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Abstract

We discuss several models for a flash-heat experiment in homogeneous

isotropic media. We use these to investigate the use of homogenization tech-

niques in approximating models for interrogation via flash-heating in porous

materials. We represent porous materials as both randomly perforated do-

mains and periodically perforated domains.
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1 INTRODUCTION 2

1 Introduction

Nondestructive evaluation (NDE) is an important tool in many fields. Nonde-

structive evaluation is used to identify damage in structures, including com-

ponents of aircraft, spacecraft, automobiles, trains and piping, as they age

beyond their design life. Proper use of nondestructive evaluation can increase

the safety and service life of components of many structures. Ultrasound,

magnetic particle imaging, eddy current, acoustic emission and radiology are

a few examples of NDE techniques. These techniques have been developed in a

large number of applications, particularly for homogeneous metallic materials

[1]–[5]. Composite materials are increasingly popular in structures including

aeronautical and aerospace vehicles and are made with an acceptable level of

porosity. This porosity causes a certain amount of noise in the interrogation

signal of any NDE technique. In [6] where we investigated using active ther-

mography to detect damage in porous domains we found that we could detect

damage of a certain size within a porous medium using thermal interrogation.

However, the methods developed in [6] were too computationally intensive to

use in the sophisticated parameter estimation routines needed to characterize

damage. As in [6] we treat here the problem of modeling the flow of heat in a

porous domain but in the current work we focus on the results of homogeniza-

tion theory (which are less computationally intensive than the methods used

in [6]) to capture the behavior.

We aim to use homogenization theory to model a two dimensional cross

section version of a flash-heat experiment in porous domains. In Section 2 we

discuss the flash-heat experiment in the simple case of isotropic flow in a ho-

mogeneous domain and consider several models of the flash-heat experiment.

In particular, we present here four different scenarios: (i) heat in a perfectly

insulated two dimensional sample (system (2) below); (ii) heat flow in a cross

section with part of the boundary held at a fixed temperature (system (4) be-

low); (iii) heat flow in a cross section with loss only in the direction orthogonal

to the cross section with boundaries otherwise insulated (system (9) below);

and (iv) heat flow in a cross section with small loss on either part or all of

its boundary (system (12) and (13), respectively, below). After choosing two
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models ((9) and (13)) to investigate in detail, we discuss the procedures used

in homogenization to approximate the flow of heat over a domain with random

pores by the flow of heat over a domain with many periodically placed pores.

One passes this periodic domain to a limit using homogenization theory to gain

a limit partial differential equation which replaces the periodically perforated

domain with a homogeneous domain that has anisotropic flow which approx-

imates the effect of the porosity. With the results of homogenization theory

developed in Section 3 we move on to summarize the results of simulations

of the flash-heat experiment on a randomly perforated domain, a periodically

perforated domain, and a homogeneous domain with the anisotropic flow de-

rived from homogenization theory in Section 4. We also graphically analyze

the two example simulations of primary interest in Section 4.

2 Systems

We first recall the system (1) which corresponds to the physical flash-heat

experiment described in [6]. This experiment assumes that the temperature of

the specimen is within the solid state phase and the boundaries are perfectly

insulated. We model the flash-heat experiment on an L2 (length in the y

direction) by L1 (length in the x direction) rectangle during the time interval

t ∈ (0, T ) with T < ∞. We refer to the L1 by L2 rectangle as Ω̂ and the

four boundaries ωi, for i ∈ {1, 2, 3, 4}. When referring to the entire boundary

of Ω̂, we use ∂Ω̂ = ∪4
i=1ωi. We take, L2 = 1 mm and L1 = 2 mm. The

bottom boundary, ω4 = {(x, y)|y = 0, x ∈ (0, L1)}, is heated with heat flux

S0 = 3.3 × 10−3 W
mm2 from the initial time, t0 = 0, until ts and insulated

for t > ts. We use an indicator function to describe the flash-heating of the

boundary,

I[t0,ts](t) =

1 for t ∈ [t0, ts]

0 otherwise .

The other boundaries are insulated throughout the experiment. The boundary

locations are given in Figure 1. This experiment can be described by the system



2 SYSTEMS 4

Figure 1: The homogeneous rectangle with boundaries.



cpρût − k∆û = 0 in Ω̂× (0, T )

k ∂û∂η = S0I[t0,ts](t) on ω4 × (0, T )

k ∂û∂η = 0 on
⋃3
i=1 ωi × (0, T )

û(0, ~x) = u0 for all ~x ∈ Ω̂,

(1)

with thermal conductivity k = 3.5×10−3 J/(mm K sec), specific heat cp = 0.75

J/(g K), material density ρ = 1.6×10−3 g/(mm3), and the dependent variable

û is temperature in degrees Kelvin. The values used throughout this article

are summarized in Table 1. We will now make a few changes to the above

system. In the partial differential equation, ∆u may be written more generally

as ∇· (A0∇u), where A0 is the 2 by 2 identity matrix I2 in the present section

and Section 2. We make this change because subsequently we will replace

the identity with another positive definite matrix, which will be derived from

homogenization theory. Corresponding to this change, we must also change

the boundary conditions, so that the boundary conditions still specify the flux

when A0 is not the identity matrix. Specifically, ∂u
∂η = n · ∇u, where n is the

exterior unit normal vector, is replaced with ∂u
∂ηA0

= n ·A0∇u. For convenience

and without loss of generality, we will also translate the temperature so that the

initial temperature, which we will take to also be the surrounding temperature,

is zero. This corresponds to the change ū = û−u0. We wish to use the thermal
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diffusivity, α = k
cpρ

, as a characteristic parameter so our final system is



ut − α∇ ·
(
A0∇u

)
= 0 in Ω̂× (0, T )

α ∂u
∂ηA0

= SfI[t0,ts](t) on ω4 × (0, T )

α ∂u
∂ηA0

= 0 on
⋃3
i=1 ωi × (0, T )

u(~x, 0) = 0 for all ~x ∈ Ω̂,

(2)

where Sf = S0
cpρ

.

