the data and is not modeled accurately. As discussed in [18], this cohort is believed to be either cell
duplets or some other anomalous cell types which were not properly gated out of the measured cell data, and
such cells should not be an issue in future data sets. It also appears that neither of the two generations in the
model solution at t = 48 hours contains enough cells (when compared to the data at that time). This may also
be partly explained as a systematic error resulting from the presence of cell duplets in the data. It is also possible
that small errors associated with the manner in which counted beads (see [66, Ch. 1]) are used to determine the
total population size.
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Figure 10: OLS best-fit piecewise linear proliferation rate functions for each division number. Red circles indicate
nodes which were estimated in the inverse problem.
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One of the primary goals of considering various parameterizations for the proliferation and death rates (Section
3) was to investigate the dependence of these rates on division number and on time. The best-fit parametrization
A5B5dist features a proliferation rate which depends both on time and division number, as well as a death rate
which depends on division number. Additionally, the AutoFI parameter xa is lognormally distributed, which was
not considered in previous efforts [18]. Given the overwhelming weight assigned to the parametrization A5B5dist
in the information theoretic framework, it is tempting to conclude that each of these features is necessary in
accurately modeling the data. Because the data set contains 4289 points, even a small difference in OLS cost
(compare, for example, parameterizations A5B5dist and A5B4dist) results in significantly different AIC values.
However, the AIC (27) is derived under the assumptions of independent, homoscedastic, normally distributed
errors. If these assumptions are not valid, particularly if the 4289 points are not independent, then the magnitude
of the AIC differences may be misleadingly large.

In spite of these potential setbacks, there are still several useful conclusions which can be safely drawn. As
expected, the worst parameterizations (in terms of both OLS cost and AIC rank) are those which do not permit
cell death in the population (B1). Parameterizations which feature probabilistically distributed AutoFI are more
accurate than parameterizations which use a constant parameter xa to describe AutoFI. Among the models which
use a constant parameter xa to describe AutoFI, the most parsimonious model (that is, the AIC selected model)
is parametrization A5B4. (Parameterizations A5B4 and A5B5 differ minimally in cost, but A5B4 has fewer
parameters.) The best-fit solution for this model is shown in comparison to the data in Figure 11. We find that
a model which fails to account for variability in AutoFI in the population of cells does not adequately describe the
increasing heterogeneity of the population of cells as division number increases. This is particularly noteworthy
for cells having undergone 4 or more divisions, where AutoFI constitutes a comparatively larger fraction of
the measured FI of the cells. Such an observation has important experimental ramifications for the design of
intracellular dyes. While it has long been known that a population of cells must obtain a high level of FI (relative
to their AutoFI) during the initial staining process in order for the experimenter to resolve multiple rounds of
division in the population [54, 60], we now see that the variability of AutoFI in the population of cells also has an
effect on the peak-to-peak resolution of the data. While AutoFI is a property of the cells being measured (it arises
from intracellular molecules which emit light in the frequency bands used to detect the intracellular dye), focus
may possibly be directed toward the design of dyes with spectral properties that minimally overlap with common
intracellular molecules.

As in previous work [18, 19], we find that time dependence is a significant feature of the proliferation rates,
given the model formulation (6). Significantly, we find that the population of cells cannot be accurately modeled
by considering only a delay in the time to first division. For instance, the calibrated model using parametrization
A4B5dist (which is the AIC selected model among those which does not feature completely time dependent
proliferation) is shown in Figure 12. This parametrization does not permit any proliferation until t ≥ t∗, thus
enforcing a delay before any division occurs in the population. Even with this feature, subsequent divisions of cells
emerge too quickly in the model solution. Thus more complex time-dependence (parametrization A5) appears
to be necessary, as the resulting decrease in cost outweighs the additional parameters.

