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LONG-TERM GOALS 
 
An over-arching goal in prediction science is to objectively improve numerical models of nature.  
Meeting that goal requires objective quantification of deficiencies in our models.  The structural 
differences between a numerical model and a true system are difficult to ascertain in the presence of 
multiple sources of error.  Numerical weather prediction (NWP) is subject to temporally and spatially 
varying error, resulting from both imperfect atmospheric models and the chaotic growth of initial-
condition (IC) error.  The aim of our work is to provide a method that begins to systematically 
disentangle the model inadequacy signal from the initial condition error signal. 
 
OBJECTIVES 
 
We are engaging a comprehensive effort that uses state-of-the-science estimation methods in data 
assimilation (DA) and statistical modeling, including: (1) the characterization of existing model-to-
model differences via novel spatial Analysis of Variance (ANOVA) methods; (2) the development of a 
flexible representation for the various spatial and temporal scales of model error; (3) the estimation of 
parameters in representing those scales using a probabilistic approach to DA, namely the Ensemble 
Kalman Filter; and (4) the determination of whether incorporation of estimated error structure in 
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improves short-term forecasts, again using spatial ANOVA methods, this time within a formal testing 
framework.    Research focus is on near-surface winds over both the ocean and land.  The method 
under development are sufficiently general and can apply to a wide range of battlespace environments. 
 
APPROACH 
 
The technical approach includes numerical weather prediction and state estimation efforts at NPS, and 
statistical modeling efforts at University of California Berkeley (UCB) under sub-contract.  At NPS PI 
Hacker is implementing the Navy’s Operational Global Atmospheric Prediction (NOGAPS), and two 
limited-area mesoscale models: the Navy’s Coupled Ocean-Atmosphere Mesoscale Prediction System 
(COAMPS) model, and the open-source Weather Research and Forecast (WRF) model, within a state-
of-the-science ensemble Data Assimilation Research Testbed (DART).  The NOGAPS-DART 
provides global ensemble prediction capability that can be consistently applied to the COAMPS and 
WRF as lateral boundary conditions.  Scientific objectives will be me by systematically choosing the 
WRF or COAMPS as the “truth,” which can provide observations for assimilating into the other 
model.  Under this approach, spatio-temporal distributions of uncertainty (error in this context) are 
available for analysis with special attention to second-order moments.  Eventually, we will use the 
same framework to objectively estimate parameters in statistical models, of NWP model error, 
developed at UCB.  Hypotheses will be formed and formally tested.  This work is benefitting from 
collaboration Co-I James Hansen, Justin McLay, and others NRL staff.  A budgeted post-doc has not 
been hired due to delays in funding distributions, and partial increments. 
 
UCB PI Cari Kaufman is working to advance the statistical methods needed to provide an objective 
space-time characterization of the error distributions.  We approach the characterization of the 
uncertainty via fitting a hierarchical Bayesian model that captures the important features and 
variability in the data.  The implied distribution from the model will be a valid stochastic spatial 
process under probability theory. Ideally, fitting the statistical model to different datasets should allow 
us to capture the significant differences between the different underlying data generating distributions. 
Moreover, a realistic statistical model can also simulate realistic wind fields quickly which can be 
beneficial for studying other processes that require surface winds as an input.  Graduate student Wayne 
Lee (unfunded) is contributing substantially to this work.  Postdoc Benjamin Shaby began work in 
September 2011. 
 
WORK COMPLETED 
 
Work in FY2011 was toward various components of tasks 1 and 2.  At NPS we focused on the 
technical implementations of the tools required to complete the research.  This included 
implementation of NOGAPS, COAMPS, and WRF with DART.  NOGAPS-DART and WRF-DART 
is completed.  COAMPS-DART has been implemented at NRL but not yet at NPS.  NOGAPS-DART 
was tested for the period of Oct 2009 and results compared against the operational global data 
assimilation system used at FNMOC to ensure quality.  In the WRF-DART implementation, simple 
model error terms have been added within the WRF code in preparation for estimating the coefficients 
of the model-error process estimated as described below. 
 
