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Abstract

The host inflammatory response to HIV invasion is a necessary component of the innate
antiviral activity that vaccines and early interventions seek to exploit/enhance. However,
the response is dependent on CD4+ T-helper cell 1 (Th1) recruitment and activation. It
is this very recruitment of HIV-susceptible target cells that is associated with the initial
viral proliferation. Hence, global enhancement of the inflammatory response by T-cells
and dendritic cells will likely feed viral propagation. Mucosal entry sites contain inherent
pathways, in the form of natural regulatory T-cells (nTreg), that globally dampen the
inflammatory response. We created a model of this inflammatory response to virus as well
as inherent nTreg-mediated regulation of Th1 recruitment and activation. With simulations
using this model we sought to address the net effect of nTreg activation and its specific
functions as well as identify mechanisms of the natural inflammatory response that are best
targeted to inhibit viral spread without compromising initial antiviral activity. Simulation
results provide multiple insights that are relevant to developing intervention strategies
that seek to exploit natural immune processes: i) induction of the regulatory response
through nTreg activation expedites viral proliferation due to viral production by nTreg
itself and not to reduced Natural Killer (NK) cell activity; ii) at the same time, induction
of the inflammation response through either DC activation or Th1 activation expedites
viral proliferation; iii) within the inflammatory pathway, the NK response is an effective
controller of viral proliferation while DC-mediated stimulation of T-cells is a significant
driver of viral proliferation; and iv) nTreg-mediated DC deactivation plays a significant
role in slowing viral proliferation by inhibiting T-cell stimulation, making this function an
aide to the antiviral immune response.

Key Words: HIV; Innate inflammatory response pathway; Regulatory response pathway;
Mathematical model
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1 Introduction

Once HIV viremia has peaked in the lymphoid tissue there is little hope of eliminating
the virus as this marks systemic spread and establishment of tissue and cellular reservoirs.
Research has, therefore, been focussed on what is often referred to as the “window period”,
the initial two weeks of infection, between exposure to virus and peak viremia.

The vaginal mucosa is the most common site of infection and vaccine strategies focus
mainly on promoting inflammation response in this tissue. The immune response at mu-
cosal sites, however, are characterized by the presence of anti-inflammatory factors, such
as CD4+ natural regulatory T-cells (CD4+ nTreg), that allow these tissues to generally
remain refractory to inflammation. The purpose of this regulation is to allow immune
cells of the lungs, GI tract, nasal passages, and genital mucosa to maintain contact with
innocuous foreign agents in the external environment without dwelling in a constant state
of tissue-damaging hyper-inflammation. In the case of viral infection, a potential effect
of anti-inflammatory nTreg is to directly and indirectly dampen key mechanisms of the
protective antiviral response, such as DC activation and Natural Killer (NK) cell stimula-
tion. The role that these anti-inflammatory factors play in initial viremia remains unclear.
The effect of these interacting pathways on HIV infection is particularly complicated by
the fact that the immune cells themselves are permissive hosts for this virus. Relevant
questions for infection intervention strategies include Should one reduce the regulatory re-
sponse in order to aid antiviral activity, i.e., NK recruitment and activation? This could
unintentionally lead to greater viral proliferation through increased host recruitment and
infected Th1 proliferation. Therefore, Should one enhance the regulatory response to reduce
inflammation-associated recruitment and T-cell proliferation? This strategy could also aid
viral proliferation by dampening antiviral NK activity as well as promoting nTreg-derived
viremia.

There are a number of models that have been developed in different contexts to answer the
general question of whether one should enhance or reduce the immune response in order
to better control HIV. For example, a mathematical model of interaction of uninfected
CD4+ T cells and the free HIV virus in the plasma is developed in [36] to investigate the
effect of immunotherapy with cytokine interleukin-2 (IL-2) on an HIV-infected patient,
and it was found that this type of immunotheray can be successful in delaying AIDS
progression. While the authors in [16] developed mathematical models of the clinical
latency stage of HIV-1 infection with the assumption that HIV-1 infection is limited either
by the availability of cells that HIV can infect or by a specific anti-HIV cellular immune
response. This assumption is based on the suggestions of various clinical data sets (see
the references in [16] for more information) that HIV viral replication is limited by the
availability of target cells. The effects of tetanus vaccination on chronically infected HIV
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patients were explored in [30] through a mathematical model of interaction between T
cells, HIV and other antigen. The study was able to reproduce the general features of the
post-vaccination rise in viral load observed in some clinical data sets (see the references in
[30] for more information).

In addition, the synergistic interaction between HIV and some other pathogens were in-
vestigated by a number of researchers (e.g., [3, 35, 43, 44, 58]). In what follows, we give
a brief review of some of this type of work. In [44], mathematical models of population
dynamics of T helper cells, HIV, and other pathogens were formulated to address the three
facets of the interactions between HIV and other pathogens: enhanced HIV replication due
to immune stimulation by other pathogens; modified immune control of other pathogens
due to immunological suppression by HIV; and the vicious circle formed by the positive
feedback between these effects. This study indicates that there is a threshold number of ac-
tivated T helper cells above which the immune system is unable to control pre-established
pathogens. A mathematical model was created in [35] to describe the interaction of HIV
and tuberculosis (TB) with the immune system (T cells and macrophages), and this study
indicates that co-infection may indeed play a dramatic role in disease. The authors in
[58] proposed a simple mathematical model for the interaction of the immune effector cells
with HIV and malaria parasites in an individual host, and showed that HIV infection may
increase the risk of malaria and, subsequently, malaria infection promotes the proliferation
of HIV.

Recently, a mathematical model describing the dynamics of HIV, CD4+ and CD8+ T
cells, and DCs interacting in a human lymph node was formulated and analyzed in [26]
to investigate the dual role (enhancing HIV infection process as well as promoting an
antiviral immune response) of dendritic cells in immune response to HIV infection. Here
we present a study unique in that it explores the net effects of HIV-induced inflammation
and subsequent nTreg-induced regulation on initial viral replication and spread to the
lymph node specifically in the acute phase, i.e., upon vaginal inoculation. The resulting
mathematical model is based on mechanistic knowledge of NK, Th1 and nTreg activation
by dendritic cells.

1.1 Innate Inflammatory and Regulatory Pathways

Experimental data regarding the early immune response to HIV upon viral exposure in
humans is difficult to obtain as it requires invasive tissue biopsies taken from the gut
and genital tissues, the initial site of entry, within a very short time period post-infection.
Hence, the current biological model is largely based on data gathered from rhesus macaques
infected experimentally with Simian Immunodeficiency Virus (SIV) [2, 24, 47]. Based on
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these studies, the current biological model for early immune response to SIV and HIV
infection are generally assumed to be similar and are described as follows.

Virus enters the vaginal lumen and, within hours, gains access to susceptible immune
cells: dendritic cells (DC), CD4+ T-helper cells (Th), and CD4+ natural T-regulatory
cells (CD4+ nTreg) in the lamina propria (LP) [47]. This initial, small population of
infected cells begins to bud virus approximately 2-4 days post-infection at which point the
immune response outlined in Figure 1 is elicited. Specifically, infected cells secrete factors

Virus enters Lumen

Virus access LP

Infects initial population of T-cells and DC

Initial generation of host cells bud free virus

Factors secreted by infected cells

 leads to Di recruitment 

Mature DC recruits more Tm 

DC stimulates Tm to Th
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Figure 1: Immune response to first generation of infected cells A scheme of the
inflammatory (solid lines) and regulatory (dashed lines) included in the model. Arrows are
labelled with parameters that determine the rate at which each event occurs.

that trigger a pathway by which monocytes are recruited to the tissue and differentiate
into immature dendritic cells (Di). Free virus, budded from infected cells, is phagocytosed
by immature DC leading to their maturation. At this point mature DC secrete factors
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that recruit resting, or memory, T-helper cells (Tm) and present viral antigen to stimulate
these T-cells to a Th1 phenotype [2] rendering them more susceptible to viral infection and
promoting their proliferation, allowing enhanced viral replication in infected cells. Both
mature DC and inflammatory Th1 then secrete factors such as IL-12 that activate NK cells
[6]. NK cells subsequently remove infected cells from the tissue site.

The role of the regulatory pathway in early infection is largely unknown. Yet basic re-
search in various in vitro and in vivo systems (reviewed in [40] and [51]) have demonstrated
mechanisms that we use to construct a biological model of an HIV-dependent regulatory
response. In this biological model, resting nTreg, like resting T-helper cells, are recruited
and stimulated by mature, antigen-presenting DC via the T-cell receptor. Active nTreg has
been shown to carry out numerous regulatory functions. In this biological model the three
primary regulatory functions we assign to nTreg are: i) contact-dependent deactivation
of presenting dendritic cells [48]; ii) indirect inhibition of monocyte recruitment through
IL-10 secretion, which downregulates expression of inflammatory recruitment factors in
surrounding cells [29]; and iii) inhibition of T-helper cell proliferation [54]. Like their in-
flammatory counterparts, CD4+ nTreg is also permissive to HIV infection upon activation
[49].

As HIV productively infects the immune cells of these pathways with proliferating T-cells
being the most productive hosts, the effect of this normally protective response is not
readily predictable. For example, DC uptake of virus and active Th1 presence are critical
for NK activation and subsequent removal of virus-producing cells, hindering viral replica-
tion. Yet, at the same time, the recruitment of these cells provides a higher concentration
of susceptible hosts and their stimulation, inducing viral replication. Indeed, the inflam-
matory response has been associated with acute viral spread [2]. Given these facts, the
nTreg-mediated regulatory pathway could reasonably hinder initial viral propagation by
reducing the critical mechanisms of DC-mediated CD4+ T-cell recruitment and activation
as well as reduce infected T-cell proliferation.

In short, from the perspective of virus success, nTreg could be equally seen as friend or
foe in that it is susceptible to productive viral infection and inhibits inflammation-induced
NK activity while, at the same time, inhibiting the inflammatory properties of DCs that
are central to the viral lifecycle: T-cell recruitment, activation, and proliferation. Hence,
the ultimate effect of nTreg presence on viral success in vivo is still unknown.

This work reports the results of simulations carried out to identify specific aspects of the
inflammatory and regulatory response pathways that promote and hinder initial viral pro-
liferation from the first generation of infected cells. This work also informs whether regula-
tory mechanisms could offer new avenues for HIV related interventions as the inflammatory
pathway has of other pathogens.
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Realization of these goals requires a model that captures the dynamics of the true system.
This eventually requires rigorous validation using time-course (longitudinal) tissue data
that is yet to be found in the literature for the tissue sites of interest, the vaginal mucosa and
genital lymph node. An initial step toward this goal is reported here in the form of a model
that captures the dynamics of the system that is proposed in current literature and is based
on the available tissue data. It is worthwhile to note that in developing a mathematical
model for any complex biological system there is a balance between complexity and utility
(in the context of underlying modeling philosophy, below we shall discuss further this
balance between more complex models for which validating data may not currently be
available and those which are simple and can be based on only already established accepted
mechanisms and data sets). In this paper, we do not try to formulate a model that captures
all the features of the mucosal immune response as well as all host and viral factors, but
rather a model that can capture many salient features of the system and for which some
parameters can be plausibly estimated based on the sparse data available. The model
will however involve mechanisms that are still speculative and for which validating data
is not yet available. The interested readers can refer to Appendix B for those simplifying
assumptions that we made during the modeling reduction processes.