The compartmental model was motivated by a desire to compute quantities such as cell numbers from the
best-fit model solution. As noted above, previous methods for obtaining cell numbers relied on some form of
deconvolution of the histogram data, typically via fitting by a series of normal or lognormal curves. While the
compartmental model is more mathematically involved and requires considerably more time for fitting to data (a
few minutes to a few hours, depending upon the parametrization used and the accuracy of the initial parameter
guess for the BFGS algorithm), it does not require any assumption as to the shape of the distribution of cells

within a single generation. Given a calibrated model solution n(t, x; θ̂OLS), one can compute the total number of
cells

Ni(t) =

∫ ∞

xa

ni(t, x; θ̂OLS)dx (30)

for each generation. It may also be of experimental interest to consider the number of precursors in the population.
Because each cell division results in the formation of two daughter cells from a single mother cell, one must
renormalize (by a factor of 2) the total number of cells in each generation in order to accurately analyze the
proportion of cells proceeding through a specified number of divisions. Precursors, then, are cells in the original
population (that is, at t = 0 hours) which eventually give rise to other cells with higher division numbers at later
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Figure 11: Among the models which do not use a lognormal distribution to describe AutoFI, the AIC selected
model is parametrization A5B4. When comparing the best-fit solution to the data, it is clear that a model lacking
an AutoFI distribution will result in peaks which are too distinct when compared to the data.

times. The number of precursors is

Pi(t) =
Ni(t)

2i
=

1

2i

∫ ∞

xa

ni(t, x; θ̂OLS)dx. (31)

Given that precursors represent numbers of cells in the original population, it follows that the total number of
precursors

P (t) =

imax
∑

i=0

Pi(t)

cannot increase in time (but may decrease as a result of cell death). Cell numbers and precursor numbers have
been computed from the best-fit model solution (parametrization A5B5dist) and are shown in Figure 13 for

undivided cells (N0(t), P0(t)) and divided cells (
∑imax

i=1 Ni(t),
∑imax

i=1 Pi(t)) as well as total cells. It follows that
such curves could easily be used to determine such parameters as approximate doubling time for the population,
or the fraction of cells which do not divide. These parameters may be of particular importance in accounting
for changes in behavior as a function of experimental conditions (e.g., strength of stimulation) or in a diagnostic
setting.

5 Discussion

In this report, a label structured system of PDEs for a population of dividing cells, indexed by the number
of divisions undergone, is derived and fit to data. Under the appropriate assumptions for the label loss rate,
autofluorescence parameter, proliferation rates, and death rates, such a model can accurately fit an experimental
data set (Figure 9). Because each generation of cells is mathematically described by a separate structured density
function, the proliferation and death rates can be estimated directly in terms of division number, and there is
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Figure 12: Best-fit model solution with parametrization A4B5dist, the AIC selected model among the subset of
models which does not feature completely time-dependent proliferation. While this parametrization includes a
delay before the first division is reached, this is still insufficient to describe the data as cells proceed through
subsequent rounds of division too quickly. The discontinuity in the model solution at t = 48 hours is a result of
a sudden change in the size of the histogram bins on which the data is specified.
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Figure 13: Total cell counts (left) and total precursors (right) in terms of undivided cells, divided cells, and total

cells. The values are computed from the best-fit model solution n(t, x; θ̂OLS) with parametrization A5B5dist.
Numerical values at data collection times are summarized in Tables 7 and 8. The slight increase (less than 0.3%)
in the total number of precursors between t ≈ 60 hours and t ≈ 90 hours is within the range of numerical error
for the computed solution.

no need for any parametrization of these rates in the structure variable. This is in contrast to the previous
fragmentation model (1) from [18]. The AIC-selected best-fit compartmental model contains 29 parameters and

results in a best-fit OLS cost of JA(θ̂OLS) = 3.0535 × 1011 while the best-fit fragmentation model contained
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73 parameters and resulted in a cost of 3.0901 × 1011. Thus the compartmental model appears quite superior
to the previous fragmentation model, as it contains fewer parameters and has a lower OLS cost. Additionally,
the compartmental model can be used to compute cell numbers in terms of the number of divisions undergone.
Certainly it may be possible to decrease the number of parameters in the fragmentation model by changing the
placement of the nodes used for the estimation of the proliferation and death rate functions. Yet even if the
total number of parameters could be decreased significantly without increasing the OLS cost of the fragmentation
model, it still could not be used directly to compute cell numbers.

It is interesting to note that using the compartmental model we have found variability in AutoFI to be an
essential feature of an accurate mathematical model. Yet the fragmentation model assumes only a constant value
of AutoFI without significant sacrifice in accurately fitting the data (see [18]). The explanation for this unusual
observation is the manner in which the proliferation rate is parameterized as a function of the structure variable
(or the ‘translated variable’) in the fragmentation model. The large number of nodes used for the structural
dependence of that proliferation rate (13 nodes) allows for significant variability in the proliferation rate, even
among cells which are sufficiently close in the structural coordinate. Because the Gompertz function for label
decay assumes that the rate of FI loss is directly proportional to the quantity of FI, a group of cells which divides
immediately and then pauses will lose less label than a group of cells which waits for some time and then divides.
In other words, the variability of the proliferation rate induces a variability in the label loss rate. As a consequence
of this observation, it would be interesting to compare the effects of probabilistically distributed AutoFI with the
effects of probabilistically distributed label loss rates in the compartmental model.

