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Abstract

The homogenized energy model (HEM) is a unified framework for modeling hysteresis in ferroelectric,
ferromagnetic, and ferroelastic materials. The HEM framework combines energy analysis at the lattice
level with stochastic homogenization techniques, based on the assumption that quantities such as inter-
action and coercive fields are manifestations of underlying densities, to construct macroscopic material
models. In this paper, we focus on the homogenized energy model for shape memory alloys (SMA).
Specifically, we develop techniques for estimating model parameters based on attributes of measured
data. Both the local (mesoscopic) and macroscopic models are described, and the model parameters’
relationship to the material’s response are discussed. Using these relationships, techniques for estimating
model parameters are presented. The techniques are applied to constant-temperature stress-strain and
resistance-strain data. These estimates are used in two manners. In one method, the estimates are
considered fixed and only the HEM density functions are optimized. For SMA, the HEM incorporates
densities for the interaction and relative stress, the width of the hysteresis loop. In the second method,
the estimates are included in the optimization algorithm. Both cases are compared to experimental data
at various temperatures, and the optimized model parameters are compared to the initial estimates.

1 Introduction

Shape memory alloys (SMA) are novel materials that exhibit two useful characteristics. The super-elastic
effect allows the material to undergo significant strains without experiencing plastic deformation. The shape
memory effect makes the material capable of recovering large strains upon heating, allowing for its use as
an actuator. Furthermore, SMA’s bio-compatibility and high energy density make the material suitable for
in-vivo actuation applications, potentially revolutionizing biomedical devices.

SMA have been successfully incorporated into a number of prototypes and commercial applications.
The super-elastic effect has been utilized in orthodontic wires, eye-glass frames, stents, and annuloplasty
bands [23]. Applications using the shape memory effect include robotic catheters [33,34], robotic hands [22],
jet chevrons [9,10,26], and smart inhalers [21]. The design and control of these prototypes are complicated by
the material’s nonlinear, hysteretic dependence on stress and temperature. This complex behavior arises from
the presence of three crystalline structures (or phases) in uniaxial applications. Computationally efficient,
accurate models of the material’s behavior are necessary for design optimization and control algorithms.
Furthermore, the model adoption is greatly facilitated by easily identifying parameters, reducing the time
required to achieve accurate model fits.

The homogenized energy model (HEM) is a unified framework for modeling SMA, ferroelectric, and
ferromagnetic materials. The energy origin of the model was originally investigated for SMA by Müller
and Wilmanksi [17] with further work by Achenbach, Seelecke [24, 25], and Huo [14]. The original mod-
els determined the equilibrium phase using the Gibbs energy to predict the mesoscopic (or single-crystal)
behavior. The HEM framework for SMA builds on these models by homogenizing (or averaging) the local
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response to predict the macroscopic behavior of polycrystalline materials. The homogenization is accom-
plished by assuming that certain parameters are manifestations of underlying densities. In this manner, the
model quantifies the inherent polycrystalline nature of SMA and other smart materials and is suitable for
applications requiring the macroscopic actuator response.

The application of the HEM framework to SMA was originally reported in [15], and the model has also
been applied to ferroelectric [13,29,30,32] and ferromagnetic [19,27,28] materials. A complete description of
the unified framework is presented in [26,31]. Additionally, the HEM has been incorporated into a variety of
control applications [19,20]. A computationally efficient implementation of the model is described in [2, 3].

In this paper, we focus on data-driven techniques for estimating model parameters. The relationship
between the parameters and experimentally obtained stress, strain, and resistance data at various constant
temperatures is discussed. These initial parameter estimates are used in two manners. In one method,
the parameters are considered fixed while the density functions are optimized. In the second method, the
parameters are incorporated into the optimization process with the density functions. Similar techniques for
estimating parameters for ferroelectric and ferromagnetic models are presented in [11,12].

The remainder of this paper is organized as follows. The SMA model is summarized in Section 2,
including the local model based on the Gibbs energy and the homogenization techniques used to construct
the macroscopic model. Techniques for identifying the model parameters from experimental data are detailed
in Section 3. The two optimization problems are presented in Section 4. The experimental setup is described
in Section 5, and experimentally obtained data is used to estimate the initial model parameters. Finally, the
results of the optimized model are presented and compared to the experimental data in Section 6.

2 Homogenized Energy Model for SMA

The complex behavior of SMA is due to the presence of three crystalline phases in uniaxial applications:
austenite and two martensite phases. Austenite (A) is induced by high temperatures, and the martensitic
phases are induced by high stresses. Martensite plus (M+) is stable under tensile stresses, and martensite
minus (M−) is stable under compressive stresses. The interaction of these phases yields the material’s
complex, thermo-mechanical response. The transition diagram for SMA is shown in Figure 1. Numerous
models have been proposed to quantify the behavior of SMA, including both physical and phenomenological
models. An overview of these models is presented in [26].

2.1 Mesoscopic Model

The homogenized energy model uses the free energy model to derive the kernel for the local (mesoscopic)
material behavior. The free energy model of SMA uses phase fractions (xA, xM+, and xM−) to quantify the

Figure 1: Uniaxial SMA phase transitions.
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proportion of the material in each of the three phases. The equilibrium phase fraction depends on the Gibbs
energy

G(σ, ε, T ) = ψ(ε, T )− σε, (1)

where the Helmholtz energy

ψ(ε, T ) =



1
2EM (ε+ εT )

2
ε < −εM (T )

A(T )ε2 +B(T )ε+ C(T ) −εM (T ) ≤ ε < −εA(T )

1
2EAε

2 + ∆β(T ) |ε| ≤ εA(T )

A(T )ε2 −B(T )ε+ C(T ) εA(T ) < ε ≤ εM (T )

1
2EM (ε− εT )

2
ε > εM (T )

(2)

is represented using piecewise quadratic polynomials. The five polynomials correspond to the three phases
and the barriers between them. In (2), EA and EM are the elastic moduli of austenite and martensite,
respectively, and εT is the maximum recoverable strain. The temperature-dependent inflection points are
given by

εA(T ) =
σA(T )

EA

and

εM (T ) =
σM (T )

EM
+ εT

and represent the regions where each of phase is stable, as shown in Figure 2.
The critical transition stresses are given by

σA(T ) = σL + ∆σT (T − TL) (3)

and
σM (T ) = σA(T )− σR,

where σL is the transition stress from A to M+ at temperature TL, ∆σT is the hysteresis loop’s temperature-
dependence, and σR is the relative stress difference in loading and unloading. The parameters listed in Table 1
can be related to experimental data.

Figure 2: Relationship between the inflection points for austenite and martensite and the critical transition
stresses.
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Table 1: SMA model parameters in the Gibbs energy and likelihood relations.

Variable Description

EA Austenite elastic modulus

EM Martensite elastic modulus

σL Martensite transition stress at TL

TL Lower transition temperature

σR Stress hysteresis loop width

∆σT Hysteresis loop’s temperature dependence

εT Maximum recoverable strain

τ Relaxation time

V Layer volume

The unknown coefficients in (2) are found by ensuring C1 continuity, yielding

A(T ) =
EM (εT − εM (T )) + EAεA(T )

2 (εA(T )− εM (T ))
,

B(T ) =
εA(T ) (EA (εT − εM (T )) + EAεA(T ))

εA(T )− εM (T )
,

C(T ) =
2∆β(T ) (εA(T )− εM (T )) + εA(T )2 (EM (εT − εM (T )) + EAεM (T ))

2 (εA(T )− eεM (T ))
,

and

∆β(T ) =
1

2
(EM (εT − εA(T )) (εT − εM (T ))− EAεA(T )εM (T )) .