The flash-heat experiment is often used to estimate the parameter α. Data

is typically collected from the source boundary (ω4) or the back boundary

(the boundary ω2 opposite the source boundary). In carrying out parameter

estimation, one minimizes the least squares distance (or the Frobenius norm)

between the data and the model, where the Frobenius norm of the m × n

matrix A with entries aij is

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

a2
ij . (3)

We will use the Frobenius norm of values at nodes on ω2 and ω4 and time points

to evaluate the difference between models when graphical representations are

not sufficient.

For completeness we will additionally discuss three modified systems in

Sections 2.1–2.3 which are commonly used to model heat but with different

physical assumptions than those of (2). In each of Sections 2.1–2.3, we discuss

the finite element solution of the system and the physical relevance of the

respective system in representing the flash-heat experiment. Throughout the

remainder of this document, we will use the parameter values specified in

Table 1 unless otherwise stated.

2.1 System 1

The first modified system we propose restricts solutions of (2) to be in V =

{v|v ∈ L2(0, T ;H1
ω5

(Ω̂), ∂v∂t ∈ L
2(0, T ; (H1

ω5
(Ω̂))†)}, where ω5 ⊂ ω2 andH1

ω5
(Ω̂) =
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Parameter Value Units
[t0, ts] [0, 0.6] s
T 5 s
Sf 2.75 K mm/s
α 2.9167 mm2/s
L1 2 mm
L2 1 mm
ω5 {(x, y)|x ∈ (1.7, 1.8), y = 1} mm

I2

[
1 0
0 1

]
Table 1: Parameter values used throughout this document, unless oth-
erwise mentioned. ω5 is an interval which corresponds to a small portion
of the boundary ω2, and A0 is a 2-by-2 positive definite matrix arising
from homogenization theory.

{w ∈ H1(Ω̂)|w(~x) = 0, for ~x ∈ ω5}. Here we denote the topological dual of the

space X as X†. Frequently one encounters the notation X∗ as the topological

dual of X, but we reserve the use of ∗ to represent geometries in the develop-

ment of homogenization results in Section 3. In the remainder of this section

we will take ω5 = {(x, y)|x ∈ (1.7, 1.8), y = 1}. This can be incorporated

succinctly in the system

ut − α∇ ·
(
A0∇u

)
= 0 in Ω̂× (0, T )

α ∂u
∂ηA0

= SfI[t0,ts](t) on ω4 × (0, T )

α ∂u
∂ηA0

= 0 on ∪3
i=1 ωi\ω5 × (0, T )

u = 0 on ω5 × (0, T )

u(~x, 0) = 0.

(4)

We will use the finite element method to solve (4). The finite element

method approximates the infinite dimensional solution of a partial differential

equation with a finite dimensional approximation. The domain (Ω̂) is dis-

cretized using the Delaunay triangulation. The finite dimensional solution is
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taken from the space of piecewise two dimensional affine functions, where the

solution is affine on each mesh element (see [15] for details). Recall the nota-

tion n = (nx, ny), where n is the unit outward normal and
∂u

∂ηA0

= n ·
(
A0∇u

)
.

The boundary conditions can also be written as

∂u

∂ηA0

∣∣∣∣
ω3

= a11
∂u

∂x
+ a12

∂u

∂y

∣∣∣∣
ω3

= 0

∂u

∂ηA0

∣∣∣∣
ω1

= −a11
∂u

∂x
− a12

∂u

∂y

∣∣∣∣
ω1

= 0

∂u

∂ηA0

∣∣∣∣
ω2

= a21
∂u

∂x
+ a22

∂u

∂y

∣∣∣∣
ω2

= 0

α
∂u

∂ηA0

∣∣∣∣
ω4

= α

(
−a21

∂u

∂x
− a22

∂u

∂y

) ∣∣∣∣
ω4

= SfI[t0,ts](t).

(5)

Using Green’s identities, we obtain the weak form∫
Ω̂
φ(~x)ut d~x−

∫
ω4

φ(x, 0)SfI[t0,ts](t) dx+ α

∫
Ω̂
∇φ ·A0∇u d~x = 0

or

〈ut, φ〉 −
∫
ω4

φ(x, 0)SfI[t0,ts](t)dx+ α〈∇φ,A0∇u〉 = 0,

where 〈φ, v〉 =
∫

Ω̂
φ v d~x. Here φ is a member of the space of test functions

H1
ω5

(Ω̂) = {φ ∈ H1(Ω̂)|φ(~x) = 0, for ~x ∈ ω5}, or test functions which satisfy

the essential boundary conditions. We approximate u with uN by

uN (t, ~x) =
N∑
i=1

T
(1)
i (t)φi(~x).

Substituting this expression into the weak form with test functions φi, i ∈
{1, 2, . . . N} in the space of two dimensional affine functions that are zero on

ω5 (we refer the reader to [15] for more details on these basis elements and the
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time dependent coefficients T
(1)
i (t)), we have〈

∂

∂t

(
N∑
i=1

φiT
(1)
i

)
, φj

〉
−

∫
ω4

φj(x, 0)SfI[t0,ts](t)dx

+ α
〈
∇φj , A0∇

(∑N
i=1 T

(1)
i φi

)〉
= 0.