The major advantage of the compartmental model over previous efforts is the ability to compute cell num-
bers directly from the model solution (Figure 13). Because the compartmental model can be used to estimate
the numbers of cells (or precursors) having undergone a specified number of divisions, biologically meaningful
parameters can be assessed directly in terms of division number. For instance, the total number of precursors
in the population, as a fraction of the original number, provides a meaningful estimation of cell viability. The
total number of cells in the population can be used to estimate the population doubling time. As more complex
experiments are conducted, the compartmental model could be easily generalized to account for division-linked
changes (surface marker expression/differentiation, genetic mutations, etc.). Such features should be useful when
comparing results from different data sets, such as when attempting to quantify the effects of a given chemical
reagent, or distinguishing between diseased and healthy cells.

Of course, the meaningful comparison of parameter estimates between multiple data sets and experimental
conditions relies upon quantification of the levels of uncertainty in the estimated parameters. This quantification,
typically in the form of confidence bounds, is premised upon the accurate specification of the statistical model
(17) which links the model to the data. In this report, the model was fit to the data in an ordinary least squares
sense, with the tacit assumption that the error random variables Ekj have mean zero and constant variance.
However, this assumption is not an accurate description of the data. While the misspecification of the statistical
error model does not invalidate the ability of the compartmental model to (qualitatively) fit the available CFSE
data set, it does impede the meaningful quantification of uncertainty in the parameter estimates. Work is ongoing
to establish a suitable mathematical form for the statistical model accurately linking the histogram data to the
model.

5.1 Observation and Error Models

It is hoped that the compartmental model will provide a quantitative framework for the comparison of data sets
arising from cells in various biological and experimental conditions. However, before such a framework can be
established, there is a need for meaningful confidence intervals to quantify the certainty with which individual
parameters are estimated. This, in turn, relies upon an accurate statistical model for the CFSE histogram data.

Recall from Section 3.1 the assumption that the data is accurately described by the statistical model

N j
k = I[ñ](tj , z

j
k; θ0) + Ekj , (32)

where Ekj are independent random variables satisfying E[Ekj ] = 0. Then the best-fit parameter estimate is

θ̂WLS({nj
k}) = argmin

θ∈Θ

∑

k,j

r2kj
wkj

= argmin
θ∈Θ

∑

k,j

1

wkj

(

I[ñ](tj , z
j
k; θ)− nj

k

)2
, (33)

29



where the residuals rkj are realizations of the error random variables Ekj . In theory, the weights wkj are chosen
to account for the variance of the Ekj following the assumptions of the statistical model. Thus, the statistical
model has direct implications for the estimated best-fit parameter, given the data.

Two possible variance models were considered in Section 3.1. First, a constant variance (CV) statistical model
was considered, in which case V ar(Ekj) = σ2

0 and wkj = 1 for all k and j. This results in the Ordinary Least
Squares (OLS) framework (19). Second, a constant coefficient of variance (CCV) statistical model was considered,
in which V ar(Ekj) = σ2

0(I[ñ](tj , z
j
k; θ0))

2 and wkj = (I[ñ](tj , z
j
k; θ0))

−2. This results in the Generalized Least
Squares (GLS) framework (20). In the absence of any a priori knowledge regarding the correct form of the
statistical model, the computationally simpler OLS model was used for the inverse problem.

In addition to the implications for confidence interval calculation discussed above, an accurate statistical model
has implications for the weights wkj in the inverse problem formulation (32). Additionally, the computation of the
AIC values (Section 3.5) for model ranking and selection is premised upon modeling errors which are independent
and normally distributed with constant variance. There is significant value, then, in ascertaining the properties of
the error random variables and assessing the reliability of the assumptions made in the inverse problem procedure.

