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Abstract

Ferroelectric materials, such as PZT, PLZT and BaTiO3, are being considered, or are already
being employed, for a large number of applications including nanopositioning, high speed valves for
fuel injectors, ultrasonic transducers, high speed camera shutters and auto focusing mechanisms,
energy harvesting, and pico air vehicle design. Their advantages include nanometer positioning
resolution, broadband frequency responses, moderate power requirements, the capability for minia-
turization, and complementary actuator and sensor capabilities. However, they also exhibit creep,
rate-dependent hysteresis, and constitutive nonlinearities at essentially all drive levels due to their
noncentrosymmetric nature. In this paper, we model the hysteretic dependence of strains and polar-
ization on input fields and stresses using the homogenized energy model (HEM) framework. At the
domain level, the minimization of Gibbs energy densities yields linear constitutive relations. Non-
linearities and hysteresis due to dipole switching is modeled at the grain level by using Boltzmann
theory to specify the evolution of dipole fractions which serve as internal variables. In the final step
of the development, stochastic homogenization, based on the assumption that interaction fields and
driving forces are manifestations of underlying densities, is used to construct nonlinear constitutive
relations for the bulk material. It is demonstrated that these relations are amenable to subsequent
development of distributed system models. The paper includes significant discussion regarding the
mechanisms that produce hysteresis in ferroelectric materials. The capability of the framework for
characterizing various hysteretic phenomena, including creep and various rate-dependencies, is illus-
trated by validation with PZT and PLZT data.
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Nomenclature

d Piezoelectric constant (m/V = C/N)
h Piezoelectric constant (V/m = N/C)
E Electric field (V/m)
g Gibbs energy for dipoles (CV)
Gα Gibbs energy density of α-variant (CV/m3)
Ge

α Electric Gibbs energy density of α-variant (CV/m3)
P Polarization (C/m2)
P Polarization kernel (C/m2)
Pα Polarization of α-variant (C/m2)
Pα

R Remanent polarization of α-variant (C/m2)
Pα

m Minimum polarization of α-variant (C/m2)
sE
α Elastic compliance of α-variant at constant field (m2/N)
T Temperature (K)
x+, x−, x90 Fraction of positively, negatively and 90o oriented dipoles (Unitless)
Y P

α Elastic stiffness of α-variant at constant polarization (N/m2)
ε Permittivity (F/m = C/Vm)
ε Strain (Unitless)
ε Strain kernel
εα Strain of α-variant
εαR Remanence strain of α-variant
εαm Minimum strain of α-variant
γ γ ≡ V/kT

ηε Inverse susceptibility at constant strain (m/F = Vm/C)
σ Stress (N/m2)
τ90, τ180 Relaxation time for 90o and 180o switching (s)
χe Electric susceptibility (Unitless)
χσ

α Ferroelectric susceptibility of α-variant at constant stress (F/m = C/Vm)
ψα Helmholtz energy density of α-variant (CV/m3)

1 Introduction

Piezoelectric materials exhibit two complementary properties due to their noncentrosymmetric struc-
ture: the direct effect in which applied stresses generate an electric charge, and the converse effect
in which applied fields produce deformations in the material. These properties respectively imbue
the materials with sensor and actuator capabilities as well as the potential for self-sensing actuation.
Commonly employed piezoelectric materials include barium titanate (BaTiO3), lead zirconate ti-
tanate or PZT (Pb(Ti1−xZx)O3) lanthanum-doped lead zirconate titanate (PLZT), and piezoelectric
polymers such as polyvinylidene fluoride (PVDF). For the PZT compounds, x ∈ [0, 1] is chosen to op-
timize electromechanical coupling. Additionally, naturally occurring crystals such as quartz, sucrose
(table sugar), and Rochelle salts, and biological materials such as bone exhibit piezoelectric effects
to varying degrees. The actuator and sensor capabilities of quartz are exemplified by the fact that in
1916, Paul Langevin developed a quartz-based sonar transducer for submarine detection [64,75]. For
present applications, however, we will focus on BaTiO3, PZT, PLZT, PVDF and the electrostrictive
material lead manganese niobate (PMN).
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These materials are ferroelectric and hence exhibit a domain structure and spontaneous polariza-
tion at temperatures below the Curie point. The metastability associated with multiple stable dipole
configurations produces hysteresis and constitutive nonlinearities in field-polarization and field-strain
responses. In this paper, we focus on mechanisms that produce hysteresis in ferroelectric materials
and the development of homogenized energy models that can be used for material characterization,
device design, and model-based control design.

There exist a wide range of actuator and sensor designs with specific choices dictated by the
application. Stacked actuators, such as that depicted in Figure 1(a), are employed in numerous
applications including stages for atomic force microscopy and nanopositioners (see Figure 2), high
speed valves for fuel injection, vibration control devices, depth finders and hydrophones, and linear
and rotary piezomotors. Tube actuators comprise the active mechanisms in micropumps and scanning
and atomic force microscopes. Bender-type transducers, such as the unimorph and bimorph designs
depicted in Figure 1(c) and (d), are employed in pneumatic values, high speed camera shutters,
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Figure 1: (a) Stack, (b) tube, (c) unimorph, and (d) bimorph transducers. (e) Linear and (f) rotary
piezomotors. (g) Macro-fiber composite (MFC) transducer.
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Figure 2: (a) Nanopositioning stage, (b) high speed valve for fuel injection, (c) inkjet printer nozzle,
(d) ultrasonic transducer, and (e) MFC for shape modification and flow control.

energy harvesting devices, piezoelectric transformers, and inkjet printers (Figure 2(c)). Bimorphs
are also employed as actuators for pico air vehicles such as the Harvard RoboBee [90] and both
flying and ambulatory microrobots [28, 68, 91]. Bending-type PZT actuators are also employed in
ultrasonic transducers for dental tools and biomedical imaging and treatment (Figure 2(d)). An
emerging technology is MRI-guided focused ultrasound surgery in which high energy ultrasound
waves are used to thermally ablate tumors and growths such as uterine fibroids. We note that
ultrasonic devices operate at around 40 kHz whereas piezoelectric transformers operate in the 100 kHz
to 1 MHz range thus demonstrating the high frequency capabilities of the materials. Solid state
piezomotors are employed in applications such as camera auto-focusing mechanisms and medical
equipment subject to large magnetic fields; e.g., small piezomotors for microsurgery and large motors
to position positions in MRI environments. Macro-fiber composites (MFC), depicted in Figure 1(g),
provide large strain and force capabilities in addition to durability and flexibility. They are presently
being considered for applications including shape modification and flow control for micro-air vehicles
(MAV) as well as energy harvesting in a range of environments [12,49,82]. Sensor applications include
accelerometers, knock sensors to monitor engine combustion, pressure and force sensors, ultrasonic
distance sensors, and vibration sensors to monitor automotive, railroad, and aircraft components.
The direct piezoelectric effect is also utilized in high voltage spark igniters. Finally, 180o switching
in ferroelectric materials forms the basis for ferroelectric memory technologies (e.g., FeRAM) [70].
Additional discussion of applications can be found in [53,67,75,85–87].

The advantages of piezoelectric actuators, sensors, and motors are due to a number of factors.
They can be designed to provide nanometer positioning resolution and operate at frequencies ranging
from DC to MHz. They have modest power requirements and do not create nor are they influenced
by electromagnetic interference. Their solid state nature promotes miniaturization and simplified
designs which improves product performance at reduced costs. They generate little heat, are non-
flammable, and can be operated in a vacuum. Finally, the complementary direct and converse
effects provide the materials and devices with multiple design properties including actuator, sensor,
self-monitoring, nondestructive evaluation, and energy harvesting capabilities.
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The price paid for the unique transducer capabilities of ferroelectric materials is hysteresis and
constitutive nonlinearities due to the metastable behavior associated with inherent domain properties.
Whereas these effects can be minimized using charge or current control [62], or restriction to low drive
regimes, this can increase costs and limit the unique transduction capabilities of the materials. This
necessitates the development of models and model-based control designs that quantify the nonlinear
and hysteretic material behavior to achieve the full potential of the materials and devices.

Static, quasistatic, and dynamic hysteresis behavior that must be incorporated in models is
illustrated in Figure 3. The field-polarization and field-strain data from [96] illustrates that rate-
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Figure 3: Rate-dependent (a) polarization and (b) strain PZT data from [96]. (c) Field-polarization,
(d) field-strain and (e) time-strain PZT data from [92]. (f) Field-strain MFC data from [32].
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dependent effects are significant at frequencies as low as 1 Hz. PZT data from [92] illustrates that
for fixed field inputs, both the strain and polarization exhibit significant creep on timescales of
1 to 20 seconds. Finally, the MFC data from [32] illustrates nested minor loop behavior typical of
moderate drive regimes. Whereas the full switching behavior shown in Figure 3(a)-(d) will typically
not be encountered in applications, general models must account for the full range of rate-dependent
and creep behavior to provide comprehensive device characterization.

For regimes in which stress and field inputs σ and E are maintained at low levels, the nonlinear
and hysteretic behavior of the strain ε and polarization P can be approximated by the linear relations

P = dσ + χσE

ε = sEσ + dE
(1)

originally developed by Voigt [88]. Here d, χσ and sE denote the piezoelectric constant, ferroelec-
tric susceptibility at constant stress, and elastic compliance at constant field E. These are often
termed the piezoelectric relations which infers a linear connotation on piezoelectric materials. This
is somewhat of a misnomer since the piezoelectric materials BaTiO3, PZT, PLZT, and PVDF are
ferroelectric and hence exhibit hysteresis and constitutive nonlinearities. For some applications,
however, the linear relations (1) provide sufficient accuracy, especially when combined with feedback
algorithms.

To motivate various nonlinear modeling strategies, we consider the multiscale depiction of a PZT-
based MFC tranducer in Figure 4. The largest scale is comprised of the application whereas initial
characterization experiments are often conducted with individual MFC bonded to an elastic structure;

Figure 4: Multiscale behavior of a PZT-based MFC transducer at the application, device, material
and unit cell levels.
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e.g., a beam, plate or shell. The active component of the MFC is PZT fibers which are depicted
at the material, grain, domain and unit cell levels. The goal for device optimization and control
is to develop nonlinear, macroscale constitutive relations that can be employed in mechanical and
electrostatic field relations which subsequently can be used to construct finite element simulation and
control codes for the structure, device or application. The different modeling hierarchies are defined
by the degree to which molecular, domain, and grain-level material behavior is used to construct the
constitutive relations.

The general form of constitutive relations can be motivated by the ionic behavior of the unit cell.
For small field or stress inputs, ionic displacements are reversible and approximately linear so they
have the form

Pα = dασ + χσ
αE + Pα

R

εα = sE
ασ + dαE + εαR

(2)

where α designates the dipole variant — e.g., ±180, 90 for tetragonal materials — and Pα
R , ε

α
R are

remanent values of the polarization and strain. At larger input levels, however, irreversible switching
occurs which produces hysteresis and constitutive nonlinearities. This combination of reversible and
irreversible behavior motivates the general constitutive formulation

P (E, σ) = d(E, σ)σ + χσE + Pirr(E, σ)

ε(E, σ) = sEσ + d(E, σ)E + εirr(E, σ)
(3)

where d(E, σ), Pirr(E, σ) and εirr(E, σ) incorporate the nonlinear and irreversible history-dependence
due to dipole switching. We note that many authors employ the notation P r, εr and terminology
‘irreversible remanent behavior’ but the concepts are the same.

Modeling hierarchies can generally be defined by the manner in which d, Pirr and εirr are con-
structed. Micromechanical, or microscopically-motivated models are based on an energy description
of the material at the domain or grain level in combination with various homogenization techniques
to provide expressions for the nonlinear, effective components d, Pirr and εirr. The objective is to let
the micro-level physics inform, to the degree possible, resulting macroscale behavior. The difficulty
with this approach is that resulting models are often too complex for applications requiring high
speed implementation; recall that applications can occur at kHz rates. Phenomenological models
circumvent the difficulties associated with quantifying complex, or poorly understood, micro-scale
physics by constructing relations for d, Pirr and εirr based on macroscale observations or experi-
mental measurements. In many models, the derivation of these effective components is guided by
thermodynamic constraints, and the history-dependence associated with dipole switching is often
incorporated with nonphysical internal variables. In general, phenomenological models are less com-
plex than micromechanical models and hence are amenable to finite element implementation for
devices and applications.

