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Abstract—This paper studies the influence of demographics on
the performance of face recognition algorithms. The recognition
accuracies of six different face recognition algorithms (three
commercial, two non-trainable, and one trainable) are computed
on a large scale gallery that is partitioned so that each par-
tition consists entirely of specific demographic cohorts. Eight
total cohorts are isolated based on gender (male and female),
race/ethnicity (Black, White, and Hispanic), and age group (18 to
30, 30 to 50, and 50 to 70 years old). Experimental results demon-
strate that both commercial and the non-trainable algorithms
consistently have lower matching accuracies on the same cohorts
(females, Blacks, and age group 18 to 30). Additional experiments
investigate the impact of the demographic distribution in the
training set on the performance of a trainable face recognition
algorithm. We show that the matching accuracy for race/ethnicity
and age cohorts can be improved by training exclusively on that
specific cohort. Operationally, this leads to a scenario, called
dynamic face matcher selection, where multiple face recognition
algorithms (each trained on different demographic cohorts), are
available for a biometric system operator to select based on the
demographic information extracted from a probe image. This
procedure should lead to improved face recognition accuracy in
many intelligence and law enforcement face recognition scenarios.

Index Terms—face recognition, demographics, race/ethnicity,
gender, age, training, dynamic face matcher selection

I. INTRODUCTION

Sources of errors in automated face recognition algorithms
are generally attributed to the well studied variations in
pose, illumination, and expression [1], collectively known as
PIE. Other factors such as image quality (e.g., resolution,
compression, blur), time lapse (facial aging), and occlusion
also contribute to face recognition errors [2]. Previous studies
have also shown within a specific demographic group (e.g.,
race/ethnicity, gender, age) that certain cohorts are more
susceptible to errors in the face matching process [3], [4].
However, there has yet to be a comprehensive study that
investigates whether or not we can train face recognition
algorithms to exploit knowledge regarding the demographic
cohort of a probe subject.

This study presents a large scale analysis of face recognition
performance on three different demographics (see Figure 1):
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(i) race/ethnicity, (ii) gender, and (iii) age. For each of these
demographics, we study the performance of six face recogni-
tion algorithms belonging to three different types of systems:
(i) three commercial off the shelf (COTS) face recognition
systems (FRS), (ii) face recognition algorithms that do not
utilize training data, and (iii) a trainable face recognition
algorithm. While the COTS FRS algorithms leverage training
data, we are not able to re-train these algorithms; instead they
are black box systems that output a measure of similarity be-
tween a pair of face images. The non-trainable algorithms use
common feature representations to characterize face images,
and similarities are measured within these feature spaces. The
trainable face recognition algorithm used in this study also
outputs a measure of similarity between a pair of face images.
However, different versions of this algorithm can be generated
by training it with different sets of face images, where the sets
have been separated based on demographics. Both the trainable
algorithms, and (presumably) the COTS FRS, initially use
some variant of the non-trainable representations.

The study of COTS FRS performance on each of the
demographics considered is intended to augment previous
experiments [3], [4] on whether these algorithms, as used in
government and other applications, exhibit biases. Such biases
would cause the performance of commercial algorithms to
vary across demographic cohorts. In evaluating three different
COTS FRS, we confirmed that not only do these algorithms
perform worse on certain demographic cohorts, they consis-
tently perform worse on the same cohorts (females, Blacks,
and younger subjects).

Even though biases of COTS FRS on various cohorts were
observed in this study, these algorithms are black boxes that
offer little insight into to why such errors manifest on specific
demographic cohorts. To understand this, we also study the
performance of non-commercial trainable and non-trainable
face recognition algorithms, and whether statistical learning
methods can leverage this phenomenon.

By studying non-trainable face recognition algorithms, we
gain an understanding of whether or not the errors are inherent
to the specific demographics. This is because non-trainable
algorithms operate by measuring the (dis)similarity of face
images based on a specific feature representation that, ideally,
encodes the structure and shape of the face. This similarity is
measured independent of any knowledge of how face images
vary for the same subject and between different subjects. Thus,
cases in which the non-trainable algorithms have the same
relative performance within a demographic group as the COTS
FRS indicates that the errors are likely due to one of the
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Age Gender Race/Ethnicity
Young Middle-Aged Old

(a) (b) (c)

Female Male

(d) (e)

Black White Hispanic

(f) (g) (h)

Fig. 1. Examples of the different demographics studied. (a-c) Age demographic. (d-e) Gender demographic. (f-h) Race/ethnicity demographic. Within each
demographic, the following cohorts were isolated: (a) ages 18 to 30, (b) ages 30 to 50, (c) ages 50 to 70, (d) female gender, (e) male gender, (f) Black race,
(g) White race, and (h) Hispanic ethnicity. The first row shows the “mean face” for each cohort. A “mean face” is the average pixel value computed from all
the aligned face images in a cohort. The second and third rows show different sample images within the cohorts.

cohorts being inherently more difficult to recognize.
Relative differences in performance between the non-

trainable algorithms and the COTS FRS indicate that the lower
performance of COTS FRS on a particular cohort may be due
to imbalanced training of the COTS algorithm. We explore
this hypothesis by training the Spectrally Sampled Structural
Subspace Features (4SF) face recognition algorithm [5] (i.e.,
the trainable face recognition algorithm used in this study)
on image sets that consist exclusively of a particular cohort
(e.g., White only). The learned subspaces in 4SF are applied to
test sets from different cohorts to understand how unbalanced
training with respect to a particular demographic impacts face
recognition accuracy.