The evolution of the phase fractions is governed by the coupled differential equations

ẋM+(t) = −p+AxM+(t) + pA+xA(t)

ẋM−(t) = −p−AxM−(t) + pA−xA(t).
(4)

The final phase fraction is found from the conservation equation

1 = xA(t) + xM+(t) + xM−(t). (5)

In (4), pαβ is the likelihood of transition from phase α to β (α, β = M+,M−, and A). The transition
rates depend on the Gibbs energy and can be found using a number of methods. The original method
developed by Achenbach [1] and Müller and Seelecke [16] is based on statistical mechanics and the sampling
of the energy barriers by the equilibrium phases. Here, we assume that the transition rates depend on the
activation energy, or the barriers in the energy landscape. Using the activation energy ∆Gαβ , the transition
rate is

pαβ (σ, T ) =
1

τ
exp

(
−V∆Gαβ (σ, T )

kT

)
where k is Boltzmann’s constant.

The relaxation time τ and layer volume V must be identified using experimental data and can be included
in the optimization of model parameters. A schematic of the four barriers is shown in Figure 3 for a small
applied stress and low temperature. The barriers ∆Gαβ(σ, T ) are determined by finding the difference in
minima and maxima of the polynomials in (1). For example,

∆G−A (σ, T ) = G2 (σ, ε∗2, T )−G1 (σ, ε∗1, T ) ,

4



Figure 3: Gibbs energy landscape with barriers highlighted.

where ε∗2 and ε∗1 respectively solve

∂G2 (σ, ε, T )

∂ε
= 0,

∂G1 (σ, ε, T )

∂ε
= 0.

The strain for a lattice element,

ε(t) = xA(t)〈εA〉+ xM+(t)〈εM+〉+ xM−(t)〈εM−〉, (6)

depends on the phase fractions and their respective equilibrium strains. Assuming low thermal activation,
the equilibrium strains are given by

〈εA〉 =
σ(t)

EA
, 〈εM+〉 =

σ(t)

EM
+ εT , 〈εM−〉 =

σ(t)

EM
− εT .

The electrical resistance in SMA also depends on the phase fractions. In some applications, for example
a wire, the resistance is useful for self-sensing, where the measured resistance is used to predict the strain in
the wire [6–8]. As detailed in [6], the resistivity

ρsma(T ) = xA(t)ρA(T ) + [xM+(t) + xM−(T )]ρM (T )

depends on temperature, where the resistivity of each phase

ρA(T ) = ρ0A (1 + αA∆T ) (7)

ρM (T ) = ρ0M (1 + αM∆T ) (8)

includes a nominal resistivity ρ0β and the thermal dependence αβ . The total resistance in the wire,

Ω(T, ε) =
ρsma(T )L(ε)

A(εe)
, (9)

accounts for the change in length of the wire due to strain

L(ε) = L0 (1 + ε (t)) .

5



Additionally, the cross-sectional area

A(εe) = π (R0 (1− νεe))2
,

is corrected to account for elastic deformation, where the elastic strain is

εe = σ(t)

(
xM+(t)− xM−(t)

EM
+
xA(t)

EA

)
.

Here, L0 is the austenitic (zero strain) length of the wire, R0 is the nominal wire radius, and ν is Poisson’s
ratio. Similar to τ and V , the resistance model parameters (ρ0M , ρ0A, αM , αA and ν) must be estimated
from experimental data and can be included in the optimization scheme as well.

In addition to the phase fraction ODEs (4) and the constitutive relations (6) and (9), an internal energy
balance is necessary. The thermal evolution equation at the local level is

ρcvṪ (t) = −h (T (t)− T∞)− κ (T (t)− Te(t)) + j(t) + ρH (ẋM+(t) + ẋM−(t)) ,

where ρ is the SMA density, cv is the specific heat, h is the convective heat transfer coefficient with ambient air
temperature T∞, κ is the conduction coefficient with surrounding temperature Te, j(t) is the electrical input
power, and H is the latent heat associated with the phase transformations. Here, we are using experimental
data collected in a constant-temperature water bath and assume that the temperature change due to the
latent heats is negligible due to the presence of a large thermal mass (water); hence, the thermal evolution
equation is unnecessary.

The ODEs for the phase fractions (4) can be discretized and solved using an implicit Euler scheme. In
the discretized form, the phase fractions ~xk+1 = [xk+1

M+, x
k+1
M−]T , at time step k + 1, are given by

~xk+1 = ~xk + ∆t[A(tk+1)~xk+1 + b(tk+1)],

where

A
(
tk+1

)
=

[
−p+A

(
σk+1, T k+1

)
− pA+

(
σk+1, T k+1

)
−pA+

(
σk+1, T k+1

)
−pA−

(
σk+1, T k+1

)
−p−A

(
σk+1, T k+1

)
− pA−

(
σk+1, T k+1

)]

and

b
(
tk+1

)
=

[
pA+

(
σk+1, T k+1

)
pA−

(
σk+1, T k+1

)]
The initial condition for the phase fractions depends on the temperature and stress; however, initializing

experiments and simulations under zero stress simplifies the initial condition. At temperatures above the
austenitic start temperature of SMA, TAs , the initial phase fraction is assumed to be fully austenitic and
xM+(0) = xM−(0) = 0. The austenitic start temperature is the approximate temperature at which SMA
would transition to austenite under zero stress and is available from manufacturer data. The value can
also be determined experimentally by straining a wire and observing the temperature at which it begins to
contract under zero stress. At lower temperatures, experimental results have shown a propensity to exist
in the M+ phase, leading to a non-zero initial strain even after heating and cooling under zero stress [5].
This effect may be due to material inhomogeneities or the two-way shape memory effect. To quantify the
non-zero initial strain, the initial condition is based on this strain value. At low temperatures, the initial
strain is given by

xM+(0)εT − xM−(0)εT = ε(0).

Substituting in the conservation relation (5) and setting the xA fraction to zero yields

xM+(0) =
ε(0) + εT

2εT
, xM−(0) = 1− xM+(0).
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2.2 Homogenized Energy Model

The mesoscopic or lattice-level model quantifies the single crystal behavior of SMA by assuming uniform
properties and disregarding material and stress inhomogeneities; however, SMA is inherently polycrystalline.
The HEM quantifies the macroscopic behavior by assuming that the relative stress σR and interaction stress
σI are manifestations of underlying densities νR(σR) and νI(σI). The macroscopic strain includes these
effects and is given by

ε (σ(t), T (t)) =

∫ ∞
0

∫ ∞
−∞

νR(σR)νI(σI)ε (σ(t) + σI , T (t), σR) dσIdσR. (10)

The relative stress density changes the hysteresis loop width (the difference in the loading and unloading
stress, as shown in Figure 4(a)). However, all kernels switch from austenite to martensite at the same stress
(point A). The relative stress also affects the height of the barrier between M+ or M− and A in the Gibbs
energy landscape; see Figure 4(c).