Micromechanical Models

As illustrated in Figure 4, microscopically-motivated or micromechanical models must incorporate
two phenomena: a kinematic description of the grain-level irreversible or remanent polarization
P irr and strain εirr,and criteria that quantify dipole switching. As detailed in the survey papers
[33, 51] by Huber and Landis, many early papers [36, 60] assumed single domain behavior within
single crystals, in which case, the remanent polarization and strain were simply the spontaneous
polarization and strain. To account for multiple domains, which is always the case for ferroelectric
materials, one must either track the nucleation and movement of domain walls, or account for their
behavior using internal variables xα, the most natural of which are volume or dipole fractions.
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Phase field models, typically based on Ginzburg-Landau energy relations, provide one method for
quantifying domain wall behavior [89]. As detailed in [75,81,95], the Ginzburg-Landau theory differs
from the standard Landau relations through the inclusion of polarization gradient energy terms
which incorporate local polarization changes associated with domain walls. This approach permits
fundamental understanding of domain behavior but is typically too computationally intensive for use
in macroscopic constitutive relations requiring high speed implementation. To reduce the number of
parameters, continuum theories based on internal variables that quantify the polarization and strain
state have been employed by a number of researchers — see [35] as well as the summary in [33,51].

A variety of techniques have been employed to quantify dipole switching. Hwang et al. [36]
introduced the concept of switching levels and a number of researchers have employed switching
surfaces [73]. The homogenized energy model (HEM) framework, initially developed in [75, 78, 80]
and extended here, quantifies switching through the evaluation of likelihoods that balance the Gibbs
and relative thermal energy at the grain level.

We note that the kinetics associated with dipole switching determine the time scale for polar-
ization and strain changes relative to mechanical and electrical loading rates. This is manifested in
the rate-dependent hysteresis behavior observed in Figure 3 and illustrates that hysteresis involves
multiple timescales as well as spatial scales.

A variety of techniques have been employed to average, or homogenize, grain-level relations to
provide macroscale constitutive relations — e.g., see [33, 51]. This includes Reuss approximations,
based on the assumption that stress and electrical fields are homogeneous throughout the polycrys-
tal [36, 60], and various self-consistent averaging techniques [34, 35]. In the homogenized energy
framework, this is accomplished by assuming that quantities such as effective and interaction fields
are manifestations of underlying densities that are subsequently estimated through fits to measured
macroscopic data. The assumptions and techniques used to homogenize from the grain to macro-level
often determine the accuracy and efficiency of the resulting model.

We note that this summarizes only a few of the issues addressed by micromechanical models
and other research has focused on the quantification of field and stress interactions between grains
[73], the incorporation of friction effects in domain wall movement [74], micromechanics models
based on irreversible thermodynamics principles [38,83], and direct finite element implementation of
micromechanics models [37].

In this summary, we have neglected the discussion of atomistic models that quantify material
behavior at the level of the unit cell. This comprises a critical research area for understanding
fundamental material properties and for designing new materials. However, it is generally too com-
putationally intensive for direct macroscopic material characterization so we instead refer the reader
to [11] for an overview of associated models.

Phenomenological Models

The goal when developing phenomenological models is to reduce complexity and often ensure ther-
modynamic consistency by constructing appropriate relations for d, Pirr and εirr based on attributes
of measured data. The reader is referred to [42, 51, 65] for overviews of certain phenomenological
frameworks.

In a number of models, the remanent or irreversible polarizations and strains are expressed in
terms of nonphysical internal variables, often chosen to satisfy tenets of irreversible thermodynamics
[19,44] or emulate theory of metal plasticity [45,52]. A number of these models have led to successful
finite element implementation [42,43,50,56,59].

More recently, investigations have focused on representing d, Pirr and εirr in terms of Preisach
operators [41], Jiles-Atheron hysteresis relations [27] and hysteretic recurrent neural networks [57].
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The Prandtl-Ishlinskii (PI) hysteresis operator is also receiving significant attention since it can be
proven that its inverse is also a Prandtl-Ishlinskii operator [14]. Whereas the classical PI operator, like
the Preisach operator for which it is a subset, is symmetric and rate-independent, recent extensions
to the theory address asymmetry, rate-dependence and certain creep phenomena [2,3,48]. Although
these extensions complicate the construction of inverse models, the PI model, along with the Preisach
and homogenized energy frameworks, provides a feasible avenue for feedforward control designs
based on inverse models. Finally, we note that both the Preisach and PI models can be viewed as
multiscale models in which kernels, or hysterons, phenomenologically describe grain-level behavior
and homogenization to macroscales is achieved through integration against density functions.

Whereas there exist a number of rate-independent models, there are substantially fewer models
that are capable of modeling rate-dependent phenomena such as that shown in Figure 3. The
extended Preisach-PI formulation [48] quantifies certain rate-dependent material behavior as does
the variational formulation [65] and models of [5,9] which incorporate kinetic theory to characterize
rate-dependent loading effects. The homogenized energy model (HEM), which is the topic of this
paper, quantifies rate-dependent effects based on evolution equations in combination with the theory
of thermally activated processes.

Homogenized Energy Model (HEM)

The homogenized energy model is a multiscale, microscopically-motivated or micromechanical
approach in the sense that it begins with energy analysis at the domain level to construct local
constitutive relations (2). To construct the grain-level expressions

P (E, σ) = σ
∑
α

dαxα(E, σ) + χσE +
∑
α

Pα
Rxα(E, σ)

ε(E, σ) = sEσ + E
∑
α

dαxα(E, σ) +
∑
α

εαRxα(E, σ),
(4)

the internal variables xα are chosen to be the fraction of α-variant dipoles; e.g., α = ±180, 90 for
tetragonal materials. The dynamics of xα are governed by evolution equations driven by likelihoods
constructed using Boltzmann theory to quantify the scaled probability of transitioning between stable
equilibria associated with dipole variants. This incorporates the rate-dependence and multiple-time
scales exhibited by the data in Figure 3.

For homogeneous single crystals with negligible interaction fields, these relations can adequately
quantify macroscale behavior. For polycrystalline materials and single crystals with non-negligible
interaction fields, macroscale models are constructed by assuming that properties such as coercive
fields, critical driving forces, and interaction fields are manifestations of underlying densities rather
than constants. This yields a homogenized energy framework that accurately characterizes a range
of material behavior while retaining the efficiency required for data-driven parameter estimation,
uncertainty quantification, design, and real-time model-based control implementation.

The framework was proposed in [75,78–80] for 180o ferroelectric switching and extended in [7,71]
to include 90o ferroelastic switching. In both cases, transition likelihoods were constructed using the
theory of thermally activated processes as originally applied to shape memory alloys in [1, 72] and
magnetic materials in [76, 77]. It is shown in [75, 79] that it thus provides a unified framework for
characterizing hysteresis in ferroic materials. This approach has a strong theoretic basis and provides
accurate and efficient characterization of 1-D ferroelectric switching but becomes increasingly slow
to implement for ferroelastic and 3-D ferroelectric switching due to complications associated with
computing inflection points and curves on 2-D and 3-D energy landscapes having 4-6 local minima. To
address this, York used the driving force between local minima to construct mesoscale kernels for 1-D
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PZT with ferroelastic switching [92] whereas Kim and Seelecke employed this technique to construct
a 3-D electromechanical model [47]. York incorporated certain material and field nonhomogeneities
within the hysteron and Kim modeled certain polycrystalline behavior using a representative volume
element (RVE) model [46]. However, the combination of the driving force likelihood relations with
stochastic homogenization to construct general macroscopic models for polycrystalline materials has
not been previously investigated.

The novel contributions and organization of the paper can be summarized as follows. In Section 2,
we provide a comprehensive discussion of the dipole processes that produce hysteresis and constitutive
nonlinearities in ferroelectric materials. Whereas much of this material is classical, we focus on
providing a careful discussion regarding the sources and mechanisms leading to even-powered (e.g,
quadratic) field-strain effects since this is important for model development and is often ambiguous
or contradictory in the literature. In Section 3, we summarize the 180o polarization model that
was originally proposed in [78, 80]. The novel component of this section is Section 3.2 in which
we rigorously derive likelihood relations based on Boltzmann theory. This motivates alternative
likelihood formulations based on activation energies and thermodynamic driving forces. Section 4
contains a derivation of the strain-polarization models based on both 180o and non-180o switching.
The grain-level analysis is similar to that in [47,92] but the development of macroscopic models based
on the homogenized energy framework is new. In Section 4.2, we show that the framework yields
constitutive relations of the form (3) where d(E, σ), Pirr(E, σ) and εirr(E, σ) are homogenized or
averaged relations employing the kernel expressions (4). This framework is then used in Section 5.1
to derive a lumped actuator model as well as constitutive relations for distributed systems. The
performance of the model, for characterizing creep behavior and rate-dependent phenomena such as
that shown in Figure 3, is demonstrated in Section 6.

It is shown in the companion paper [31] that due to its energy basis, the model admits highly
efficient implementation and data-driven algorithms to determine initial parameter estimates based
on measured properties of the data. This facilitates model calibration and implementation for design
and control of devices and complex structures arising in applications. The model’s feasibility for
control applications is further bolstered by the fact that robust inverse model algorithms can be
implemented at rates that are proven no slower than 1/6-1/7 the rate of forward algorithms. Finally,
the unified nature of the framework facilitates its extension to magnetic, shape memory alloy, or
hybrid systems.

2 Ferroelectric Materials

As detailed in Section 1, commonly employed transducer materials include BaTiO3, PZT, PLZT,
PMN and PVDF. Whereas the specific molecular mechanisms are material-dependent, all of these
compounds exhibit certain shared meso- and macro-scale properties which form the basis for homog-
enized energy models. In this section, we summarize relevant material properties; we refer the reader
to [40,58,66,75] for details.

Barium titanate and lead titanate (PbTiO3) are isostructural with the mineral perovskite (CaTiO3)
and exhibit what is termed a ABO3 perovskite structure. As illustrated in Figure 5 for BaTiO3, this
consists of a paraelectric non-polar cubic structure above the Curie point Tc and ferroelectric tetrag-
onal, orthorhombic, and rhombohedral forms at temperature below Tc. It is noted that for typical
operating temperatures, BaTiO3 and PbTiO3 exhibit tetragonal structures whereas the composition
8/65/35 PLZT (Pb0.08Ti.35Zr.65O3) is near a rhombohedral-tetragonal morphotropic phase boundary
and PbZrO3 is orthorhombic. We will focus primarily on tetragonal structures but analogous results
hold for rhombohedral and orthorhombic forms.
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Figure 5: Cubic, tetragonal, orthorhombic and rhombohedral forms of perovskite compounds and
approximate transition temperatures for BaTiO3 (oC).

As illustrated in Figure 6 for BaTiO3, the materials exhibit a spontaneous polarization P0 for
T < Tc. This leads to to 180o ferroelectric switching for fields greater than a coercive field Ec and
90o ferroelastic switching for compressive stresses larger than a coercive stress σc. Both effects can
occur in transducers and for devices, such as THUNDER, that exhibit large internal prestresses,
both effects may be significant.

The electromechanical properties of ferroelectric compounds are intimately related to the manner
in which the polar tetragonal, orthorhombic or rhombohedral structures respond to input fields and
stresses. To illustrate these effects, we summarize the polarization and strain behavior for three cases:
(i) single crystal, 180o ferroelectric domains, (ii) single crystal, 180o ferroelectric and 90o ferroelastic
domains, and (iii) polycrystalline materials.

Single Crystal, 180o Ferroelectric Domains

In the absence of applied or internal stresses, minimization of the electrostatic energy yields
twinned 180o domains. For fields E less in magnitude than the coercive field Ec, this yields ap-
proximately linear E-P , E-ε, P -ε, where ε is the strain, behavior as illustrated in Figure 7. This
is due to reversible deformations of the tetragonal cell and resulting strains are small compared to
those resulting from 90o switching. Fields in excess of Ec produce 180o switching which yields large
changes in polarization but small changes in strains since differences in the latter are due only to
small changes in the cell dimension.

(b)

P0 EP0

!