The residuals rkj which result from fitting the model to the data are realizations of the random variables Ekj .
As explained in [20], the reliability of the statistical error model can be assessed by plotting the residuals rkj and

the modified residuals rkj/I[ñ](tj , z
j
k; θ0) in terms of the model values I[ñ](tj , z

j
k; θ0). (In practice, of course, one

must insert an estimate θ̂OLS or θ̂GLS in the place of the unknown θ0 and use the approximate integral operator
IA[ñ].) If a CV error model is sufficient to explain the noise in the data, then the residuals rkj will be randomly
distributed when plotted against the model values, while the variance of the modified residuals will decrease as
the magnitude of the model increases. Alternatively, if a CCV model is sufficient to explain the noise in the
data, then the modified residuals rkj/IA[ñ](tj , z

j
k; θ0) will be randomly distributed, while the original residuals

will grow with the magnitude of the model. These observations are summarized in a hypothetical example in
Figure 14. More details regarding the choice of statistical error and its effects on the inverse problem can be
found in [8, 20, 28, 62].

Figure 15 contains the residuals and the modified residuals plotted in terms of the computed model values for
the AIC-selected best-fit model parametrization A5B5dist. (Technically speaking, one should plot the modified
residuals rkj/IA[ñ](tj , z

j
k; θGLS). However, the computation of the parameter estimate θGLS is quite expensive,

and the model values IA[ñ](tj , z
j
k; θGLS) would change minimally.) When the residuals are plotted in terms of

the value of the observed model solution there is a clear increase in the variance of the residuals as the size of
the model increases, providing an indication that the assumption of CV errors may be incorrect. However, the
residuals also lack the fan-like structure typical of CCV errors (Figure 14). When the modified residuals are
plotted in terms of the magnitude of the observed model solution, the pattern is distinctly nonrandom. Thus, it
appears that the true statistical model for the errors may lie somewhere between the CV model (OLS estimation)
and the CCV model (GLS estimation), perhaps slightly closer to the CV model.

The assumption that the error random variables at each of the data points are independent may also be
problematic. For instance, when the residual plots are separated in terms of measurement times (Figure 16)
additional structure is noticeable in the residual plots when compared to Figure 15. The independence of the error
random variables can be investigated with a scatterplot of the residuals rkj (which are considered as realizations
of those random variables) in terms of the previous residual r(k−1)j . If the error random variables were truly
independent, then such a scatterplot would have no discernable structure. However, we see in Figure 17 that this
is not the case, as there is a clear positive correlation between the sets of residuals.

There are two possibilities which may explain the positive correlation between the two sets of residuals.
First, it is possible that neighboring data points are not independent. Because the data used to calibrate the
model is histogram data, it is possible that the number of cells counted into adjacent bins (and hence, the error
terms) might be linked by the location of the boundary separating the adjacent bins. In general, this might be
demonstrated by investigating how the noise in the data changes as the bins used to generate the histogram data
changes. Unfortunately, the data set used in this report was received with the bins already fixed. Still, these
effects deserve careful consideration and must be addressed in future work. Some research has also indicated that
cells which descend from a common precursor may share certain traits and/or behaviors [41, 71]. It is unclear
how such correlation might impact either the error terms or the mathematical model itself.

A second possibility is that the model, though close to the data (see, e.g., Figure 9) does not satisfy the
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Figure 14: Top: Hypothetical residuals (left) and modified residuals (right) for constant variance (CV) data when
plotted in terms of the model value. Bottom: Hypothetical residuals (left) and modified residuals (right) for
constant coefficient of variation (CCV) data when plotted in terms of the model value. When the correct statistical
model is used (top-left and bottom-right), the residuals (or modified residuals) appear randomly distributed. The
fan-like structures in the top-right and bottom-left panels are characteristic of such residual plots when the
statistical model for the measurement errors has been misspecified.
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Figure 15: Residuals (left) and modified residuals (right) for the OLS best-fit model solution. Because neither
graphic exhibits constant variance, the assumptions of CV error and CCV error must both be wrong. While the
misspecification of the error term does not invalidate the ability of the compartmental model to fit the data, we
cannot determine the statistical properties (e.g., confidence intervals) of the parameter estimates.
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Figure 16: Residuals (left) and modified residuals (right) for the OLS best-fit model solution, shown separately
for each measurement time. There is some additional structure which is evident in these residual plots which is
not evident when the residuals for all measurement times are shown together (Figure 15). This has implications
for the statistical model of the data.
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Figure 17: The assumption of independent errors for each observation can be checked by plotting the residuals
rkj against the offset residuals r(k−1)j . If the errors were independent, there would be no discernable structure
in such a graphic. However, we observe a clear positive correlation.