The 4SF trained subspaces also help answer the follow-
ing question: to what extent can statistical learning improve
accuracy on a demographic cohort? For example, it will be
shown that females are more difficult to recognize than males.
We will investigate how much training on only females, for
example, can improve face recognition accuracy when match-
ing females. Such improvements suggest the use of multiple
discriminative subspaces (or face recognition algorithms), with
each trained exclusively on different cohorts. The results of
these experiments indicate we can improve face recognition
performance on the race/ethnicity cohort by using an algorithm
trained exclusively on different demographic cohorts. This
finding leads to the notion of dynamic face matcher selection,
where demographic information may be submitted in conjunc-
tion with a probe image in order to select the face matcher
trained on the same cohort. This framework, illustrated in
Figure 2, should lead to improved face recognition accuracies.

The remainder of this paper is organized as follows. In Sec-
tion II we discuss previous studies on demographic introduced

biases in face recognition algorithms and the design of face
recognition algorithms. Section III discusses the data corpus
that was utilized in this study. Section IV identifies the differ-
ent face recognition algorithms that were used in this study
(commercial systems, trainable and non-trainable algorithms).
Section V describes the matching experiments conducted on
each demographic. Section VI provides analysis of the results
in each experiment and summarizes the contributions of this
paper.

II. PRIOR STUDIES AND RELATED WORK

Over the last twenty years the National Institute of Stan-
dards and Technology (NIST) has run a series of evaluations
to quantify the performance of automated face recognition
algorithms. Under certain imaging constraints these tests have
measured a relative improvement of over two orders of mag-
nitude in performance over the last two decades [4]. Despite
these improvements, there are still many factors known to
degrade face recognition performance (e.g., PIE, image qual-
ity, aging). In order to maximize the potential benefit of face
recognition in forensics and law enforcement applications, we
need to improve the ability of face recognition to sort through
facial images more accurately and in a manner that will allow
us to perform more specialized or targeted searches. Facial
searches leveraging demographics represents one such avenue
for performance improvement.

While there is no standard approach to automated face
recognition, most face recognition algorithms follow a similar
pipeline [6]: face detection, alignment, appearance normal-
ization, feature representation (e.g., local binary patterns [7],
Gabor features [8]), feature extraction [9], [10]), and matching
[11]. Feature extraction generally relies on an offline training
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Fig. 2. Dynamic face matcher selection. The findings in this study suggest
that many face recognition scenarios may benefit from multiple face recog-
nition systems that are trained exclusively on different demographic cohorts.
Demographic information extracted from a probe image may be used to select
the appropriate matcher, and improve face recognition accuracy.

stage that utilizes exemplar data to learn improved feature
combinations (such as feature subspaces). For example, vari-
ants of the linear discriminant analysis (LDA) algorithm [9],
[10] use training data to compute between-class and within-
class scatter matrices. Subspace projections are then computed
to maximize the separability of subjects based on these scatter
matrices.

This study examines the impact of training on face recog-
nition performance. Without leveraging training data, face
recognition algorithms are not able to discern between noisy
facial features and facial features which offer consistent cues
to a subject’s identity. As such, automated face recognition
algorithms are ultimately based on statistical models of the
variance between individual faces. These algorithms seek to
minimize the measured distance between facial images of
the same subject, while maximizing the distance between
the subject’s images and those of the rest of the population.
However, the feature combinations discovered are functions of
the data used to train the recognition system. If the training set
is not representative of the data a face recognition algorithm
will be operating on, then the performance of the resulting
system may deteriorate. For example, the most distinguishing
features for Black subjects may differ from White subjects. As
such, if a system was predominantly trained on White faces,
and later operated on Black faces, the learned representation
may discard information useful for discerning Black faces.

The observation that the performance of face recognition
algorithms could suffer if the training data is not representative
of the test data is not new. One of the earliest studies reporting
this phenomenon is not in the automated face recognition
literature, but instead in the context of human face recogni-
tion. Coined the “other-race effect”, humans have consistently
demonstrated a decreased ability to recognize subjects from
races different from their own [12], [13]. While there is no
generally agreed upon explanation for this phenomenon, many
researchers believe the decreased performance on other races is
explained by the “contact” hypothesis, which postulates that
the lower performance on other races is due to a decreased
exposure [14]. While the validity of the contact hypothesis
has been disputed [15], the presence of the “other-race effect”

has not.
From the perspective of automated face recognition, Phillips

et als findings in the 2002 government sponsored NIST Face
Recognition Vendor Test (FRVT) is believed to be the first
finding that face recognition algorithms have different recog-
nition accuracies depending on a subject’s demographic cohort
[3]. Among other findings, this study demonstrated for com-
mercial face recognition algorithms on a dataset containing
roughly 120,000 images that (i) female subjects were more
difficult to recognize than male subjects, and (ii) younger
subjects were generally more difficult to recognize than older
subjects.

More recently, Grother et als measured the performance
of seven commercial face recognition algorithms and three
university face recognition algorithms in the 2010 NIST Multi-
Biometric Evaluation [4]. The experiments conducted also
concluded that females were more difficult to recognize than
males. This study also measured the recognition accuracy of
different races and ages.