P0

(c)

Pb
x

O

3

PTi
0

(a)

Figure 6: (a) Tetragonal structure of PbTiO3 for T < Tc and resulting spontaneous polarization P0.
(b) Ferroelectric 180o polarization switch due to an applied electric field E > Ec and (c) ferroelastic
90o degree switch due to a compressive force σ larger in magnitude than the coercive stress σc.
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Figure 7: (a) Polarization changes due to 180o ferroelectric dipole switching, and (b), (c) small
strains resulting from deformations of the unit cell.

Single Crystal, 180o Ferroelectric and 90o Ferroelastic Domains

The situation is more complicated when fields and stresses are simultaneously applied to the
materials. We illustrate the case of compressive stresses since this induces dipole switching. However,
transducers such as macro-fiber composites (MFC) and THUNDER will exhibit regions having both
tensile and compressive stresses.

We first note that the strains resulting from 90o switching are significantly larger than the linear
strains resulting from reversible deformations of the unit cell. For BaTiO3 single crystals, this 90o

switching can produce strains up to 1.1%. The reader is referred to [15] for experimental results
illustrating the E-P , E-ε and P -ε behavior of single crystal BaTiO3 subject to various prestress
levels. The behavior for σ = −1.78 MPa is plotted in Figure 11(a)-(c).

In Figure 8, we illustrate ferroelastic switching for an ideal single crystal. As compressive stresses
are increased, two mechanisms produce changes in the strains and polarization: (i) linear elastic
changes in the tetragonal cell, and (ii) nucleation and growth of 90o domains. The primary 90o

rotation occurs at the coercive stress σc after which, the elastic stiffness c = dσ
dε is approximately

linear. Representative domain configurations are shown in Figure 8(c).
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Figure 8: (a) and (b) Elastic response and stress-induced ferroelastic switch at σc for E = 0.
(c) Nucleation and growth of 90o domains during the switching process.
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The E-P , E-ε and P -ε behavior at the points B and F corresponding to fixed stresses σ ∈ (−σc, 0)
and σ ∈ (−∞,−σc) are depicted in Figure 9. A comparison between Figure 9(a) and Figure 7 (σ = 0)
illustrates that for σ ∈ (−σc, 0), the magnitude of the polarization remains approximately the same
but the behavior near coercivity reflects the 90o switching. The strains are significantly larger due
to the 90o switching as demonstrated by experimental BaTiO3 data in [15]. This regime provides
optimal performance for single crystal actuators.

For fixed prestresses larger in magnitude than σc, ferroelastic switching yields 90o domains as a
starting state for E = 0 and the material behaves in a linear elastic manner until field-induced 90o

switching occurs at the point ii shown in Figure 9(b). Due to the magnitude of the prestresses, large
fields E are required to produce significant polarization and strain levels and single crystal actuators
operating in these regimes would have diminished outputs — or would be destroyed by internal field
and stress levels.

Polycrystalline Materials

Whereas single crystal BaTiO3 is being considered for applications, most ferroelectric transducer
materials, such as PZT, are polycrystalline which affects their behavior in a variety of ways. It is
first noted that whereas a single crystal is polar for T < Tc, polycrystalline compounds exhibit zero
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Figure 9: E-P , E-ε and P -ε behavior at fixed stresses σ corresponding to the points (a) B and (b) F
from Figure 8. Field levels in (b) are larger than those in (a).
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Figure 10: (a) Unpoled material, (b) rotation of 180o domains due to poling, and (c) 90o switching
due to an applied field. (d) Ferroelastic 90o switching due to an applied stress.

net polarization due to the random orientation of grains and domains. This necessitates that the
materials be poled before use as illustrated in Figure 10(b) and (c). Due to the random orientation
of grains, the materials exhibit smaller remanence polarizations than corresponding single crystals.
Moreover, as shown in Figure 10(c), polycrystalline materials exhibit field-induced 90o switching in
the absence of a prestress and both 90o and 180o switching can occur at stresses and fields below single
crystal coercive values. This causes polycrystalline E-P , E-ε and P -ε hysteresis curves to be smoother
than their single crystal counterparts and it motivates the use of models such as the homogenized
energy model, Preisach formulations or Prandtl-Ishlinskii models that can accommodate the random
grain orientations via densities in the representation.

Polycrystalline PLZT data, corresponding to the ideal single crystal behavior depicted in Fig-
ures 8 and 9, can be found in [61]. Single crystal BaTiO3 data from [15], polycrystalline PZT data
from [92], PLZT data from [69], and PMN data from [29] are plotted in Figure 11. It is first noted
that polycrystalline switching behavior is smoother than for BaTiO3 single crystal due to material
nonhomogeneities. It is also observed that PLZT exhibits nearly quadratic D-E behavior and PMN
exhibits nearly quadratic and anhysteretic E-ε behavior as compared with the butterfly curves mea-
sured for PZT. We provide further discussion regarding the piezoelectric, quadratic, and switching
behavior of these compounds in the next subsection.

2.1 Piezoelectric, Electrostrictive and Domain Switching Behavior

Ferroelectric materials exhibit a complex combination of linear, quadratic or quartic, and hysteretic
behavior in general operating regimes. These effects are often categorized as piezoelectric, elec-
trostrictive, or domain switching in nature but there is significant interplay between the underlying
mechanisms and hence ambiguity in the definitions of the phenomena. We detail aspects of these
phenomena to clarify the underlying physical mechanisms and motivate issue that must be addressed
in models.

The direct piezoelectric effect constitutes the change in polarity that results from an applied
stress whereas the converse piezoelectric effect constitutes reversible strains generated by applied
field. In both cases, the designation piezoelectric has a linear connotation.
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Figure 11: (a) E-P , (b) E-ε and (c) P -ε behavior of prestressed single crystal BaTiO3 data from [15].
(d) E-P , (e) E-ε, and (f) P -ε behavior of PZT data from [92]. (g) E-D, (h) E-ε, and (i) D-ε behavior
of PLZT data from [69]. (j) E-P and (k) E-ε behavior of PMN data from [29].
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Electrostriction is classically used to designate field-induced strains that are proportional to
even powers of the field and hence are independent of its polarity. Classical electrostriction results
from reversible, and hence anhysteretic, deformations in the lattice structure and it is inherent
to all materials including gaseous, liquid, and crystalline or amorphic, polar or centrosymmetric
solids [16, 40, 58, 66]. In most ferroelectric materials, electrostrictive effects are small compared to
linear piezoelectric effects and are hence neglected. However, in some compounds such as PMN, it is
significant and must be included in models. Depending on the independent variables, electrostriction
can be modeled as a quadratic, or higher-order, relation

ε = ME2 , ε = QP 2 , ε = QD2

between fields E, polarization P , or D-fields and the resulting strain ε.
A source of confusion stems from the fact that the quadratic dependence of strains on P,E or D is

due to two different mechanisms: classical electrostriction and domain rotation. As noted previously,
electrostriction results from reversible deformations of the lattice structure; hence it is anhysteretic
and it occurs to varying degrees in all materials. In ferroelectric materials, domain rotation only
occurs for T < Tc when the material is in a polar state. The quadratic strains due to domain rotation
are typically larger than electrostrictive effects, except in materials such as PMN, and E − ε curves
exhibit hysteresis. The difference between the nearly anhysteretic, electrostrictive, behavior of PMN
and the hysteretic, domain switching, behavior of PZT and PLZT is illustrated in Figure 11.

We note that some researchers define quadratic effects due to domain reorientation as electrostric-
tion [84] whereas others more generally define electrostriction as field-induced strains that are in-
dependent of the field polarity. We follow instead the distinction made by Caspari and Merz [17]
between classical electrostriction and quadratic domain rotation effects since the two are character-
ized differently in the homogenized energy model.

We next detail why domain reorientation produces quadratic strain dependencies and then illus-
trate the relative contributions of electrostriction and quadratic domain reorientation for common
ferroelectric materials.

Quadratic Strains Due to Domain Rotation

To illustrate how domain rotation can produce quadratic strains, we represent paraelectric cubic
regions by unit spheres and the ferroelectric polar regions by ellipsoids as motivated by analysis of
magnetostriction presented on pages 343–346 of [18] or pages 99–104 of [39]. We let ε̄ denote the
spontaneous strain generated by the paraelectric to ferroelectric phase transition when all dipoles
are aligned with the field. As depicted in Figure 12(a), the strain at the angle θ is thus

ε(θ) = ε̄ cos2 θ. (5)

For a random domain orientation, the spontaneous strain for the polarized material is thus

λ0 =
∫ π/2

0
ε̄ cos2 θ sin θdθ =

ε̄

3
.

The application of a field causes domains to rotate in the manner depicted in Figure 12(c) thus
yielding the relative change in dimension λs = ε̄−λ0 = 2

3 ε̄. If we assume that changes in polarization
are solely due to rotation, substitution of the relation P = P0 cos θ and ε̄ = 3

2λ0 into (5) yields the
quadratic strain relation

ε(P ) =
3
2
λs

P 2
0

P 2.

15



!

"0

"s

cos!

cos !2#

cos!#

(d)

#

(c)

(b)

(a)

#

Figure 12: (a) Spontaneous strain as a function of the angle θ. (b) Spheres used to model isotropic,
disordered material behavior in the paraelectric phase and (c) ellipsoids representing the order en-
capsulated by domains for T < Tc. (d) Total strain ε and strain λs due to orientation of domains in
the field direction.

2.2 Material Behavior

Magnesium Niobate Compounds

As detailed in [75], PMN-PT-BT transducers are employed in applications including sonar trans-
duction due to their low hysteresis, high strain capabilities. These relaxor ferroelectric compounds
also exhibit significant electrostrictive behavior as illustrated in Figure 11(j)-(k) with data from [29].
For an operating temperature of 5o C, the material exhibits nearly quadratic E-ε behavior at low to
moderate field inputs and even, higher-order behavior at high fields. This provides a benchmark for
discussing the degree to which electrostriction plays a role in BaTiO3, PZT and PLZT behavior.

Single Crystal Barium Titanate

The behavior of BaTiO3 has been heavily studied for over 60 years and it remains an important
research topic due to the capability of single crystals to generate large strains (∼1 %) through
90o rotations. The behavior of single crystal BaTiO3 subjected to various compressive stresses has
recently been investigated in [15] and representative results are shown in Figure 11(a)-(c). It is
observed that in contrast to PMN-PT-BT, the BaTiO3 E-ε curve exhibits significant hysteresis
which gives it a classical butterfly profile. Early authors attributed this to electrostrictive effects [63]
but analysis originating in the classic 1950 paper by Caspari and Merz [17] demonstrates that it is
primarily due to domain reorientation. This is the source of the hysteresis.

In [17], Caspari and Merz show that there are three sources of quadratic strain effects in BaTiO3:
spontaneous strains ε0 = QP 2

0 resulting from the paraelectric to ferroelectric phase transition, but-
terfly effects due to dipole switching, and classical electrostrictive effects. To analyze the relative
contribution due to electrostriction, they consider the field-induced strains ε that result when the
polarization is biased about the spontaneous polarization P0 and corresponding field E0 as depicted
in Figure 13. Application of an external field yields a change ∆ε in the strain so that

ε = ε0 + ∆ε = Q(P0 + P )2

⇒ ∆ε = (2QP0)P +QP 2.

If we take P = χE, the change in strain can be expressed as

∆ε = (2QχP0)E + (Qχ2)E2.

It follows that the piezoelectric constants g and d and the electrostrictive constant M are given by

g = 2QP0 , d = 2QχP0 , M = Qχ2.

16



E

!

!0
"!

E0

Figure 13: Change in strain ∆ε due to applied field increments about E0 = P0/χ.

For the cgs parameter values given in [17], it is unfortunately difficult to directly compute the
relative strain contributions. Instead, we use the following parameter values from [8] — see also [55] —

Q = 0.11 m4/C2

P0 = 0.26 C/m2

χ = ε0χe = 9.56× 10−10 C/(Vm) , χe = εr − 1 , εr = 109

which yields

g = 5.72× 10−2 m2/C , [8] report 5.75× 10−2 m2/C measured

d = 5.47× 10−11 m/V , [8] report 8.56× 10−11 m/V measured

M = 1.01× 10−19 m2/V2.

For a change in polarization P = 0.05 C/m2 and field E = 5× 105 V/m, which is representative of
the data in [15], this yields the strain contributions

gP = 2.86× 10−3 , QP 2 = 2.75× 10−4

dE = 2.74× 10−5 , ME2 = 2.53× 10−8.