tacit assumption E[N j
k ] = I[ñ](tj , z

j
k; θ0) (or, equivalently, E[Ekj ] = 0). Given the convergence properties of

the numerical solution discussed in Section 2.3, it seems unlikely that the failure of this assumption could be
caused by any computational errors or approximations. A more likely explanation is the discrepancy between
the assumptions regarding the collected data and the actual experimental reality. As discussed in [66, Ch. 1],
the 5 samples of data collected (4 used for fitting the model plus one for the initial condition) are actually 5
separate samples taken from the same donor. While each sample receives an identical treatment, the assumption
that all five samples are identical for all time may be inaccurate. Moreover, only a fraction of each sample is
measured, and a scaling factor (which may also be subject to error) is used to adjust the resulting cell counts.
Meanwhile, the model is derived under the assumption that each histogram represents a complete census of
the cells in the population, and that the same population (i.e., cells arising from the same set of precursors) is
measured each time. In order to correct for such a discrepancy between the assumptions of the mathematical
model and the experimental reality, a more rigorous, detailed observation operator may be needed which accounts
for the experimental sampling method, with its attendant sources of error. This may also help to resolve the
slight negative bias of the residuals observed in Figure 15.

In fact, numerous additional data sets have been collected and have been studied qualitatively to determine
which of these two possibilities is more likely. It is shown in [66, Ch. 4] that there is significant variability between
otherwise identical samples (even when cells are taken from a single donor, treated identically, and measured at
the same time). Thus the second possibility seems more likely, that the inaccuracy of the statistical model is the
result of the failure of the statistical model to accurately incorporate sources of uncertainty which naturally arise
in the experimental protocol (see [66, Ch. 1]). Ongoing work has been directed at understanding these additional
sources of variability, along with the attendant implications for an accurate statistical model. Some preliminary
results are given in [66, Ch. 4].
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Table 7: Total numbers of cells in terms of division number. For each time and generation, the total number
of cells has been computed from the OLS best-fit model solution (top), from a deconvolution of the data using
normal curves (middle) and from a deconvolution of the data using lognormal curves (bottom). While the numbers
computed from normal and lognormal curves are generally close together, there are clear differences between the
values computed from the deconvolution methods and those obtained with the compartmental model. The most
striking example occurs for t = 120 hours for cells having undergone 6 divisions. It is interesting to note that the
division peaks in the histogram data are not well-resolved for such cells, making the accurate determination of
cell numbers difficult.

Divisions Undergone

Time (hrs) 0 1 2 3 4 5 6 Total

11339892 0 0 0 0 0 0 11339892
24 9211571 0 0 0 0 0 0 9211571

9254681 0 0 0 0 0 0 9254681

5881557 6555814 0 0 0 0 0 12437372
48 6298359 5473128 0 0 0 0 0 11771487

6294945 5434570 0 0 0 0 0 11729515

1906065 2478042 8092563 20976431 18520420 7588997 0 59562519
96 1970401 3284000 11019352 18184100 18307586 5252346 0 58017785

2364520 3940800 10467773 17773515 18846649 5406993 0 58800249

1476266 1978930 5605926 17086869 25529315 25986246 14337080 92000632
120 1969773 2969295 7881600 21017600 26272000 24958400 4597599 89666268

2195762 3435673 7722653 17150087 26755781 29950079 5517118 92727154

5.2 Comparison with Deconvolution Techniques

Given the applicability of the compartmental model (once calibrated) to computing the numbers of cells having
undergone a specified number of divisions, a relevant comparison can be drawn between the results of a label
structured PDE model and the commonly used deconvolution techniques. In Table 7, the number of cells in each
generation is computed at each measurement time. For each time and generation, the top number is computed
from Equation (30). The middle number is computed by first fitting the function

ψ(zjk) =

imax
∑

i=0

ψi(zk; si, µi, σi)

to the data at a given time, where ψi(zk; ki, µi, σi) is a normal density function with mean µi and standard
deviation σi, scaled by a factor si. The method of fitting is ordinary least squares. Then the total number of
cells having undergone i divisions is

∑

k ψi(zk; si, µi, σi). The final number in each block of Table 7 is computed
in an analogous manner, but with lognormal rather than normal density functions.