At UCB focus was on addressing challenges associated with applying heirarchical Bayesian techniques 
to large, multivariate, and non-stationary datasets typical of NWP.  Progress is documented in the 
following results section. 
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RESULTS 
 
Primary results are the development of a viable statistical model for spatial variability of near-surface 
surface winds.  This represents an important step toward a model capable of characterizing the 
comlexity of model errors in those winds.  Here we describe how we successfully addressed three 
primary challenges associated with this model.  Results represent a significant step toward objectively 
characterizing the time-space structures of model inadequacy. 
  
Results are focused on the surface-wind forecasts from the WRF.  A dataset was prepared at NPS from 
existing ensemble prediction runs (no ensemble-filter data assimilation) to minimize delays on UCB 
progress.  In this case, the WRF lateral boundary conditions were provided by the Global Forecast 
System (GFS) operational model from the National Centers for Environmental Prediction.  Although 
we anticipate the primary research will be completed over the Korean Peninsula and surrounding seas, 
this example data set is over CONUS.  An example wind field is shown in Fig. 1. 
 
 

 
 

Figure 1: Example surface wind field.  Data are thinned to 20% of the original resolution. 
 

We approach the characterization of the uncertainty via fitting a hierarchical Bayesian model that 
captures the important features and variability in the data. The implied distribution from the model will 
be a valid stochastic spatial process under probability theory. Ideally, fitting the statistical model to 
different datasets should allow us to capture the significant differences between the different 
underlying data generating distributions. Moreover, a realistic statistical model can also simulate 
realistic wind fields quickly which can be beneficial for studying other processes that require surface 
winds as an input. 
 
We face three statistical challenges with surface wind fields:  (1) with roughly 12,000 spatial locations 
over North America over two months observed every 2 days (32 forecasts), it is a large data set and 
poses a computational problem for classical geostatistical methods, (2) winds are represented as a sum 
of 3 components U , V , and W, introducing a multivariate spatial process problem (currently we ignore 
vertical velocity W in our study since its magnitude and variability is negligible); (3) surface wind 
fields exhibit great nonstationarity and some discontinuity depending on the underlying topography. 
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Classical stationary methods tend to model the first-order trends well, but fail to capture the second 
order uncertainty which is the primary quantity of interest.  
 
We first tackle the multivariate issue by leveraging the geostrophic wind relationship linking the 
pressure gradient to U and V under frictionless environments. 
 
 

, 

 
where f is the Coriolis parameter, ρ is air density, x is the longitude, y is latitude, and p is pressure. 
This basic relationship is a linear relationship between pressure gradient and wind speeds that can 
simplify the joint model between U and V, so that it can be explained by a single stationary pressure 
field. After some exploration, we decided on the form: 
 

 

 
where coefficients β are functions of location s, and ε are residuals.  Royle et al. (1999) modeled ocean 
wind fields as above with spatially constant coefficents β.  However, the interpretation of β based on 
the geostrophic relationship suggests that β should vary spatially by latitude and the local ratio of moist 
vs. dry air instead of treated as a fixed global quantity. The varying coefficient model was advocated 
by Gelfand et al. (2003) to efficiently model first order nonstationary features for the β.  To quickly 
and naively evaluate this model, we run a linear regression using the 32 days for each location ignoring 
all spatial dependency and examine the estimated β and R-squared to evaluate the fit (R-squared = 1 is 
a perfect fit). A great majority of the R-squared values are above 0.8 which means more than 80% of 
the variability in the data can be explained by the simple geostrophic relationship without borrowing 
any information from neighboring locations. Figure 2 shows estimates of the first-order coefficients.  It 
is clear that the underlying topography, which is not smooth, dominates the estimates.  We can expect 
this result, and more generally that the departures from geostrophy are strongly modulated by lower-
boundary forcing on the atmosphere. 
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Figure 2: Estimates for first-order constants (left) βu,0 and (right) βv,0. 
 

After the first-order nonstationarity is handled, we look at the second-order nonstationarity in the 
distribution of the β fields.  To handle it, we propose to decompose each βi term above into a linear 
combination of three independent stationary spatial processes: 
 

, 
 
where Land(s) is an indicator and Elev(s) is the elevation for location s. Using matrix notation where 
Landii = Land(si) and Elevii = Elev(si),  
 

. 
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Figure 3: Estimates for second-order coefficients (left) βu,x and (right) βv,y. 
 