In both cases, the quadratic electrostrictive effects are negligible compared with the linear piezo-
electric effects and hence can be neglected. This implies that the piezoelectric effect can be interpreted
as the electrostrictive effect biased about the spontaneous polarization P0. It further implies that
the E-ε and P -ε behavior shown in Figure 11(a)-(c), which is independent of field polarity, is due
to the 90o and 180o switching which imbues the material with large strain capabilities. The P -ε
behavior in Figure 11(c) also demonstrates that 180o and 90o switching for BaTiO3 occur on very
different timescales. The flat region indicates that 180o polarization switching occurs in advance
of strain-producing 90o switches. It is shown in Section 3.3 and [31] that single crystal behavior
of this type can be modeled using energy relations that incorporate both 90o and 180o switching
mechanisms and employ linear domain-level constitutive relations.

Polycrystalline Tetragonal PZT and PL8ZT

As illustrated in Figure 10, polycrystalline compounds exhibit 90o switching in the absence of
applied stresses and at low field levels. To quantify the role of 90o switching in polycrystalline
compounds, Tsurumi et al. employed X-ray diffraction (XRD) techniques to measure the amount
of 90o reorientation [84]. We note that the PL8ZT compounds under consideration had chemical
compositions which ensured that they were in the tetragonal form and not near the morphotropic-
phase boundary (MPB). This is in contrast to 8/65/35 PLZT which is at a tetragonal-rhombohedral
morphotropic boundary.
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Figure 14: Measured strains εmeas, strains εp = d33E due to linear piezoelectric effects, and strains
εp+ε90 due to piezoelectric effects and 90o dipole rotation for (a) PZT and (b) PL8ZT data from [84].

Biased minor strain loops for PZT and PL8ZT data from [84] are shown in Figure 14 and the
P -E hysteresis curve and E-ε butterfly curve for PL8ZT are plotted in Figure 15. In each case, εmeas

is the measured strain, εp = d33E is the computed piezoelectric strain, and ε90 is the strain due to
90o dipole rotation as measured using the XRD techniques. Figure 14 illustrates that piezoelectric
strains contribute less than half of the measured response and that the sum of the piezoelectric
and rotational effects are consistent with the measured strains. The significant contribution due
to 90o reorientation is further demonstrated for PL8ZT in Figure 15. Here it is observed that 90o

reorientation constitutes a primary strain contribution at fields below the coercive field.
These results demonstrate that 90o reorientation is one of the primary strain producing mech-

anisms in polycrystalline materials, especially at low field levels. Hence it must be incorporated in
models to achieve accurate material characterization.

Furthermore, Li et al. [54] demonstrate using XRD analysis that polarization switching in PZT
compounds, with compositions near the morphotropic boundary, are due primarily to two successive
90o switches rather than a single 180o transition. It is further noted in [96] that 180o switching
occurs more rapidly than 90o switching as exemplified for BaTiO3 by the nearly flat P -ε region in
Figure 11(c). Hence we model 180o switches with a different timescale than the 90o rotations that
produce large changes in strains.
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Figure 15: (a) E-P PL8ZT data from [84]. (b) Total field-induced strains εmeas and strains ε90 due
to 90o dipole rotation for PL8ZT data from [84].
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Rhombohedral PLZT

The PLZT compound 8/65/35 differs from the previously described PL8ZT material in that it
has a rhombohedral rather than tetragonal crystal structure. Hence polarization switches of 70.5o

(three nearest corners) or 109.5o (three further corners) produce deformations or strains in the
material [9, 61]. Like PMN, it is also a relaxor ferroelectric material.

It is illustrated in Figure 11(g)-(i) that the D-ε behavior of 8/65/35 PLZT is quadratic and nearly
anhysteretic whereas the E-ε curve has the usual hysteretic butterfly shape. In [94], these effects
were modeled as electrostrictive strains. However, they are more likely due to domain switching for
the previously mentioned reasons.

There are various options to model the quadratic strain behavior. One is to construct energy
functionals having quadratic polarization or D-field dependence [69]. This models the quadratic P -ε
or D-ε behavior in a phenomenological sense. A second alternative is to employ energy relations
that incorporate the dipole switching mechanisms in combination with linear constitutive relations.
This is the strategy that we employ in Section 3 and 4.

3 Homogenized Energy Model — Polarization

The homogenized energy model (HEM) for ferroelectric materials is a multiscale approach comprised
of two fundamental components: (i) construction of energy-based grain-level kernels that characterize
dipole switching, material constitutive behavior, and thermal relaxation mechanisms, and (ii) con-
struction of macroscale models through the assumption that coercive fields, critical driving forces,
and interaction fields are manifestations of underlying densities rather than constants.

Ferroelectric materials subjected to general fields ~E = [E1, E2, E3] or stresses ~σ exhibit vector-
valued polarization ~P = [P1, P2, P3] polarization or strain ~ε responses. As illustrated in Section 1,
however, many actuators and sensors employ 1-D input and output responses so, for these applica-
tions, it is advantageous to consider scalar electric and mechanical variables E = E3, σ = σ33, P = P3

and ε = ε33. For applications that require truly 2-D or 3-D polarization or strain relations, energy
functionals can be constructed using the framework in [46,47].

We summarize first the homogenized energy model for polarization. As illustrated in Figure 7,
the primary polarization features for small force regimes can be defined by considering only ±180o

dipole states. Whereas this case has been previously reported in [75, 78–80], the summary provided
here motivates and provides the context for the strain-polarization model in Section 4. Moreover,
we present new theory in Section 3.2 for the transition likelihoods.

3.1 Polarization Kernels with Negligible Thermal Activation

To characterize 180o dipole switching, we employ the Gibbs energy density1

G(E,P ) = ψ(P )− EP =


G−(E, p) = 1

2η(P + PR)2 − EP , P ≤ −PI

G+(E,P ) = 1
2η(P − PR)2 − EP , P ≥ PI

Gu(E,P ) = 1
2η(PI − PR)

(
P 2

PI
− PR

)
− EP , |P | < PI

(6)

1The fact that G is an energy density results from the polarization definition ~P = limdV→0

h
1

dV

PNV dV
i=1 ~pi

i
where ~pi

is a collection of general dipoles in a nonhomogeneous region, dV is a reference volume and NV denotes the number of
dipoles per unit volume [6]. The polarization thus designates the dipole moment density of the material and has units
of coulombs per square meter (C/m2). This motivates some authors to use the terminology “polarization density” or
“dipole moment density” when introducing the polarization [23,26].
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where ψ is a piecewise quadratic Helmholtz energy and PR, η and PI respectively denote the rema-
nence polarization, inverse susceptibility after switching, and the positive inflection point.2

For regimes in which thermal excitation is negligible, the condition ∂G
∂P = 0, which reflects the

reorientation of dipoles to achieve energy minimization, yields the linear local polarization relations

P−
m(E) =

E

η
− PR , P+

m(E) =
E

η
+ PR , PM (E) =

PIE

η(PI − PR)
. (7)

The Gibbs energy density corresponding to these two equilibrium conditions is

Gα(E) = −1
2
χE2 − EPα

R (8)

where α = ±180 and χ = 1
η .

To specify a hysteresis kernel, or hysteron, we consider an ideal lattice with volume V having N
cells of the form depicted in Figure 6(a). We let N− and N+ denote the number of negatively and
positively oriented dipoles so the corresponding dipole fractions are x+ = N+

N , x− = N−
N . Because

N+ +N− = 1, it follows immediately that

x+ + x− = 1. (9)

We let P−, P+ denote the polarizations due to negative and positive dipoles and let pαβ , α, β = ±180,
which has units of (1/s), denote the likelihood of transitioning form an α-well to β-well.

The evolution of dipole fractions is governed by the differential equation

ẋ+ = −p+−x+ + p−+x−

ẋ− = p+−x+ − p−+x−

which can be simplified to
ẋ+ = −p+−x+ + p−+(1− x+) (10)

using the identity (9). The hysteron is given by

P = x+P
+ + x−P

−. (11)

The specification of p−+, p+−, P
+, P− depends on the degree to which kinetics due to thermal

activation are relevant. For operating conditions in which relaxation due to thermal activation is
negligible, it is shown in [75] that transition likelihood rates are given by

p−+ =
{

1
τ , E > Ec

0 , else
, p+− =

{
1
τ , E < −Ec

0 , else
(12)

where 1/τ is the frequency at which dipoles attempt to switch. As illustrated in Figure 7, Ec denotes
the coercive field which is related to PI and PR via the expression Ec = η(PR−PI). For this operating
regime, P+ = P+

m and P− = P−
m so the hysteron is

P =
E

η
− PR + 2x+PR. (13)

To incorporate the kinetics due to thermal activation, which produces creep and accommodation
or reptation-like effects, likelihoods can be specified in terms of two quantities: error functions
resulting from the theory of thermally activated processes or activation energies ∆Ga.

2We employ (6) to collectively specify the Gibbs energy density for both the positive and negative polarization
variants. Because the global expression (6) is bistable, it is not a Gibbs energy density in the classical sense which
has prompted some authors to designate it a Landau energy [10, 25]. Because, we are not employing higher-order
polynomials, as is typically the case for the Landau energy, we follow the precedent set by authors such as Devonshire [22]
who use this global representation with the understanding that its reversible Legendre transform properties hold for
the individual variants.
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3.2 Theory of Thermally Activated Processes

We illustrate the theory in the context of determining the likelihood that a dipole switches from
negative to positive. If we sum over the index set of negative dipoles, the resulting polarization is

P− =
1
V

N−∑
i=1

Nipi.

However, for the purpose of energy formulation and minimization, it is advantageous to sum over
the set of possible states rather than the index set For a finite set of negative dipole states S−, this
yields the relations

N− =
∑

p∈S−

Np , P− =
1
V

∑
p∈S−

pNp (14)

where Np is a distribution quantifying the number of dipoles having strength p as illustrated in
Figure 16(b). For a continuum of dipole values, N− and P− are given by

N− =
∫

p∈S−

N(p)dp , P− =
1
V

∫
p∈S−

pN(p)dp. (15)

We consider first the case when S− is finite.
The Gibbs energy for negatively oriented dipoles is

g = Φ +K − ST − EP−

where Φ and K denote the internal and kinetic energies, S is the entropy, T is temperature in degrees
Kelvin, and P− is the total dipole strength. We note that g has units of V·C and hence it is an
energy rather than an energy density like G given in (6). The internal energy is taken to be

Φ =
∑

p∈S−

φ(p)Np

where φ(p) quantifies the internal energy for each dipole of strength p. Letting p0 denote the spon-
taneous strength of a negatively oriented dipole, an appropriate choice for φ(p) is

φ(p) =
1
2
η(p+ p0)2 + η1.
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Figure 16: (a) Dipole configurations used to construct p−+ using the theory of thermally activated
processes (ooo•), the activation energy ∆Ga (+, •) and the thermodynamic driving force F−+ (+, x).
(b) Negative dipole states p and density Np.
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Following [72], where analogous arguments are presented for SMA, we assume that K is a linear
function of temperature and take

K = A(T − TR)

where TR is the reference temperature where the internal energy satisfies UR = 0. This is analogous
to the molecular kinetic energy relation K = 1

2kT.
To compute the entropy, we note that

W =
N−!∏

p∈S−
Np!

quantifies the number of ways to arrange N− dipoles so that their states p have the distribution Np.
Boltzmann’s law,

S = k lnW,

then quantifies the entropy which can be approximated by

S = kN− lnN− − k
∑

p∈S−

Np lnNp

using Stirling’s formula lnx! ≈ x lnx− x. Finally, we let

P− =
∑

p∈S−

pNp

denote the total dipole strength. Note that P− differs from the polarization P− in the sense that
the latter reflects the dipole strength per unit volume which renders it a density; compare with (7)
or (15).

The kinetics of dipole motion are governed by a partial equilibrium of the internal, kinetic,
entropic and electrostatic energies subject to the constraint N− =

∑
p∈S−

Np. To reformulate this as
an unconstrained optimization problem, we employed the augmented Gibbs functional

gγ = g + γ

(
N− −

∑
p∈S−

Np

)
=

∑
p∈S−

[φ(p) + kT lnNp − Ep]Np +A(T − TR)− kTN− lnN− + γ

(
N− −

∑
p∈S−

Np

)
where γ is a Lagrange multiplier. For a fixed set of dipole states, the distribution Np is determined
by the equilibrium condition δgγ = 0 where δgγ is the first variation with respect to Np. Under the
assumption that for a given state p, Np is sufficiently large to permit consideration of the derivative
∂gγ

∂Np
, this yields

Np = exp
( γ

kT
− 1

)
exp

[
−

(
φ(p)− Ep

kT

)]
.