Unsurprisingly, the two deconvolution techniques (fitting with a series of normal or lognormal curves) provide
estimates of cell numbers which are fairly consistent. However, these estimates occasionally differ from estimates
obtained from the compartmental model. Of particular note is the difference for cells having undergone 6 divisions
at t = 120 hours. It should be noted that this generation of cells is very difficult to distinguish in this particular
histogram data set. Such poorly resolved generations of cells can be quite problematic for the deconvolution
techniques, as the unique estimation of parameters (for the normal or lognormal curves) requires that distinct
generations of cells be plainly visible. It appears to be a major advantage of the compartmental model to be
able to fit data (and hence compute cell numbers) even when the histogram data features generations of cells
which are less than ideally resolved. Of course, it is not possible to say from these results which technique
(if either) is providing the correct number of cells. Yet, because the compartmental model is derived from a
conservation law, and this conservation law must hold regardless of the parameters input into the model, cells
cannot enter or leave the population except as permitted by the form of the model and the given parameters.
Meanwhile, the deconvolution techniques do not arise from any conservation law, and the computed cell numbers
in each generation may increase or decrease freely, unrestrained by any balance law. It seems then, that the
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Table 8: Total precursors in terms of divisions number. For each time and generation, the total number of
precursors has been computed from the OLS best-fit model solution (top), from a deconvolution of the data using
normal curves (middle) and from a deconvolution of the data using lognormal curves (bottom). As in Table 7 we
find general agreement between the values computed from deconvolution techniques, which are slightly different
than those computed from the compartmental model. Under the assumptions of the experiment, the total number
of precursors should not increase.

Divisions Undergone

Time (hrs) 0 1 2 3 4 5 6 Total

11339892 0 0 0 0 0 0 11339892
24 9211571 0 0 0 0 0 0 9211571

9254681 0 0 0 0 0 0 9254681

5881557 3277907 0 0 0 0 0 9159465
48 6298359 2736564 0 0 0 0 0 9034923

6294945 2717285 0 0 0 0 0 9012230

1906065 1239021 2023141 2622054 1157526 237156 0 9184963
96 1970401 1642000 2754838 2273013 1144224 164136 0 9948612

2364520 1970400 2616943 2221689 1177916 168969 0 10520436

1476266 989465 1401482 2135859 1595582 812070 224017 8634740
120 1969773 1484648 1970400 2627200 1642000 779950 71837 10545808

2195762 1717837 1930663 2143761 1672236 935940 86205 10682405

compartmental model should have a major advantage in computing cell numbers, owing to its ‘memory’ of the
number of cells determined at previous time points (even when the generations of cells are poorly resolved in the
data).

This is particularly noteworthy in Table 8, where the number of precursors for each generation of cells is
computed. As in Table 7, each block of Table 8 contains the results computed from the compartmental model,
deconvolution with normal curves, and deconvolution with lognormal curves. Observe the significant increase
(more than 10%) in the total number of precursors as computed by deconvolution between t = 48 and t = 96
hours. As discussed above, the total number of precursors cannot increase in a population of cells. While the
number of precursors computed from the compartmental model also increases, it does so by a very small amount
(less than 0.3%) consistent with the error in the numerical solver. Of course, it has already been noted that some
data sets do in fact exhibit increases in the total number of precursors–a discrepancy arising from the inaccuracy
of the assumption that each well plate contains an identical population of cells. On one hand, the deconvolution
techniques would seem to have an advantage, as they are not constrained by any conservation law. However,
this has an interesting implication. Because the deconvolution techniques do not link the population estimates
from one data collection time to the next, there is a potential bias associated with such methods as a result of
sample-to-sample variability in the experimental data. It should be noted that sample-to-sample variability is
also problematic for the compartmental model solution. If the samples used to obtain the experimental data are
not sufficiently similar, the conservation law (which follows from the assumption that each sample is identical)
used to derive the model may not hold. In such a case, the compartmental model would be systematically in
error (when compared to the data), as the calibrated model itself would still follow the assumed conservation
law. Following the discussion above, we believe that a more accurate statistical model, which will necessarily
include a careful consideration of the method of sampling/data collection, will resolve any discrepancy with the
compartmental model. Some preliminary work on this subject is surveyed in [66, Ch. 4].

5.3 Generalizations of the Mathematical Model

Apart from issues involving the statistical model relating the mathematical model to the data, it has been shown
that the compartmental model accurately reproduces the behavior of a PHA-stimulated population of CD4+ cells
as represented in histogram data from a flow cytometry assay. This model accounts for the natural rate of CFSE
FI decay resulting from turnover of the intracellular label as well as the autofluorescence of cells in the absence

35



of any fluorescent labeling. Simple linear models are used to describe the rates of cell division and death.
At the moment, only a single CFSE data set has been examined and used to estimate the parameters of

the mathematical model(s). It is believed that the compartmental model is quite general and should apply to
a wide range of data sets from various experimental setups. Work is ongoing to collect additional data sets to
demonstrate such a wide applicability of the model. As additional data sets become available, several additional
features may need to be considered at greater length.