Previous studies have investigated what impact the distribu-
tion of a training set has on recognition accuracy. Furl et als
[16] and O’Toole et als [17] conducted studies to investigate
the impact of cross training and matching on White and Asian
races. Similar training biases were investigated by Klare and
Jain [18], who showed that aging-invariant face recognition
algorithms suffer from decreased performance in non-aging
scenarios.

The study in [17] was motivated by a rather surprising result
in the 2006 NIST Face Recognition Vendor Test (FRVT) [19].
In this test, the various commercial and academic face recog-
nition algorithms tested exhibited a common characteristic:
algorithms which originated in East Asia performed better
on Asian subjects than did algorithms from the West. The
reverse was true for White subjects: algorithms developed
in the western hemisphere performed better. O’Toole et als
suggested that this discrepancy was due to the different racial
distribution in the training sets for the Western and Asian
algorithms.

The impact of these training sets on face recognition algo-
rithms cannot be overemphasized; face recognition algorithms
do not generally rely upon explicit physiological models of
the human face for determining match or non-match. Instead,
the measure of similarity between face images is based on
statistical learning, generally in the feature extraction stage
[10], [20] or during the matching stage [11].

In this work, we expand on previous studies to better
demonstrate and understand the impact of a training set
on the performance of face recognition algorithms. While
previous studies [16], [17] only isolated the race variate, and
only considered two races (i.e., Asian and White), this study
explores both the inherent biases and training biases across
gender, race (three different races/ethnicities) and age. To our
knowledge, no studies have investigated the impact of gender
or subject age for training face recognition algorithms.

III. FACE DATABASE

This study was enabled by a collection of over one million
mug shot face images from the Pinellas County Sheriff’s
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TABLE I
NUMBER OF SUBJECTS USED FOR TRAINING AND TESTING FOR EACH
DEMOGRAPHIC CATEGORY. TWO IMAGES PER SUBJECT WERE USED.

TRAINING AND TEST SETS WERE DISJOINT. A TOTAL OF 102,942 FACE
IMAGES WERE USED IN THIS STUDY.

Demographic Cohort # Training # Testing

Gender Female 7995 7996
Male 7996 7998

Race Black 7993 7992
White 7997 8000
Hispanic 1384 1425

Age 18 to 30 7998 7999
30 to 50 7995 7997
50 to 70 2801 2853

Office1 (examples of these images can be found in Figure 1).
Accompanying these images are complete subject demograph-
ics. The demographics provide the race/ethnicity, gender, and
age of the subject in each image, as well as a subject ID
number.

Given this large corpus of face images, we were able to
use the metadata provided to control the three demograph-
ics studied: race/ethnicity, gender, and age. For gender, we
partitioned image sets into cohorts of (i) male only, and (ii)
female only. For age, we partitioned the sets into three cohorts:
(i) young (18 to 30 years old), (ii) middle-age (30 to 50
years old), and (iii) old (50 to 70 years old). There were very
few individuals in this database with age less than 18 and
older than 70. For race/ethnicity2, we partitioned the sets into
cohorts of (i) White, (ii) Black, and (iii) Hispanic3. A summary
of these cohorts and the number of subjects available for each
cohort can be found in Table I. Asian, Indian, and Unknown
race/ethnicities were not considered because an insufficient
number of samples were available.

For each of the eight cohorts (i.e., male, female, young,
middle-aged, old, White, Black, and Hispanic), we created
independent training and test sets of face images. Each set
contains a maximum of 8,000 subjects, with two images (one
probe and one gallery) for each subject. Table I lists the
number of subjects included for each set. Cohorts far less than
8,000 subjects (i.e., Hispanic and older) reflect a lack of data
available to us. Cases with cohorts containing only slightly
fewer than 8,000 subjects are the result of removing a few
images that could not be successfully enrolled in the COTS
FRS.

The dataset of mug shot images did not contain a large
enough number of Asian subjects to measure that particular
race/ethnicity cohort. However, studies by Furl et al. [16] and

1The mug shot data used in this study was acquired in the public domain
through Florida’s ”Sunshine” laws. Subjects shown in this manuscript may
or may not have been convicted of a criminal charge, and thus should be
presumed innocent of any wrongdoing.

2Racial identifiers (i.e. White, Black, and Hispanic) follow the FBI’s
National Crime Information Center code manual.

3Hispanic is not technically a race, but instead an ethnic category.

O’Toole et al. [17] investigated the impact of the Whites and
East Asians. As previously discussed, these studies concluded
that algorithms developed in the Western Hemisphere did
better on White subjects and Asian algorithms did better on
Asian subjects.

IV. FACE RECOGNITION ALGORITHMS

In this section we will discuss each of the six face recog-
nition algorithms used in this study. We have organized
these algorithms into commercial algorithms (Sec. IV-A), non-
trainable algorithms (Sec. IV-B), and trainable algorithms
(Sec. IV-C).

A. Commercial Face Recognition Algorithms

Three commercial face recognition algorithms were evalu-
ated in this study: (i) Cognitec’s FaceVACS v8.2, (ii) PittPatt
v5.2.2, and (iii) Neurotechnology’s MegaMatcher v3.1. The
results in this study obfuscate the names of the three commer-
cial matchers.

These commercial algorithms are three of the ten algorithms
evaluated in the NIST sponsored Multi-Biometrics Evaluation
(MBE) [4]. As such, these algorithms are representative of the
state of the art performance in face recognition technology.