1.2 Some Remarks on Modeling Philosophy

Before proceeding with our efforts in developing a model below, we make some remarks to
put our efforts in context of an overall philosophy for the use of mathematical and statistical
models in scientific investigations. More detailed discussions on this topic can be found in
[15, Chapter 1]. In subsequent developments we will arrive at a fairly complex model for
which only a sparse amount of experimental data is available for model validation. (Indeed
we are currently able to offer only a partial qualitative validation of our proposed model!)
When developing such models it is natural to raise questions of how complex/simple a model
one should employ in such investigations. To at least partially answer this, one should
consider the underlying reasons that one might give for modeling in science and engineering.
The ultimate goal of modeling is not the model itself. Rather modeling is simply a means
for providing a conceptual framework in which real systems may be investigated. The
modeling process itself is, when properly done, most often an iterative process and often
involves efforts over time (and possibly by different research groups). Numerous rationales
may be given (to aid in simplification, preciseness, formulation of hypotheses, design of
critical experiments) but perhaps the most fundamental rationale is that modeling leads
to an organization of inquiry. Properly done, it tends to polarize one’s thinking and aid in
posing basic questions concerning what one does and does not know for certain about the
real system. Whatever the reasons that have been advanced to justify modeling attempts,
it is sufficient perhaps to note that the primary goal must be enlightenment, that is, to gain
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a better understanding of the real system, and the success or lack thereof of any modeling
attempt should be judged with this in mind. Thus, it is not the model itself that is the goal
but rather increased understanding of the physical or biological system under investigation.
In any modeling attempt, one can seek a simple model that can be validated with existing
data and justified in terms of accepted mechanisms. This would result in the simplest
model that can explain current theory and data. An alternative approach is to seek a
more complex model that stretches our current understanding and poses new questions to
be pursued with new conceptual and new experimental investigations. As the reader will
see in our subsequent developments below, this latter approach is our choice here. But
this will lead to large complex models with a large number of parameters, many of which
have not been discussed in the literature. The analysis and attempted validation of such
models leads to difficult and ill-posed inverse or parameter estimation problems. We have
encountered such difficulties previously, even in earlier HIV infection models (see [4, 9])
and have successfully used an iterative process to alleviate certain aspects of the model
analaysis/validation and ill-posedness aspects of the parameter estimation procedures. As
explained below, we do that again here.

In related and potentially important research, new methods (illustrated on one of our
earlier HIV models in [8]) are currently being developed to formulate and solve such pa-
rameter estimation problems. These selection methods involve use of sensitivity functions
and information matrices effectively with data sets and complex dynamic models to rank
parameters in a model in roughly the order of their importance in the ability of the model
to describe (fit) a given data set. As development of these methods matures, they will
undoubtedly be of significant value in modeling investigations such as that presented in
this paper.

1.3 Model Components

The model describes HIV progression among CD4+ cell populations of conventional T-
cells, CD4+ natural T-regulatory cells (CD4+ nTreg), and dendritic cells (DC) as they
transition between location and phenotype compartments in response to virus. As such,
the only active CD4+ T-helper cells represented are of an inflammatory Th1 phenotype
based on cytokine profiles indicating a type 1 response elicited in SIV models [2]. Model
variables (compartments) are listed in Table 1 below, and all variables are in units of cells
per mL.

Cell populations are compartmentalized by four phenotypes; i) resting, generally memory
or immature immune cells, denoted with the subscripts ‘m’ or ‘i’; ii) active, no subscript;
iii) infected, denoted with the superscript ‘*’; iv) not infected. These are then further
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Table 1: Populations represented in the model.
Di Immature dendritic cells

DI Non-infected active dendritic cells in the GLN

DI∗ Infected active dendritic cells in the GLN

DE Non-infected active dendritic cells in the LP

DE∗ Infected active dendritic cells in the LP
Tm Non-infected CD4+ Memory T-cells
T ∗m Latently infected CD4+ Memory T-cells

T I Non-infected active CD4+ T helper 1 cells in the GLN

T I∗ Infected active CD4+ T helper 1 cells in the GLN

TE Non-infected active CD4+ T helper 1 cells in the LP

TE∗ Infected active CD4+ T helper 1 cells in the LP
Rm Non-infected memory CD4+ natural T regulatory cells
R∗m Latently infected memory CD4+ natural T regulatory cells

RI Non-infected active CD4+ natural T regulatory cells in the GLN

RI∗ Infected active CD4+ natural T regulatory cells in the GLN

RE Non-infected active CD4+ natural T regulatory cells in the LP

RE∗ Infected active CD4+ natural T regulatory cells in the LP

compartmentalized into two tissue sites: i) The vaginal lamina propria (LP), more generally
termed the effector site of the immune response and denoted by the superscript ‘E’ ; ii)
the genital lymph node (GLN), the inductive site of the immune response and denoted by
the superscript ‘I’.

2 Model Equations

2.1 Dendritic Cells

The scheme for the dynamics of dendritic cells is illustrated in Figure 2. The corresponding
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Figure 2: Scheme for dynamics of dendritic cell populations represented.

compartment model for describing its dynamics is given by

Ḋi = εm − µdi(Di − d0), (1)

ḊI = εEID
E − (kT (RI∗ +RI) + µd)D

I , (2)

ḊI∗ = εEID
E∗ − (µd + kT (RI +RI∗))DI∗, (3)

ḊE = (1− αm)ω2Di − (εEI + kT (RE +RE∗))DE , (4)

ḊE∗ = αmω2Di − (εEI + µNK + kT (RE +RE∗))DE∗. (5)

where Di is the concentration of immature dendritic cells, DI and DI∗ are, respectively,
the concentrations of non-infected and infected activated dendritic cells in the inductive
site (GLN), and DE and DE∗ are the concentrations of non-infected and infected activated
dendritic cells in the effector site (LP). Immature dendritic cells are present in the lam-
ina propria (Di, Equation (1)) at a constant value of d0 representing that each Di that
transfers to one of the activated dendritic cell compartments is replaced from an unlimited
monocyte pool in the blood [55]. The constant parameter µdi denotes the death rate of the
immature dendritic cells. The functional parameter εm represents the rate of recruitment
of monocytes by inflammatory factors secreted by active immune cells [29] and is a function
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of productively infected cells, TE∗ and DE∗, given by

εm = cm
TE∗ +DE∗

TE∗ +DE∗ +RE
, (6)

where cm is a positive constant. This function is based on the rationale that virus presence
induces various inflammatory responses of cells not explicitly represented that promote se-
cretion of recruitment factors and that active CD4+ nTreg secretes IL-10, which can inhibit
the expression of these recruitment factors [29]. It is assumed that the IL-10 secretion by
productively infected CD4+ nTreg (RE∗) cancels out its ability to induce monocyte recruit
and is not included in the equation.

Dendritic cells contact and phagocytose free virus at the rate of ω2 = kvE . This is the rate
of contact with free virus in the effector site where k is the rate of contact between any
two cells or cells and virions in both tissue sites and vE is the amount of free virus in the
effector site. Specifically, vE is a function of productively infected cells given by

vE = NE(TE∗ +RE∗) +NDD
E∗, (7)

where NE is the burst size from T-cells and ND is the burst size from dendritic cells. Upon
phagocytosis all virus is successfully degraded in the presentation process, with a probabil-
ity of 1−αm, and the cell becomes an active, presenting dendritic cell (DE , Equation (4))
that is capable of stimulating resting T-cells, promoting NK cytolytic activity, and recruit-
ing resting T-cells from the blood to the tissue. After a period in the LP, corresponding to
the migration rate εEI , the presenting dendritic cells migrate to the GLN joining the DI

population (Equation (2)). Here they can stimulate resting T-cells until they die at a rate
of µd.

In the case that virions are able to escape degradation and establish infection in a dendritic
cell, with a probability of αm, the cell enters the DE∗ population (Equation (5)). As with
non-infected dendritic cells, those that are infected will migrate to the GLN in the same
manner joining the DI∗ population (Equation (3)).

Active nTreg, that are either infected or not infected, deactivate dendritic cells upon contact
rendering them incapable of cytokine secretion or stimulation of resting T-cells [48]. We
represent this by removing them from the system upon contact with cells of the active
CD4+ nTreg population (RE , RE∗) with the terms kT (RE + RE∗) in Equations (4) and
(5) and kT (RI∗ + RI) in Equations (2) and (3), respectively. Here kT is the contact rate
between dendritic cells and nTreg, which was estimated as greater than that between all
other cells, k, in agreement with experimental evidence that nTreg have a higher affinity
for dendritic cells than do T-helper cells [48].

Similar to all infected cells in the effector site, those of the DE∗ population may be elimi-
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nated by cytolytic NK cells at a rate of µNK given by

µNK = cNK(1− e−λ(DE+δDE∗+TE+TE∗)), (8)

which is a functional parameter dependent on the concentration of active Th1 and DC
based on that fact that IL-12, IL-15, IL-18, IL-21, and interferons (IFN) induce NK cell
survival and proliferation, and can promote cytotoxic function. These cytokines are pri-
marily secreted by presenting dendritic cells [6], but IL-12 is also secreted by Th1 T-cells
[29]. The constant parameter cNK determines the maximum value µNK may reach as the
concentrations of activated DC and Th1 increase and λ determines the rate at which µNK
rises to this maximum value in proportion to the rise of DC and Th1 concentrations.

Studies have shown that when an immature dendritic cell is infected, its immune functions
of antigen presentation and cytokine production may be impaired [22]. Specifically, HIV-
infected human DCs in vitro have been shown to secrete IL-10 instead of IL-12 and IL-18
and have reduced CD80 expression. However, whether this effect of viral infection occurs
in vivo and in the acute phase is unknown. To accommodate this possibility the model
includes the coefficient δ as seen in Equation (8). This parameter determines the extent to
which viral infection impairs the ability of DC to induce NK activation as well as recruit
and stimulate T-cells (discussed below). In this context, a value of δ < 1 represents virus-
induced inhibition of IL-12 and IL-18 expression reducing the ability of infected DC to
recruit and activate NK cells.

NK cells in lymphoid tissue have not been shown to have cytolytic activity in vivo [6].
Therefore, those of the DI∗ population are not considered susceptible to NK-mediated
elimination.

2.2 Conventional CD4+ T-cells

The scheme for the dynamics of conventional CD4+ T cells is depicted in Figure 3. The
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Figure 3: Scheme for dynamics of T-helper cell populations represented.

corresponding compartment model for describing its dynamics is given by

Ṫm = νTµTT
E − (kαT (DE +DI +DE∗ +DI∗) + ω1)Tm, (9)

Ṫ ∗m = ω1Tm + νTµTT
E∗ − (kαT (DE +DI +DE∗ +DI∗))T ∗m, (10)

Ṫ I = ptkαt(εt(D
I + δDI∗))DI + 0.6ptkαTTmD

I − (εIE + ω3)T
I , (11)

Ṫ I∗ = ptkαt(εt(D
I + δDI∗))(δDI∗) + 0.6ptkαT δTmD

I∗

+ω3T
I + 0.6ptkαTT

∗
m(DI + δDI∗)− εIET I∗, (12)

ṪE = εIET
I + 0.4pTkαTTmD

E − (µT + ω2)T
E , (13)

ṪE∗ = εIET
I∗ + 0.4pTkαT δTmD

E∗ + ω2T
E

+0.4pTkαTT
∗
m(DE + δDE∗)− (µT + µNK)TE∗. (14)

The model includes a resting T-cell population that represents both effector memory T-cells
that occupy the LP and central memory T-cells that occupy the GLN. This population
is compartmentalized into non-infected cells (Tm, (Equation (9)) and latently infected
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memory T-cells (T ∗m, Equation (10)). All resting T-cells are non-infected at the time of
viral introduction.