The interaction stress density affects both loading (switching from austenite to martensite) and unloading
(switching from martensite to austenite). For a given temperature and applied stress, the interaction stress
density shifts the hysteresis loops up and down (Figure 4(b)), but all kernels have the same width and the
same parameters. As illustrated in Figure 4(d), this behavior corresponds to a tilt in the Gibbs energy since
the interaction stress changes the effective stress.

Both densities are necessary to accurately model the major loop and minor loop behavior. Without the
interaction density, all kernels switch from austenite to martensite at the same stress (between points A
and B in Figure 5(a)). The only changes occur on unloading as the material switches from martensite to
austenite (between points C and D in Figure 5(a)) over a range of stresses corresponding to the different
relative stresses.

Without the relative stress density, the minor loops will be anhysteretic, as illustrated in Figure 5(b).
The kernels begin switching from austenite to martensite at point A. If the stress is decreased from point
B to C, all of the kernels that switched to martensite will remain in martensite. Since all kernels have the
same relative stress σR, the stress will have to decrease to approximately point D before switching back to
austenite will occur. Therefore, a minor loop between points B and C will be anhysteretic (hysteresis-free),
which is contrary to the observed behavior.

The relative stress and interaction stress densities can take multiple forms, subject to certain conditions.
Both densities must be integrable. The relative stress density is defined only for σR > 0, since the switch from
austenite to martensite occurs at a higher stress than the reverse transition. Furthermore, the interaction
stress density is assumed to be symmetric. In [4], we compare two methods for representing the densities.
One method uses a log-normal probability density function for νR(σR) and a normal density for νI(σI). The
other method uses a linear combination of underlying log-normal and normal probability density functions.
Here, we use the second method as it provides greater flexibility and accuracy. The two densities are then
expressed as

νR(σR) =
1

C1

Mα∑
m=1

Kα∑
k=1

αk,mφk,m (σR) C1 =

Mα∑
m=1

Kα∑
k=1

αk,m (11)

and

νI(σI) =
1

C2

Kβ∑
k=1

βkψk (σI) C2 =

Kβ∑
k=1

βk, (12)

where the coefficients αk,m and βk are identified by optimizing the model response to observed experimental
data. The coefficients C1 and C2 ensure that the densities integrate to unity. The basis functions φk,m (σR)
and ψk (σI) are given by

φk,m (σR) =
1

ckσR
√

2π
exp

(
−[ln (σR)− µRm ]2/2c2k

)
(13)
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and

ψk (σI) =
1

bk
√

2π
exp

(
−σ2

I/2b
2
k

)
. (14)

Initial estimates for the relative stress log-normal mean µR and standard deviation c and interaction stress
standard deviation b are obtained from experimental data. The initial estimates are then perturbed to
obtain the desired basis function parameters µRm , ck and bk. For example, after estimating the standard
deviation for the interaction stress, b, four additional basis function are created to have standard deviations of
0.25b, 0.5b, 2b, and 4b. The parameters µRm and ck are perturbed in a similar manner about experimentally-
determined value of µR and c.

The macroscopic model (10) is integrated using 4-point Gaussian quadrature on 20 equal intervals. The
discretized model is evaluated using

ε (σ(t), T (t)) =

Ni∑
i=1

Nj∑
j=1

νR (σRi) νI
(
σIj
)
ε
(
σ(t) + σIj , T (t), σRi

)
wiwj , (15)

where the weights wi and wj are determined by Gaussian quadrature. The summations in (15) are easily

(a) (b)

(c) (d)

Figure 4: Homogenenized energy model kernels for different values of (a) σR and (b) σI . Gibb’s energy
landscape for different values of (c) σR and (d) σI .
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(a) (b)

Figure 5: Hysteresis behavior when (a) νR(σR) is distributed but νI(σI) is constant, and (b) νI(σI) is
distributed but νR(σR) is constant.

represented as matrix multiplications, increasing the computational efficiency of the model. In matrix form,
the discrete model is

ε(σ(t), T (t)) = V TΓW,

where

V T =
1

d1
[w1νR(σR1

), · · · , wNiνR(σRNi )]

and

WT =
1

d2
[w1νI(σI1), · · · , wNjνI(σINj )]

incorporate the quadrature weights and densities evaluated at the quadrature points. The matrix

[Γ]ij = ε
(
σ(t) + σIj , T (t), σRi

)
is the strain kernel evaluated at the quadrature points.

3 Data-driven Techniques to Determine Initial Parameter Esti-
mates

3.1 Mesoscopic Model Parameters

One of the advantages of the homogenized energy model is that the model parameters listed in Table 1 can
be related directly to experimental data. Stress, strain, resistance, and temperature data can be used to
estimate these parameters. These estimates can either be used directly as the model parameters or as initial
estimates for optimization algorithms. Accurate initial parameter estimates greatly enhance optimization
convergence. Furthermore, accurate initial conditions may help overcome the likelihood of converging to
local minima instead of the global minimum.

Many of the parameters can be directly estimated from stress-strain or resistance-strain data. For ex-
ample, the elastic moduli EA and EM are determined from high temperature (above the austenite start
temperature TAS ) stress-strain data, as shown in Figure 6. The austenitic elastic modulus EA is the slope
of the stress-strain curve as the SMA wire is initially loaded (line ab in Figure 6) . The martensitic elastic

9



Figure 6: Relationship between the stress-strain response of SMA and model parameters EA (line ab), EM
(line cd), and εT (point e).

modulus is the slope of the stress-strain curve at high stresses during unloading (line cd in Figure 6). The
maximum recoverable strain εT is the intersection of cd with the zero stress axis (point e in Figure 6).

The stress-strain hysteresis loop is temperature-dependent and satisfies the relation

σA = σL + ∆σT (T (t)− TL) ,

where σA is the transition stress from austenite to martensite. The transition stress σL and TL are coupled
and not unique. Therefore, the values can be determined from the stress-strain response above TAS , as
depicted in Figure 7. At a given temperature TL = T1, σL is the stress at the midpoint of the transition
from austenite to martensite (point f in Figure 7). The transition stress from austenite to martensite varies
linearly with temperature based on ∆σT . An initial estimate for ∆σT is determined from the stress-strain
response at two different temperatures. Given the stress at points f and g in Figure 7, it follows that

∆σT =
σg − σf
T2 − T1

. (16)

The relaxation time τ and volume layer V are determined from creep data. Creep data is obtained by
quickly loading the SMA to a specified strain ε̂1 and then holding the strain constant (point a to point b in
Figure 8(a)). While the strain is held constant at ε̂1, the stress decreases (Figure 8(c)) as austenite converts

to M+; see Figure 8(d). Alternatively, the SMA can be loaded to a specified stress (̂σ) while the strain is
monitored.