It is hoped that the compartmental model can be generalized to account for multiple cell types both in vivo
and in vitro. While the cells studied in this report were cultured in a saturating quantity of the stimulating agent
PHA, cells in vivo (or even cells in vitro in a different experimental setup) will not experience such a strong,
constant stimulation. As such, the possibility exists that some cells may return to a quiescent state during the
proliferation assay. It is known that the autofluorescence of a cell changes depending upon its state of activation,
and thus this mechanism may need to be included in subsequent modeling efforts. (For the current data set, the
quiescent cells are all undivided, and AutoFI is negligible for those cells.)

Similar to the efforts in [18, 19], we have used Malthusian rates for both proliferation (with time-dependent
rates αi(t)) and death (with rates βi). As discussed in Section 3, such an assumption is reasonable provided
the turnover of cells (resulting either from division or death) occurs at a sufficiently rapid pace. Given the
physiological constraints placed on rapidly dividing cells (e.g., rates of growth and DNA replication), one would
expect some sort of minimum cell cycle time. It is unclear if the necessity of time dependence in the Malthusian
rates αi is an artifact of such a feature. To test this hypothesis, several generalizations of the proliferation and
death rate terms are immediately available.

First, one might consider the addition of a second structure variable (say, volume) which could be used to
enforce a minimum cell cycle time by requiring that cells progress from some size V to 2V before dividing, at
which point two cells of size V are produced. However, in the absence of additional observations, it is unclear
what parameters (e.g., average rate of growth, or the parameter V ) might be estimable from CFSE histogram
data. Video microscopy measurements by Hawkins, et al. [41] indicate that average cell size may be division
dependent, and this may add some additional complexity to the inclusion of volume structure. Biologically, it
is expected that apoptosis occurs only at particular checkpoints in the cell cycle (particularly if external ‘kill
signals’ are absent) so that a generalization to volume structure (or any other surrogate for cell cycle position
or physiological age) may permit a more accurate description of cell death. Still, it is unclear what information
might be estimated from only CFSE histogram data. It is possible that the forward scatter (FSC) of laser light
may possibly be used as an observable surrogate for cell size, and some additional work will be necessary to
investigate this possibility.

A second possibility to generalize the rates of proliferation and death would be to consider rate-limiting (e.g.,
logistic, Gompertz) models for proliferation and death. Some biological mechanisms have been proposed which
may lead to density-dependent rates of cell death [26], and a Gompertz model for cell growth has been used to
account for quiescence in the context of a size-structured population model [39]. Of course, generalizations to
nonlinear division and death must be considered in the context of the improvement they provide in fitting a given
model to CFSE data sets. Given the accuracy of the simple linear models (albeit with time-dependent rates of
proliferation), such generalizations seem unnecessary at the moment.

Given that the compartmental model can be used to compute numbers of cells per generation directly, some
comparison has already been made between the results obtained with this model and the cell numbers computed
from deconvolution techniques (Tables 7 and 8). It remains to compare the parameter estimates and model fits
obtained with the compartmental model with those obtained from previous models (Smith-Martin, cyton, etc.).
In fact, it maybe possible to incorporate into the compartmental model the mathematical forms used to describe
proliferation and death in these models. Recall that the method of characteristics provides a solution (Equations
9 and 11) of the form

ni(t, x(t; s)) = F (Division,Death) (34)

where x(t; s) is the characteristic line emanating from the point (0, s) in the tx-plane. Clearly, the left side of
Equation (34) is independent of any mathematical formulation of cell proliferation and death. In this report,
the form of the hypothetical function F is determined from the PDE formulation of the compartmental model
(2) and the accompanying assumptions regarding the Malthusian rates of proliferation and death. Alternative,
one could consider using (34) or its differential form (i.e., (10)) as a starting point, defining the right side of
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the equation in accordance with the assumptions of the Smith-Martin or cyton models, or their generalizations
[33, 40, 46, 57, 71]. While previous authors have derived these models specifically in terms of total cell numbers,
(34) could be related back to previous work by simple integration. The primary advantage in using (34) would
be in the direct comparison of the model to histogram data, rather than from computed cell numbers. Further
study could reveal the extent (if any) to which such a direct comparison improves the unique identification of
parameters in previous models, although this will first rely on an accurate statistical model.