(6)

We may factor the time dependent coefficients T
(1)
i (t) of the basis elements

φi(~x) from the inner product to obtain

N∑
i=1

d

dt
T

(1)
i 〈φi, φj〉 − SfI[t0,ts](t)

∫
ω4

φj(x, 0)dx

+ α
∑N

i=1 T
(1)
i

〈
∇φj , A0∇φi

〉
= 0.

(7)

Equation (7) must be true for arbitrary j ∈ {1, 2, . . . , N} and the system may

be written as

C1
d
dt
~T1(t) + αM1

~T1(t) = SfI[t0,ts](t)~f1, (8)

where C1 is an N × N positive definite matrix with elements c
(1)
ij = 〈φi, φj〉,

M1 is an N ×N positive definite matrix with elements m
(1)
ij = 〈∇φi, A0∇φj〉,

~f1 is an N -vector with components f
(1)
i =

∫
ω4
φi(x, 0)dx and ~T1 is an N col-

umn vector. We informally verified our calculations of these vectors in the

case where A0 = I2 by comparing them to the corresponding values used to

calculate the finite element method solution in MatLab’s PDE toolbox.

The physical interpretation of this system is that there is a small portion

of the back boundary which is fixed at the ambient temperature. This is not

a physically feasible situation. In order to fix the temperature of a boundary,

experimentalists typically fix the boundary to be 0 oC by applying ice. We see

in Figure 2 below that setting the temperature to the ambient temperature

does not give us the behavior observed in the flash-heat experiment, so we

suspect forcing the boundary to be a lower temperature (assuming ambient

temperature is above freezing) will further exacerbate these problems. The
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rapid decrease of the solution of (4) to zero may be intuitively understood by

imagining ω5 being cooled with ice. The ice will melt until the interior reaches

the temperature of the ice, and the resulting water (from the melted ice) is

related to the loss of energy over time. We could make ω5 smaller, but the

number of mesh points required would increase significantly to do this and

the computational costs could become exorbitant. So to use this model we

would have to alter the experimental set-up to accommodate setting a small

part of the boundary to a fixed temperature. The inefficacy of this system to

capture the behavior of the flash-heat experiment is demonstrated in Figure 2

where we compare the solution of (4) to the solution of (2) with A0 = I2. In

Figure 2(a) and (b), we see that the temperature of the midpoint of both the

front and back boundaries go to zero in time. It is also important to note that

(4) does not capture the shape of temperature on the back boundary ω2 at

t = 1 as we see in Figure 2(c). We chose time t = 1 for Figure 2 because it

demonstrates the lack of smoothness in the solution though it is still relatively

close the the solution of the flash-heat experiment as compared to the solution

at t = 5 (see Figure 2(a)). Because our colleagues at NASA Langley Research

Center do not currently have experiments which fix the temperature of the

boundary of a specimen, we will not use (4) in the remainder of this work.
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Figure 2: (a) The solutions of (2) and (4) labeled Flash Experiment and
System 1, respectively, at the midpoint of the back boundary; (b) The
solutions of the (2) and (4) at the midpoint of the source boundary; (c)
The solutions of the (2) and (4) on the back boundary at t = 1.



2 SYSTEMS 11

2.2 System 2

The second system generalizes the operator −∇ ·A0∇ with the operator −∇ ·
A0∇ + λ for λ ≥ 0. The difference between the solution of this system and

the solution of (2) will depend on the magnitude of λ and clearly there is no

difference for λ = 0. We will use λ = 10−2 to study the behavior of this system

and will further discuss the choice of λ at the conclusion of this section. The

modified system

ut − α∇ ·
(
A0∇u

)
+ λu = 0 in Ω̂× (0, T )

α ∂u
∂ηA0

= SfI[t0,ts](t) on ω4 × (0, T )

α ∂u
∂ηA0

= 0 on ∪3
i=1 ωi × (0, T )

u(~x, 0) = 0,

(9)

has a λu term in the partial differential equation. The λu term represents

loss on the entire specimen in the direction orthogonal to the two dimensional

specimen, while there is no loss on the boundary of the specimen.

First, we will consider the numerical solution of (9). Again using the finite

element method and the steps detailed in Section 2.1, we begin by finding the

weak form of (9) given by∫
Ω̂

[
ψ (ut + λu) + α∇ψ ·A0∇u

]
d~x− SfI[t0,ts]

∫
ω4

ψ(x, 0) dx = 0,

with test functions ψ ∈ H1(Ω̂). We chose test functions from H1(Ω̂) because

there are no essential boundary conditions in this formulation. We replace u

with the finite dimensional approximation uL defined by

uL(x, y, t) =
L∑
i=1

T
(2)
i (t)ψi(x, y),

where T
(2)
i (t) are the time-dependent coefficients of the two dimensional piece-

wise affine basis elements ψi which are described in more detail in [15]. Using
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similar calculations as for (4), we have

L∑
i=1

〈ψi, ψj〉
(
d

dt
T

(2)
i + λT

(2)
i

)
+ α

L∑
i=1

〈∇ψj , A0ψi〉T (2)
i

= SfI[t0,ts]

∫
ω4

ψj(x, 0)dx,

(10)

where 〈ψ, v〉 =
∫

Ω̂
ψv d~x. We write this system as a system of ordinary differ-

ential equations

C2
d
dt
~T2(t) + αM2

~T2(t) = SfI[t0,ts](t)~f2, (11)

where C2 is an L×L positive definite matrix with entries c
(2)
ij = 〈ψi, ψj〉, M2 is

an L×L positive definite matrix with entries m
(2)
ij = λ

α〈ψi, ψj〉+〈∇ψi, A0∇ψj〉,
~f2 is an L-vector with components f

(2)
i =

∫
ω4
ψi(x, 0)dx and ~T2 is an L-vector.