Assuming that during relaxation, the phase fraction transitions from A to M+ only, the phase fraction
ODE (4) reduces to

ẋM+(t) = pA+ (σ, T )xA(t) = pA+ (σ, T ) (1− xM+(t)) . (17)

Neglecting interaction and material inhomogeneity effects and assuming t0 = 0 and xM+(t0) = xM+0
, the

analytical solution to (17) is

xM+(t) = (xM+0
+ 1) exp (pA+ (σ, T ) t)− 1. (18)

In (18), the transition rate pA+ (σ, T ) depends on the the stress; however, it is assumed that at strains near
the maximum recoverable strain εT the energy barrier ∆GA+ (σ, T ) has been eliminated, yielding

pA+ (σ, T ) =
1

τ
exp

(
−V∆GA+ (σ, T )

kbT

)
=

1

τ
. (19)
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The assumption that the energy barrier is zero eliminates the stress dependence and the volume layer V ,
leaving the unknown model parameter τ . As shown in Figure 9, as the material begins switching from A to
M+ (point a), the energy barrier is large and its effect on the transition rate cannot be neglected. However,
at strains near εT (point b), the energy barrier is nearly eliminated. Furthermore, we note that

V

kbT
<< 1,

providing further justification for the assumption

exp

(
−V∆GA+ (σ, T )

kT

)
≈ 1

at strains near εT . Rate effects in this region are attributed solely to the relaxation time τ .
Using the measured creep data, we assume that the decay in stress is proportional to the decay in

austenite (or the increase in M+ since the ODEs are developed using M+ and M−). Letting d1 and d2

denote the change in stress shown in Figure 10(a) and using the assumption that the decay rate for stress is
equal to the increase in M+, we obtain

xM+(t2)− xM+(t3)

xM+(t1)− xM+(t2)
=
σ3 − σ2

σ2 − σ1
=
d2

d1
. (20)

Assuming constant time steps ∆t and using (18), Equation (20) simplifies to

exp (−2 ·∆t · pA+ (σ, T ))− exp (−3 ·∆t · pA+ (σ, T ))

exp (−∆t · pA+ (σ, T ))− exp (−2 ·∆t · pA+ (σ, T ))
=
d2

d1
. (21)

Solving for pA+ (σ, T ) yields

pA+ (σ, T ) =
1

∆t
ln

(
d1

d2

)
.

Substituting the simplified transition likelihood (19) gives

1

τ
=

1

∆t
ln

(
d1

d2

)
. (22)

Figure 7: Relationship between the stress-strain response of SMA and model parameters σL (point f), TL
(temperature corresponding to stress at point f), and ∆σT (change in stress observed between f and g over
change in temperature T2 - T1).
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(a) (b)

(c) (d)

Figure 8: Creep data used to obtain estimates of τ and V : (a) strain input (constant from a to b); (b)
resulting stress-strain response; (c) stress decay from a to b as strain is held constant; (d) assumed increase
in M+ phase fraction as strain is held constant.

After solving for τ , creep data at a lower strain (point a in Figure 9(a)) is used to determine the volume
layer V . The same process is used, except

pA+ (σ, T ) =
1

τ
exp

(
−V∆GA+ (σ, T )

kbT

)
=

1

∆t
ln

(
d1

d2

)
(23)

is solved for V . The barrier ∆GA+ (σ, T ) depends on the stress; however, (23) is derived assuming the stress
is constant over this interval, which is not the case. The stress at the midpoint can be used or Equation (21)
can be solved for V using the stresses at t1, t2, and t3.

The resistance model parameters for martensite are estimated using the measured resistance at different
low temperatures. At low temperatures, the equilibrium phase is M+ after loading and unloading. At this
point (a strain of εT and point a in Figure 11(a)), effects of αM and ν are negated. The resistivity is

ρM0 =
ΩaπR

2
0

L(εea)
, (24)
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where Ωa is the measured resistance and R0 is the SMA radius. The Poisson’s ratio is calculated using the
low-temperature resistance at two different strains and by solving

Ωb − Ωb = ρM0

(
L (εeb)

π (R0 −R0νεb)
2 −

L (εea)

πR2
0

)
(25)

for ν. The austenite nominal resistivity is determined using high-temperature resistance strain data shown

(a) (b)

Figure 9: (a) High-temperature response of SMA during loading using τ = 0.1 s and V = 5× 10−23 m3; (b)
energy barrier between A and M+ during loading.

(a) (b)

Figure 10: Estimation of τ : (a) stress decay during creep and change in stress d1 and d2 over equal time
intervals; (b) corresponding increase in M+ phase fraction during creep.
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(a) (b)

Figure 11: Estimation of resistance model parameters: (a) ρM0 is estimated from the resistance at point
a and ν estimated using the change in resistance between points b and a; (b) ρA0 using high-temperature
resistance-strain data (point c).

in Figure 11. Using the resistance at zero strain, the resistivity is

ρA0 =
ΩcπR

2
0

L (εec)
. (26)

Note that this calculation assumes that the temperature dependence is based on a different nominal tem-
perature than the martensite dependence.

As shown in Figure 12, the temperature dependence of the resistivities αM and αA can be found by
varying the temperature under zero stress. After loading and unloading at low temperatures, the wire will
be in M+. As the temperature rises, the resistance (and resistivity) rises due to αM . Near the austenite start
temperature, the resistance drops, due to the lower resistivity of austenite. Further increases in temperature
lead to increases in resistance due to αA. Using the points indicated in Figure 12(a), we obtain

αM =
Ω2A(εe)/L(εe)− Ω1A(εe)/L(εe)

T2 − T1
(27)

and

αA =
Ω4A(εe)/L(εe)− Ω3A(εe)/L(εe)

T4 − T3
. (28)

Alternatively, αM and αA can be identified using experimental resistance-strain data at two different
temperatures after identifying ρM0, ρA0, and ν. For example, the measured resistance at d and e in Fig-
ure 12(b) can be used to find αA using (7). Similarly, the measured resistance at f and g can be used to
find αM using (8).

3.2 Homogenized Energy Model Parameters

An initial estimate for the interaction stress standard deviation b is obtained from high-temperature stress-
strain data. As shown in Figure 5(b), the interaction stress causes the material to switch from A to M+
over a range of stresses instead of at σA. Using this range of stress and assuming a normal distribution,
approximately 95% of the kernels switch from A to M+ between σA − 2b and σA + 2b. Note that σA is

14



determined from (3) after estimating σL, TL, and ∆σT . Switching from A to M+ begins where the stress-
strain response deviates from elastic loading along EA and ends where the material elastically deforms along
EM ; see Figure 13. After estimating the interaction stress standard deviation, the interaction stress density
kernels (14) are initialized with multiples of b, yielding the desired number of bk.

Using the switching region identified in Figure 13, the parameters for the relative stress density νR(σR)
can be estimated using characteristics of log-normal densities [18]. The hysteresis loop width σR is estimated
using the difference in loading and unloading at the midpoint of the major loop (σA on loading), as shown
Figure 14. Assuming this value is the mode, the log-normal density mean is given by

µR = ln (σR) . (29)

(a) (b)

Figure 12: Estimation of αM and αA using resistance-temperature data: (a) resistance-temperature data at
zero stress; (b) resistance-strain data at two different temperatures (points d and e for αA and points f and
g for αM ).

Figure 13: Relationship between the stress-strain response of SMA and the initial estimate for the interaction
stress standard deviation b.
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On unloading, switching ends when νI(σI) stops intersecting with νR(σR) at the 95.4% confidence interval.
Using this assumption and identifying the end of switching (σF in Figure 14), the standard deviation is

c =
1

2
(ln (σF − 2b)− µR) . (30)

The relative stress density basis functions (13) are initialized with multiples of the macroscopic estimate for
the log-normal mean µR and standard deviation c, which yields the desired values for µRm and ck.