From (14), it follows that

Np

N−
=

exp
[
−

(
φ(p)−Ep

kT

)]
∑

p∈S−
exp

[
−

(
φ(p)−Ep

kT

)] . (16)

We note that (16) quantifies the probability of observing Np dipoles for each dipole state p as
illustrated in Figure 16(b). It can also be interpreted as the probability that a dipole p, subjected
to a field E, has an energy level

g̃(E, p) = φ(p)− Ep; (17)
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that is
µ(g̃) =

exp [−g̃(E, p)/kT ]∑
p∈S−

exp [−g̃(E, p)/kT ]
. (18)

The likelihood rate p−+ that a dipole has the energy to switch from negative to positive is thus

p−+ =
1
τ

exp [−g̃(E, pM )/kT ]∑
p∈S−

exp [−g̃(E, p)/kT ]
(19)

where pM is the dipole strength of the unstable equilibrium as shown in Figure 16(b). Note that 1/τ
is the frequency at which dipoles attempt to switch so 1/τ has units of 1/s.

Polarization Model Likelihoods

To construct the likelihood rates p−+ and p+− for the polarization model, we recall that the
polarization is the dipole density which has units of C/m2. We employ the energy density G given
by (6) which corresponds to the dipole energy (17). Furthermore, we consider a continuum of dipole
strengths and approximate sums by integrals. Finally, we approximate evaluation at the unstable
equilibrium PM by evaluation at the inflection points −PI or PI .

These approximations yield the expressions

µ(G) = Ce−GV/kT (20)

and

p+− =
1
τ

e−G(E,PI)V/kT∫ ∞

PI

e−G(E,P )V/kTdP

=
γ1

erfcx(Ep(t))
, p−+ =

1
τ

e−G(E,−PI)V/kT∫ −PI

−∞
e−G(E,P )V/kTdP

=
γ1

erfcx(En(t))
(21)

for the Boltzmann transition probability3 and transition likelihood rates.4 Here erfcx denotes the
complementary error function. As detailed in [13],

En(t) = γ2(E(t)− Ec) , Ep(t) = γ2(−E(t)− Ec),

and

γ1 =
1
τ

√
2V η
πkT

=
1
βτ

√
2
π

, γ2 =

√
V

2kTη
=

1
βη
√

2
, β =

√
kT

ηV
.

Activation Energies ∆Ga

Use of the theory of thermally activated processes to construct transition likelihoods has the
advantage that it can be directly motivated by fundamental thermodynamics concepts. However,
its efficiency diminishes when additionally quantifying 90o switching or 2-D or 3-D polarizations

3The inclusion of the reference volume V in the expressions (20) and (21) is due do the definition of polarization as
the dipole density and G as an energy density — compare with the dipole relations (18) and (19). For some applications,
the estimation of parameters yields values of V that correspond to domain or grain dimensions. In general, however,
it is simply the reference volume in the definition of P .

4Because probabilities for continuous densities are defined in terms of integrals, the probability of measuring a
discrete point is zero. Hence one must use care when interpreting the relations (20) and (21). The point evaluations
are associated with the discrete set of polarization states with sums approximated by integrals to permit formulation
in terms of error functions. The proportionality factor associated with converting sums to integrals is incorporated in
the term 1

τ
. An alternative interpretation for continuous densities is provided in [75].
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due to the higher degree of energy landscapes and difficulty evaluating integrals based on inflection
lines. This motivates consideration of an alternative formulation based on activation energies ∆Ga

as proposed in [47,92].
As illustrated in Figure 16, the activation energy is the difference between stable and unstable

equilibria. For switching between the negative and positive well, we employ the formulation

∆Ga
−+(E) =


Gu(E,PM )−G−(E,P−

m) , −Ec ≤ E ≤ Ec

Gu(−Ec, PM )−G−(−Ec, P
−
m) , E < −Ec

0 , E > Ec

≈

{
1
2

PR
Ec

(E − Ec)2 , E ≤ Ec

0 , E > Ec

where Gu, G− are defined in (6) and P−
m , Pm are defined in (7). As illustrated in Figure 16, the

unstable equilibrium exists only for −Ec ≤ E ≤ Ec. For computational purposes, we employ the
limiting values for E > Ec and E < −Ec. This differs from the linear formulation employed in [47]
but yields the same computational value for the transition likelihoods.

For the polarization model based on positive and negative switching, it is easy to specify the
unstable component Gu(E,P ) which provides a continuously differentiable transition between the
stable negative and positive equilibrium states. For 2-D and 3-D polarization models or models that
incorporate 90o switching behavior, it is difficult to construct continuously differentiable, or even
simply continuous, transitions in landscapes between the regions of local minima. This is the same
problem that plagues the construction of multi-dimensional splines. Moreover, it is unnecessary since
the transition regions represent unstable dipole behavior. An alternative is to formulate transition
likelihoods based on thermodynamic driving forces.

For this regime, the thermodynamic driving force is defined to be

F−+(E) ≡ G−(E)−G+(E) = 2EPR

F+−(E) ≡ G+(E)−G−(E) = −2EPR

(see [9] and included references). If we define the critical driving force to be

Fc = 2EcPR, (22)

then the activation energy can be expressed as

∆Ga
−+(E) =

{
∆G0 (1− F−+(E)/Fc)

2 , F−+(E) ≤ Fc

0 , F > Fc

where ∆G0 ≡ Fc/4 denotes the value of the energy barrier at zero driving force. The definition of
∆Ga

+− is analogous. We note that in the homogenized energy model, Fc, and hence ∆G0, is treated
as a material parameter whose values are realizations of an underlying density.

The likelihood relations

p−+(E) =
1
τ
e−∆Ga

−+(E)V/kT , p+−(E) =
1
τ
e−∆Ga

+−(E)V/kT (23)

follow directly from the previous Boltzmann theory when we consider only polarization values P−
m , P

+
m

and PM . This formulation facilitates implementation by eliminating integration over complex regions
but it neglects the geometry of the energy surface in regions near minima since it is equivalent to
summing or integrating over square energy wells. In addition to being used in [47], the activation
energy is employed in [4] to construct Debye relations for ferroelectric materials. It is also used in [10]
for constructing magnetic models and [20] where analogous models are developed for SMA.
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3.3 Polarization Kernel that Incorporates Thermal Relaxation

Solution of the differential equation (10) using the likelihood relations (21) or (23) quantifies the
dipole fraction x+ and x− = 1− x+. The general polarization hysteron is then given by (11).

As detailed in [75,78–80], P− and P+ for the thermally active case are given by

P+(E) =
∫ ∞

PI

Pµ(G(E,P )dP , P−(E) =
∫ −PI

−∞
Pµ(G(E,P )dP (24)

where µ is defined in (20). For the likelihood relations (21), it is shown in [13] that the kernel can
be expressed as

P (E;Ec) =
E

η
− PR + 2x+PR + P̃ (E)

where P̃ (E;Ec) = γ4 (x+ − 1) p−+ + p+−x+ and γ4 = τkT
ηV . To determine the limiting behavior of P̃ ,

we note that when p−+ is large and hence p+− is small, the likelihood that dipoles are positive is large
which implies that x+ ≈ 1. Similarly, p−+ small and p+− large yields x+ ≈ 0. Finally, P (0) = −γ4

where γ4 is typically on the order of 10−6 to 10−8 for ferroelectric materials. The approximation
P̃ (E) = 0 then yields the kernel expression

P (E,Ec) =
E

η
− PR + 2x+PR (25)

which is the negligible thermal activation relation (13). Alternatively, it is shown in Section 2.6.3
of [75] that use of Dirac sequences yields (25) as an appropriate low thermal activation limit.

3.4 Homogenized Energy Model

To incorporate the effects of polycrystallinity, material nonhomogeneities, and variable interaction
fields, we assume that interaction fields EI and certain material coefficients are manifestations of
underlying densities rather than constants. It is illustrated in [13,75,78,80] that the assumption that
coercive fields are distributed yields a ±180o switching polarization model

P (E(t);x0
+) =

∫ ∞

0

∫ ∞

−∞
P (E(t) + EI ;Ec)νI(EI)νc(Ec)dEIdEc

=
E

η
− PR + 2PR

∫ ∞

0

∫ ∞

−∞
x+(Ee(t);Ec)νI(EI)νc(Ec)dEIdEc,

(26)

that accurately quantifies polycrystalline behavior. Here

Ee(t) ≡ E(t) + EI (27)

is the effective electric field, x0
+ is the initial fraction of positively oriented dipoles, and νc and νI are

densities associated with the coercive and interaction fields which satisfy the constraints

(i) νc(Ec) defined for Ec > 0,

(ii) νI(−EI) = νI(EI),

(iii) |νc(Ec)| ≤ c1e
−a1Ec , |νI(EI)| ≤ c2e

−a2|EI |

(28)

for positive constants c1, a1, c2, a2. These assumptions enforce the physical properties that local
coercive fields are positive, low-field Rayleigh loops are symmetric, and local coercive and interac-
tion fields decay as a function of distance. Details regarding density construction are provided in
Section 4.2.2 and quadrature rules to approximate the integrals in (26) are provided in Section 4.3.
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Figure 17: Hysteresis behavior when (a) νc is distributed but νI is constant, and (b) νI is distributed
but νc is constant.

The necessity of considering densities for both EI and Ec is illustrated in Figure 17 by illustrating
the hysteresis behavior that results if either is neglected. As shown in Figure 17(a), the assumption
that νc is distributed but νI is constant yields loops which exhibit no switching as fields are reduced
until the value E = 0 with similar behavior for increasing fields. As illustrated in Figure 11(d)-(f)
for PZT, this is not the case for ferroelectric materials. The assumption that νc is constant and νI

distributed yields the minor loop behavior depicted in Figure 17(b). Due to the symmetry of νI , this
forces minor loops to be rotationally symmetric about E = 0 which is not the behavior exhibited by
materials. This necessitates the inclusion of both densities.

4 Homogenized Energy Model — Strain and Polarization

To quantify the strain and polarization behavior detailed in Section 2 for various stress regimes, it is
necessary to additionally incorporate 90o switching. As motivated by common actuator geometries
and to simplify the discussion, we still focus on 1-D input and output responses. For tetragonal
materials, the projection of ~P in Figure 6 onto the 3-axis yields spontaneous polarization variants
or states at ±180o, 90o which are respectively designated Pα

0 , α = ±, 90. Similarly rhombohedral
materials, such as PLZT, have variants at ±180o, 70.5o and 109.5o.

We note that the construction of grain-level or single crystal polarization and strain kernels
follows the development in [47,92]. However, these authors do not consider the homogenized energy
framework, developed in Section 4.2, which is necessary to characterize polycrystalline materials.

4.1 Strain and Polarization Kernels

For α = ±180, 90, the Helmholtz and Gibbs energy densities for the α-well are

ψα(P, ε) =
1
2
ηε

α(P − Pα
R)2 +

1
2
Y P

α (ε− εαR)2 + hα(P − Pα
R)(ε− εαR) (29)

and
Gα(E, σ;P, ε) = ψα(P, ε)− EP − σε. (30)

As summarized in the nomenclature table at the beginning of the paper, Pα
R and εαR are the remanent

polarization and strain of the α-variant. The parameters ηε
α, Y

P
α and hα are the inverse susceptibility

at constant strain, elastic stiffness at constant polarization, and piezoelectric constant, respectively.
For a fixed applied stress σ and field E, the conditions

∂G

∂P
= 0 ,

∂G

∂ε
= 0
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can be used to determine pairs (Pα
m, ε

α
m) that minimize the Gibbs energy. Specifically, this yields

E = ηε
α(Pα

m − Pα
R) + hα(εαm − εαR)

σ = Y P
α (εαm − εαR) + hα(Pα

m − Pα
R)

which can be inverted to obtain
Pα

m = Pα
R + χσ

αE + dασ

εαm = εαR + dαE + sE
ασ

(31)

where

χσ
α =

Y P
α

Y P
α η

ε
α − h2

α

, dα =
hα

h2
α − Y P

α η
ε
α

, sE
α =

ηε
α

Y P
α η

ε
α − h2

α

.