In this context, it is clear that several alternative possibilities exist for a mathematical description of prolif-
eration and death rates. Thus it is clear that the interpretation of the proliferation and death parameters must
be made with careful regard to the form of the model. Given the form of the model solution (Equations (9) and
(11)) for the compartmental model, it is plainly observed that linear changes in parameters for proliferation and
death rates cause an exponential response in the computed solution [37, 31]. As such, the sensitivity of the model
to these parameters, as well as the degree to which their estimation is unique, must be carefully considered when
interpreting estimated parameters. The uniqueness of the estimated functions αi(t) will depend on how the nodes
for the linear splines are chosen in relation to the times at which data is taken. In some models, it has been
shown that the effects of a linear increase of cell cycle time with division number cannot be distinguished from
the effects of a linear increase in the death rate with division number [47]. If this is the case, then the biological
interpretation of some parameters may be suspect.

Ideally, the values of αi(t) and βi can be related back to more physical/experimental parameters such as
the type and strength of stimulation, which may in turn require the mathematical modeling of certain molecular
pathways within individual cells. Recent work has indicated that the mechanisms responsible for cell proliferation
and death may be mutually dependent upon a common molecular pathway [32, 65]. As more data becomes
available, we hope to examine how the estimated parameters change under various experimental conditions, with
an eye toward additional constitutive relationships linking molecular and/or subcellular functions to population
dynamics [24]. In this context, it seems necessary to consider the extent to which these functions and/or pathways
are inherited. Evidence suggests that closely related cells exhibit strong correlation in times to divide and some
correlation in times to die, and that this correlation tends to decrease with the number of divisions undergone
[41]. Cells with a common precursor may also share a common division destiny [41], which can be altered by
stimulation conditions [68]. While computed cell numbers are relatively unaffected provided correlation is limited
to cells having undergone the same number of divisions [33, 41, 44], correlation between subsequent division of
cells can alter the dynamics predicted by a mathematical model [71]. For large populations, this effect seems
negligible, but may play an important role in vivo where only a small number of responding cells can trigger an
immune response [71]. Cyton models and branching process models have been formulated to account for various
levels of correlation [33, 44, 71], and these models may be incorporated into the compartmental model framework
as described above. Alternatively, it may be possible (given any reasonable, identifiable parameterizations of cell
division and death) to place probability distributions on these parameters (e.g., on the functions αi(t) and βi(t))
[6, 9, 12] in the manner described in Section 3.3.

5.4 Concluding Remarks

The compartmental model is the latest in a series of structured PDE models which can be fit directly to histogram
representations of flow cytometry data. Once calibrated, the compartmental model can be used to quickly and
accurately estimate the numbers of cells having undergone a certain number of divisions. This information can be
used to determine biologically relevant parameters which will help to meaningfully compare cells from different
donors and experiments. While the use of cell numbers per generation is not new, the direct modeling of histogram
data reduces any need for deconvolution techniques which may introduce unnecessary bias into the computed cell
numbers. Moreover, because the model is based upon conservation principles, it should be possible to fit histogram
data even when the ‘peaks’ in the data (representing distinct generations of cells) are not well-resolved. This is a
significant advantage over deconvolution techniques. The actual number of generations which can be accurately
modeled (that is, the maximum value of imax) will depend upon the uniformity of the initial uptake of intracellular
dye as well as the magnitude of the resulting CFSE FI relative to cellular AutoFI.

We are actively working to collect additional data sets with which to demonstrate the widespread applicabil-
ity of this model, as well as to use this model in a systematic fashion to analyze how the estimated parameters
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vary under changing experimental and biological conditions. Most immediately, this will require the develop-
ment of an accurate statistical model for the data. The generalization of the model to multiple cell types is
immediate, although an accurate quantification of any interaction terms will require some careful thought and
experimentation.

As more information becomes available regarding the complex processes involved in cell proliferation, we are
confident that the model discussed here provides a firm physiological foundation upon which CFSE-based assay
data can be understood. We strongly believe that the ideas and results presented here will form an important
interpretive framework with a wide array of applications in experimental settings, diagnostic tests [34], and
perhaps in a more integrated model of cell dynamics [45, 49].
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