B. Non-Trainable Face Recognition Algorithms

Two non-trainable face recognition algorithms were used
in this study: (i) local binary patterns (LBP), and (ii) Gabor
features. Both of these methods operate by representing the
face with Level 2 facial features (LBP and Gabor), where
Level 2 facial features are features that encode the structure
and shape of the face, and are critical to face recognition
algorithms [21].

These non-trainable algorithms perform an initial geometric
normalization step (also referred to as alignment) by using
the automatically detected eye coordinates (eyes were detected
using FaceVACS SDK) to scale, rotate, and crop a face image.
After this step, the face image has a height and width of 128
pixels. Both algorithms are custom implementations by the
authors.

1) Local Binary Patterns: A seminal method in face recog-
nition is the use of local binary patterns [7] (LBP) to represent
the face [22]. Local Binary Patterns are Level 2 features that
represent small patches across the face with histograms of
binary patterns that encode the structure and texture of the
face.

Local binary patterns describe each pixel using a p-bit
binary number. Each bit is determined by sampling p pixel
values at uniformly spaced locations along a circle of radius
r, centered at the pixel being described. For each sampling
location, the corresponding bit receives the value 1 if it is
greater than or equal to the center pixel, and 0 otherwise.

A special case of LBP, called the uniform LBP [7], is
generally used in face recognition. Uniform LBP assigns
any non-uniform binary number to the same value, where
uniformity is defined by whether more than u transitions
between the values 0 and 1 occur in the binary number. In
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the case of p = 8 and u = 2, the uniform LBP has 58
uniform binary numbers, and the 59th value is reserved for
the remaining 256 − 58 = 198 non-uniform binary numbers.
Thus, each pixel will take on a value ranging from 1 to 59.
Two different radii are used (r = 1 and r = 2), resulting
in two different local binary pattern representations that are
subsequently concatenated together (called Multi-scale Local
Binary Patterns, or MLBP).

In the context of face recognition, LBP values are first
computed at each pixel in the (normalized) face image as
previously described. The image is tessellated into patches
with a height and width of 12 pixels. For each patch i, a
histogram of the LBP values S′i ∈ Zds is computed (where
ds = 59). This feature vector is then normalized to the feature
vector Si ∈ Rds by Si =

S′
i∑ds

i S′
i

. Finally, we concatenate the
N vectors into a single vector x of dimensionality ds ·N .

In our implementation, the illumination filter proposed by
Tan and Triggs [23] is used prior to computing the LBP codes
in order to suppress non-uniform illumination variations. This
filter resulted in improved recognition performance.

2) Gabor Features: Gabor features are one of the first Level
2 facial features [21] to have been used with wide success in
representing facial images [8], [20], [24]. One reason Gabor
features are popular for representing both facial and natural
images is their similarity with human neurological receptor
fields [25], [26].

A Gabor image representation is computed by convolving a
set of Gabor filters with an image (in this case, a face image).
The Gabor filters are defined as

G(x, y, θ, η, γ, f) =
f2

πγη
e
−
(
f2

γ2
x′2+ f2

γ2
y′2
)
e(j2πfx

′) (1)

x′ = x cos θ + ysinθ (2)
y′ = −xsinθ + y cos θ (3)

where f sets the filter scale (or frequency), θ is the filter
orientation along the major axis, γ controls the filter sharpness
along the major axis, and η controls the sharpness along
the minor axis. Typically, combinations across the following
values for the scale f and orientation θ are used: f =
{0, 1, . . . , 4} and θ = {π/8, π/4, 3π/8, . . . , π}. This creates a
set (or bank) of filters with different scales and orientations.
Given the bank of Gabor filters, the input image is convolved
with each filter, which results in a Gabor image for each filter.
The combination of these scale and orientation values results
in 40 different Gabor filters, which in turn results in 40 Gabor
images (for example).

In this paper, the recognition experiments using a Gabor
image representation operate by: (i) performing illumination
correction using the method proposed by Tan and Triggs [23],
(ii) computing the phase response of the Gabor images with
f = {1, 2}, and θ = 0, π/4, π/2, 3π/4, (iii) tessellating the
Gabor image(s) into patches of size 12x12, (iv) quantizing
the phase response (which ranges from 0 to 2π) into 24
values and computing the histogram within each patch, and
(v) concatenating the histogram vectors into a single feature
vector. Given two (aligned) face images, the distance between

their corresponding Gabor feature vectors is used to measure
the dissimilarity between the two face images.

C. Trainable Face Recognition Algorithm

The trainable algorithm used in this study is the Spectrally
Sampled Structural Subspace Features algorithm [5], which is
abbreviated as 4SF@. This algorithm uses multiple discrimi-
native subspaces to perform face recognition. After geometric
normalization of a face image using the automatically detected
eye coordinates (eyes were detected using FaceVACS SDK),
illumination correction is performed using the illumination
correction filter presented by Tan and Triggs [23]. Face images
are then represented using histograms of local binary patterns
at densely sampled face patches [22] (to this point, 4SF is
the same as the non-trainable LBP algorithm described in
Sec. IV-B1). For each face patch, principal component analysis
(PCA) is performed so that 98.0% of the variance is retained.
Given a training set of subjects, multiple stages of weighted
random sampling is performed, where the spectral densities
(i.e., the eigenvalues) from each face patch are used for
weighting. The randomly sampled subspaces are based on Ho’s
original method [27], however the proposed approach is unique
in that the sampling is weighted based on the spectral densities.
For each stage of random sampling, LDA [10] is performed on
the randomly sampled components. The LDA subspaces are
learned using subjects randomly sampled from the training
set (i.e., bagging [28]). Finally, distance-based recognition is
performed by projecting the LBP representation of face images
into the per-patch PCA subspaces, and then into each of the
learned LDA subspaces. The sum of the Euclidean distance in
each subspace is the dissimilarity between two face images.
The 4SF algorithm is summarized in Figure 3.