Note that (31) provides the linear domain-level constitutive equations shown in Figure 4. The
minimum of the Gibbs energy density in each α-well can thus be expressed as

Gαm(E, σ) = −1
2
χσ

αE
2 − 1

2
sE
ασ

2 − dαEσ − EPα
R − σεαR. (32)

We note that within each well, the Gibbs energy density (32) is the negative Legendre transform of
the Helmholtz energy density (29).

To construct the activation energies employed in transition likelihoods, we note that the thermo-
dynamic driving forces required to transition from an α-well to β-well can be expressed as

Fαβ(E, σ) = Gαm(E, σ)−Gβm(E, σ)

= 1
2∆χσ

αβE
2 − 1

2∆sE
αβσ

2 −∆dαβEσ − E∆Pαβ
R − σ∆εαβ

R

where
∆χσ

αβ = χσ
α − χσ

β , ∆sE
αβ = sE

α − sE
β , ∆dαβ = dα − dβ

∆Pαβ
R = Pα

R − P β
R , ∆εαβ

R = εαR − εβR.

Based on the assumption that dipoles are restricted to three orientations α = ±, 90, we let x+, x−
and x90 denote the dipole fractions associated with negatively, positively, and 90o-oriented dipoles.
The evolution of dipole fractions is governed by the differential equation

ẋ− = −(p−90 + p−+)x− + p90−x90 + p+−x+

ẋ90 = p−90x− − (p90− + p90+)x90 + p+90x+

ẋ+ = p−+x− + p90+x90 − (p+90 + p+−)x+

which can be simplified to

ẋ− = −(p−90 + p−+ + p90−)x− + (p+− − p90−)x+ + p90−

ẋ+ = (p−+ − p90+)x− − (p+90 + p+− + p90+)x+ + p90+
(33)

using the identity x+ + x− + x90 = 1.
As motivated by the discussion in Section 3.1, the likelihood rates pαβ of transitioning from an

α-well to β-well are specified by

pαβ(E, σ) =
1
ταβ

e−∆Ga
αβ(E,σ)V/kT . (34)
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The activation energy is specified by the relation

∆Ga
αβ(E, σ;Fc) =

{
∆G0(1− Fαβ(E, σ)/Fc)2 , Fαβ(E, σ) ≤ Fc

0 , Fαβ(E, σ) > Fc
, ∆G0 =

{
1
4Fc , 180o Switching
1
16Fc , 90o Switching

where ∆G0 is the energy barrier at zero driving force. We note that the critical driving force Fc is
assumed to be a manifestation of an underlying density in the homogenized energy model.

It is noted in Section 2.2 and [47,96] that whereas 180o switchings is often comprised of successive
90o switches, it typically occurs on a faster timescale than strain-producing 90o switches. These
different timescales are accommodated by the inclusion of 180o likelihood rates p−+, p+− and use of
different relaxation times τα,β for 90o and 180o switchings.

The polarization and strain kernels are given by

P =
∑

α=±,90

xαP
α , ε =

∑
α=±,90

xαε
α

where
Pα =

∫
α
Pµ(P, ε)dPdε , εα =

∫
α
εµ(P, ε)dPdε (35)

are the polarization and strain associated with each well. In (35), integration is performed over
a region of the energy minima and µ(Pα, εα) given by (20) quantifies the probability of finding a
specific polarization and strain pair (Pα, εα).

The evaluation of the integrals (35) is difficult for higher-dimensional energy landscapes which
significantly diminishes implementation speeds. To address this, we employ the low thermal acti-
vation approximations discussed in Section 3.2 and employ the approximations Pα = Pα

m, ε
α = εαm

where Pα
m, ε

α
m are given in (31). The kernels are subsequently given by5

P =
∑

α=±,90

xαP
α
m , ε =

∑
α=±,90

xαε
α
m. (36)

To construct a form of the kernel that facilitates comparison with existing models posed in terms
of reversible and irreversible components and construction of constitutive models for coupled and
distributed structures, we consider (36) in light of the assumption that

χσ
+ = χσ

− = χσ
90 = χσ

sE
+ = sE

− = sE
90 = sE

P 90
R = 0, P+

R = −P−
R , ε

+
R = ε−R

d90 = 0, d− = −d+

τ90− = τ−90 = τ90+ = τ+90 = τ90 , τ−+ = τ+− = τ180.

(37)

This assumption is based on the observed material behavior and does not reduce the model’s gener-
ality. Substitution of (37) into (36) yields the relations

P (E, σ) = d̄(E, σ)σ + χσE + P irr(E, σ)

ε(E, σ) = sEσ + d̄(E, σ)E + εirr(E, σ)
(38)

5The input and model parameters exhibit the dependencies

E(t), σ(t), x±,90(t; E, σ, Fc), pαβ(E, σ; Fc), P (E, σ; Fc), ε(E, σ; Fc).

Where the meaning is clear, we suppress certain dependencies to simplify subsequent discussion.
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where
P irr(E, σ) =

∑
α=±,90

Pα
Rxα(E, σ)

εirr(E, σ) =
∑

α=±,90

εαRxα(E, σ)

d̄(E, σ) =
∑

α=±,90

dαxα(E, σ)

(39)

are the grain-level polarization, strain and coupling relations illustrated in Figure 4.

Example 1.

The kernel relations (39) can be used to model the behavior of certain single crystal compounds
if interaction fields are negligible. This is illustrated in Figure 18 to demonstrate the ferroelastic
switching behavior discussed in Section 2 and depicted in Figure 9. The parameters in Table 1 are

1.5 1 0.5 0 0.5 1 1.50.4

0

0.4

E (MV/m)

P 
(C

2 /m
)

1.5 1 0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

E (MV/m)

St
ra

in
 (%

)

0.4 0 0.4
0

0.2

0.4

0.6

P (C2/m)

St
ra

in
 (%

)
(a) (b) (c)

1.5 1 0.5 0 0.5 1 1.50.4

0

0.4

E (MV/m)

P 
(C

2 /m
)

1.5 1 0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

E (MV/m)

St
ra

in
 (%

)

0.4 0 0.4
0

0.2

0.4

0.6

P (C2/m)

St
ra

in
 (%

)

(d) (e) (f)

1.5 1 0.5 0 0.5 1 1.50.4

0

0.4

E (MV/m)

P 
(C

2 /m
)

1.5 1 0.5 0 0.5 1 1.5
0.4
0.2

0
0.2
0.4
0.6

E (MV/m)

St
ra

in
 (%

)

0.4 0 0.4
0.4
0.2

0
0.2
0.4
0.6

P (C2/m)

St
ra

in
 (%

)

(g) (h) (i)

1.5 1 0.5 0 0.5 1 1.50.4

0

0.4

E (MV/m)

P 
(C

2 /m
)

1.5 1 0.5 0 0.5 1 1.5
0.5

0.4

0.3

0.2

0.1

0

E (MV/m)

St
ra

in
 (%

)

0.4 0 0.4
0.5

0.4

0.3

0.2

0.1

0

P (C2/m)

St
ra

in
 (%

)

(j) (k) (`)

Figure 18: Simulated polarization and strain for fixed stress levels of (a)-(c) 0 MPa, (d)-(f) -4 MPa,
(g)-(i) -8 MPa, and (j)-(`) -30 MPa with instantaneous switching of xα.
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P+
R ε+

R ε90
R χσ

+ d+ sE
+ τ90 τ180

0.26 6.7× 10−3 −4.2× 10−3 5.0× 10−8 374× 10−12 18.8× 10−12 1.0× 10−3 3.0× 10−3

Table 1: Parameters used in the single crystal simulations.
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Figure 19: Gibbs energy density for fixed stress levels of (a)-(d) 0 MPa, (e)-(h) -4 MPa, (i)-(`)
-8 MPa, and (m)-(p) -30 MPa at the indicated input field levels.

representative of those for standard ferroelectric materials. The corresponding Gibbs energy density
landscapes are plotted in Figure 19. It is observed that the application of increasing compressive
prestresses shifts the landscape to favor 90o initial orientations.

4.2 Homogenized Energy Model

As noted in Section 3.3, the effects of polycrystallinity and variable interaction fields can be incor-
porated by considering certain parameters to be manifestations of underlying densities. Here we
employ the homogenized energy formulations

P (E(t), σ(t);x0
+) =

∫ ∞

0

∫ ∞

−∞
P (Ee(t), σ(t);Fc)νI(EI)νc(Fc)dEIdFc

ε(E(t), σ(t);x0
+) =

∫ ∞

0

∫ ∞

−∞
ε(Ee(t), σ(t);Fc)νI(EI)νc(Fc)dEIdFc

(40)
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where the effective field Ee is defined in (27). The choice of the critical driving force density νc(Fc)
is motivated by its role when constructing activation energies for likelihood construction and its
relation (22) to the coercive field Ec. The densities satisfy the criteria (i)–(iii) in (28) and their
construction is discussed in Section 4.2.2.

With the assumption (37) and resulting kernel relations (38), (40) can be expressed as

P (E, σ) = d(E, σ)σ + χσE + Pirr(E, σ)

ε(E, σ) = sEσ + d(E, σ)E + εirr(E, σ)
(41)

where
d(E, σ) =

∫ ∞

0

∫ ∞

−∞
d̄(Ee;Fc)νI(EI)νc(Fc)dEIdFc

Pirr(E, σ) =
∫ ∞

0

∫ ∞

−∞
P irr(Ee;Fc)νI(EI)νc(Fc)dEIdFc

εirr(E, σ) =
∫ ∞

0

∫ ∞

−∞
εirr(Ee;Fc)νI(EI)νc(Fc)dEIdFc.

(42)

We note that the terms χσE and sEσ result from the fact that∫ ∞

0

∫ ∞

−∞
νI(EI)νc(Fc)dEIdFc = 1.

Techniques to evaluate the integrals in (42) are detailed in Section 4.3.
We note that (41) has the form of the general constitutive relations (3) that others have derived

using various micromechanical and phenomenological theories; see also Figure 4. The homoge-
nized energy model provides the advantage of micromechanical energy analysis in combination with
stochastic homogenization techniques to facilitate efficient model implementation and data-driven
parameter estimation techniques [31].

4.2.1 Determination of Initial Hysteresis States

Implementation of the model (40) requires the specification of the initial dipole states. Due to the
multivalued nature of hysteresis phenomena, this a shared requirement for all hysteresis models.
This necessitates determining the initial state of devices with hysteretic components so it is an
experimental and implementation issue in addition to being a modeling requirement.

One technique to address this is to experimentally drive devices to positive or negative saturation
before the specified task to ensure an initial remanence state. To initialize the model, one can start
with arbitrary initial dipole fractions; e.g., x0

+ = x0
90 = x0

− = 1
3 . Driving to positive saturation yields

x+ = 1, x0
90 = x0

− = 0 and returning the field to zero yields remanence dipole fractions xr
+, x

r
90 and

xr
− that can be used as initial values for subsequent characterization and simulations.

4.2.2 Density Construction

A critical issue when constructing models for specific applications concerns the construction of the
densities νI(EI) and νc(Fc).6 Here we discuss a method introduced in [24, 30] that employs the

6As illustrated in Figure 11, the polarization burst region and strain elbow occur at basically the same field Ec.
This indicates that one value of F̄c and density νc(Fc) can be used for both 180o and 90o switching processes.

31



expansions

νc(Fc) =
1
c1

Kα∑
k=kα

αkφk(Fc)

νI(EI) =
1
c2

Kβ∑
k=kβ

βkϕk(EI)

(43)

where the basis functions φk(Fc) and ϕk(EI) are lognormal and normal functions and the coefficients
αk and βk are determined through a least squares fit to data as detailed in [31].7 The constants

c1 =
Kα∑

k=kα

αk , c2 =
Kβ∑

k=kβ

βk

ensure integration to unity.
The interaction field basis functions are defined by

ϕk(EI) =
1

σk
I

√
2π
e−E2

I /2(σk
I )2

where the standard deviations are taken to be

~σI = {σIk
} =

{
2kσI

}
, k = kα, · · · ,Kα. (44)

As detailed in [30,31], data-driven techniques can be used to obtain initial values of σI .
Since Fc ≥ 0, we employ lognormal functions

φk(Fc) =
1

σk
cFc

√
2π
e−[ln(Fc)−µc]2/2(σk

c )2

for the driving force density. Data-driven techniques to determine µc = ln F̄c are detailed in [31].
The standard deviations ~σc are specified in a manner analogous to (44). We note that for typical
applications, reasonable accuracy can be obtained with kα = kβ = −3,Kα = Kβ = 1. Representative
basis functions are plotted in Figure 20.