As we can see in Figure 3 below, the solution of (9) is more similar to the

solution of (2) than is the solution of (4). There will certainly be a decrease

in the difference between the solutions of (2) and (9) toward zero as λ goes

to zero. Like the solution to (4), solutions of this limit system will approach

zero, though it will take much longer than the solution of (4). The decrease of

solutions to (9) toward zero is most clear in Figure 3(a) and (b). An advantage

of this system is that the shape of the temperature at the boundaries ω4 and

ω2 is similar in shape to the solution of (2). For instance, in Figure 3(c) where

t = 5 which is the time that gives the largest difference between the two models

on the time interval [0, 5], the temperature on the back boundary is constant

across the back boundary for both the solution of (2) and (9). If we take λ

small and the final time T not too large, (9) could be a good approximation

of (2). For λ = 10−5, the Frobenius norm of the difference between uflash the

solution of (2) and the solution of (9) U at the back boundary ω2 and source

boundary ω4 are nearly equal and very small. For instance, the Frobenius
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norm taken on ω4 and t ∈ [0, 5] is√√√√ 41∑
i=1

101∑
j=1

(U(xi, 0, tj)− uflash(xi, 0, tj))
2

= 0.0028,

where xi = i−1
20 and tj = j−1

20 . These advantages in the example where the

partial differential equation is defined on a homogeneous rectangle (Ω̂) with

isotropic flow (A0 = I2) lead us to choose (9) with λ = 10−5 to model the

flash-heat experiment in Sections 3 and 4 where we relax the assumptions on

the domain of the partial differential equation and consider anisotropic flow.
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Figure 3: (a) The solutions of (2) and (9), labeled Flash Experiment
and System 2, respectively, with λ = 0.01 at the midpoint of the back
boundary; (b) The solutions of the (2) and (9) with λ = 0.01 at the
midpoint of the source boundary; (c) The solutions of the (2) and (4)
with λ = 0.01 on the back boundary at t = 5.
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2.3 System 3

The most physically reasonable mathematical model of the flash-heat experi-

ment replaces the zero-flux boundary conditions of (2) with Robin boundary

conditions. Robin boundary conditions relax the assumption of perfectly in-

sulated boundaries by assuming Newton cooling occurs on the boundaries. In

this section we consider two cases, the first has Robin boundary conditions

only on ω5 ⊂ ω2

ut − α∇ ·
(
A0∇u

)
= 0 in Ω̂× (0, T )

α ∂u
∂ηA0

= SfI[t0,ts](t) on ω4 × (0, T )

α ∂u
∂ηA0

= 0 on ∪3
i=1 ωi\ω5 × (0, T )

α ∂u
∂ηA0

= −λu on ω5 × (0, T )

u(~x, 0) = 0,

(12)

where ω5 = {(x, y)|x ∈ (1.7, 1.8), y = 1}. In the second case we include Robin

boundary conditions in the entire boundary by incorporating a −λu term in

all of the boundary conditions

ut − α∇ ·
(
A0∇u

)
= 0 in Ω̂× (0, T )

α ∂u
∂ηA0

= SfI[t0,ts](t)− λu on ω4 × (0, T )

α ∂u
∂ηA0

= −λu on ∪3
i=1 ωi × (0, T )

u(~x, 0) = 0.

(13)

It is important to recall from earlier in Section 2 that u = ū − u0 where ū is

the temperature and u0 is both the initial temperature and the temperature

surrounding the specimen. To solve (12) and (13) numerically with the finite

element method, we begin with the weak form of (12) and (13)∫
Ω̂

(
γut + α∇γ ·A0∇u

)
d~x − SfI[t0,ts](t)

∫
ω4

γ(x, 0) dx

+ λ

∫
∂Ω
γu ds = 0

(14)
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with γ ∈ H1(Ω̂), where ∂Ω is ω5 for (12) and ∂Ω̂ for (13). We approximate u

with uP defined by

uP (x, y, t) =

P∑
i=1

T
(3)
i (t)γi(x, y),

where γi are two dimensional piecewise affine basis elements with time depen-

dent coefficients T
(3)
i (t) described in more detail in [15]. After calculations

similar to those reported in Section 2.1, we obtain the expression

P∑
i=1

d

dt
T

(3)
i (t)〈γi, γj〉+ α

P∑
i=1

T
(3)
i (t)〈∇γj , A0∇γi〉

= SfI[t0,ts](t)

∫
ω4

γj(x, 0) dx+ λ

∫
∂Ω

P∑
i=1

T
(3)
i (t)γjγi ds,

(15)

for arbitrary j ∈ {1, 2 . . . P}. The resultant system can be written as

C3
d

dt
~T3(t) + (αM3 + λD) ~T3(t) = SfI[t0,ts](t)~f3, (16)

where C3,M3 and D are P × P matrices with entries c
(3)
ij = 〈γi, γj〉, m(3)

ij =

〈γj , A0γi〉, and dij =
∫
∂Ω γiγj ds, respectively, and ~f3 is a P -vector with com-

ponents f
(3)
j =

∫
ω4
γj(~x) ds.

The boundary conditions in (2) correspond to zero flux on the boundaries,

which physically represents perfectly and flawlessly insulated boundaries. The

system (12) relaxes the flawless assumption. The Robin boundary conditions

imposed on ω5 in (12) would correspond to a flaw in the insulation at ω5 which

leaches heat with convection heat transfer coefficient λ. The system (13) also

relaxes the assumption that the insulation is perfect with the additional λu

term in all of the boundary conditions corresponding to an insulating mate-

rial which has convection heat transfer coefficient λ. The somewhat natural

physical interpretation of these two systems is an advantage as compared to

the modified systems we considered in Sections 2.1 and 2.2.