 
 

Figure 4: Estimates for second-order cross-coefficients (left) βu,y and (right) βv,x. 
 
This naturally creates a valid covariance that reflects the different topography, and the decomposition 
can be extended to other surface properties affecting the winds. We tested multiple simulations to 
ensure that the different processes can be identified with sufficient data, approximating the posterior 
distribution for each simulated dataset using a Gibbs sampler. To summarize the above model, we 
present a schematic of the Bayesian varying coefficient hierarchical model in Fig.4.  Here i indexes the 
terms in the varying coefficient model: intercept and pressure gradient in the N-S and E-W directions, 
and j indexes the three components used in constructing the nonstationary model for the coefficients, 
corresponding to an intercept, land, and elevation components.  
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Figure 5: Schematic of hierarchical Bayesian model.  Hyperparameters are a priori independent. 
 

 
The remaining challenge is the computational burden of the hierarchical model. Lindgren et al. (2011) 
found the Gaussian Markov Random Field (GMRF) precision representation for a variety of Matérn 
covariance functions, a popular covariance family among the spatial statisticians for certain theoretical 
properties. GMRF methods are known for their extraordinary computational efficiency due to its 
sparse precision structure but suffer from the inability to easily model long range dependencies (Wall  
2004) and its requirement on specific boundary conditions. We commented on the published method’s 
bias due to different boundary conditions and its implications for parameter estimation (Lindgren et al. 
2011). Their approximation method provides estimates that consistently underestimate the parameters 
that are consistently estimable under classical methods. The authors responded with the reassurance 
that the bias may be shrunk if the finite element mesh density was increased at the cost of higher 
computational requirements (Lee and Kaufman, 2011; Lindgren et al. 2011). 
 
For future directions, we are exploring the optimal MCMC algorithm to run this hierarchical model.  
Traditional Gibb sampling produces parameters with high autocorrelation from the MCMC chain.  We 
are currently exploring slice sampling and potentially hybrid MCMC.  Once this runs, then we will run 
a computer experiment to see if our stochastic model can detect the changes in the dynamic equations 
within the WRF.  In other words, we will introduce a synthetic NWP model inadequacy and see if 
fitting the bayesian model above before and after the model discrepancy is introduced will produce 
detectable and informative differences.   
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Upon successfully modeling the differences between NWP models, we will try to estimate he 
descrepancy via the parameter estimation framework under development at NPS.  In preparation, we 
have experimented with a simple 960-variable model with dynamics analogous to atmospheric waves 
to determine the potential to estimate parameters with weak correlations to the model state.   
 
Estimation of satellite radiance bias parameters is a particular problem displaying weak correlations 
with the model state.  It is typically performed sub-optimally in variational estimation systems; 
ensemble estimation systems offer a more optimal solution but have only been implemented assuming 
no correlation between state and bias.  This is a limiting assumption, and we proved that the estimation 
procedure itself produces correlations which should not be ignored.  Further, we demonstrated that 
ensemble filters are cabable of estimating the bias parameters without invoking that assumption. 
 
IMPACT/APPLICATIONS 
 
The bulk of DoN day-to-day operations rely on accurate predictions of winds, seas, ceiling, and 
visibility.  The focus of the proposed work is to identify inadequacies associated with the modeled 
atmospheric boundary layer.  Any discoveries that enable the improvement of boundary layer 
modeling will ultimately have a positive impact on Navy warfighters. 
 
The proposed methods have the potential to enable essential improvement in modeling capability.  
Instead of tuning models based on intuition, we are forming a foundation for objective identification of 
model errors.  Those errors could immediately be accounted for in probablistic forecast systems, and 
also be subject to physical interpretation by subject experts. 
 
RELATED PROJECTS 
 
The MATERHORN project (http://www.nd.edu/~dynamics/materhorn/index.html ), funded by ONR, 
seeks to improve atmospheric predictability over complex terrain.  It is similarly focused on 
predictions in the atmospheric boundary layer.  Rather than a focus on model inadequacy, 
MATERHORN focuses on field programs aimed at improving models via direct comparison to 
observations, and quantifying optimal observing strategies for improving predictions.  PI Hacker is 
using some of the technical developments here to aid that effort, and vice versa. 
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