Memory T-cells may be infected directly by virus at a rate of ω1 = kαv(vE + vI), entering
the T ∗m population. The coefficient αv represents the reduced likelihood of resting T-cell
infection due to lower expression of the the CD4 surface receptor compared to active T-
cells, vE is the amount of free virus in the LP (Equation (7)), and vI represents the amount
of free virus in the GLN given by

vI = NE(T I∗ +RI∗) +NDD
I∗. (15)

Infected cells of the T ∗m population may also be created from de-activated infected T-helper
cells (discussed below), represented by the term νTµTT

E∗ in Equation (10). The model
assumes infected, presenting DC does not pass virus to resting T-cells upon transient
association in the absence of T-cell receptor (TcR) stimulation.

Upon contact with antigen-presenting dendritic cells, a resting T-cell, infected or non-
infected, is stimulated to an active Th1 in either the inductive site or the effector site. T I

(Equation (11)) and T I∗ (Equation (12)) are the respective concentrations of non-infected
and infected Th1 cells in the inductive site. TE (Equation (13)) and TE∗ (Equation (14))
are the concentrations of non-infected and infected Th1 in the effector site. As an example,
this stimulation is represented in Equation (11) by the term 0.6ptkαTTmD

I , where pt is
the number of daughter cells produced from one central memory T-cell upon stimulation
and subsequent proliferation, αT is the probability of stimulation representing the antigen
specificity of the T-cell receptor, and 0.6 is the fraction of T-cells that are central memory
T-cells and, therefore, in contact with dendritic cells of the inductive site, DI . This fraction
is based on a study in mice that showed 60% of CD8+ memory T-cells created in response
to lymphocytic choriomeningitis virus were CD62L+, a marker for central memory versus
effector memory T-cells [42]. Such in vivo data was not found for CD4+ T-cells specifically.
Similarly, the term 0.4pTkαTTmD

E in Equation (13) represents T-cell stimulation in the
effector site, where the number of daughter cells produced from one stimulated effector
memory T-cell, pT , differs from that of central memory T-cells such that pT < pt [21].
Both pT and pt are functions of nTreg concentrations representing the fact that activated
nTreg inhibit conventional T-cell proliferation [51], and they are given by

pt =
pt0

1 +m(RI +RI∗)
and pT =

pT0
1 +m(RE +RE∗)

. (16)

Here m is a positive constant used to determine the effect of nTreg on Th1 proliferation, pt0
and pT0 denote the number of daughter cells produced by one proliferating T-cell (without
inhibition) in the GLN and LP, respectively.
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The term εt(D
I + δDI∗)DI in Equation (11) represents additional naive T-cells that may

be recruited by factors secreted by presenting dendritic cells, where the parameter εt is the
number of T-cells recruited by one active dendritic cell. The parameter δ represents the
extent to which HIV infection impairs secretion of recruitment factors by dendritic cells as
well as their ability to stimulate T-cells to inflammatory phenotype. These cells may then
be stimulated with a probability of αt, generally less than the probability αT of memory
T-cell stimulation [29]. The rates at which resting T-cells infiltrate the tissue from the
blood is assumed to be independent of the current tissue concentration. De-activation of
active T-cells occurs at a rate of µT . Upon de-activation a fraction, νT , of T-cells re-enter
the memory T-cell population and the remainder are removed through apoptosis.

T-cells in either tissue site may enter the infected compartments, TE∗ or T I∗, through the
following pathways: i) Direct infection by virus. This occurs at a rate of ω2 = kve and
ω3 = kvI , the rate of contact with free virus in the effector and inductive sites, respectively.
As described, vE and vI are functional parameters representing the amount of free virus in
the different tissue sites. ii) Stimulation of naive T-cells and cells of the Tm population by
virus-harboring individuals of the DI∗ and DE∗ populations represented by the first and
second terms of Equation (12) and the second term in Equation (14). iii) Re-stimulation of
latently infected memory T-cells of the T ∗m (Equation (10)) population represented by the
fourth term in Equation (12) and Equation (14). As mentioned above, the coefficient δ is
included in the stimulation terms as the study conducted in [22] specifically demonstrated
that HIV infected dendritic cells isolated from chronically infected patients have a reduced
ability to stimulate T-cells to an inflammatory phenotype in vitro. The model does not
include passage of virus directly from a presenting, infected DC to an active Th1 or nTreg.
Exclusion of this mode of infection assumes that a presenting DC would not associate with
a T-cell that is already stimulated and in association with another DC.

2.3 CD4+ Natural T-regulatory Cells

The scheme for the dynamics of CD4+ nTreg cells is depicted in Figure 4. The correspond-
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Figure 4: Scheme for dynamics of CD4+ nTreg cell populations represented.

ing compartment model for describing its dynamics is given by

Ṙm = νTµTR
E − (kαT (DE +DI + δr(D

E∗ +DI∗)) + ω1)Rm, (17)

Ṙ∗m = ω1Rm + νTµTR
E∗ − kαT (DE +DI + δr(D

E∗ +DI∗))R∗m, (18)

ṘI = prkαt(εt(D
I + δDI∗))DI + 0.5kαTRmD

I − (εIE + ω3)R
I , (19)

ṘI∗ = prkαt(εt(D
I + δDI∗))(δrD

I∗) + ω3R
I

+0.5kαT (DI + δrD
I∗)R∗m − εIERI∗, (20)

ṘE = εIER
I + 0.5kαTRmD

E − (µT + ω2)R
E , (21)

ṘE∗ = εIER
I∗ + 0.5kαT (DE + δrD

E∗)R∗m

+0.5kαT δrD
E∗Rm + ω2R

E − (µT + µNK)RE∗. (22)

The life cycle of non-infected and infected CD4+ nTreg is similar to that of T-helper
cells, described above, where Rm represents the non-infected memory CD4+ nTreg popu-
lation (Equation (17)), RI represents non-infected active CD4+ nTreg in the inductive site
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(Equation (19)), and RE represents non-infected active CD4+ nTreg in the effector site
(Equation (21)). Memory CD4+ nTreg (Rm) are assumed equally distributed into effector
memory cells and central memory cells in the LP and GLN respectively. This is reflected in
the terms 0.5kαTRmD

I in Equation (19) and 0.5kαTRmD
E in Equation (21). The model

assumes the same µT and νT for CD4+ nTreg as for T-helper cells. However, there is
evidence that CD4+ nTreg may not undergo activation-induced cell death (apoptosis) as
readily in cell culture [52]. Stimulation of each implied naive CD4+ nTreg results in pr
daughter cells that may differ from that of conventional T-cells, pt, and memory CD4+
nTreg do not proliferate upon re-stimulation by DC.

The model seeks to explore the net effect when CD4+ nTreg stimulation is coupled with
the inflammatory response to HIV presence. As such, the same number of CD4+ nTreg is
recruited by virus-presenting DC as T-helper cells (εt) and resting CD4+ nTreg are stim-
ulated with the same probability (αT ). Though the mucosal site is believed to include a
constant level of active CD4+ nTreg stimulated by self antigen, this baseline population
is not included in the model. Including this constitutively active CD4+ nTreg popula-
tion, independent of HIV presence, is assumed to have little impact on model predictions
according to lack of sensitivity of model variables to initial values for RE(0) and RI(0).

Infected DC that are less able to stimulate T-helper cells to an inflammatory phenotype,
discussed above, may still be able to efficiently stimulate resting CD4+ nTreg cells. This is
due to the fact that impairment of DC activity includes lower levels of CD80 expression and
secretion IL-10, all of which have been implicated in inducing Treg phenotypes in resting
T-cells [51]. A value of 1 assigned to the parameter δr allows infected DC to retain the full
capacity to stimulate CD4+ nTreg cells even when the ability to induce a Th1 phenotype
is reduced, i.e., δ < 1.

3 Model Calibration and Analysis

The model contains 17 variables and 25 constant parameters. Equations (1)-(5), (9)-(14)
and (17)-(22) were first written as a vector system

˙̄x = g(x̄; θ̄), x̄(0) = x̄0,

where x̄ = (Di, D
I , DI∗, DE , DE∗, Tm, T

∗
m, T

I , T I∗, TE , TE∗, Rm, R
∗
m, R

I , RI∗, RE , RE∗)T ,
θ̄ is the vector for model parameters, and x̄0 is the set of initial conditions. We followed
standard practice (e.g., see [4, 9]) and solutions were determined for a log-transformed
system as this resolves the problem of states becoming unrealistically negative due to
computer round-off errors. As values of the model parameters are in dramatically different
scales, from 10−8 to 108, all of the parameter values are also transformed to the log scale.
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Therefore, let xi = log10(x̄i) and x0i = log10(x̄0i), where i = 1, 2, 3, ..., 17 and θi = log10(θ̄i)
for i = 1, 2, 3, ..., 25. Then we have

ẋ = f(x; θ), x(0) = x0, (23)

where f = (f1, f2, ..., f17)
T is given by

fi(x; θ) =
10−xi

ln(10)
gi(x̄, θ̄), i = 1, 2, ..., 17.

3.1 Simulation Setup

Simulations were carried out by solving the log transformed versions of Equations (1)-(5),
(9)-(14) and (17)-(22) in MATLAB with ODE solver 23 (ode23tb) over a time course of 60
units, corresponding to two weeks where one time unit is 6 hours. Parameter values used
are listed in the third column of Table 7 of Appendix A. The values of these parameters
were either derived from published experimental studies (a process that is described in
more detail in the Appendix A) or arbitrarily assigned if there is no studies related to
them. For those parameters whose values can be found or derived from the literature, the
reference numbers were given after their values, and the species from which in vivo these
measurements were taken or cells were isolated for measurements in vitro were indicated
after the reference numbers with “M” for “mouse”, “H” for “human”, and “NS” for “not
specified”. Ideally, one would have parameter values based exclusively on in vivo, human
data. However, as previously mentioned such data is sparse in the current literature.
Therefore, though our primary interest is to model the dynamics of early HIV infection in
humans, we found it necessary to use the values obtained from other mammalian species,
and assume that humans and other mammalian species have the similar parameter values.

Simulations begin at the time of viral budding from the small first generation of infected
host cells, approximately on day 3 post-infection, the time at which SIV DNA is detected
in cells of infected rhesus macaque tissue [47, 24]. Initial cell concentrations are given in
Table 6 and are chosen so that only resting immune cells are present at the time of in-
fection assuming no significant immune activation at the time of infection in an otherwise
healthy individual. The initial infected cell population is seeded in the LP and is evenly
divided among conventional T-helper cells, dendritic cells, and CD4+ nTreg cells as the
demographics of this first generation of hosts is not known. The initial infected cell con-
centrations are based on experimental measurements taken from rhesus macaques infected
with SIV reported in [47] in which the authors quantified vRNA levels, a marker of free
virus and productively infected cells, in vaginal mucosa and lymph nodes during the first
days of infection. The infected cell population was weighted in the LP compartment based
on the observations in the same study that during the first 3 days of infection this is the
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site where most productively infected cells were detected with only a very small number
in the vaginal lymphoid tissues.

3.2 Sensitivity Analysis

In practice, one may often be in the situation of estimating a large number of unknown
parameters with a limited set of data (which is true for our case). To mitigate some of
this difficulty, sensitivity analysis has been widely used in inverse problem investigations
(e.g., [8, 10, 11, 12, 13, 15] and the references therein) to identify the model parameters
and/or initial conditions to which the model outputs (observations) are most sensitive and
for which one can readily construct confidence intervals when they are estimated (i.e.,
which are the most reliably estimated values). Moreover, recently developed methods [8]
for parameter subset selection have proven quite useful in systematically identifying the
parameters or subsets of parameters that one can reasonably expect to estimate with a
given data set. Some parts of this recently developed methodology [12, 13] also include
new methods to assist in design of experiments in the context of investigations such as
those initiated here.