In Figure 4 we see that with λ = 0.1 the solution of (12) over time on the
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source and back boundary is quite close the solution of (2). The solution of

(13) with λ = 0.1 and A0 = I2 decreases toward zero much more than the

solution of (13) as is clearly demonstrated at the midpoints of ω2 and ω4 in

Figures 5(a) and (b), respectively. However, if we decrease λ by a few orders

of magnitude, the solution of (13) should possess a decrease similar to the

decrease seen in the solution of (12) depicted in Figures 4(a) and (b).

We hope to use the models developed in this effort in the future to model

experiments which will be carried out at NASA Langley Research Center. It

is a reasonable assumption that the insulating material used in performing the

flash-heat experiment will not be damaged–the assumption corresponding to

(12), especially as we hope this work may be used to characterize damage in

porous materials. However, the assumption that the insulation used in practice

is not perfect and allows some exchange of heat between the specimen and the

surroundings is not only feasible but inevitable. The Frobenius norm of the

difference between uflash, the solution of (2), and U , the solution of (13), on

the source boundary ω4 is sufficiently small for λ = 10−5. More precisely,

‖U − uflash‖F on ω4 and t ∈ [0, 5] is given by√√√√ 41∑
i=1

101∑
j=1

(U(xi, 0, tj)− uflash(xi, 0, tj))
2

= 0.0085,

where xi = i−1
20 and tj = j−1

20 . The physical relevance of (13) motivates us

to use (13) with λ = 10−5 in addition to (9) with λ = 10−5 to model the

flash-heat experiment in the subsequent sections.
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Figure 4: For ∂Ω = ω5 and λ = 0.1 (a) The solutions of (2), labeled
Flash Experiment, and (12), labeled System 3, at the midpoint of the
back boundary; (b) The solutions of the (2) and (12) at the midpoint of
the source boundary; (c) The solutions of the (2) and (12) on the back
boundary at t = 5.
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Figure 5: For ∂Ω = ∂Ω̂ and λ = 0.1 (a) The solutions of (2), labeled
Flash Experiment, and (13), labeled System 3, at the midpoint of the
back boundary; (b) The solutions of the (2) and (13) at the midpoint of
the source boundary; (c) The solutions of the (2) and (13) on the back
boundary at t = 5.
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3 Homogenization

Now that we have chosen two systems, (9) with λ = 10−5 and (13) with

λ = 10−5, which model the flash-heat experiment reasonably well on a ho-

mogeneous domain, we will use these two systems to model the flash-heat

experiment on more complicated domains than the homogeneous rectangle Ω̂.

We developed a method to model the flash-heat experiment on porous do-

mains in [6]. Though these simulations were useful in detecting damage, they

were too computationally intensive for the more sophisticated parameter esti-

mation procedures needed to characterize damage. Here we will use (9) and

(13) along with random geometries to model the flash-heat experiment in a

porous domain and compare them to limit partial differential equations which

are derived from homogenization theory. In this formulation A0 is no longer

I2 and the random complicated geometry is replaced with a less complicated

domain with anisotropic flow. We will focus on values obtained on the source

boundary ω4 when we compare the subsequent models.

We will consider a random geometry Ω (depicted in Figure 6), which is

composed of Ω̂ \ ∪nr
i=1Ωi, where Ωi are randomly placed pores, ∂Ωi is the

boundary of the ith pore and ωi are the same as in the previous sections. For

each of the systems (9) and (13) we chose on the homogeneous rectangle Ω̂, we

must now pose the problem on Ω. We will call the dependent variable of this

system urand, where ‘rand’ refers to the random domain. Here it is worthwhile

to note that we have performed the transformations detailed in the beginning

of Section 2 to all of the partial differential equations in this section.

The system corresponding to (9) on the random domain Ω is given by

urand
t − α∆urand + λurand = 0 on Ω× (0, T )

α ∂
∂ηu

rand = 0 on ∪nr
i=1 ∂Ωi × (0, T )

α ∂
∂ηu

rand = 0 on ∪3
i=1 ωi × (0, T )

α ∂
∂ηu

rand = SfI[0,ts](t) on ω4 × (0, T )

urand(~x, 0) = 0,

(17)
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Figure 6: A typical porous domain with random pores (enlarged view)

and the system corresponding to (13) on the random domain Ω is given by

urand
t − α∆urand = 0 on Ω× (0, T )

α ∂
∂ηu

rand = 0 on ∪nr
i=1 ∂Ωi × (0, T )

α ∂
∂ηu

rand = −λurand on ∪3
i=1 ωi × (0, T )

α ∂
∂ηu

rand = SfI[0,ts](t)− λurand on ω4 × (0, T )

urand(~x, 0) = 0.

(18)

We will use these two systems on random geometries to simulate data

that one might expect from the flash-heat experiment performed on porous

specimens. We generate these geometries and solve the partial differential

equations using the methods developed in [6].

In order to apply homogenization theory to (17) and (18), we will use ge-

ometries with enough pores to suppose that Ω has a periodic structure (though

it may be that the physical specimens are better modeled with periodic pores

as the pores in composite materials are often the result of sinusoidal manu-

facturing processes). In other words, we suppose that the pores (or holes) are

periodically distributed with a period ε, where ε is a small parameter that we

let go to zero in the limit. This is the framework of the periodic homogeniza-

tion theory which is explained in more detail in [11]. To do so, we introduce
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a reference cell (or domain) Y . For our purpose, let us take as Y the origi-

nal (homogeneous) rectangle Ω̂. Let B = ∪Ni=1Bi be a set of N open subsets

strictly included in Y such that Bi ∩Bj = ∅ for i 6= j.