As shown in the experiments conducted in this study, the
4SF algorithm performs on par with several commercial face
recognition algorithms. Because 4SF is initially the same
approach as the non-trainable LBP matcher, the improvement
in recognition accuracies (in this study) between the non-
trainable LBP matcher and the 4SF algorithm clearly demon-
strates the ability of 4SF to leverage training data. Thus, a
high matching accuracy and the ability to leverage training
data make 4SF an ideal face recognition algorithm to study
the effects of training data on face recognition performance.
The 4SF algorithm was developed in house.

V. EXPERIMENTAL RESULTS

For each demographic (gender, race/ethnicity, and age),
three separate matching experiments are conducted. The re-
sults of these experiments are presented per demographic.
Figure 4 delineates the results for all the experiments on
the gender demographic. Figure 5 delineates the results for
all experiments on the race/ethnicity demographic. Finally,
Figure 6 delineates the results for all experiments on the age
demographic. The true accept rate at a fixed false accept rate
of 0.1% for all the plots in Figures 4 to 6 are summarized in
Table II.

The first experiment conducted on each demographic mea-
sures the relative performance within the demographic cohort
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Fig. 3. Overview of the Spectrally Sampled Structural Subspace Features (4SF) algorithm. This custom algorithm is representative of state of the art methods
in face recognition. By changing the demographic distribution of the training sets input into the 4SF algorithm, we are able to analyze the impact the training
distribution has on various demographic cohorts.

for each COTS FRS@. That is, for a particular commercial
matcher (e.g., COTS-A), we compare it’s matching accuracy
on each cohort within that demographic. For example, on
the gender demographic, this experiment will measure the
difference in recognition accuracy for commercial matchers on
males versus females. The results from this set of experiments
can be found in Figures 4 (a-c) for the gender demographic,
Figures 5 (a-c) for the race/ethnicity demographic, and Fig-
ures 6 (a-c) for the age demographic.

The second experiment conducted on each demographic
cohort measures the relative performance within the cohort
for non-trainable face recognition algorithms. Because the
non-trainable algorithms do not leverage statistical variability
in faces, they are not susceptible to training biases. Instead,
they reflect the inherent (or a priori) difficulty in recognizing
cohorts of subjects within a specific demographic group. The
results from this set of experiments can be found in Figures 4
(d-e) for the gender demographic, Figures 5 (d-e) for the
race/ethnicity demographic, and Figures 6 (d-e) for the age
demographic.

The final experiment investigates the influence of the train-
ing set on recognition performance. Within each demographic
cohort, we train several versions of the 4SF algorithm (one
for each cohort). These differently trained versions of the
4SF algorithm are then applied to separate testing sets from
each cohort within the particular demographic. This enables us
to understand within the gender demographic (for example),
how much training exclusively on females (i) improves perfor-
mance on females, and (ii) decreases performance on males.
In addition to training 4SF exclusively on each cohort, we
also use a version of 4SF trained on an equal representation of
specific demographic cohorts (referred to as “Trained on All”).
For example, in the gender demographic, this would mean that
for “All”, 4SF was trained on 4,000 male subjects and 4,000
female subjects. The results from this set of experiments can be
found in Figures 4 (f-h) for the gender demographic, Figures 5
(f-i) for the race/ethnicity demographic, and Figures 6 (f-i) for
the age demographic.

VI. ANALYSIS

In this section we provide an analysis of the findings of the
experiments described in Section V. A strength of this study is
the large face dataset leveraged; accuracies measured on each
cohort (except Hispanic and Old cohorts) are from roughly
8,000 subjects.

A. Gender

Each of the three commercial face recognition algorithms
performed significantly worse on the female cohort than the
male cohort (see Figures 4 (a-c)). Additionally, both non-
trainable algorithms (LBP and Gabor) performed significantly
worse on females (see Figures 4 (d-e)).

The agreement in relative accuracies of the COTS FRS and
the non-trainable LBP method on the gender demographic
suggests that the female cohort is more difficult to recognize
using frontal face images than the male cohort. That is, if
the results in the COTS algorithms were due to imbalanced
training sets (i.e., training on more males than females),
then the LBP matcher should have yielded similar matching
accuracies on males and females. Instead, the non-trained LBP
and Gabor matchers performed worse on the female cohort.
When training on males and females equally (Figure 4(h)),
the 4SF algorithm also did significantly worse on the female
cohort. Together, these results strongly suggest that the female
cohort is inherently more difficult to recognize.

The results of the 4SF algorithm on the female cohort
(Figure 4 (f)) offer additional evidence about the nature of
the discrepancy. The performance of training on only females
is not higher than the performance of training on a mix of
males and females (labeled “All”). Further, the difference in
performance when training on only males versus training on
only females is much lower than the difference in performance
between males and females on the non-trainable algorithm. In
other words, the difficulty in recognizing females seems to
be due to a higher ratio of inter-class variance to intra-class
variance in the initial face image representations.