To compute the sensitivities of model outputs to the model parameters and initial condi-
tions, one need to know the sensitivity of each model state to each parameter and initial

condition. Sensitivities
∂xi
∂θj

of each variable xi to each parameter θj can be determined by

(see, for example, [10] and the references therein)

d

dt

∂xi
∂θj

=

17∑
l=1

∂fi
∂xl

∂xl
∂θj

+
∂fi
∂θj

,
∂xi
∂θj

(0) = 0, i = 1, 2, ..., 17, j = 1, 2, ..., 25. (24)

Corresponding sensitivities of each variable, xi, to each initial condition, x0j (the jth
component of x0) can be determined by

d

dt

∂xi
∂x0j

=
17∑
l=1

∂fi
∂xl

∂xl
∂x0j

,
∂xi
∂x0j

(0) = δij , (25)

where δij =

{
1, if i = j
0, if i 6= j

, i = 1, 2, ..., 17 and j = 1, 2, ..., 17. These sensitivities were

calculated by solving Equations (23), (24), and (25) simultaneously in MATLAB with
ODE solver 15s using initial concentrations and parameter values listed in Table 6 and
the third column of Table 7, respectively. Results of the sensitivity analysis informed
which parameters were estimated as well as the confidence intervals for these estimated
parameters are described in the section below.
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3.3 Parameter Estimation

Proper calibration and validation of this model for the use of predicting HIV dynamics
requires longitudinal data of infected and non-infected immune cells in vaginal and gut
tissue during acute infection. As mentioned earlier such data was not found in the liter-
ature. Rather, we use aggregate vRNA levels obtained by euthanizing monkeys infected
with SIV on different days post-infection [47]. The generally accepted biological model
for acute viremia assumes a continual time course on which these averaged measurements
lie and is described in Haase [24]. Following this biological model, we fit a general curve
through three data points for vRNA concentration in the LP and GLN at days 3, 7, 15
and days 3, 10, 15 post-infection, respectively. These data points are estimated averages of
multiple, divergent samples taken from different monkeys and are reported in Miller et al.
[47]. The vRNA concentrations reported in [47] were in units of (µg vRNA)/ (1µg total
tissue RNA). To map these concentrations to model variables, we make the approximation
that (1µg vRNA) / (1µg total tissue RNA) = (1 infected cell or virion)/ (1µg tissue), and
use the conversion that 1µg of tissue = 10−6mL assuming that 1g of tissue = 1mL [23].

The mathematical model was calibrated using two synthetic data sets composed of points
on these curves, which conform to the trajectory proposed by Haase[24] and Miller et al.
[47] for total amount of free virus and productively infected cells in the vaginal LP and
GLN during the acute phase of infection. Synthetic data set 1 (depicted by ‘+’ in Figure
5) contains values of vRNA in the vaginal LP at various time points over a 2 week period,
and synthetic data set 2 (depicted by diamonds in Figure 5) contains values of vRNA
in the GLN over the same time period. As shown in Figure 5, the trajectory specifies
an exponential growth from an initial value of approximately 104mL−1 on day 3 post-
infection to a peak value of 109mL−1 on day 8 post-infection in the LP and a similar rise
to 1010mL−1 in the GLN.

Note that the synthetic data include the total amount of free virus and productively in-
fected cells (i.e., total amount of vRNA) in the LP and the total amount of free virus and
productively infected cells in the GLN. For system (1)-(5), (9)-(14) and (17)-(22), the total
amount of free virus and productively infected cells in the LP is given by

z̄1(t) = NE(TE∗(t) +RE∗(t)) +NDD
E∗(t) + TE∗(t) +RE∗(t) +DE∗(t), (26)

and the total amount of free virus and productively infected cells in the GLN is

z̄2(t) = NE(T I∗(t) +RI∗(t)) +NDD
I∗(t) + T I∗(t) +RI∗(t) +DI∗(t). (27)

Specifically, the sum of the first two terms in (26) an (27) are used to account for the total
amount of free virus in the LP and GLN, respectively, and the sum of the last three terms
are the total amount of productively infected cells in the LP and GLN, respectively. Note
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that all the equations in the system (1)-(5), (9)-(14) and (17)-(22) are coupled together.
Hence, the values of z̄1 and z̄2 depend on all the model parameters and initial conditions,
either strongly or weakly.

Let zi = log10(z̄i), where i = 1, 2. Then the norm of sensitivities of each zi to each
parameter, θj , and each initial condition x0j was calculated with

ẑi(θj) =

√√√√ 60∑
l=1

[
∂zi
∂θj

(tl)

]2
, j = 1, 2, ..., 25,

and

ẑi(x0j) =

√√√√ 60∑
l=1

[
∂zi
∂x0j

(tl)

]2
, j = 1, 2, ..., 17,

respectively, where i = 1, 2. Based on the values of ẑ1 and ẑ2, the 11 parameters to which
z1 and z2 are most sensitive are k, NE , αT , cNK , pT0, αm, δ, εIE , εEI , λ and kT (in
the descending order), and these parameters will be estimated during the first iteration of
parameter estimation process (see details below).

Let t1i , i = 1, 2, . . . , n1 and t2i , i = 1, 2, . . . , n2 denote the measurement time points for
synthetic data sets 1 and 2, respectively, ȳ1i be the observed total amount of vRNA in
LP at time point t1i , i = 1, 2, . . . , n1, and ȳ2i be the observed total amount of vRNA in
GLN at time point t2i , i = 1, 2, . . . , n2. We define y1i = log10(ȳ

1
i ), i = 1, 2, . . . , n1, and

y2i = log10(ȳ
2
i ), i = 1, 2, . . . , n2. The statistical model is assumed to have the form

Y 1
i = z1(t

1
i ; q) + ε1i , i = 1, 2, . . . , n1,

Y 2
i = z2(t

2
i ; q) + ε2i , i = 1, 2, . . . , n2,

(28)

where q ∈ Rκ denotes vector of the estimated parameters (κ is a positive integer, and
denotes the number of estimated parameters), and the observation errors ε1i , i = 1, 2, . . . , n1
and ε2i , i = 1, 2, . . . , n2 are independent and identically distributed with zero mean and
variance σ20 (log transforms are commonly used in the literature to provide nearly uniform
variance, for example, they have been used in [4, 9] for other HIV models). With this
assumption, q can be estimated by using an ordinary least squares (OLS) technique

q̂ = arg min
q∈Q

[
n1∑
i=1

∣∣z1(t1i ; q)− y1i )∣∣2 +

n2∑
i=1

∣∣z2(t2i ; q)− y2i )∣∣2
]
, (29)

where Q is some compact set in Rk. Then the bias adjusted estimate for σ20 (e.g., see [10])
is given by

σ̂2 =
1

n1 + n2 − κ

[
n1∑
i=1

(
z1(t

1
i ; q̂)− y1i

)2
+

n2∑
i=1

(
z2(t

2
i ; q̂)− y2i

)2]
.
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As expected, we have a large parameter set with little experimental data. Hence, to have
initial estimates, the parameter estimation was implemented in an iterative process similar
to that used in [4, 9] (this approach was also required for those modeling efforts even though
substantially more longitudinal data was available to support those modeling efforts). We
first estimate those 11 parameters deemed most influential (by sensitivity analysis) on z1
and z2 with all the other parameters remained with the values assigned in the third column
of Table 7. We then fix 3 of these 11 parameters at their OLS estimates and re-estimate the
remaining 8 parameters, and the OLS estimates for these 3 fixed parameters (δ, εIE and
εEI) are illustrated in the first three rows of Table 2. Lastly, we fix 3 of these 8 parameters

Table 2: The OLS estimates for those estimated parameters.
Parameter Symbol OLS Estimate

Coefficient determining effect of infection
δ 0.74

on DC functions

Rate of cell migration from GLN to the LP εIE 0.155/6hr

Rate of cell migration from LP to the GLN εEI 0.11/6hr

Number of daughter cells produced
pT0 299

by one T-cell in the LP, uninhibited

Probability of infection of DC αm 0.04

The rate at which µNK rises to its maximum λ 1.31 · 10−8 mL/cells

General contact rate k 1.08 · 10−8 mL/(cells·6hr)

Number of free virus produced by one T-cell NE 300

Probability of memory T-cell stimulated by DC αT 10−3

The maximum value of µNK cNK 51.2/6hr

Contact rate between active DC
kT 2.38 · 10−5 mL/(cells·6hr)

and CD4+ nTreg

at their new OLS estimates and re-estimate the remaining 5 parameters, and the OLS
estimates for these 3 newly fixed parameters (pT0, αm and λ) and these 5 re-estimated
ones (k, NE , αT , cNK and kT ) are given respectively in the middle three rows of Table 2
and the last five rows of this table. The choice of the parameters to be fixed during the last
two iterations is based on the combination of sensitivity analysis, the confidence we had in
the estimated value as well as the knowledge we had on these parameters. The values for
these 11 parameters illustrated in Table 2 will be used in the subsequent simulations where
all the other parameters remain with the values assigned in the third column of Table 7.
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Even though the data we have are not from experiments, we provide a way (which can
be employed once the experimental observations are available) to quantify the uncertainty
in our parameter estimation. There are two methods that have been widely used in the
literature to quantify uncertainty in parameter estimates, one is bootstrapping and the
other is asymptotic theory. These two methods have been investigated and computation-
ally compared in [14] for problems with different form and level of noise. It was found that
asymptotic theory is always faster computationally than bootstrapping, and there is no
clear advantage in using the bootstrapping and asymptotic theory when the constant vari-
ance data using OLS is assumed. Based on these findings, we will use asymptotic theory
in this paper to quantify the uncertainty in parameter estimation.

Let Z(q) = (z1(t
1
1; q), z1(t

1
2; q), . . . , z1(t

1
n1

; q), z2(t
2
1; q), z2(t

2
2; q), . . . , z2(t

2
n2

; q))T . Then the
sensitivity matrix χ(q) is (n1 + n2) × κ matrix with its (i, j)th element being defined by
∂Zi(q)
∂qj

, i = 1, 2, . . . , n1 +n2 and j = 1, 2, . . . , κ, where Zi is the ith element of Z, and qj is

the jth element of q. Then by the asymptotic theory (e.g., see [10, 50] and the references
therein), we know that the OLS estimator Q̂ is asymptotically normally distributed

Q̂ ∼ N (q0,Σ0). (30)

Here q0 denotes the true value of the estimated parameter vector q, and Σ0 is given by

Σ0 = σ20
[
(χ(q0))

Tχ(q0)
]−1

.

Since the true value q0 and the variance σ20 are unknown, we follow the standard statistical
practice by using the OLS estimates q̂ and σ̂2 for q0 and σ20, respectively. Hence, the
asymptotic properties of the least squares estimator Q̂ can be approximated by

Q̂ ∼ N
(
q̂, Σ̂

)
, (31)

where
Σ̂ = σ̂2

[
(χ(q̂))Tχ(q̂)

]−1
.

Then the standard error Std(Q̂j) for the jth element of Q̂ is calculated by Std(Q̂j) ≈√
Σ̂jj , where Σ̂jj is the (j, j)th entry of covariance matrix Σ̂. Hence, the endpoints of the

confidence intervals for Q̂j (the jth element of Q̂), j = 1, 2, . . . , κ, are given by

q̂j ± t1−α/2 Std(Q̂j),

where t1−α/2 is a distribution value that is determined from a statistical table for Student’s
t-distribution based on the level of significance α.