Denote by τ(εB) the set of all translated images of εB of the form ε(κ`+B),

κ ∈ Z2, κ` = (κ1`1, κ2`2), so the set τ(εB) represents the periodic pores in

R2. Let Bε be the set of the holes contained in Ω̂. With the above choice of

Y , and taking for instance ε = 1

d
√

nε
N c

with nε → +∞, no hole from Bε will

intersect the boundary ∂Ω̂. Here d·c is the nearest integer function. We will

set

Ωε = Ω̂ \Bε
.

By this construction, the physical domain Ωε is periodically perforated with

holes of size of the same order as the period. We are essentially approximating

the random geometry Ω with the periodic geometry Ωε.

We will use the following notation:

· Y ∗ = Y \B,

· X†, the topological dual space of X

· θ =
|Y ∗|
|Y |

, the proportion of the material in the cell Y ,

· |ω| = the Lebesgue measure of any open set ω,

· Mω(ϕ) =
1

|ω|

∫
ω
ϕ(x) dx, the mean value of ϕ on the set ω.

Observe that by construction, θ is also the proportion of the material in

Ωε for any ε > 0 and the percent porosity = (1 − θ) × 100%. We are now

prepared to consider our two systems on Ωε. Using Ωε to approximate Ω in

(17) we have 

uεt − α∆uε + λuε = 0 in Ωε × (0, T )

α ∂
∂ηu

ε = 0 on ∂Bε ∪3
i=1 ωi × (0, T )

α ∂
∂ηu

ε = SfI[0,ts](t) on ω4 × (0, T )

uε(~x, 0) = 0,

(19)
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and in (18) 

uεt − α∆uε = 0 in Ωε × (0, T )

α ∂
∂ηu

ε = 0 on ∂Bε × (0, T )

α ∂
∂ηu

ε = −λuε on ∪3
i=1 ωi × (0, T )

α ∂
∂ηu

ε = SfI[0,ts](t)− λuε on ω4 × (0, T )

uε(~x, 0) = 0.

(20)

Both (19) and (20) have unique solutions in the Banach spaceWε = {v|v ∈
L2(0, T ;H1(Ωε)),

∂v
∂t ∈ L2(0, T ; (H1(Ωε))

†)}. One is then allowed to pass to

the limit in (19) and (20) to obtain the limit homogenized systems (for details,

we refer the reader to [10, 11, 12]). In particular, these references contain

proofs that

ũε ⇀ θU weakly in L2(0, T ;H1(Ω̂)), (21)

where U is characterized by the unique solution of homogenized problems and

ũε is the zero extension of uε from Ωε to the whole domain Ω̂.

The limit system corresponding to (19) is given by

θUt − α∇ ·
(
A0U

)
+ λθU = 0 in Ω̂× (0, T )

α ∂U
∂ηA0

= 0 on ∪3
i=1 ωi × (0, T )

α ∂U
∂ηA0

= SfI[0,ts](t) on ω4 × (0, T )

U(~x, 0) = 0,

(22)

while the limit system corresponding to (20) is given by

θUt − α∇ ·
(
A0U

)
= 0 in Ω̂× (0, T )

α ∂U
∂ηA0

= −λU on ∪3
i=1 ωi × (0, T )

α ∂U
∂ηA0

= SfI[0,ts](t)− λU on ω4 × (0, T )

U(~x, 0) = 0.

(23)

In both limit systems the homogenized operator A0 has constant coefficients

and is expressed in terms of the following cell problems defining the “corrector”



3 HOMOGENIZATION 24

functions χ1 and χ2: 

−∆χj = 0 for j = 1, 2 in Y ∗

χj is Y periodic

∂

∂η
(χj − yj) = 0 on ∂Ωi

M∗Y (χ) = 0.

(24)

Then the homogenized matrix A0 = (a0
ij) is defined by

a0
11 = θ − 1

|Y |

∫
Y ∗

∂χ1

∂y1
dy, a0

12 = − 1

|Y |

∫
Y ∗

∂χ2

∂y1
dy,

a0
21 = − 1

|Y |

∫
Y ∗

∂χ1

∂y2
dy, a0

22 = θ − 1

|Y |

∫
Y ∗

∂χ2

∂y2
dy.

(25)

It is important to note that ∂Ωi in (24) refers to the boundaries of the pores

of the reference cells, depicted in Figure 7.

Figure 7: The reference domain and the limit domain with ε = 1
2

and
ε = 1

4
.
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It can be shown that the error estimate (distance between ũε and θU in

the L2(0, T ;H1(Ω̂))-norm) is of order of
√
ε, which completely justifies the ho-

mogenization procedure if ε is sufficiently small, or equivalently if the number

nε of holes is sufficiently large since nε ∼
1

ε2
. Using the linear trace operator,

γ : H1(Ω̂) → L2(ω4) and arguments similar to those in [8], we get the result

that γ(ũε) converges weakly in L2(ω4) to γ(U).

Recalling the convergence of ũε to U , we created numerical simulations to

compare U to uε and urand on ω4. We used methods developed in [6] and [16] to

generate the random geometries Ω and Y ∗. We used MatLab’s PDE toolbox,

as in [6], to then solve the partial differential equations on these domains. To

calculate U , we used the finite element schemes detailed in Sections 2.2 and

2.3.

For each simulation, letting N be the number of pores in the reference cell,

and nr the number of pores in the random geometry, we might suppose that

the ε corresponding to the Ωε which approximates Ω is given by

ε =
1⌈√
nr
N

⌋ , (26)

with d·c representing the nearest integer function. As we see in (26), ε decreases

as N decreases. This leads to a subtlety in choosing N . We would like Y ∗

to capture the random nature of Ω while still containing a sufficiently small

number of pores N to ensure ε is small. In the simulations presented here, we

take N = 2 and use (26) above to calculate uε.