Different factors may explain why females appear more
difficult to recognize than males. One explanation may be
that because females often use cosmetics (i.e., makeup), and
males generally do not, there is a higher within-class variance
in females. This hypothesis is supported by the match score
distributions for males and females (see Figure 7). A greater
difference in the true match distributions is noticed when
compared to the false match distributions. The increased
dissimilarities between images of the same female subjects
demonstrate intra-class variability. Again, a cause of this may
be due to the application of cosmetics.



7

COTS−A

False Accept Rate

Tr
ue

 A
cc

ep
t R

at
e

0.5

0.6

0.7

0.8

0.9

1.0

●

●

●

10−4 10−3 10−2 10−1 100

Dataset

● Females
Males

COTS−B

False Accept Rate

Tr
ue

 A
cc

ep
t R

at
e

0.5

0.6

0.7

0.8

0.9

1.0

●

●

●

10−4 10−3 10−2 10−1 100

Dataset

● Females
Males

COTS−C

False Accept Rate

Tr
ue

 A
cc

ep
t R

at
e

0.5

0.6

0.7

0.8

0.9

1.0

●

●

●

●

●

10−4 10−3 10−2 10−1 100

Dataset

● Females
Males

(a) (b) (c)

LBP

False Accept Rate

Tr
ue

 A
cc

ep
t R

at
e

0.5

0.6

0.7

0.8

0.9

1.0

●

●

●

●

10−4 10−3 10−2 10−1 100

Dataset

● Females
Males

Gabor

False Accept Rate

Tr
ue

 A
cc

ep
t R

at
e

0.5

0.6

0.7

0.8

0.9

1.0

●

●

●

●

●

10−4 10−3 10−2 10−1 100

Dataset

● Females
Males

4SF trained on all cohorts equally

False Accept Rate

Tr
ue

 A
cc

ep
t R

at
e

0.5

0.6

0.7

0.8

0.9

1.0

●

●

●

●

10−4 10−3 10−2 10−1 100

Dataset

● Females
Males

(d) (e) (f)

4SF evaluated on Females

False Accept Rate

Tr
ue

 A
cc

ep
t R

at
e

0.5

0.6

0.7

0.8

0.9

1.0

●

●

10−4 10−3 10−2 10−1 100

Dataset

● Trained on Females
Trained on Males
Trained on All

4SF evaluated on Males

False Accept Rate

Tr
ue

 A
cc

ep
t R

at
e

0.5

0.6

0.7

0.8

0.9

1.0

●

●

10−4 10−3 10−2 10−1 100

Dataset

● Trained on Females
Trained on Males
Trained on All

(g) (h)

Fig. 4. Performance of the six face recognition systems on datasets seperated by cohorts within the gender demographic. (a) COTS-A, (b) COTS-B, (c)
COTS-C, (d) Local binary patterns (non-trainable), (e) Gabor (non-trainable), (f) 4SF trained on equal number of samples from each gender, (g) 4SF algorirthm
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Fig. 5. Performance of the six face recognition systems on datasets seperated by cohorts within the race demographic. (a) COTS-A, (b) COTS-B, (c) COTS-C,
(d) Local binary patterns (non-trainable), (e) Gabor (non-trainable), (f) 4SF trained on equal number of samples from each race, (g) 4SF algorirthm (trainable)
on the Black cohort, (h) 4SF algorirthm (trainable) on the White cohort, (i) 4SF algorirthm (trainable) on the Hispanic cohort.
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Fig. 6. Performance of the six face recognition systems on datasets seperated by cohorts within the age demographic. (a) COTS-A, (b) COTS-B, (c) COTS-C,
(d) Local binary patterns (non-trainable), (e) Gabor (non-trainable), (f) 4SF trained on equal number of samples from each age, (g) 4SF algorirthm (trainable)
on the Ages 18 to 30 cohort, (h) 4SF algorirthm (trainable) on the Ages 30 to 50 cohort, (i) 4SF algorirthm (trainable) on the Ages 50 to 70 cohort.
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TABLE II
LISTED ARE THE TRUE ACCEPT RATES AT A FIXED FALSE ACCEPT RATE OF

0.1% FOR EACH MATCHER AND DEMOGRAPHIC DATASET.

Females Males

COTS-A 89.5 94.4
COTS-B 81.6 89.3
COTS-C 70.3 80.9

LBP 54.4 74.0
Gabor 56.0 68.2

4SF trained on All 73.0 86.2
4SF trained on Females 71.5 85.0

4SF trained on Males 69.0 86.3

Black White Hispanic

COTS-A 88.7 94.4 95.7
COTS-B 81.3 89.0 90.7
COTS-C 74.0 79.8 87.3

LBP 65.3 70.5 73.5
Gabor 61.6 63.7 70.9

4SF trained on All 78.4 83.0 86.3
4SF trained on Black 80.2 81.0 59.8
4SF trained on White 75.4 84.5 59.9

4SF trained on Hispanic 74.5 80.2 60.1

18 to 30 y.o. 30 to 50 y.o. 50 to 70 y.o.