An alternative method to identify the density parameters is to fit a log-normal and normal density directly
to the experimental data. After identifying σA and the switching region in Figure 13, the interaction stress
standard deviation is

b =

√√√√ 1

Nk − 1

Nk∑
k

(σ̂k − σA)
2
, (31)

where σ̂k is the experimentally measured stress within the switching region.
The experimentally observed relative stress

σ̂kR = σ̂kA − σ̂kM

is estimated at each measured strain ε̂k by taking the difference in the loading stress σ̂kA and unloading
stress σ̂kM . This method determines the experimentally observed relative stress throughout the entire major
loop, as shown in Figure 15. Using this collection of estimates, the mean E

(
σ̂kR
)

and variance Var
(
σ̂kR
)

are
calculated. Again using the characteristics of log-normal distributions, the density parameters are given by

µR = ln
(
E
(
σ̂kR
))
− 1

2
ln

(
1 +

Var
(
σ̂kR
)

E
(
σ̂kR
)2
)

(32)

and

c2 = ln

(
1 +

Var
(
σ̂kR
)

E
(
σ̂kR
)2
)
. (33)

The methods for estimating the model parameters are summarized in Table 2. The methods described
in this section and in Table 2 are not the only ways to identify the parameters. The parameters may be

Figure 14: Relationship between the stress-strain response of SMA and the initial estimate for the relative
stress σ̂R and final switching stress σF .
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Figure 15: Relationship between the stress-strain response of SMA and the initial estimate for the relative
stress σR.

estimated using a variety of tests; however, the summary presented in Table 2 attempts to minimize the
experiments necessary to identify the parameters. Using these techniques requires five experiments, listed in
Table 3. If a resistance model is unnecessary, then only four experiments are required.

4 Parameter Optimization

Two different optimization cases are presented and compared. In one case, only the densities νR(σR) and
νI(σI) are optimized while the model parameters are considered constants identified from the experimen-
tal data. In the second case, the model parameters are considered initial estimates and included in the
optimization algorithm with the densities. Both cases uses MATLAB’s lsqnonlin algorithm.

4.1 Densities Only

Optimizing the density functions (11) and (12) involves finding the coefficients αk,m and βk that minimize
the sum of squared errors

F (~q) =
1

2

Nk∑
k=1

e
(
tk
)2

=
1

2

Nk∑
k=1

(
ε̂k − ε

(
σ
(
tk
)
, T
(
tk
)))2

.

(34)

between the measured strain ε̂k and predicted strain ε
(
σ
(
tk
)
, T
(
tk
))

, where the design variables are

~q = [α1, · · · , αKα,Mα
, β1, · · · , βKβ ]T .

The analytical Jacobian is derived to decrease computational time for the optimization algorithm, as nu-
merical approximations of the Jacobian require additional function evaluations and decreases accuracy. The
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Table 2: Data-driven techniques to determine initial parameter estimates.

Parameter Data Source

EA Stress-strain data above TAS Slope of the high-temperature stress-strain response
at small strain values; slope of line ab in Fig. 6.

EM Stress-strain data above TAS Slope of the high-temperature stress-strain response
at high strain values; slope of line cd in Fig. 6.

εT Stress-strain data above TAS Intersection of the high-temperature martensite
load-line with the zero-stress axis; point e in Fig. 6.

σL Stress-strain data above TAS Stress midpoint of a high-temperature major loop;
point f in Fig. 7.

TL Stress-strain data above TAS Temperature at which σL is estimated.

∆σT Stress-strain data at two differ-
ent temperatures above TAS

Difference in the midpoint of the major loops at two
different temperatures; Eqn. (16).

τ Creep data above TAS at a fixed
strain near εT

Eqn. (22).

V Creep data above TAS at a fixed
strain near 1%

Eqn. (23).

b Stress-strain data above TAS Determine the 95% confidence interval over which
switching occurs (Fig. 13) and set equal to σA ± 2b
or fit an estimate for a normal density to the exper-
imental data (Eqn. (31)).

µR Stress-strain data above TAS Estimate the difference in loading and unloading at
the midpoint of the major loop (Eqn. (29)) or fit a
log-normal density to the experimental data using
the mean and variance (Eqn. (32)).

c Stress-strain data above TAS Determined from the 95% confidence interval when
νR(σR) and νI(σI) stop interacting on unloading
(Eqn. (30)) or fit a log-normal density to the
experimental data using the mean and variance
(Eqn. (33)).

ρM0 Resistance at a low temperature
and εT

Eqn. (24)

ρA0 Resistance at a high temperature
and zero strain

Eqn. (26)

αM Resistance-temperature data at
low temperatures and zero stress
or resistance-strain data at two
temperatures

Fig. 12(a) and Eqn. (27) or Fig. 12(b)

αA Resistance-temperature data at
low temperatures and zero stress
or resistance-strain data at two
temperatures

Fig. 12(a) and Eqn. (28) or Fig. 12(b)

ν Resistance-strain data at low
temperature

Solve Eqn. (25)
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Table 3: Ideal experiments for identifying model parameters.

Description

Stress-resistance-strain data at temperature T1 > TAs with full major loop.

Stress-resistance-strain data at temperature T2 > T1 with full major loop.

Creep data at temperature T > TAs and ε ≈ εT : quickly load the wire to approximately εT and
then hold constant while recording stress.

Creep data at temperature T > TAs and ε ≈ 1%.

Resistance-strain data at temperature T3 < TAs : heat the wire under zero stress and then cool;
load to fully M+ and then unload.

Jacobian corresponding to (34) is given by

J =


∂e(t1)
∂α1,1

· · · ∂e(t1)
∂αKα,Mα

∂e(t1)
∂β1

· · · ∂e(t1)
∂βKβ

...
. . .

...
...

. . .
...

∂e(tNk )
∂α1,1

· · · ∂e(tNk )
∂αKα,Mα

∂e(tNk )
∂β1

· · · ∂e(tNk )
∂βKβ

 .
where

∂e(tk)

∂αm
=

Ni∑
i=1

Nj∑
j=1

(
− φm (σRi) νI

(
σIj
)
ε
(
σ(tk) + σIj , T (tk), σRi

)
wiwj +

1∑
l αl

ε
(
σ(tk), T (tk)

) )
(35)

∂e(tk)

∂βm
=

Ni∑
i=1

Nj∑
j=1

(
− νR (σRi)ψm

(
σIj
)
ε
(
σ(tk) + σIj , T (tk), σRi

)
wiwj +

1∑
l βl

ε
(
σ(tk), T (tk)

) )
. (36)

4.2 Densities and Model Parameters

Optimizing the densities and model parameters involves two minimization routines. In the first step, the
sum of squared errors

F (~qε) =
1

2

Nk∑
k=1

eε
(
tk
)2

=
1

2

Nk∑
k=1

(
ε̂k − ε

(
σ(tk), T (tk)

) )2

(37)

between the measured strain and predicted strain is minimized. Here the design variables are

~qε = [α1,1, · · · , αKα,Mα , β1, · · · , βKβ , EA, EM , σL,∆σT , εT , τ, V ]T .

Note that we do not include the transition temperature TL due to its coupling with σL. The determination
of only one of the two is necessary.