For the results we report in the following, we choose α = 0.05, which corresponds to
t1−α/2 = 1.96 when the number of degrees of freedom is greater than or equal to 30 (e.g.,
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see [11] and the references therein), which is true for our case (n1 = 31, n2 = 24 and κ = 5).
Table 3 illustrates the endpoints of the 95% confidence intervals (i.e., α = 0.05) for those 5
estimated parameters illustrated in last five rows of Table 2 (i.e., those 5 parameters that
are estimated during the last iteration of parameter estimation process). From this table,

Table 3: The endpoints of the 95% confidence intervals for q.

Parameters q̂j ± 1.96 Std(Q̂j) Parameters q̂j ± 1.96 Std(Q̂j)

log10(NE) 2.477 ± 0.078 log10(cNK) 1.709 ± 0.025
log10(αT ) -3.000 ± 0.069 log10(k) -7.966 ± 0.027
log10(kT ) -4.623 ± 0.455

we see that the confidence intervals for all these estimated parameters are reasonably small
in comparison to their corresponding estimated values.

Figure 5 illustrates the fits to the data. From this figure, we see that we have pretty good
fits to the data. Hence, by this figure and Table 3 we may infer that the goodness-to-fit is
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Figure 5: vRNA levels. Solid and dashed lines indicate vRNA levels predicted by the
mathematical model in the LP and GLN, respectively. The marker ‘+’ indicates synthetic
data set 1, and diamonds represent synthetic data set 2. Circled points indicate those
estimated by Haase et al. [24] directly from experimental data where vRNA values were
averaged over widely varied samples reported in Miller et al [47].

reasonably well.
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3.4 Partial Qualitative Validation

As we have already mentioned, sufficient experimental data is not available to fully vali-
date our proposed model. Nonetheless, we make a first attempt to partially support and
qualitatively validate this initial modeling effort with synthetic data produced from limited
experimental data in the literature. The model was fit to log vRNA levels. The partial
qualitative validation is carried out by comparing the underlying cell dynamics. Specifi-
cally, those for T-cells in the lymphoid tissue (Figure 6) were compared to those observed
in SIV models of acute infection. In agreement with Li et al., [39] and Estes et al., [20], the
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Figure 6: Simulated timecourse of total CD4+ T-cells (solid line) and CD4+ nTreg (dashed
line) in lymphoid tissue following infection of first host generation.

model predicts an initial influx of CD4+ T-cells, both helper and regulatory, to the site
of infection. This influx is followed by a decrease in the total CD4+ T-cell population of
the lymph node as observed by Karlsson et al., [33]. This study reported an average 20%
reduction in total CD4+ T-cells in non-specific lymphoid tissue by day 14 and 50% on day
28 post-infection. Our model predicts a reduction of 22% by day 14 post-infection that
continues to a 46% reduction in lymphoid T-cells by day 21 post-infection, the last time
point of the simulation. In addition, non-human primate infection referenced in Hogue et
al. [26] measured 1.7 · 106mL−1 infected cells in the lymph node on day 6 post-infection.
Our model predicts 8.64 ·105mL−1 productively infected CD4+ T-cells in the GLN on this
day.

To further test the validity of our model we observed the effect of CD4+ nTreg depletion,
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represented in the model as reduced resting CD4+ nTreg at the time of infection (Rm(0)),
on the course of viral proliferation. Though it has been observed that Treg cells from hosts
infected with HIV and FIV (feline immunodeficiency virus) suppress antiviral responses
during the chronic stage of infection [1, 34, 46], a recent study in FIV shows that Treg
cell depletion of approximately 78% prior to infection does not significantly impact viral
load or CD4+ T cell levels in tissues [45]. When simulations were carried out with reduced
Rm(0) values from 107mL−1 to 105mL−1 and then to 10−10mL−1, there was no change in
the time of viral peak in either tissue site and < 8% increase in peak vRNA values in the
GLN and ≤ 13.5% increase in peak vRNA value in the LP, in accordance with these FIV
results.

4 Simulations and Results

For each experimental condition described in the following sections, four measurements
were made to determine the rate and extent of viral proliferation: i) The maximum vRNA
levels z̄1max in the LP, that is, z̄1max = max

t∈[0,60]
z̄1(t), where z̄1 is given by Equation (26);

ii) the maximum vRNA levels z̄2max in the GLN, given by z̄2max = max
t∈[0,60]

z̄2(t) with z̄2

defined by Equation (27); iii) the time tpeakLP at which the vRNA level peaks in the LP,
that is, tpeakLP = arg max

t∈[0,60]
z̄1(t); and iv) the time tpeakGLN at which estimated vRNA

peaks in the GLN, that is, tpeakGLN = arg max
t∈[0,60]

z̄2(t). The latter two measurements can

be interpreted as the estimated “window period” between the start of simulation and the
time at which peak viremia is reached in each tissue.

As we noted earlier that all the equations in the system (1)-(5), (9)-(14) and (17)-(22) are
coupled together. Hence, the values of the peak vRNA levels in LP and GLN as well as
the corresponding time at which their levels peak depend on all the model parameters and
initial conditions, either strongly or weakly. In this section, we will compare these four
values for the null model with those representing different immunological backgrounds and
interventions of interest. These include the effect of early inflammatory versus regulatory
response on initial viremia, the role of CD4+ nTreg on initial viral spread, as well as the
impact of inflammatory mechanisms.
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4.1 Effect of Early Inflammatory vs. Regulatory Response on Initial
Viremia

To assess the net effect of a enhanced inflammatory or regulatory immune response, in
terms of expediency and strength, to HIV production we observed the correlation between
viral spread and initial concentration of active immune cells in the LP; DE(0), TE(0), and
RE(0). A set of initial concentration values for each variable were sampled from 10−10 to
1010, where 10−10 is the value in the null model.

Results: In Table 4 we report estimated peak vRNA levels and their corresponding time
points for the null model and in the cases of elevated initial concentration of each active cell
population to 106mL−1, approximately the expected concentration under normal inflam-
matory conditions [18]. It can be seen that none of these increases of the active immune

Table 4: Effect of immunological background on initial viremia.
Condition z̄1max (tpeakLP ) z̄2max (tpeakGLN )

Null Model 1.804 · 109mL−1 (23) 5.45 · 109mL−1 (26)

TE(0) = 106mL−1 1.803 · 109mL−1 (19) 5.45 · 109mL−1 (21)

RE(0) = 106mL−1 1.794 · 109mL−1 (21) 5.422 · 109mL−1 (24)

DE(0) = 106mL−1 1.799 · 109mL−1 (23) 5.45 · 109mL−1 (25)

cell populations has a significant impact on peak vRNA levels in either tissue with ≤ 0.1%
difference even though the initial concentration is raised by over 6 orders of magnitude.
However, all have a significant impact on tpeakLP and tpeakGLN , representing the “window
period”. Specifically we show in Figure 7 that the initial level of all active immune cell
populations is negatively correlated with tpeakLP and tpeakGLN indicating that as their
concentrations increase, virus is able to spread more rapidly. This effect is particularly
pronounced for the T-cell populations, both inflammatory and regulatory, and coincides
with earlier markers of the inflammatory response. Shown in Table 5 are the time points
at which the peak values of functional parameters µNK and εm are seen as well as those
at which their values initially begin to decline.

Table 5: Effect of immunological background on timing of inflammatory response.
Condition peak µNK µNK decline peak εm εm decline

Null Model 28 52 22 31

TE(0) = 106mL−1 15 47 18 27

RE(0) = 106mL−1 18 49 22 31
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Figure 7: Effect of enhanced immune response on the rate of viral spread: Here
the predicted values of tpeakLP (A) and tpeakGLN (B) are plotted against initial values of
active immune cell concentrations in the LP.

Conclusions: These results have multiple implications.

An increased initial concentration of TE can represent a recent immune response from
which residual Th1 cells are still present or a very rapid inflammatory response that al-
lows entrance of Th1 prior to viral replication in the initial host population; a possible
consequence of vaccine exposure.

In 2005 the notorious STEP vaccine trial was carried out, in which high-risk participants
were administered HIV protein within an adenovirus vector. This trial failed returning
results indicating that vaccinated individuals were more likely to be infected with HIV
[56]. The prevailing hypothesis for this surprising result was that the immune response
elicited, by either the adenovirus vector or the HIV antigen itself, created an inflamma-
tory environment predisposing individuals to infection upon exposure of viable HIV. The
effect of enhanced TE(0) in our simulations supports this hypothesis. A vaccine-elicited
inflammatory response would facilitate viral spread predisposing the host to infection if ex-
posure occurs while it is still active. This is a probable scenario for individuals in high-risk
positions such as those who received the vaccine during the trial.

The results also indicate that inducing the CD4+ nTreg response at the time of infection
will likely expedite infection. The decrease in tpeakGLN and tpeakLP seen with elevated
RE(0) indicates that, indeed, active CD4+ nTreg has a net effect of aiding viral proliferation
and dissemination, not necessarily by increasing viral production, but by expediting it.
Furthermore, that this increase is not due to nTreg-mediated dampening of NK activation,
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but rather its ability to replicate virus.

The indication is that a more rapid CD4+ nTreg response would likely not be protective
against viral proliferation. This is relevant as CD4+ nTreg has been shown to promote and
inhibit a successful antiviral response in different species. Specifically, SIV pathogenesis
is greatly reduced in African green monkeys compared to that in rhesus macaques. It
has been suggested that this may be due to the fact that the CD4+ nTreg response in
African green monkeys is quicker, leading to reduced susceptible T-cell recruitment and
stimulation by DC in the infection site [23, 37]. In our simulations, increasing the initial
concentration of RE(0) represents an immediate CD4+ nTreg response elicited prior to
viral production by the first generation of infected cells. These simulation results suggest
this is not a plausible explanation for reduced viremia in green monkeys as an earlier CD4+
nTreg response has little effect on dampening the extent of viral proliferation. Rather, the
sooner active CD4+ nTreg is present, even prior to the inflammatory response, the quicker
virus will propagate.

4.2 The Role of CD4+ nTreg Functions in Initial Viral Spread

It was seen that active CD4+ nTreg has the effect of increasing the rate of viral dis-
semination. We then sought to identify the net effect of specific CD4+ nTreg functions:
contact-dependent deactivation of presenting dendritic cells, governed by the parameter
kT , and inhibition of Th1 proliferation, governed by the parameter m. This was done by
plotting peak vRNA levels, z̄1max and z̄2max (Figure 8 (A) and (B)) as well as their cor-
responding time points tpeakLP and tpeakGLN (Figure 8 (C) and (D)) by increasing values
for these parameters. Specifically, values for m, the coefficient for functional parameters
pt and pT (defined in Equation (16)), that determines the extent to which CD4+ nTreg
inhibits T-helper cell proliferation, were sampled from the range [10−10, 10−1]. Values for
kT , the rate of contact and de-activation of DC by CD4+ nTreg were taken from the range
[2.3821 · 10−10, 2.3821 · 10−1].