COTS-A 91.7 94.6 94.4
COTS-B 86.1 89.1 87.5
COTS-C 76.5 80.7 83.6

LBP 69.4 74.7 75.1
Gabor 61.7 68.2 65.7

4SF trained on All 81.5 85.6 83.6
4SF trained on 18 to 30 y.o. 83.3 85.9 80.7
4SF trained on 30 to 50 y.o. 82.1 86.0 82.2
4SF trained on 50 to 70 y.o. 78.7 84.5 82.0

B. Race

When examining the race/ethnicity cohort, all three com-
mercial face recognition algorithms achieved the lowest match-
ing accuracy on the Black cohort (see Figures 5(a-c)). The two
non-trained algorithms had similar results (Figures 5 (d-e)).

When matching against only Black subjects (Figure 5 (f)),
4SF has higher accuracy when trained exclusively on Black
subjects (about a 5% improvement over the system trained
on Whites and Hispanics only). Similarly, when evaluating
4SF on only White subjects (Figure 5 (g)), the system trained
on only the White cohort had the highest accuracy. However,
when comparing the 4SF algorithm trained equally on all
race/ethnicity cohorts (Figure 5 (i)), we see that the perfor-
mance on the Black cohort is still lower than on the White
cohort. Thus, even with balanced training, the Black cohort
still is more difficult to recognize.

The key finding in the training results shown in Figures 5
(f-i) is the ability to improve recognition accuracy by training
exclusively on subjects of the same race/ethnicity. Compared
to balanced training (i.e., training on “All”), the performance
of 4SF when trained on the same race/ethnicity it is recog-
nizing is higher. Thus, by merely changing the distribution of
the training set, we can improve the recognition rate by nearly
2% on the Black cohort and 1.5% on the White cohort (see

Table II).
The inability to effectively train on the Hispanic cohort

is likely due to the insufficient number of training samples
available for this cohort. However, the biogeographic ancestry
of the Hispanic ethnicity is generally attributed to a three-
way admixture of Native American, European, and West Black
populations [29]. Even with an increased number of training
samples, we believe this mixture of races would limit the
ability to improve recognition accuracy through race/ethnicity
specific training.

C. Age Demographic

All three commercial algorithms had the lowest matching
accuracy on subjects grouped in the ages 18 to 30 (see
Figures 6 (a-c)). The COTS-A matcher performed nearly the
same on the 30 to 50 year old cohort as the 50 to 70 year
old cohort. However, COTS-B had slightly higher accuracy
on 30 to 50 age group than 50 to 70 age group, while COTS-
C performed slightly better on 50 to 70 than 30 to 50 age
groups.

The non-trainable algorithms (Figures 6 (d-e)) also per-
formed the worst on the 18 to 30 age cohort.

When evaluating 4SF on only the 18 to 30 year old cohort
(Figure 6 (f)) and the 30 to 50 year old cohort (Figure 6 (g)),
the highest performance was achieved when training on the
same cohort. Table II helps elaborate on the exact accuracies.
Similar to race, we were able to improve recognition accuracy
by merely changing the distribution of the training set.

When comparing the 4SF system that is trained with equal
number of subjects from all age cohorts, the performance on
the 18 to 30 year old cohort is the lowest. This is consis-
tent with the accuracies of the commercial face recognition
algorithms.

The less effective results from training on the 50 to 70 year
old cohort is likely due to an small number of training subjects.
This is consistent with the training results on the Hispanic
cohort, which also had a small number of training subjects.

D. Impact of Training

The demographic distribution of the training set generally
had a clear impact on the performance of different demo-
graphic groups. Particularly in the case of race/ethnicity,
we see that training on a set of subjects from the same
demographic cohort as being matched offers an increase in
the True Accept Rate (TAR). This finding is particularly
important because in most operational scenarios, particularly
those dealing with forensics and law enforcement, the use of
face recognition is not being done in a fully automated, “lights
out” mode. Instead, an operator is usually interacting with a
face recognition system, performing a one-to-one verification
task, or exploring the gallery to group together candidates
in clusters for further exploitation. Each of these scenarios
can benefit from the use of demographic-enhanced matching
algorithms, as described below.
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Probe Images:

Gallery Mates:

Retrieval Rank for 4SF Trained on all cohorts equally:
873 866 763 679 628 608 5 3

Retrieval Rank for 4SF Trained on White cohort exclusivly:
10 42 48 20 10 16 48 42

(a)

Probe Images:

Gallery Mates:

Retrieval Rank for 4SF Trained on all cohorts equally:
820 811 730 640 574 547 7 6

Retrieval Rank for 4SF Trained on Black cohort exclusively:
20 34 43 9 43 18 42 41

(b)

Fig. 8. Shown are examples where dynamic face matcher selection improved the retrieval accuracy. The final two columns show the less frequent case where
such a technique reduced the retrieval accuracy. Retrieval ranks are out of 8,000 gallery subjects for the White cohort (a), and 7,992 for the Black cohort
(b). Leveraging demographic information (such as race/ethnicity in this example) allows a face recognition system to perform the matching using statistical
models that are tuned to the differences within the specific cohort.