7The expansions (43) are linear with respect to the parameters αk and βk. This permits the use of linear least squares
and linear adaptive techniques for parameter estimation and adaptation. However, these techniques are constrained
by the requirement that parameters are nonnegative.

k

c

!
k (EI )

(Fc )

EI
(a) (b)

"

F

Figure 20: (a) Normal basis functions ϕk(EI) and (b) lognormal functions φk(Fc) used in the expan-
sions (43) for νI(EI) and νc(Fc).
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4.3 Quadrature Techniques

To implement the model, the integrals defining the terms d, Pirr and εirr in (42) must be approxi-
mated in a manner that is both efficient and accurate. We first note that by employing the relations
(39), these terms can be expressed as

Pirr(E, σ) =
∑

α=±,90

Pα
R

∫ ∞

0

∫ ∞

−∞
xα(Ee;Fc)νI(EI)νc(Fc)dEIdFc

εirr(E, σ) =
∑

α=±,90

εαR

∫ ∞

0

∫ ∞

−∞
xα(Ee;Fc)νI(EI)νc(Fc)dEIdFc

d(E, σ) =
∑

α=±,90

dα

∫ ∞

0

∫ ∞

−∞
xα(Ee;Fc)νI(EI)νc(Fc)dEIdFc

so the integration involves the dipole fractions in a manner analogous to (26). Secondly, the densities
satisfy the exponential decay constraints (28) as shown in Figure 20. Hence approximation algorithms
can be defined on finite domains rather than necessitating quadrature techniques for infinite and
semi-infinite domains. We illustrate here a midpoint formula and refer the reader to [75] for details
regarding composite Gaussian quadrature techniques. As detailed in [31], truncation of the domains
and use of composite techniques proves more efficient to implement than Gauss-Hermite and Gauss-
Laguerre algorithms, that are designed specifically for infinite and semi-infinite intervals, because
they allow accurate evaluation of the density expansions (43) and construction of lookup tables to
improve algorithm efficiency.

If we let Fci , EIj and vi, wj respectively denote the quadrature points and weights, we obtain the
approximate relations

∫ ∞

0

∫ ∞

−∞
xα(E + EI ;Fc)νI(EI)νc(Fc)dEIdFc ≈

Ni∑
i=1

Nj∑
j=1

xα(E + EIj ;Fci)νI(EIj )νc(Fcj )viwj .

For the validation results reported in Section 6, sufficient accuracy was achieved using the trapezoid
rule with Ni = Nj = 41.

5 Constitutive Relations for Structural Models

For isolated materials, the polarization and strain relations (40) or (41) may be suitable for character-
ization and simulations. However, for most applications, the ferroelectric materials are components
in a system which necessitates the development of system models employing (40) or (41). Here
we discuss the construction of a simple lumped model for PZT employed with a spring, damping
element, and prestress and the development of constitutive equations that can be used to construct
rod, beam, shell or membrane models for systems with ferroelectric actuators.

5.1 Lumped Actuator Model

We first consider a PZT actuator subjected to a prestress σ0 and restoring spring with stiffness k
as illustrated in Figure 21(a). This is representative of characterization experiments reported in [92]
and can provide a simplified model for certain applications. The actuator is assumed to have length
L, cross-sectional area A, and longitudinal displacements of the actuator end are denoted by u(t).
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For this configuration, the inputs or loads are the field E and prestress σ0. Hence the Gibbs
energy density (30) or (32) is the appropriate thermodynamic potential. The results strains are
specified by (40) or (41).

The total applied force is
F = Fs + F0 (45)

where
Fs = −ku , F0 = σ0A , with σ0 < 0,

are the forces due to the restoring spring and prestress. Since ε = u
L , it follows that the applied

stress is
σ =

−Lε
A

k + σ0. (46)

The substitution of (46) into (41) yields the relation

ε =
A

A+ sELk

[
sEσ0 + d (E,−Lεk/A+ σ0)E + ε (E,−Lεk/A+ σ0)

]
(47)

quantifying strains in terms of E and σ0. Due to its implicit nature, solution of (47) requires a
nonlinear iterative method such as a fixed-point or Newton-based algorithm.

For many applications, however, the spring stiffness k is sufficiently small that
∣∣−Lε

A k
∣∣ << |σ0|.

For these cases, (47) can be approximated by the explicit relation

ε =
A

A+ sELk

[
sEσ0 + d (E, σ0)E + εirr(E, σ0)

]
. (48)

It is illustrated in Section 6.1 that for data from York, spring constants on the order of 10 times
physical values are required before (48) begins to differ significantly from (47). For regimes that
require (47), the iterative fixed-point algorithm

εn+1 =
A

A+ sELk

[
sEσ0 + d (E,−Lεnk/A+ σ0)E + ε (E,−Lεnk/A+ σ0)

]
can be used to efficiently compute strains as a function of E and σ0.

To incorporate the damping element depicted in Figure 21(b), we include a damping force Fd =
−cu̇ in (45) to obtain the applied stress relation

σ =
−Lε
A

k − Lε̇

A
c+ σ0.

This then yields the differential equation

sELc

A+ sELk
ε̇+ ε =

A

A+ sELk

[
sEσ0 + d (E, σ0)E + εirr(E, σ0)

]
. (49)

which specifies strains produced by the actuator.

(a)

L F

u

c

k

L

F0 !ku

F
u

(b)

Figure 21: (a) PZT actuator with a prestress σ0 and restoring spring, and (b) actuator that addi-
tionally incorporates a damping element.
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5.2 Constitutive Relations for Distributed Models

The nature of inputs differs somewhat for distributed structures such as rods, beams, shells and
membranes. To illustrate, consider a rod of length L as illustrated in Figure 22. The applied loads
again are the field E and prestress σ0 at the end of the rod. The development of PDE structural
models requires the quantification of stresses along the rod length.

To determine whether strains or stresses should be considered as inputs for 0 < x < L, we
consider connections at x = a that block rod movement. The stress σ0 produces strains ε(t, x) and
displacements u(t, x) for x > a along with a stress σ0(t, a). Despite this stress, there are no strains
nor displacements for x ≤ a due to the blocking elements. Hence strains rather than stresses should
be considered as inputs along the rod so the independent variables for 0 < x < L are E and ε.

For this independent variable set, the appropriate thermodynamic potential is the electric Gibbs
energy density

Ge
α = ψα − EP = Gα + σε

(see pages 63-64 of [75]). To obtain appropriate constitutive relations, one can repeat the analysis
of Section 4.1 using Ge

α rather than Gα. While fundamental in nature, this approach obscures a
comparison with the constitutive relations (41) used to model (E, σ0) inputs. Instead, we directly
reformulate the relation (41) to provide stress as a function of strain.

To obtain an explicit constitutive equation, we assume that |σ0| >> |σ| for d and εirr defined in
(42) and employ d(E, σ0) and εirr(E, σ0). Inversion of the strain relation in (41) then yields

σ(E, ε) = Y Eε− e(E, σ0)E − Y Eεirr(E, σ0) (50)

where
Y E =

1
sE

, e(E, σ0) =
1
sE
d(E, σ0).

The constitutive relation (50) can be used to construct rod, beam and shell models for distributed
structures. To illustrate, consider a rod having density ρ and cross-sectional area A. Longitudinal
displacements are denoted by u(t, x). As detailed in Chapter 7 of [75], force balancing yields

ρA
∂2u

∂t2
=
∂N

∂x

where the force resultant is N = σA. The stress is given by (50).
For general electro-elastic structures, one would employ the relations

∇ ·D = 0 , D = ε0E + P

ρü = ∇ · σ

∇× E = 0 , E = −∇ϕ.

The use of (50) to construct models for PZT-based macro-fiber composite (MFC) actuators operating
in highly hysteretic and nonlinear regimes is detailed in [32].

L

0

(a) (b)

x=a u(t,x)

L

x=a u(t,x)

!

Figure 22: (a) Rod of length L with a connection at x = a that blocks movement, and (b) displace-
ment produced by a prestress σ0.
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6 Model Validation

The relations (40) or (41) characterize the polarizations and strains generated by fields or stresses
applied to isolated ferroelectric materials. For actuators subjected to a prestress and restoring spring,
the relations (47), (48) or (49) quantify the generated stresses whereas (50) provides a nonlinear con-
stitutive relation for distributed structures. In this section, we illustrate the experimental validation
of the model for a prestressed PZT element with a restoring spring, rate-dependent PZT, and PLZT
subjected to various compressive prestresses.

Details regarding highly efficient implementation algorithms and data-driven parameter estima-
tion techniques are provided in [31]. Additional examples illustrating the experimental validation of
the model for PZT with variable loading rates and single crystal BaTiO3 are provided in that paper.

6.1 Model Validation for a Prestressed PZT Actuator

We illustrate here validation of the model using data reported in [92] for a prestressed PZT actuator
with a restoring spring. The multilayer actuator (NEC Model AEO505D08) employed the soft
PZT material PIC151 and was comprised of 80 active layers, each having thickness 0.1 mm. The
dimensions, including packaging, were 6.5 × 6.5 × 10 mm which yielded the cross-sectional area
A = 42.25 mm2. Displacements were measured using a fiber-optic displacement sensor having an
effective resolution of 0.1 µm and strains were computed by dividing the total thickness (8 mm) of the
active layers. The data used for model validation was collected with a prestress of σ0 = −10.6 MPa
with a restoring spring having a stiffness k = 2.7 N/µm. The polarization was measured using a
Sawyer-Tower circuit comprised of a reference capacitor connected in series with the PZT actuator.
Strain and polarization data collected at a loading rate of 0.5 kV

mm·s is plotted in Figure 23.
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Figure 23: Fit of the polarization and strain model to data from [92] with a prestress of σ0 =
−10.6 MPa: (a) time domain and (b)-(d) phase space; ( ) experimental data, ( • •) model
fit, ( ) model fits for 8 selected loading cycles.
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Figure 24: (a) Critical driving force density νc(Fc) and (b) interaction field density νI(EI) with 41
equally spaced quadrature points marked as dots.

In Figure 23(a), it is observed that following the application of a saturating 1.5 kV/mm field, fields
were decreased and held at 15 different levels before being increased back to saturation. Depending
on the held field value, this produced varying degrees of 90o switching, that is manifested in the
strain measurements, along with slower creep behavior in both the polarization and strain.

The polarization was modeled by the relation (41) and the strain by (48) with the measured
field plotted in Figure 23(a) used as input. We neglected damping forces and the use of (49) due to
the slow loading rate. For maximum strains on the order of εmax = 0.0014,

∣∣−Lεmaxk
A

∣∣ = 0.89 MPa
<< |σ0| = 10.6 MPa, thus motivating the use of the linear relation (48) rather than the nonlinear
relation (47). Further discussion detailing the validity of the linear strain relation for this actuator
model is provided at the end of this section.

Use of the data-driven parameter estimation techniques discussed in [31] yielded the initial and
optimized parameters summarized in Table 2 and the resulting model fits plotted in Figure 23. From
Figure 23(a), it is observed that the model accurately characterizes both the switching and creep
behavior of the polarization and strain as a function of time. To illustrate the E-P , E-ε and P -ε
behavior, the loops indicated in Figure 23(a) were selected and plotted in Figures 23(b)-(d). The
estimated interaction and coercive field densities νI and νc are plotted in Figure 24. The reader is
referred to [31] for statistical properties of the densities.

P+
R ε+

R ε90
R χσ

+ d+ sE
+ γ τ90 τ180

Init 0.18 0.056×10−2 0.0×10−2 5.13×10−8 374×10−12 1.88×10−11 5.70×10−5 1.40 0.140

Opt 0.18 0.054×10−2 -0.052×10−2 5.04×10−8 917.74×10−12 2.25×10−11 1.82×10−3 1.39 0.024

Table 2: Initial and optimized parameter values for the 90◦ model with σ0 = −10.6 MPa. The
optimized density parameter values α1 = 2.58, α0 = 1.66, α−1 = 2.01, α−2 = 2.10, α−3 = 2.03 and
β1 = 1.12, β0 = 0.71, β−1 = 2.01, β−2 = 4.39, β−3 = 5.79 were obtained using initial estimates of 1.