In the second step, the sum of squared errors

F (~qΩ) =
1

2

Nk∑
k=1

eΩ

(
tk
)2

=
1

2

Nk∑
k=1

(
Ω̂k − Ω

(
σ(tk), T (tk)

) )2

(38)

between the measured resistance Ω̂k and the predicted resistance Ω
(
σ(tk), T (tk)

)
is minimized. The design

variables in this step are
~qΩ = [ρ0A, ρ0M , αA, αM , ν]T .
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Again, the analytical Jacobian is derived to decrease computation time. The partial derivatives corre-
sponding to (37) and (38) are given

∂eε(t
k)

∂αm
: See Equation (35) (39)

∂eε(t
k)

∂βm
: See Equation (36) (40)

∂eε(t
k)

∂EA
=
xA(tk)σ(tk)

E2
A

(41)

∂eε(t
k)

∂EM
= σ(tk)

xM+(tk) + xM−(tk)

E2
M

(42)

∂eε(t
k)

∂σL
= −∂xM+

∂σL

(
σ(tk)

EM
− σ(tk)

EA
+ εT

)
− ∂xM−

∂σL

(
σ(tk)

EM
− σ(tk)

EA
− εT

)
(43)

∂eε(t
k)

∂∆σT
= −∂xM+

∂∆σT

(
σ(tk)

EM
− σ(tk)

EA
+ εT

)
− ∂xM−
∂∆σT

(
σ(tk)

EM
− σ(tk)

EA
− εT

)
(44)

∂eε(t
k)

∂εT
= xM+(tk)− xM−(tk). (45)

∂eε(t
k)

∂τx
= −∂xM+

∂τ

(
σ(tk)

EM
− σ(tk)

EA
+ εT

)
− ∂xM−

∂τ

(
σ(tk)

EM
− σ(tk)

EA
− εT

)
(46)

∂eε(t
k)

∂V
= −∂xM+

∂V

(
σ(tk)

EM
− σ(tk)

EA
+ εT

)
− ∂xM−

∂V

(
σ(tk)

EM
− σ(tk)

EA
− εT

)
(47)

∂eΩ(tk)

∂ρ0A
= − L (εe)

A (ε(tk))
xA(tk)

(
1 + αA∆T (tk)

)
(48)

∂eΩ(tk)

∂ρ0M
= − L (εe)

A (ε(tk))

(
xM+(tk) + xM−(tk)

) (
1 + αM∆T (tk)

)
(49)

∂eΩ(tk)

∂αA
= − L (εe)

A (ε(tk))
xA(tk)ρ0A∆T (50)

∂eΩ(tk)

∂αM
= − L (εe)

A (ε(tk))

(
xM+(tk) + xM−(tk)

)
ρ0M∆T (tk) (51)

∂eΩ(tk)

∂ν
= −2L (εe) ρsma(tk)εe(t

k)

πR2
0 (1− νεe(tk))

3 (52)

The partial derivatives of the phase fractions with respect to σL, ∆σT , τ , and V are found by differenti-
ating the phase fraction evolution ODEs (4) and switching the order of the derivative, yielding

d
dt
∂xM+(t)

∂γ = −∂p+A∂γ xM+(t)− p+A
∂xM+(t)

∂γ + ∂pA+

∂γ xA(t)− pA+

(
∂xM+(t)

∂γ + ∂xM−(t)
∂γ

)
d
dt
∂xM−(t)

∂γ = −∂p−A∂γ xM−(t)− p+A
∂xM−(t)

∂γ + ∂pA−
∂γ xA(t)− pA−

(
∂xM+(t)

∂γ + ∂xM−(t)
∂γ

)
.

(53)

where γ = σL, ∆σT , τ , and V . The derivatives of the transition rates are

∂pαβ
∂τ

= −1

τ
pαβ ,
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∂pαβ
∂V

= −∆Gαβ
kbT (t)

pαβ ,

∂pαβ
∂σL

= − V

kbT (t)
pαβ

∂∆Gαβ
∂σL

,

and
∂pαβ
∂∆σT

= − V

kbT (t)
pαβ

∂∆Gαβ
∂∆σT

.

The Gibbs energy derivatives
∂∆Gαβ
∂σL

and
∂∆Gαβ
∂∆σT

are found by differentiating (1). Finally, the partial deriva-
tives of the phase fractions are found by integrating (53).

5 Experimental Setup

As shown in Figure 16, the SMA experiments were conducted in a temperature-controlled water bath to
ensure constant temperature conditions. The water temperature was regulated using a heating element. A
low-temperature FLEXINOL wire (TAs = 343 K, diameter = 0.005 in. (0.127 mm), Dynalloy Inc., Tustin,
CA) was used. The displacement of one end of the wire was controlled with a Micro-Drives motor and BOP
20-10m operational power supply (Kepco Inc., Flushing, NY) and measured with a mDMS-D170 infrared
displacement sensor (Philtec Inc., Annapolis, MD). For resistance measurements, leads were connected to the
wire and a small current (50 mA) was applied using a 6454A operational power supply (Agilent Technologies,
Santa Clara, CA). The voltage was monitored in order to determine the resistance, and the force in the SMA
wire was measured using a MLP-10 load cell (Transducer Techniques, Temecula, CA).

The experiments were conducted over a range of temperatures: 308, 318, 328, 338, 343, 348, 353, and
358 K. The zero-strain lengths in the wire were determined from its austenitic length. At temperatures above
343 K (the austenitic start temperature), the zero-strain length corresponds to the point where a force in the
wire is initially detected. The length at 343 K is used for all tests below this temperature, as the wire can
exist in a blend of all three phases below the austenitic start temperature due to material inhomogeneities.
A specific procedure described below was followed for each test to ensure a known initial condition.

1. Heat the wire to 358 K and strain it to 3.5% strain. Apply 0.6 A current and measure the force (F0).

2. Set the desired water temperature.

Figure 16: Experimental setup.
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3. Displace the wire to 3.5%. Increase the current in the wire using the Agilent power supply until the
force equals the force achieved in the 358 K wire at 3.5% and 0.6 A (F0). Maintain this current while
the displacement is adjusted to the zero-strain length.

4. Set the current to zero and let the wire cool for 3 minutes while the water is stirred to reach equilibrium.

5. Strain the wire to 7.0% and back to 0.0%.

6. Repeat steps 2-5 three times.

7. Go to the next temperature, starting with step 2.

6 Model Validation Results

6.1 Estimation of Model Parameters

Initial estimates of the model parameters are obtained using the techniques described in Section 3. The
experimental stress-strain data at two different temperatures is shown in Figure 17(a) and the creep data at
two different strain values is shown in Figure 17(b). The resistance-strain data used to estimate ρM0 and ν
is shown in Figure 17(c), and the data used to estimate ρA0 is shown in Figure 17(d). The resistance-strain
data at two temperatures is shown in Figure 17(e) and used to estimate αM . An initial estimate for αA
could not be obtained due to a decrease in resistance as temperature increased, as shown in Figure 17(f).
This phenomenon is likely due to more of the wire converting to austenite as the temperature increases and
the fact that the nominal resistivity of austenite is lower than martensite. Therefore, the estimate for αM is
used for αA. The initial estimates for all the model parameters are listed in Table 6.