4 Results

4.1 Results using systems corresponding to (9)

In the previous section we developed (17) and (with solution urand) to model

the flash-heat experiment in porous material and introcuded (19) (with solu-

tion uε) to approximate (17). Finally, we introduced homogenization theory to

approximate (19) with (22) (with solution U). In this section we will present

graphical results corresponding to the three systems and summarize the re-
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sults of 200 simulations of the three systems. Here, we will use the parameter

values listed in Table 1 with λ = 10−5. In the next section, we will present

similar results but for the more physically relevant system corresponding to the

flash-heat experiment on the perforated domain represented by system (18).

We performed simulations of three different porosity levels, 10% (depicted

in Figure 8), 5% (depicted in Figure 9), and 2% (depicted in Figure 10). The

random geometries used for the examples are featured in Figures 8–10(a),

which corresponds to Ω used in (17) to solve for urand. The approximations of

Ω, Ωε, are presented for each level of porosity in Figures 8–10(b). Figures 8–

10(c) give the solution of urand, uε and U at y = 0, t = 0.1 on ω4. We note

that U seems to capture the ‘average’ behavior of urand, and uε. There are

several things that we note in Figures 8–10. For instance the solution U to (22)

underestimates urand at the x location where there are pores near ω4 in the

random geometry Ω. For instance, for θ = 0.9 in Figure 8(a) we see large pores

near ω4 at x = 0.4 and x = 1.6 which correspond to two peaks in urand where

urand deviates above U at x = 0.4 and x = 1.6 in Figure 8(c). However, in

Figure 8(b) there are no pores in Ωε near ω4 and U appears to overestimate uε

along the entire interval x ∈ [0, 2] in Figure 8(c). In Figure 9(a) with θ = 0.95

there are no large pores near ω4 in Ω and accordingly there are no peaks in

urand away from U though there are a few small bumps of urand above U at

x = 0.3 and between x = 0.75 and x = 1 corresponding to a small pore near ω4

and a cluster of large pores about 0.05 mm away from ω4, respectively. Again

there are no pores in Ωε near ω4 in Figure 9(b) and uε is overestimated by U

in Figure 9(c). In Figure 10(b), where θ = 0.98, there are pores very close to

ω4 in Ωε and unlike in Figures 8(c) and 9(c) U underestimates uε where the

pores are close to ω4 in Ωε. In Figure 10(a) there is cluster of pores near ω4 at

x = 1.6, which corresponds to a spike in urand above U in Figure 10(c). It is

also worthwhile to note that as θ increases from 0.9 to 0.98, urand approximates

better uε which approximates better U in Figures 8–10(c). This suggests that

at lower levels of porosity homogenization gives us a better approximation of

urand and uε than at higher levels of porosity.
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Figure 8: An example simulation at θ = 0.9, or equivalently 10% poros-
ity (a) The random geometry Ω; (b) The geometric approximation of Ω
assumed in homogenization theory, Ωε where ε = 0.14; (c) urand(x, 0, t),
uε(x, 0, t), and U(x, 0, t) for t = 0.1 sec on ω4. For a better repre-
sentation of the behavior of the three systems over time on the source
boundary (ω4), see the corresponding movie by clicking here.
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Figure 9: An example simulation at θ = 0.95, or equivalently 5% poros-
ity (a) The random geometry Ω; (b) The geometric approximation of Ω
assumed in homogenization theory, Ωε where ε = 0.17; (c) urand(x, 0, t),
uε(x, 0, t), and U(x, 0, t) for t = 0.1 sec on ω4. For a better repre-
sentation of the behavior of the three systems over time on the source
boundary (ω4), see the corresponding movie by clicking here..
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Figure 10: An example simulation at θ = 0.98, or equivalently 2% poros-
ity (a) The random geometry Ω; (b) The geometric approximation of Ω
assumed in homogenization theory, Ωε where ε = 0.17; (c) urand(x, 0, t),
uε(x, 0, t), and U(x, 0, t) for t = 0.1 sec on ω4. For a better repre-
sentation of the behavior of the three systems over time on the source
boundary (ω4), see the corresponding movie by clicking here..
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Model θ = 0.9 θ = 0.95 θ = 0.98

Mean time urand 47 sec 51 sec 68 sec
uε 23 sec 28 sec 42 sec
U 4.0 sec 3.8 sec 4.1 sec

Mean mesh size urand 7855 8571 10111
uε 4882 5780 7484
U 355 355 355

Table 2: In the first three rows, the last three columns contain the
average time for the 200 simulations to calculate the respective solution.
The last three rows contain the average mesh size over 200 simulations.

We carried out 200 simulations at each porosity level (θ = 0.9, 0.95 and

0.98) similar to those used to generate Figures 8–10. For each simulation,

we selected a random domain Ω and a random reference cell to create the

periodically perforated domain Ωε. We used these domains to solve for urand,

uε and U , as we discussed in Section 3. We recorded the total time to solve

each system, the size of the mesh used in the associated finite element method

and the Frobenius norm of the difference between solutions on ω4. In Table 2

we report the average time to solve each of the systems and the average mesh

size used to discretize the respective domain. It is clear that of the three

systems (17) is the most computationally intensive with a significantly larger

mesh than the mesh used to solve for uε. The limit system (22) is the least

computationally intensive; its mesh is an order of magnitude smaller than the

meshes for the other two systems. Also the computing time required to solve

(22) for U is five to ten times less than the time to solve (19) for uε and ten to

fifteen times less time to solve (17) for urand. This supports the use of the limit

system (22) as a more computationally suitable model than (17) and (19).

The limit system (22) seems to be a good approximation of (17) and (19).