Linear Versus Nonlinear Strain Relations

It was noted that for k = 2.7 N/µm and σ0 = −10.6 MPa,
∣∣Lεk

A

∣∣ << |σ0| which permits the
nonlinear strain relation (47) to be approximated by the explicit relation (48). Here we quantify the
accuracy of (48) as a function of the spring constant and prestress level for the considered actuator
configuration.

We first define the relative errors

eP =
||PL − PN ||2
||PN ||2

× 100 , eε =
||εL − εN ||2
||εN ||2

× 100
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where PN , εN and PL, εL respectively denote the polarization and strain values given by (48) and
(47) and ‖·‖2 is the L2 norm. The relative errors obtained by using the estimated polarization values
summarized in Table 2 are compiled in Table 3 for various combinations of k and σ0. It is observed
that for prestresses less than -32 MPa and spring constants less than 27 N/µm, the linear relation
provides suitable accuracy.

Prestress k = 0.27 N/µm k = 2.7 N/µm k = 5.4 N/µm k = 27 N/µm

-2 MPa (0.0049, 0.0059) (0.0489, 0.0584) (0.0969, 0.1157) (0.4462, 0.5438)

-4 MPa (0.0047, 0.0059) (0.0464, 0.0589) (0.0919, 0.1171) (0.4223, 0.5489)

-8 MPa (0.0042, 0.0061) (0.0415, 0.0603) (0.0820, 0.1193) (0.3774, 0.5602)

-16 MPa (0.0034, 0.0063) (0.0331, 0.0625) (0.0654, 0.1238) (0.3013, 0.5856)

-32 MPa (0.0032, 0.0072) (0.0321, 0.0719) (0.0638, 0.1434) (0.2960, 0.6794)

Table 3: Relative error (eP , eε) between the linear relation (48) and nonlinear relation (47).

6.2 Model Validation for Rate-Dependent Bulk PZT

Soft ferroelectric compounds have lower coercive fields, more hysteresis loss, and larger susceptibil-
ities and piezoelectric constants than hard compounds. Here we illustrate the performance of the
model for characterizing the rate-dependence of the soft PZT material PIC151 which has the compo-
sition Pb(Ni1/3 Sb2/3)O3-PbTiO3-PbZrO3 ternary phase system that includes about 2-3% Pb(Ni1/3

Sb2/3)O3 near the morphotropic phase boundary of PZT. We compare to data reported in [96], that
was collected at rates of 0.01 Hz, 0.1 Hz and 1 Hz, as shown in Figure 3. The PZT in this case was
a 5× 5× 15 mm3 cube that was cut from a bulk ferroelectric speciman and electroded at the ends.
Hence the construction and electrode configuration differ from the multilayer actuator discussed in
Section 6.1.

It is observed that coercive fields increase as the frequency increases and that both the polarization
and strain continue to increase when the field is reversed at its maximal values of 2 kV/mm. This
is due to the fact that dipoles do not switch instantaneously as modeled by the relations 1

τ90
and

1
τ180

in the likelihood relations (34). Hence some dipoles will continue to switch from −180o to 90o

and 90o to 180o during the initial unloading process. This rate-dependence is due to the time scale
difference between dipole kinetics and electrical or mechanical loading rates.

The initial and optimized parameters estimated through a fit to 0.1 Hz and 1.0 Hz loading rates
are reported in Table 4 and the corresponding model fits are shown in Figure 25 along with the
model predictions at 0.1 Hz. It is observed that the coercive field increase and rate-dependence of
the polarization is accurately modeled at all three frequencies. The modeled polarization and strain
behavior are also quite accurate including the nearly parabolic and anhysteretic 1 Hz P -ε behavior

P+
R ε+

R ε90
R χσ

+ d+ γ τ90 τ180

Init 0.3 0.25× 10−2 −0.5× 10−2 2.35× 10−8 374× 10−12 0.2× 10−4 0.67 0.067

Opt 0.28 0.22×10−2 −0.84× 10−2 0.70 ×10−8 378.47×10−12 1.83×10−4 0.031 0.13

Table 4: Initial and optimized PZT parameter values estimated through a fit to the 0.1 Hz and 1.0 Hz
data from [96]. Density parameters: F̄c = 0.66× 106, σI = 0.5× 106, σc = 0.35 and α1 = 1.02, α0 =
1.04, α−1 = 0.98, α−2 = 1.13, α−3 = 1.23, β1 = 0.77, β0 = 0.86, β−1 = 1.34, β−2 = 1.80, β−3 =
1.90, β−4 = 2.36.
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Figure 25: Fit of the polarization and strain model to data from [96] for loading rates of (d)-(f) 0.1 Hz
and (g)-(i) 1 Hz. Model prediction for (a)-(c) 0.01 Hz: ( ) experimental data, ( ) model fit.

which we note was modeled using linear domain-level constitutive relations in combination with
grain-level switching mechanisms. It is observed that whereas the model fit is quite accurate at 1 Hz,
the model does not incorporate the degree of delayed dipole switching as is exhibited by the data.
This indicates that aspects of the 90o switching model can still be improved.

A comparison between the quasistatic hysteresis and butterfly loops for the prestressed multi-
layer actuator and bulk sample, respectively plotted in Figures 23 and 25, reveal differences in the
remanence values, coercive fields, and post-switching slopes. This is substantiated by differences in
the optimized parameter values in Tables 2 and 4. This is due in part to differences in the actuator
construction and drive configuration and it illustrates the necessity of calibrating models for a specific
actuator configuration.

6.3 Model Validation for PLZT

As noted in Section 2.2, 8/65/35 PLZT has a rhombohedral crystal structure so switches of 70.5o

and 109.5o produce strains and changes in the polarization. This can be modeled two ways using
the homogenized energy model. The more rigorous is to modify the energy landscape so that it
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Figure 26: Fit of the D-field and strain model to data from Lynch [61]: (a)-(c) σ0 = −3 MPa
and (j)-(`) σ0 = −15 MPa. Model predictions for prestresses of (d)-(f) σ0 = −6 MPa and (g)-(i)
σ0 = −10 MPa; ( ) experimental data, ( ) model fit and predictions.

has minima at α = ±180, 70.5 and 109.5. Alternatively, one can apply the tetragonal model with
α = ±180 and 90 in a phenomenological manner to model the stress-dependence of the strains and
polarization. We illustrate the accuracy of the latter approach through fits and predictions using
PLZT data collected at various prestresses as reported in [61].

To estimate model parameters, we first fit the polarization and strain model (41) to data collected
at prestresses of σ0 = −3 MPa and σ0 = −15 MPa; note that Lynch reports D-field data rather
than polarization so modeled results were obtained using the relation D = ε0E + P . This yielded
the parameters summarized in Table 5 and the model fits shown in Figure 26(a)-(c) and (j)-(`). The
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model with these parameters was then used to predict the responses for prestresses of σ0 = −6 MPa
and σ0 = −10 MPa yielding the results shown in Figure 26(d)-(i). The model underpredicts the
amount of non-180o switching in the strain model with σ0 = −3 MPa, which may be due in part to
the use of tetragonal rather than rhombohedral energy landscapes, but accurately fits and predicts
the switching behavior at other stress levels.

It is observed that the model reasonably characterizes the nearly quadratic D-ε behavior despite
the fact that it employs linear constitutive relations rather than quadratic electrostrictive relations.
As detailed in Section 2.2, the quadratic strain behavior for this material is due to dipole rotation
rather than classical electrostrictive effects so the homogenized energy model, which employs energy
landscapes to quantify dipole switching, provides reasonably accurate material characterization.

P+
R ε+

R ε90
R χσ

+ d+ sE
+ γ τ90 τ180

Init 0.25 0.09× 10−2 −0.1× 10−2 7.03× 10−8 682× 10−12 14.7× 10−12 2.0× 10−3 0.03 0.003

Opt 0.24 0.13×10−2 −0.03× 10−2 10.06×10−8 1390.5×10−12 71.93×10−12 9.62×10−4 0.032 0.70

Table 5: Initial and optimized PLZT parameter values for the 90o model fitting two intermediate
prestress levels σ0 = −3MPa and σ0 = −15 MPa.

7 Concluding Remarks

Hysteresis, which is intrinsic to ferroelectric materials, involves multiple spatial and temporal scales.
At the domain level, strains or changes in polarization are due to stress-induced material deformations
or field-induced ion movement and the behavior is often reversible and linear. Field or stress-induced
dipole switching at the grain level produces irreversible hysteresis in both the field-polarization
and field-strain relations. For single crystal materials comprised of a single grain, the switching is
typically rapid thus producing sharp hysteresis and butterfly loops in quasistatic operating regimes.
For polycrystalline materials with distributed interaction and coercive fields, hysteresis and butterfly
loops are smoothed due to nonuniform grain contributions. The behavior of hysteresis loops is further
modified when hysteretic actuator or sensor materials are employed on distributed structures. Hence
the nature of the hysteretic response is highly influenced by the spatial scale under consideration.

Furthermore, ferroelectric materials exhibit creep and rate-dependent effects even at low frequen-
cies. This is due to the fact that the kinetics associated with dipole switching typically differs from
mechanical or electrical loading rates. This establishes multiple time scales that must be incorporated
in dynamic models.

The homogenized energy model is a multiscale, microscopically-motivated or micromechanical
approach that incorporates the rate-dependence and multiple timescales exhibited by materials. At
the domain level, the minimization of Gibbs energy densities yields linear constitutive relations.
At the grain level, dipole fractions serve as appropriate, physically-motivated, internal variables
to quantify the timescales and hysteresis associated with dipole switching. The dynamics of dipole
fractions are governed by evolution equations driven by likelihood rates constructed using Boltzmann
theory to quantify the scaled probability of transitioning between stable equilibria associated with
dipole variants. Macroscale models are developed by assuming that properties such as coercive fields,
critical driving forces, and interaction fields are manifestations of underlying densities rather than
constants. Finally, it is shown that the homogenized energy model framework facilitates subsequent
development of distributed system models. The complete multiscale development is illustrated in
Figure 4.
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In Section 2, significant discussion was devoted to mechanisms that produce the quadratic P -ε
or D-ε behavior exhibited by ferroelectric materials. For compounds such as PMN, this is due to
classical electrostriction and quadratic domain-level constitutive relations are required to model the
nearly anhysteretic field-strain behavior. In other materials, such as PZT, this is due to domain
rotation and the model validation results illustrate that highly accurate material characterization
can be achieved using linear domain level relations.

The validation results of Section 6 demonstrate the capability of the model to characterize ma-
jor and biased minor polarization and strain loops, the effect of prestresses, and creep and rate-
dependencies for PZT and PLZT. Additional validation results demonstrating the performance of
the framework for characterizing single crystal BaTiO3 and variable loading rates in PZT are pre-
sented in the companion paper [31]. It is also shown in [31] that due to its energy basis, the model
admits highly efficient implementation and data-driven algorithms to determine initial parameter
estimates based on measured properties of the data. This facilitates model calibration and imple-
mentation for design and control of devices and complex structures arising in applications.

We note that the polarization model (26) bears some resemblance to a Preisach model. In the
absence of thermal activation, (26) satisfies congruency and deletion properties and hence it pro-
vides an energy-based derivation for certain classical Preisach models. As detailed in [75], extended
Preisach formulations have been developed to incorporate rate effects, thermal activation and creep.
However, they do so by modifying the densities rather than using energy and kinetics principles to
incorporate them in the kernels as is the case for the homogenized energy model. Moreover, the
combined strain and polarization relations that result from the inclusion of elastic, electric, and cou-
pling components in the domain-level Gibbs energy density yield macroscale constitutive relations
that incorporate significantly more physics than Preisach-based approaches.

An issue that is of significant interest for control design of systems with hysteretic actuators
and sensors concerns the construction of approximate inverse models. For the homogenized energy
framework, initial approximate inverse models have been implemented at rates that are proven no
slower than 1/6-1/7 the rate of forward simulations. The completion of these algorithms and their
incorporation in robust control designs constitutes present and future research.

A Available Codes

To facilitate model validation and dissemination to the community, we have made codes and data
available at the website http://www4.ncsu.edu/~jhcrews/smart/code/pzt/index.html.
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