Results: Plots in Figure 8 clearly show a negative correlation between both functions and
peak vRNA levels indicating that enhancement of either has a net effect of reducing viral
proliferation, with kT having a tighter correlation. In relation to the “window period” , the
negative effect of kT is also clearly demonstrated. In Figure 8 (C) and (D) it can be seen
that as kT increases from its default value, the values of tpeakLP and tpeakGLN increases
indicating that CD4+ nTreg-mediated DC de-activation has a net effect of prolonging the
window period. Though these values are also higher than that in the null model when kT
is severely reduced, this corresponds with very high viral load that likely continues to rise
uninhibited. The relationship between the window period and m appears more complex.
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Figure 8: Effect of CD4+ nTreg regulatory functions on viral spread: Here the four
measurements of viral spread are plotted by increasing values of the parameter m (circles)
and kT (+ sign); (A) peak level of vRNA in the LP, z̄1max, (B) peak level of vRNA reached
in the GLN, z̄2max, (C) time of peak vRNA level reached in the LP, tpeakLP , (D) time of
peak vRNA level reached in the GLN, tpeakGLN . Circled points represent parameter values
in the null model.

Like kT , as m increases from the default value the window period is increased. However,
there is a range for m, 10−3-10−2, in which the beneficial effect is much less significant, even
non-existent in the LP. This highlights the complex, non-linear relationship between m and
the response of the over all system. For example, RE is, itself, an indirect function of m
as an increased m leads to decreased TE and TE∗, which affects the functional parameters
µNK and εm that directly influence the levels of RE∗ and RE .
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We next sought to determine whether such enhancement of CD4+ nTreg functions could
change its relationship to increased viral proliferation, i.e., whether enhancement of these
specific functions could render the net effect of CD4+ nTreg activation to be protective.
Specifically, we sought a value for these parameters at which one could clearly observe a
negative correlation between peak vRNA levels, z̄1max and z̄2max, and the initial active
CD4+ nTreg concentration, RE(0), as well as a positive correlation with the window pe-
riods, tpeakLP and tpeakGLN . To this end, we observed the four measurements for viral
proliferation against increasing values for initial active nTeg concentration, sampled from
the range [10−10, 1010] with different values for m and kT .

Results: For all values assigned to m, from the range [10−10, 10−1], the estimated peak
vRNA levels remained positively correlated with initial active CD4+ nTreg concentration,
if affected at all, and the estimated window periods remained negatively correlated (as
observed from Figure 9). In the case of enhanced ability to deactivate DC, the effect
is largely just as insignificant. For most values of kT the relationship between active
CD4+ nTreg and vRNA levels remains positive and that with the window period remains
negative. However, it can be see in Figure 10 that for higher values of kT , there is a
specific range of initial CD4+ nTreg concentrations (about 102 -104mL−1) that inhibit the
propagation of the first generation of free virus produced by the initial host population. In
other words, viremia does rise above the concentration of approximately 104mL−1. This
effect on viremia in the GLN, specifically, is observed over a wider range of CD4+ nTreg
concentrations than those in the LP.

Conclusions: CD4+ nTreg-mediated inhibition of DC is a useful aspect of the regulatory
response that one wants to maintain offering the most promising avenue for intervention.
Furthermore, with an enhanced capacity to de-activate DC, there is a range of CD4+ nTreg
activation that could be protective at the time of infection.

However, manipulation of CD4+ nTreg-mediated inhibition of Th1 proliferation could have
unpredictable, unintended consequences. Hence, this function is not a strong candidate for
exploitation in reducing viral spread as simulations indicate that enhancing the capacity
to inhibit Th1 proliferation, does not change the net effect of CD4+ nTreg activation as it
continues to expedite viral proliferation due to its ability to replicate virus.

With these findings we recommend conducting carefully designed experiments to determine
potential beneficial effect of promoting CD4+ nTreg-mediated DC inhibition in an in vivo
setting of acute infection. In a similar vein, it would be interesting to experimentally
observe the net effect of enhancing CD4+ nTreg-mediated inhibition of Th1 proliferation
given the anti-intuitive dynamics reported here.
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Figure 9: Relationship between initial active nTreg concentration and viral pro-
liferation given enhanced capacity to inhibit Th proliferation: Here the following
factors are plotted by increasing values of RE(0) given different values of m as indicated
in the legend; (A) peak level of vRNA in the LP, z1max, (B) peak level of vRNA reached
in the GLN, z2max, (C) time of peak vRNA level reached in the LP, tpeakLP , (D) time of
peak vRNA level reached in the GLN, tpeakGLN . The thicker line represents the value of
m used in the null model.
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Figure 10: Relationship between initial active CD4+ nTreg concentration and
viral proliferation given enhanced DC-deactivation capacity: Here the following
factors are plotted by increasing values of RE(0) given different values of kT as indicated
in the legend; (A) peak level of vRNA in the LP, z̄1max, (B) peak level of vRNA reached
in the GLN, z̄2max, (C) time of peak vRNA level reached in the LP, tpeakLP , (D) time of
peak vRNA level reached in the GLN, tpeakGLN . The thicker dotted line represents the
value of kT used in the null model. Solid lines indicate kT values for which initial viremia
is successfully controlled and does not rise significantly above concentration of the first
generation of budded virus.
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4.3 Impact of Inflammatory Mechanisms

The model includes an inflammatory response to viral production that is comprised of four
main mechanisms: i) stimulation of both resting conventional T-cells and CD4+ nTreg at
the rate of αT , ii) recruitment of both resting conventional T-cells and CD4+ nTreg to
the inductive site at the rate εt, iii) the recruitment of monocytes, immature dendritic cell
precursors, at the rate εm (Equation (6)), mediated by the parameter cm, and iv) removal
of infected cells by NK cells at the rate µNK (Equation (8)), mediated by the parameters
cNK , the maximum value of the removal rate, and λ, the rate of increased removal as DC
and Th1 concentrations rise. In order to clarify those mechanisms that most influenced
the net positive impact of the inflammatory response on HIV spread we sought to correlate
the peak vRNA levels with each the parameters governing these four mechanisms. To do
this we plotted estimated peak vRNA levels in the LP (z̄1max) and in the GLN (z̄2max) by
values for each parameter. Values for εt were sampled from the range [10−10, 1000], those
for cm from the range [10−10, 1000], those for αT from the range [10−10, 1], those cNK from
the range [5.12 · 10−10, 5.12 · 103], and those for λ from the range [10−10, 10−1].

Results: Plots in Figure 11 show that monocyte recruitment has little effect on viremic
levels, with T-cell recruitment having a slightly anti-intuitive, negative effect on viral pro-
liferation. NK activity and Th1 stimulation are the processes that play the most critical
role in determining the rate of viral proliferation. Specifically, enhanced NK activity is
intuitively beneficial. DC-mediated stimulation of regulatory and inflammatory T-cells,
however, has a significant impact in aiding viral proliferation.

Conclusion: The positive correlation between the inflammatory response (shown in sec-
tion 4.1) and expedited viremia is largely attributed to DC-mediated stimulation of T-cells,
both Th1 and CD4+ nTreg. However, NK cells can be a very effective fighter against viral
spread, which is significant as their activity may be elicited prior to the CD8 response
through DC activation and potentially independent of CD4+ Th1 activation.

These results suggest that one would want to be specific in choosing the inflammatory
function to be targeted for enhancement as an intervention strategy. T-cell recruitment
by DCs may be slightly protective, but if this is coupled with Th1 stimulation, the impact
can be quite negative for the host. In terms of determining inflammatory mechanisms to
inhibit in order to quell viral spread, targeting DC-mediated recruitment of T-cells is not
recommended as it appears to be a necessary component of the antiviral response. A better
strategy would be targeted disruption of DC contact with and/or stimulation of T-cells
(helper and regulatory). Indeed, simulations with reduced αT to 10−10 leads to much lower
viremia with no noticeable T-cell loss (results not shown).
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Figure 11: Relationship between inflammatory mechanisms and acute viral
spread: Here the following factors are plotted by increasing values of cm (red stars),
εt (blue + sign), αT (blue circles), cNK (green diamonds), and λ (black stars). (A) peak
level of vRNA in the LP, z̄1max, (B) peak level of vRNA reached in the GLN, z̄2max, (C)
time of peak vRNA level reached in the LP, tpeakLP , (D) time of peak vRNA level reached
in the GLN, tpeakGLN .

5 Discussion

Here we present a model of the HIV-specific inflammatory pathway leading to Th1 acti-
vation and the nTreg-mediated regulatory pathway that suppresses it. Simulations based
on this model and its component mechanisms suggest that a global activation of either the
adaptive regulatory or inflammatory response would expedite viral dissemination, over-
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coming the innate antiviral response, as both lead to activation of HIV-permissive Th1
and nTreg. This result holds even over a wide range of conditions that would enhance
or weaken the influence of nTreg on DC-deactivation and Th1 proliferation. Analysis of
the most effective regulatory functions and harmful inflammatory mechanisms specify DC-
mediated stimulation of CD4+ T-cells as the key mechanism driving viral proliferation.
The indication is that once DC carries HIV to the lymph node to present to T-cells, the
infection has little chance of being stopped as the virus is now in an environment with a
plentitude of highly permissive hosts, has access to the blood stream, and is largely pro-
tected from NK mediated removal. Hence, any vaccine-primed responses that require this
presentation upon viral challenge will occur too late and be ineffective, if not harmful. This
includes a typical CD8 response which relies on the activation and proliferation of CD4+
T-cells for cytotoxic T-lymphocyte (CTL) activation. Indeed such obstacles are what have
made finding an effective and protective vaccine so difficult.

This work suggests that such strategies will continually fail to control systemic spread and
viremia. Rather, there should be a focus on responses that may lead to viral removal prior
to interaction between a presenting infected DC and resting T-cell takes place. This may
include neutralizing antibody that could, theoretically, eliminate virus prior to contact
with DC by preventing transcytosis from vaginal lumen to LP or antibody-dependent cell
cytotoxicity that would enhance the ability of NK cells to eliminate the initial host cell
population at site of infection prior to spread.

Ideal intervention strategies would be those that enhance the innate response without a
need for T-cell expansion. As an example, this could involve NK activation through selec-
tive recruitment of plasmacytoid DCs (pDCs) from the blood to the infection site as this
DC subset does not play a significant role in T-cell expansion, but is effective in inducing
NK response through secretion of IFN-α [5]. Though pDC has been associated with im-
mune dysregulation, this association is seen with established viral infection in the chronic
disease phase. Other strategies to enhance the effective NK response is to target viral
proteins that inhibit innate immune response such as nef, which leads to downregulation
of NKG2D ligands on the surface of infected cells [5].

In terms of prevention treatments that seek to exploit the innate immune response, our
conclusions recommend those that could disrupt DC: T-cell interactions upon HIV entry,
allowing NK activity to occur through DC stimulation alone. Such strategies may involve
treatment with tolerogenic commensal bacterial strains in the vaginal lumen, inhibition of
antigen presentation by DC, and targeted inhibition of DC-TcR interactions.

Knowledge of the mechanisms involved in this model is evolving. Specifically, those govern-
ing DC-mediated delivery of virus, HIV-specific NK activation, and HIV-specific activation
and suppressive functions of nTreg continue to be a source of controversy in the experi-
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mental HIV immunology field.

As stated in Section 2.2, it may be possible for infected DC to deliver viable virus to
resting T-cells upon transient association in the absence of TcR recognition and subsequent
stimulation. By not including this mechanism of contact-dependent infection of resting T-
cells our model may underestimate the number of latently infected memory T-cells that
may be established by a single infected DC in the early stage of infection. The possible
error in size of this reservoir population presumably has little impact on the dynamics of
early infection and the initial viremic spike, but will be relevant in future models that seek
to encompass the chronic disease stage following the acute phase.