Two of the parameter estimates listed in Table 6 deviate from expected and published values. The
austenitic elastic modulus is considerably lower than other published values (70 GPa). The lower value may
be due to compliance in the experimental setup or slipping of the wire. Additionally, the Poisson’s ratio is
approximately twice the value expected for the material. This may be due to error in measuring resistance
or the power supply leads being affected during loading.

Initial estimates for the relative and interaction stress densities are found by determining the experimental
mean and standard deviations for the relative stress, 148.1 MPa and 30.5 MPa, respectively, and standard
deviation for the interaction stress, 35.4 MPa. The relative stress parameters are then converted to log-
normal form using (32) and (33). This method is used because it was found that it produces a better fit
versus estimating the parameters using the 95.4% confidence intervals (Figures 13 and 14). The relative
stress and interaction stress densities at 353 K are shown in Figure 18.

6.2 Densities Only

The parameters for the density basis functions (13) and (14) are chosen a priori using the initial estimates for
the relative stress mean and standard deviation. Three different values for the mean µRm are used: E

(
σ̂kR
)

and E
(
σ̂kR
)
± 75MPa. Two different values for the standard deviation ck are used: the initial estimate (30.5

MPa) and five times this value (152.5 MPa). A combination of these values produces six basis functions for
the relative stress density νR(σR). The basis functions for the interaction stress density are parameterized
with five different values: 0.25b, 0.5b, b, 2b, and 4b.

The stress-strain data at 338 and 353 K is used to optimize the density coefficients αk,m and βk. The
experimental data at 338 K is used instead of the lowest temperature data (308 K) due to the two-way shape
memory effect seen in the FLEXINOL wires [5]. Since the model does not currently quantify this effect, the
experimental data immediately below the austenitic start temperature is used.

Comparisons between the experimental stress-strain data and the model are shown in Figure 19, and
comparisons between the experimental resistance-strain data and the model are shown in Figure 20. The fit
model (338 and 353 K) is shown in Figures 19(a) and (b). All other results (308, 328, 343, and 348 K) are
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predicted model results, including all the resistance-strain plots in Figure 20. The final cost (sum of squared
error) for the fit model is 0.0422 (or a mean squared error of 3.01× 10−5).

(a) (b) (c)

(d) (e) (f)

Figure 17: Identification of model parameters: (a) stress-strain data at 348 K and 358 K; (b) creep data at
5.0% and 2.0% strain; (c) low-temperature resistance-strain data for estimating ρM0 (point A) and ν (change
over A to B); (d) high-temperature resistance-strain data for estimating ρA0 (point C); (e) resistance-strain
data at two temperatures for estimating αM ; (f) resistance-strain data at two temperatures in the austenitic
regime.

(a) (b)

Figure 18: Identification of density parameters: (a) distribution of experimental relative stress; (b) distribu-
tion of experimental interaction stress.
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(a) (b) (c)

(d) (e) (f)

Figure 19: Stress versus strain results for optimized densities and model parameters: Comparison between
model fit and experimental data at (a) 338 K and (b) 353 K; Comparison between model prediction and
experimental data at (c) 308 K, (d) 328 K, (e) 343 K, and (f) 348 K.

Figures 19 and 20 reveal a number of interesting results. As expected, the model fails to accurately
quantify the lowest temperature (308 K) response shown in Figure 19(c), where the material is undergoing
a transition from a blend of M+/M− to M+. The model predicts a much higher transition stress than
observed in experimental data. While the data is not used in the optimization algorithm, it is worth noting,
that the lowest temperature data has the highest mean squared error (MSE): 2.72×10−4. The other predicted
model results (328, 343, and 348 K) have a MSE on the order of the fit model: 5.23× 10−5, 2.24× 10−5, and
2.71 × 10−5, respectively. These results indicate the model is accurately quantifying the material behavior
without over-fitting the data.

The resistance-strain data in Figure 20 shows that the model matches the experimental data best at
high temperatures; see Figures 20(b), (c), and (f). As actuators operate at higher temperatures (in order to
recover strain above TAs) the results indicate that the model may be suitable for self-sensing applications,
where the resistance in the wire is used to predict strain [7,8]. However, operating in low temperatures may
be problematic for these applications, as multiple strain values correspond to a single resistance measurement
(strains below 2% in Figures 20(c) and (d)).

The optimal density coefficients are listed in Tables 4 and 5, and the corresponding densities are shown
in Figure 21. The relative stress density is shown in Figure 21(a), and the interaction stress density is shown
in Figure 21(b). The optimal density coefficients reveal that the polycrystalline behavior is largely modeled
using the interaction stress. The highest coefficient is on the largest standard deviation (141.60 MPa). The
model averages the transition behavior without exactly quantifying the transition stresses. As shown in the
high temperature stress-strain results (Figures 19(b), (e), and (f)), the model matches the midpoints of the
loading and unloading curves, but fails to quantify the initial and final transition points (around 1% and
4% strain in the figures). This discrepancy is likely due to errors in the initial estimates of the other model
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(a) (b) (c)

(d) (e) (f)

Figure 20: Resistance versus strain results for optimized densities: Comparison between model fit and
experimental data at (a) 338 K and (b) 353 K; Comparison between model prediction and experimental data
at (c) 308 K, (d) 328 K, (e) 343 K, and (f) 348 K.

(a) (b)

Figure 21: Optimized densities: (a) relative stress density νR(σR); (b) interaction stress density νI(σI).

parameters, which motivates the need for optimizing these estimates.
The kernel number does not affect the computational efficiency of the model, since the densities and

quadrature weights can be pre-computed once the optimal densities are known; however, the optimal coeffi-
cients listed in Tables 4 and 5 reveal that some of the kernels are unnecessary. The kernels with coefficients
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Table 4: Optimized coefficients and parameters for νR(σR) for optimization of the densities only.

m k αk,m µRm ck

1 1 0.000 18.03 0.159

1 2 0.004 17.80 0.621

2 1 0.324 18.79 0.041

2 2 0.035 18.72 0.191

3 1 0.000 19.22 0.019

3 2 0.636 19.18 0.089

Table 5: Optimized coefficients and parameters for νI(σI) for optimization of the densities only.

k βk bk (MPa)

1 0.000 8.85

2 0.000 17.70

3 0.329 35.40

4 0.002 70.80

5 0.669 141.60

less than 0.005 can be neglected. Alternatively, the kernels with large optimal coefficients can be perturbed
to create new kernels, and the optimization algorithm can be run again.

6.3 Densities and Model Parameters

For the optimization of the densities and model parameters, the same density basis functions are used; the
values for µRm and ck listed in Table 4 and the bk values listed in Table 5. Since the strain model and
resistance model parameters are optimized, both the stress-strain data and resistance-strain data at 338 K
and 353 K are used. The stress-strain model parameters and densities are optimized first. Using the optimal
values for the strain model, the resistance model parameters are optimized next.

Comparisons between the model and experimental data are shown in Figures 22 and 23. The fit model
(338 and 353 K) is shown in Figures 22(a) and (b) and Figures 23(a) and (b). The other figures compare the
predicted model to the experimental data. The final sum of squared errors for the stress-strain optimization
is 0.0060 (or a MSE of 4.29×10−6). The sum of squared errors for the optimization of the densities and model
parameters is 85% lower than optimization of the densities only. A comparison of Figures 19(a) and (b) and
Figures 22 (a) and (b) reveals that optimizing the model parameters allows the model to accurately capture
the initial and final transition regions from austenite to martensite, instead of averaging the response.