a) Scenario 1 - 1:N Search: In many large face recog-
nition database searches, the objective is to have the true
match candidates ranked high enough to be found by the
analyst performing the candidate adjudication. While it will
not always be the case, under many conditions, the analyst
will be able to categorize the demographics of the probe image
based on age, gender, and/or race/ethnicity. In such a situation,
if the analyst has the option to select a different matching
algorithm that has been trained for that specific demographic
group, then improved matching results should be expected.
An schematic of this is shown in Figure 2. This individual

could be searched using an algorithm trained on male, Whites,
and aged 18 to 30. If a true match is not found using that
algorithm, then a more generic algorithm might be used as a
follow up to further search the gallery. Note that this scenario
does not require that the gallery images be pre-classified based
on specific demographic information. Instead, the algorithm
should simply generate higher match scores for subjects that
share the characteristics of that demographic cohort. We call
this method of face search dynamic face matcher selection.
In cases where the demographic is unclear (e.g., a mixed
race/ethnicity subject), the matcher trained on all cohorts
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Fig. 7. Match score distributions for the male and female genders using
the 4SF system trained with an equal number of male and female subjects.
The increased distances (dissimilarities) for the true match comparisons in the
female cohort suggest increased within-class variance in the female cohort.
All histograms are aligned on the same horizontal axis.

equally can be used. Examples of improved retrieval instances
through applying this technique can be found in Figure 8.

b) Scenario 2 - 1:1 Verification: It is often the case that
investigators will identify a possible match to a known subject
and will request an analyst to perform a 1:1 verification of
the match. This also happens as a result of a 1:N search,
once a potential match to a probe is identified. In either
case, the analyst must reach a determination of match or no-
match. In fully automated systems, this decision is based on
a numerical similarity threshold. In some environments, the
analyst is prevented from seeing the similarity score out of
concern that his judgment will be biased. But in others, the

analyst is permitted to incorporate this into his analysis. In
either case, it is anticipated that an algorithm trained on a
specific demographic group will return higher match scores
for true matches than one that was more generic. As a result,
the analyst is more likely to get a hit and the 1:1 matching
results process will be improved.

c) Scenario 3 - Verification at Border Crossings: The
results presented here provide support for further testing of
additional demographic groups, potentially including specific
country or geographic-region of origin. Assuming such de-
mographics proved effective at improving match scores, then
use of dynamic face matcher selection could be extended to
immigration or border checks on entering subjects to verify
that their passport or other documents accurately reflects their
country of origin.

d) Scenario 4 - Face Clustering: Another analyst-driven
application involves the exploitation of large sets of uncon-
trolled face imagery. Images encountered in intelligence or
investigative applications often include large sets of videos
or arbitrary photographs taken with no intention of enrolling
them in a face recognition environment. Such image sets offer
a great potential for development of intelligence leads by
locating multiple pictures of specific individuals and giving
analysts an opportunity to link subjects who may be found
within the same photographs. Clustering methods are now
being used on these datasets to group faces that appear to
represent the same subject. Implementations of such clustering
methods today usually rely upon a single algorithm to perform
the grouping and an analyst must perform the quality control
step to determine if a particular cluster contains only a single
individual. By combining multiple demographic-based algo-
rithms into a sequential analysis, it may be possible to improve
the clustering of large sets of face images and thereby reduce
the time required for the analyst to perform the adjudication
of individual clusters.

VII. CONCLUSIONS

This paper examined face recognition performance on dif-
ferent demographic cohorts on a large operational database
of 102,942 face images. Three demographics were analyzed:
gender (male and female), race/ethnicity (White, Black, and
Hispanic), and age (18 to 30 years old, 30 to 50 years old,
and 50 to 70 years old).

For each demographic cohort, the performances of three
commercial face recognition algorithms were measured. The
performances of all three commercial algorithms were consis-
tent in that they all exhibited lower recognition accuracies on
the following cohorts: females, Blacks, and younger subjects
(18 to 30 years old).

Additional experiments were conducted to measure the
performance of non-trainable face recognition algorithms (lo-
cal binary pattern-based and Gabor-based), and a trainable
subspace method (the Spectrally Sampled Structural Sub-
space Features (4SF) algorithm). These experiments offered
additional evidence to form hypotheses about the observed
discrepancies between certain demographic cohorts.

Some of the keys findings in this study are:
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• The female, Black, and younger cohorts are more difficult
to recognize for all matchers used in this study (commer-
cial, non-trainable, and trainable).

• Face recognition performance on race/ethnicity and age
cohorts generally improve when training exclusively on
that same cohort.

• The above finding suggests the use of dynamic face
matcher selection, where multiple face recognition sys-
tems, trained on different demographic cohorts, are avail-
able as a suite of systems for operators to select based
on the demographic information of a given query image
(see Figure 2).

• In scenarios where dynamic matcher selection is not
possible, training face recognition systems on datasets
that are well distributed across all demographics is critical
to reduce face matcher vulnerabilities on specific demo-
graphic cohorts.

Finally, as with any empirical finding, additional ways to
exploit the findings of this research are likely to be found.
Of particular interest is the observation that women appear to
be more difficult to identify through facial recognition than
men. If we can determine the cause of this difference, it may
be possible to use that information to improve the overall
matching performance.

The experiments conducted in this paper should have a
significant impact on the design of face recognition algo-
rithms. Similar to the large body of research on algorithms
that improve face recognition performance in the presence
of other variates known to compromise recognition accuracy
(e.g., pose, illumination, and aging), the results in this study
should motivate the design of algorithms that specifically
target different demographic cohorts within the race/ethnicity,
gender and age demographics. By focusing on improving
the recognition accuracy on such confounding cohorts (i.e.,
females, Blacks, and younger subjects), researchers should be
able to further reduce the error rates of state of the art face
recognition algorithms and reduce the vulnerabilities of such
systems used in operational environments.
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