This model assumes that HIV-specific nTreg suppressor functions are dependent upon
TcR stimulation indicated by in vitro observations [51] and focus on the theoretical conse-
quences of HIV-solicited regulatory response coupled to the inflammatory response. The
true mucosal system likely includes HIV-nonspecific nTreg activation pathways that may
be relevant. As mentioned, the mucosal site is believed to include a constant level of ac-
tive CD4+ nTreg stimulated by self antigen and commensal bacteria. This constitutively
active CD4+ nTreg population could be represented as a constant in-flow into the RE

population. In addition, there may be a polyclonal nTreg population present that can be
activated by TGF-β secreted from neighboring nTreg [51]. This could be represented by
an influx into the RE population proportional to the current RE population, enhancing
the effect of nTreg cell concentration on viral proliferation and NK suppression. Hence,
we presume that exclusion of these mechanisms leads to simulation results that underes-
timate the contribution of nTreg presence to viral proliferation. The significance of such
HIV-independent, polyclonal populations and circumstances governing their activation in
vivo is largely unknown and may be incorporated into later versions of the model as more
information is gathered.

Studies have indicated nTreg may have a direct cytolytic effect on NK cells. This mode
of suppression was not included as it was demonstrated in a minority of nTreg in specific
in vivo conditions of a tumor microenvironment and has not been reproducible in other
situations [51, 17]. Including this mechanism would likely enhance the positive effect of
nTreg activation on viral dissemination and, therefore, is not presumed to change the net
effect of the regulatory response reported here. Specifically, it ultimately promotes viral
proliferation.

The assumptions made here regarding mechanisms represented and excluded in the model
are a subset of those currently in the literature making this model a foundation for studying
various hypothesized details of each mechanism in future versions.

Given the lack of data in the current literature, this modeling effort constitutes a prelim-
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inary exploration into the role of the regulatory pathway and how it may be exploited to
prevent HIV proliferation. The current model is capable of addressing conceptual ques-
tions relevant to devising intervention to quell HIV spread such as those addressed here:
Should one promote the regulatory response?, Should one inhibit the regulatory response?
and What specific mechanisms of inflammation would be best to suppress in a targeted
manner?

However, the model is not adequate for making quantitative predictions as this requires
calibration to specific experimental data. Future work involves using this preliminary
model to suggest specific experiments with which such data can be collected. A model
calibrated to adequate data could then be used to make quantitative predictions of viral
load and timing of systemic spread within a satisfactory level of confidence.
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A Initial Conditions, Parameters and Rate Functions

Initial variable concentrations are given in Table 6. In general, subscripts denote phenotype.

Table 6: Initial conditions.
Di Immature dendritic cells 108 cells/mL [26]

DI Non-infected active dendritic cells in the GLN 10−10 cells/mL

DI∗ Infected active dendritic cells in the GLN 1 cells/mL

DE Non-infected active dendritic cells in the LP 10−10 cells/mL

DE∗ Infected active dendritic cells in the LP 10 cells/mL

Tm Non-infected CD4+ memory T-cells 108 cells/mL [23]

T ∗m Latently infected CD4+ Memory T-cells 10−10 cells/mL

T I Non-infected active CD4+ Th1 cells in the GLN 10−10 cells/mL

T I∗ Infected active CD4+ Th1 cells in the GLN 1 cells/mL

TE Non-infected active CD4+ Th1 cells in the LP 10−10 cells/mL

TE∗ Infected active CD4+ Th1 cells in the LP 10 cells/mL

Rm Non-infected memory CD4+ nTreg cells 107 cells/mL [7]

R∗m Latently infected memory CD4+ nTreg cells 10−10 cells/mL

RI Non-infected active CD4+ nTreg cells in the GLN 10−10 cells/mL

RI∗ Infected active CD4+ nTreg cells in the GLN 1 cells/mL

RE Non-infected active CD4+ nTreg cells in the LP 10−10 cells/mL

RE∗ Infected active CD4+ nTreg cells in the LP 10 cells/mL

The alphanumeric superscript denotes location and the superscript ‘*’ indicates infectious
counterpart.

Parameters required by the model are listed in Table 7 and fall roughly into three categories:
i) birth/death processes, ii) migration, and iii) contact/interaction processes. Units for
rates are per 6 hours as this is approximately the length of time a T-cell takes to proliferate
in association with the stimulating DC [53]. When possible, constant values were assigned
according to published experimental data. For example, pt0, the uninhibited rate of T-cell
proliferation in the GLN, is based on an in vitro study of CD8+ T-cells and their capacity
to proliferate in response to TCR stimulation [21]. This study reported that a stimulated
naive CD8+ T-cell or central memory T-cell undergoes a maximum of 9 doublings. Hence
1 T-cell will end-up giving birth to 29 = 512 T-cells. The parameter pT0, the uninhibited
rate of T-cell proliferation in the LP comes from observations in the same study that, upon
stimulation, effector memory T-cells proliferate to a lower extent than do central memory
T-cells resulting in a concentration ratio of roughly 1:4. Proliferation of naive nTreg may
be reduced compared to T-helper cells as the express lower levels of IL2R [57]. For this
reason, pr was included as a separate parameter assigned the range 128-512. By default,
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Table 7: Parameters used in the model. The third column is for the values of the parameters
used in the simulations, and the fourth column is for the ranges of those parameters whose
ranges can be found in the literature. For those parameters whose values can not be found
in the literature an arbitrary value was assigned. While for those parameters whose values
or ranges can be found in the literature, the reference numbers were given after the values
or ranges, and the species from which in vivo these measurements were taken or cells were
isolated for measurements in vitro were indicated after the reference numbers with “M”
for “mouse”, “H” for “human”, and “NS” for “not specified”.

Birth/death

µT rate of active T-cell deactivation 0.05/6hr [42, M]

pt0
number of daughter cells from one proliferating

512 [21, H]
T-cell in the GLN, uninhibited

pT0
number of daughter cells from one proliferating

128 [21, H]
T-cell in the LP, uninhibited

µdi death rate of immature dendritic cells 0.0006/6hr [32, M]
µd death rate of dendritic cells 0.12/6hr [38, NS]

d0 baseline number of immature dendritic cells 108 cells/mL [26, NS]

pr
number of daughter cells from one proliferating

512
naive CD4+ nTreg

NE number of free virus produced by one T-cell 200 100 − 300 [25, 29, 19, H]
ND number of free virus produced by one DC 5
cNK the maximum value of µNK 75/6hr

λ the rate at which µNK rises to its maximum 10−8 mL/cells

m
coefficient to determine effect of CD4+ nTreg

10−10 mL/cells
on Th1 proliferation

Migration

εIE rate of cell migration from GLN to LP 0.125/6hr [29, NS]
εEI rate of cell migration from LP to GLN 0.25/6hr

εt
Number of naive T-cells recruited

100 100 − 300 [53, M]
by one active DC

cm constant in εm function 1 cells/(mL·6hr)

Contact / interactions

αt probability of naive T-cell stimulation by DC 10−4 10−4 − 10−7 [29, NS]

αT probability of memory T-cell stimulation 10−4 10−5 − 10−3 [29, NS]
νT fraction of T-cells that become memory T-cells 0.02 0.02 − 0.1 [31, M]
δ fraction of D∗ able to stimulate resting T-cells 1
δr fraction of D∗ able to stimulate resting nTreg 1

αv
probability of memory T-cell infection

0.1
by virus on contact

αm
probability of viral infection of Di

0.01 0.01 − 0.5 [41, H]
upon uptake of virion

k rate of contact between individuals 10−7 mL/(cells·6hr)
kT rate of contact between CD4+ nTreg and DC 10−6 mL/(cells·6hr) (10−9 − 10−3) [48, M]
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we assumed that naive nTreg proliferate to the same extent as naive T-helper cells.

The range for εt was derived based on the observation of Stoll et al., [53] that there are
3.35 times more naive T-cells in the lymph nodes with presenting dendritic cells compared
to lymph nodes where they are absent. As the concentration of naive T-cells in lymphoid
tissue in non-inflammatory conditions is on the order of 108 [23] this would require an
increase of approximately 2 · 108 naive T-cells under inflammatory conditions for a total of
approximately 3 · 108. Given that the expected number of activated dendritic cells under
inflammatory conditions is approximately 106 in the LN [18], one dendritic cell is estimated
to recruit approximately 2 · 102 T-cells, giving εt a range of 102 to 3 · 102.

The parameter d0 represents the number of immature DC in the naive system. The value
assigned was borrowed from a previously published model [26], though an experimental
measurement was not cited.

For transition rates such as death, de-activation, and migration rates: µT , µdi, µd, εIE ,
and εEI , measurements from the literature were in the form of an average lifespan or dwell
time for an individual cell type in a particular location. In order to avoid introducing the
complication of delay-differential equations, we used the common strategy of modeling cell
death and movement as affecting a fixed proportion of cells in each time interval, resulting
in an exponential distribution of lifetimes with the experimentally observed mean, x, or a
half-life of x ln 2.

For other parameters such direct data was not found and a range was estimated based on
less direct biological measurements and knowledge. In the case of αm, it is not known with
what frequency viable virions are able to escape the intra-cellular phagosomal degradation
and enter the cytoplasm to effectively infect the dendritic cell. Therefore, we assigned a
range based on the ratio of viral protein p24 in the cytoplasm to that in the phagosome after
uptake by macrophages [41]. However, p24 is a marker of the virion capsule, not necessarily
an intact, viable virion. In the case of αv, the probability that a resting memory T-cell in
infected upon contact with virus, a value was assigned based on the knowledge that the
viral receptor protein CD4 is upregulated only in active T-cells and present at lower levels
on the surface of resting cells [29]. However, a quantitative comparison of CD4 density
between resting and active T-cells was not found in the literature.

The parameter NE represents the amount of viable virus budded from T-cells. Viral burst
size in T-cells is approximately 1100 virions/cell per day in vitro [29]. However, only 10%
of virus produced is estimated to be viable in vivo [19]. Hence, the amount of viable virus
produced by a single T-cell is estimated to be on the order to 102 per day. ND represents
the amount of virus budded from each dendritic cell. This is known to be less than that
of T-cells and the value is assigned based on data that the burst size in macrophages, cells
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of the same lineage as dendritic cells, is roughly 0.1 that of the burst size in T-cells [27].

In the case where the quantitative value of a parameter does not have a direct correlation
with experimental data, as in the cases of cNK , λ, m, k, kT , and cm, a value was arbitrarily
chosen.

The parameter dependent rate functions are summarized in Table 8.

Table 8: Parameter dependent rate functions.
Birth/death

Death rate of infected cells by NK: µNK = cNK(1 − e−λ(D
E+δDE∗+TE+TE∗))

Daughter cells produced from one proliferating T-cell in the GLN, inhibited: pt =
pt0

1 +m(RI +RI∗)

Daughter cells produced from one proliferating T-cell in the LP, inhibited: pT =
pT0

1 +m(RE +RE∗)

Migration

Recruitment rate of Di by inflammatory factors: εm = cm
TE∗ +DE∗

TE∗ +DE∗ +RE

Contact / interactions

Rate of infection of memory T-cells: ω1 = kαv(vE + vI)

Rate of contact with virus in the LP: ω2 = kvE

Rate of contact with virus in the GLN: ω3 = kvI

The concentration of free virus in the LP: vE = NE(TE∗ +RE∗) +NDD
E∗

The concentration of free virus in the GLN: vI = NE(T I∗ +RI∗) +NDD
I∗
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B Simplifying Assumptions

B.1 Changes From Earlier Model and Rationale

This model is a result of iterative attempts at reducing an earlier, more comprehensive
model. That model was more biologically accurate at the expense of being intractably
complex. In this section we list the simplifying assumptions made in the reduction process.