Even optimizing the model parameters fails to quantify the low-temperature stress-strain response shown
in Figure 22(d). The MSE for the 308 K data is 2.55×10−4, similar to the results for optimizing densities only.
The predicted model MSEs compare favorably to the optimization of densities only: 9.53×10−5, 1.56×10−5,
and 2.22×10−5 for 328, 343, and 343 K, respectively. Whereas the fit model MSE is significantly lower for the
optimization of densities and model parameters, the predicted model MSEs are the same order of magnitude
as the optimization of densities only, suggesting that the initial estimates for the model parameters are
accurate. The optimized model parameters are listed in Table 6 along with the initial estimates.

The optimal density coefficients are listed in Tables 7 and 8. The corresponding densities are shown in
Figures 24(a) and (b). Comparing these densities to the previous ones (Figure 21) indicates that the standard
deviations for the overall densities are lower, especially for the interaction stress density. Optimizing all the
parameters reduces the reliance on the interaction stress density for modeling the polycrystalline behavior.
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(a) (b) (c)

(d) (e) (f)

Figure 22: Stress versus strain results for optimized densities and model parameters: Comparison between
model fit and experimental data at (a) 338 K and (b) 353 K; Comparison between model prediction and
experimental data at (c) 308 K, (d) 328 K, (e) 343 K, and (f) 348 K.

Table 6: Comparison between initial estimates of SMA model parameters and optimal values.

Variable Initial estimate Optimal value Units

EA 35.0 35.0 GPa

EM 28.0 27.2 GPa

σL 275 295 MPa

∆σT 10 9.2 MPa/K

εT 4.6 4.44 %

τ 1.09 1.78 s

V 8.0×10−26 9.5×10−26 m3

ρ0A 8.8× 10−7 8.9×10−7 Ohm-m

ρ0M 10.7× 10−7 10.7×10−7 Ohm-m

αA 0.0003 0.0001 Ohm-m/K

αM 0.0003 0.0001 Ohm-m/K

ν 0.67 0.8 -

It is worth noting that even optimizing the model on the 308 K data fails to quantify the behavior
observed experimentally. Using the low-temperature data in the optimization algorithm produces a MSE of
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(a) (b) (c)

(d) (e) (f)

Figure 23: Resistance versus strain results for optimized densities and model parameters: Comparison
between model fit and experimental data at (a) 338 K and (b) 353 K; Comparison between model prediction
and experimental data at (c) 308 K, (d) 328 K, (e) 343 K, and (f) 348 K.

(a) (b)

Figure 24: Optimized densities: (a) relative stress density ν1(σR); (b) interaction stress density ν2(σI) .

1.62× 10−4. This value is lower than the 308 K MSE when the optimization uses the 338 and 353 K data,
but it is still an order of magnitude higher than the high-temperature data. Additionally, the MSEs for the
other temperatures increase.
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Table 7: Optimized coefficients and parameters for νR(σR) for optimization of the densities and model
parameters.

m k αk,m µRm ck

1 1 0.010 18.03 0.159

1 2 0.019 17.80 0.621

2 1 0.306 18.79 0.041

2 2 0.053 18.72 0.191

3 1 0.271 19.22 0.019

3 2 0.340 19.18 0.089

Table 8: Optimized coefficients and parameters for νI(σI) for optimization of the densities and model
parameters.

k βk bk [MPa]

1 0.004 8.85

2 0.031 17.70

3 0.249 35.40

4 0.075 70.80

5 0.641 141.60

6.4 Minor Loop Comparison

Minor loop data was obtained on the experimental setup at 353 K on a different SMA wire. The data is
collected by reversing the direction of stress within the transition region identified in Figure 13, either on
loading or unloading. Example experimental data that quantifies a minor loop during both loading and
unloading is shown in Figure 25.

Since the minor loop data was obtained on a different wire, the strain model parameters (including the
densities) are optimized again, resulting in the optimal parameters listed in Table 9. The optimal density

(a) (b)

Figure 25: Example minor loop data: (a) stress vs. time; (b) strain vs. time.
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coefficients are listed in Tables 10 and 11. Comparisons between the fit model and experimental data are
shown in Figures 26(a) and (b). Comparisons between the model prediction and experimental data are
shown in Figures 26(c) and (d) for smaller minor loops.

As shown in Figure 26, the model is capable of quantifying hysteresis in the minor loops. However,
the model predicts greater hysteresis in the minor loops on loading (Figures 26(a) and (c)) than unloading
(Figures 26(b) and (d)). This effect may be due to a low variance in the interaction stress density. Within
these minor loops, the stress does not reach a high enough value to begin switching kernels back to M+.

7 Conclusion

In this paper, we have presented data-driven techniques to estimate the parameters for the homogenized
energy model for SMA. The model is described, and the relationships between the model parameters and the
material’s response are discussed. Techniques are developed to estimate the parameters using relatively few
experimental tests. These estimates are used in two manners. In the first method, only the density functions
in the HEM are optimized. In the second method, the estimates are included with the density function
coefficients in the optimization algorithm. Optimizing the model parameters greatly reduces the fit model
error; however, the predicted model error is only slightly lower, validating the techniques for identifying the

(a) (b)

(c) (d)

Figure 26: Stress versus strain results for minor loops: Comparison between model fit and experimental data
for minor loop on (a) loading and (b) unloading; Comparison between model prediction and experimental
data for minor loop on (c) loading and (d) unloading.
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Table 9: Optimal model parameters for minor loop data.

Variable Optimal value Units

EA 35.0 GPa

EM 28.9 GPa

σL 265 MPa

∆σT 8.8 MPa/K

εT 4.44 %

τ 1.606 s

V 4.2×10−25 m3

Table 10: Optimized coefficients and parameters for νR(σR) for minor loop data.

m k αk,m µRm ck

1 1 0.050 18.03 0.159

1 2 0.014 17.80 0.621

2 1 0.012 18.79 0.041

2 2 0.004 18.72 0.191

3 1 0.757 19.22 0.019

3 2 0.164 19.18 0.089

Table 11: Optimized coefficients and parameters for νI(σI) for minor loop data.

k βk bk [MPa]

1 0.423 8.85

2 0.064 17.70

3 0.070 35.40

4 0.138 70.80

5 0.305 141.60

model parameters. Both approaches accurately quantify the macroscopic behavior of the material at higher
temperatures (≥ 328K) but fails to quantify the response at low temperatures (308K). Future work will
investigate changes to the mesoscopic model to quantify the effects seen at low temperatures.

The techniques presented here relate model parameters to the material’s physical response, facilitating
model adoption by reducing the model’s complexity. Furthermore, the ideal experiments for estimating the
parameters are presented. Using relatively few experiments (five), the HEM parameters can be related to
the experimental results.

In addition to accurately quantifying the macroscopic actuator behavior, the homogenized energy model’s
computational efficiency makes it ideally suited for control algorithms and design optimization. The model
also accurately represents the resistance-strain response, providing for its use in self-sensing applications.
Future work will incorporate the model into real-time control and sensing applications.
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