• No non-HIV antigen, L: In order to observe potential effects of a co-infecting or
previous infection with an inflammatory or tolerance-inducing immunogen previous
versions of the model included a variable L representing non-HIV antigen. An explicit
variable was not deemed necessary as these effects may be represented, instead, by
modification of the initial values of active immune cell populations. In the case of
a constant supply of a tolerance-inducing antigen, it may be necessary to include a
‘source’ parameter for DE and then reflect the likelihood of it being of a tolerogenic
phenotype in the αT and αt parameters.

• Do not consider pre-integrated virus in the latently infected memory T-cell population:
In earlier versions, the latently infected T-cell population was divided into those with
integrated virus (T ∗m) and those with pre-integrated virus (I∗). This model does not
distinguish the I∗ and T ∗m populations. This assumption is made given the short
time frame of interest (2 weeks) and fact that the cell takes approximately 1 week to
degrade pre-integrated virus. We assume that all memory cells that are infected will
be stimulated before virus is degraded.

Hence, the current model allows T-cells an extra week to be stimulated which may
overestimate the prevalence of infected T-cells. To incorporate the fact that some
may not be stimulated within a week, and revert back to a non-infected memory
T-cell, one could replace αv with (αv−νT∗), where νT∗ is the probability of reversion
back to an uninfected Tm upon viral degradation.

The insignificance of this effect is supported by the relatively low sensitivity of viral
proliferation to the parameter αv in the sensitivity analysis.

• No macrophages: In earlier versions macrophages were included as variables and
specifically played a role in: i) stimulation and infection of resting T-cells, ii) virus
production, and iii) recruitment of Di. Excluding macrophages follows the biologi-
cal model that T-cell stimulation occurs primarily through dendritic cells and viral
production by macrophages is only significant in their role as a reservoir in chronic
infection, not acute infection.

The mechanism in which they might have a significant impact is in recruitment:
nTreg mediated regulation may occur through promoting the differentiation of M1
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to M2 where M1 can recruit and lead to higher Di levels and M2 does not. This
macrophage-mediated recruitment is included as εm in Equation (1) to promote a
net increase in Di under inflammatory conditions. The lack of induced T-regulatory
cells may skew recruitment dynamics, however sensitivity analysis did not show cm
to be highly influential.

• Only effector, inflammatory T-cells are included: This version does not include in-
duced T-regulatory cells (iTreg), but rather only inflammatory Th1 cells. To distin-
guish iTreg and Th1 is not necessary as CD4+ T-cells are merely included as virus
producers. Representing only T-cells of the Th1 phenotype allows us to model the
response to the virus, specifically, which is generally Th1 response [29]. It also al-
lows us to make IFN-γ-dependent functions (NK activity and viral production rate)
dependent directly on T-cell concentration.

The assumption that virus induces a Th1 response is supported by SIV studies that
show elevated tissue levels of IFN-γ and IL-12 following infection [2] and the paradigm
that this is the response to intracellular pathogens in general [29].

A potentially important aspect this simplification may exclude is that infected den-
dritic cells may induce conventional T-cells to an iTreg phenotype [22], thereby, cre-
ating a virus-producing population that does not promote an antiviral response. An
attempt to include this dynamic is the option to allow infected dendritic cells to still
stimulate members of the Rm population, by setting δr > 0, but not conventional
T-cells, δ = 0. As δ represents inflammatory function of DCs including stimulation
of T-cells to a Th1 phenotype as well as recruitment of T-cells to the lymph node,
this is also a coefficient for recruitment of resting nTreg by infected DI∗ in equations
(19) and (20).

B.2 The Assumptions That May Need to Be Re-visited

Below is a list of simplifying assumptions that violate the currently accepted biological
understanding of the system and its response.

1. Homeostatic turnover of memory T-cells: The effect of homeostatic cytokine-mediated
stimulation of effector and central memory T-cells are not included in the model at
this point as it does not appear to play a role in sequence of events in acute infection.

2. Memory T-cells are not currently infected upon transient association with virus-
harboring dendritic cells in the absence of antigen recognition.

3. The model assumes that effector functions (cytokine secretion and signalling) is not
affected by infection state of a cell.
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4. Though the viral life cycle requires approximately 24 hours between infection and
budding of nascent virions, the model assumes budding to occur immediately upon
infection. Given that this is roughly the time it takes for dendritic cells to migrate
from the LP to the GLN upon viral uptake, one could argue that this assumption
could lead to a pre-mature spike in free virus concentration in the LP. However, a
spike in the LP prior to a spike seen in the GLN actually would agree with viral load
curves taken from these tissue areas in an SIV model [47]. Future versions of the
model may include a delay term for viral budding from T-cells and DC to capture
any possible impact of this 24 hour delay on infection dynamics.

5. The model does not include CTL-mediated removal as a function of T-cells because
this would not take place within the scope of two weeks. The time-frame places focus
on innate immune aspects.

6. NK cell cytotoxic behavior is promoted by IL-12, IL-15, IL-18, IL-21, IFN-α, and
IFN-β in vitro. Though in vivo studies have linked NK activity specifically with
DC-mediated activation, we assume it is dependent on DE and TE as Th1 is also a
source of IL-12 and IFN.

7. Upon activation T-cells are assumed to proliferate within the first 6 hours, when
they actually proliferate after a few days. This may lead to a pre-mature spike in
the T-cell population in response to pathogen. Future versions may include a delay
term for proliferation to account for any potential impact this may have on T-cell
and, therefore, viral dynamics.

8. Through removal of dendritic cells by nTreg the model assumes that anergic dendritic
cells do not secrete IL-12, 15, 18, 21, nor IFN-ab that induce NK activity.

9. We assume dendritic cell function is only affected by its infection state and not the
cytokine environment.

10. We do not take HIV-induced apoptosis of bystander cells into account under the asso-
ciation of this function with CXCR4 strains and we are modeling CCR5 strains, the
most common infecting phenotype. Inclusion of this may have an effect on dynamics
placing less emphasis on µNK for cell depletion.

11. It has been observed that the majority of stimulated mucosal dendritic cells secrete
anti-inflammatory IL-10 and TGFβ cytokines [28] upon stimulation by antigen com-
pared to peripheral dendritic cells and, therefore, would not induce a Th1 response.
This may warrant modification of the parameters αT and αt, the probabilities of
conventional T-cell stimulation to an inflammatory Th1 phenotype to incorporate
the probability that the presenting dendritic cell is secreting IL-12 as opposed to
IL-10/TGF-β.
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12. The model assumes that each infected T-cell buds virus at a constant rate over a 1
week activation period as opposed to shedding most virus during its brief proliferation
stage.
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C Additional Research Questions Explored

Here are the results from other “low-hanging fruit” experiments that we do not consider
highly relevant to the biological community and do not think need to be reported in this
study.

C.1 Significance of Infected nTreg Proliferation

It is generally accepted that unlike conventional CD4+ T-cells, memory nTreg do not
undergo significant proliferation upon reactivation. However, virus-induced proliferation
of latently infected nTreg has been observed in vitro in the lab of Dr. Shila Nordone.
To test the effect of this proposed proliferation in vivo the parameter pR was included in
Equation (20). Simulations were then carried out with a value of pR = 512, representing
proliferation of latently infected nTreg upon stimulation.

Preliminary Result Memory nTreg do not proliferate upon re-stimulation by dendritic
cells. However, virally-induced proliferation of latently infected nTreg has been observed
in vitro (unpublished). This hypothesized mechanism is included as the coefficient pR
in Equations (20) and (22). Proliferation is permitted by assigning a value to pR that
is greater than 1. For this reason proliferation of infected memory nTreg, R∗m, may be
included by adding the coefficient pR to the terms 0.5kαTR

∗
mD

I and 0.5kαTR
∗
mD

E in
Equation (20) and (22). Table 9 shows that whether latently infected nTreg can proliferate
upon re-stimulation has a significant impact on the window period for intervention. It may
be useful to identify whether this phenomenon occurs in vitro, as a potential avenue for
intervention.

Table 9: Effect of latently infected nTreg proliferation.
Condition z̄1max(tpeakLP ) z̄2max(tpeakGLN )

pR = 1 1.804 · 109(23) 5.45 · 109 (26)

pR = 512 1.1875 · 108(15) 6.7232 · 109(15)

C.2 Effect of Virus-Induced Inhibition of DC-Mediated nTreg Stimula-
tion

The characteristics of dysfunctional, infected DC described in [22], IL-10 secretion and
reduced CD80 expression, may not affect its ability to continue to stimulate nTreg even
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when it is unable to induce a Th1 phenotype. One hypothesis states that the evolution-
ary advantage is found in the inability of DC-mediated NK activity, while at the same
time, maintaining DCs ability to stimulate nTreg, which are significant viral producers.
To explore this possibility, the model includes δr for nTreg stimulation. This is a separate
parameter from δ as IL-10 secretion and decreased CD80 levels is sufficient for nTreg stim-
ulation in vitro [22]. A δ = 0 and δr = 1 represents a scenario in which only inflammatory
activity of dendritic cells is compromised where as it is still able to stimulate nTreg. Sim-
ulations were run sampling values for these parameter from the set {0, 0.74, 1} for δ and
{0, 1} for δr.

Results: Neither affected vRNA levels significantly, with changes being within a factor
of 2. The parameter δ did have an impact on the window period, however, as complete
inhibition, δ = 0, significantly delays viral propagation of initial viremia and the immune
response such that the ‘window period’ is extended by 3 days in the LP and the GLN,
occurring at time points 35 and 37 as opposed to 23 and 26. This is coupled with no
significant change in viral load (Table 10).

Table 10: Effect of virus-induced tolerance in DC.
Condition z̄1max(tpeakLP ) z̄2max(tpeakGLN )

δ = 0.74 1.804 · 109(23) 5.45 · 109 (26)

δ = 0 1.7824 · 109(35) 5.4317 · 109(37)

Further analysis: It is possible that allowing infected dendritic cells to stimulate T-
cells to proliferating iTreg phenotype would show that these conditions do, indeed, lead to
increased viremia. It is possible that allowing infected DC to induce T-cells to proliferating
iTreg could have a positive effect on vRNA levels and may be worth exploring in future
models in order to contextualize this curious effect on DCs.

Conclusion: This does not support the hypothesis that virus would gain a net benefit in
inhibiting DC-mediated inflammation as the decreased µNK is also coupled with reduced
T-cell recruitment and conventional T-cell stimulation. This is true even in the case of
continued nTreg stimulation.

C.3 Role of Different Cells in Initial Dissemination

This was tested by reducing the parameters governing infection of resting dendritic cells
(αm) and resting T-cells (αv) upon contact with virus.
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Preliminary results: Reduction of αv to 10−12 had an impact on delaying viral prop-
agation by 1.5 days where as a reduction of αm to 10−12 had a more significant effect in
extending the window period by four days, compared to the null model, in both tissues
leading with peak levels being reached at time point 44 in the LP and at time point 47 in
the GLN, as opposed to time points 23 and 26 (Table 11).

Table 11: Effect of DC and Tm infection
Condition z̄1max(tpeakLP ) z̄2max(tpeakGLN )

wildtype 1.804 · 109(23) 5.45 · 109 (26)

αv = 10−12 1.1549 · 109(29) 4.2097 · 109(32)

αm = 10−12 1.9056 · 109(44) 5.6509 · 109(47)

Conclusions: Infection of dendritic cells is a worthy target of intervention, over inhibiting
direct infection of resting T-cells.
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