We evaluate this statement by considering the Frobenius norm. Here the

Frobenius norm is taken at time points tj = j−1
20 for j ∈ {1, 2, . . . 101} and

nodes xi = i−1
20 for i ∈ {1, 2, . . . 41} along the source boundary ω4. For each
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θ = 0.9 θ = 0.95 θ = 0.98

Mean ‖urand − U‖F 1.21 0.630 0.268
St. Dev. ‖urand − U‖F 0.246 0.106 0.046
Mean ‖uε − U‖F 1.363 0.669 0.265
St. Dev. ‖uε − U‖F 0.250 0.128 0.043

Table 3: The first and third row contain the mean Frobenius norm of
the difference of the solutions for the 200 simiulations. The second and
fourth row contain the standard deviation of the Frobenius norm of the
difference of the solutions for the 200 simulations.

simulation, we calculated the Frobenius norm of ‖U − urand‖F

‖U − urand‖F =
√∑41

i=1

∑101
j=1 (U(xi, 0, tj)− urand(xi, 0, tj))

2
, (27)

and ‖U − uε‖F . We report the average and standard deviation of these quan-

tities for each porosity level in Table 3. As θ increases, U better approximates

both urand and uε. However, it is not clear whether U better approximates uε

versus urand.
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4.2 Results using systems corresponding to (13)

We next report on computation similar to those in the previous section, but

rather than using (17), (19) and (22) as models, we will use (18), (20) and (23).

In each figure urand is the solution of (18), uε is the solution of (20) and U is

the solution of (23). We will consider the three different porosity levels, 10%

(or θ = 0.9, depicted in Figure 11), 5% (or θ = 0.95, depicted in Figure 12),

and 2% (or θ = 0.98, depicted in Figure 13). The results presented here are

for λ = 10−5 though we carried out calculations for λ = 0 (the perfectly

insulated model) and obtained similar results. The random geometries used

for the examples is featured in Figures 11–13(a), which corresponds to Ω used

in (18). The approximations of Ω, Ωε, are presented for each level of porosity

in Figures 11–13(b). Figures 11–13(c) give the solutions urand, uε and U at

y = 0, t = 0.1 over all values of x on ω4 or the source boundary. In this case,

we see that U seems to capture the ‘average’ behavior of urand and that of uε.

We observe similar trends as discussed in the previous section, specifically that

U overestimates when there are large pores near ω4 and underestimates when

there are not large pores near ω4. In Figures 11 with θ = 0.9 we see that the

cluster of pores near ω4 in Figure 11(a) corresponds to U underestimating urand

for x greater than 1.25 in Figure 11(c). There are pores near ω4 in Figure 11(b)

which corresponds to periodic peaks of uε above U in Figure 11(c). There are

pores near ω4 in Ωε in Figure 12(b) but they are very small and U overestimates

uε in Figure 12(c). As should be expected for these systems, the difference

between the three solutions seems to decrease with porosity. In Figure 13(c)

it appears that U is a better estimate for urand and uε at θ = 0.98 than it was

for θ = 0.95 depicted in Figure 12(c) and θ = 0.9 depicted in Figure 11, so

again we see that U is a better approximation at lower levels of porosity or

higher values of θ.
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Figure 11: An example simulation at θ = 0.9, or equivalently 10% poros-
ity (a) The random geometry Ω; (b) The geometric approximation of Ω
assumed in homogenization theory, Ωε where ε = 0.14; (c) urand(x, 0, t),
uε(x, 0, t), and U(x, 0, t) for t = 0.1 sec on ω4. For a better repre-
sentation of the behavior of the three systems over time on the source
boundary (ω4), see the corresponding movie by clicking here..
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Figure 12: An example simulation at θ = 0.95, or equivalently 5% poros-
ity (a) The random geometry Ω; (b) The geometric approximation of Ω
assumed in homogenization theory, Ωε where ε = 0.17; (c) urand(x, 0, t),
uε(x, 0, t), and U(x, 0, t) for t = 0.1 sec on ω4. For a better repre-
sentation of the behavior of the three systems over time on the source
boundary (ω4), see the corresponding movie by clicking here.
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Figure 13: An example simulation at θ = 0.98, or equivalently 2% poros-
ity (a) The random geometry Ω; (b) The geometric approximation of Ω
assumed in homogenization theory, Ωε where ε = 0.17; (c) urand(x, 0, t),
uε(x, 0, t), and U(x, 0, t) for t = 0.1 sec on ω4. For a better repre-
sentation of the behavior of the three systems over time on the source
boundary (ω4), see the corresponding movie by clicking here.
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Model θ = 0.9 θ = 0.95 θ = 0.98

Mean time urand 45 sec 53 sec 62 sec
uε 22 sec 28 sec 37 sec
U 3.9 sec 4.0 sec 3.7 sec

Mean mesh size urand 7851 8551 9965
uε 5016 5744 7317
U 355 355 355

Table 4: In the first three rows, the last three columns contain the
average time to calculate the respective solution for the 200 simulations.
The last three rows contain the average mesh size over 200 simulations.

We again carried out 200 simulations at each porosity level (θ = 0.9, 0.95

and 0.98) like those used to generate Figures 11–13. For each simulation, we

randomly generated the domain Ω on which we solved (18) for urand. We

also created a random Ωε, to solve (20) for uε. We used the reference cell

used to generate Ωε to solve (23) for U . In Table 4 we report the average

time to solve each of the systems and the average mesh size used to discretize

the respective domain. It is clear that of the three systems (18) is the most

computationally intensive. The limit system (23) is the least computationally

intensive; its mesh is an order of magnitude smaller than the meshes for the

other two systems. Also the computing time required to solve for U is five to

ten times less than the time to solve for uε and ten to fifteen times less time

to solve for urand. This supports the use of the limit system (23) as a more

computationally suitable model than (18) and (20).

The limit system (23) seems to be a good approximation of (18) and (20).

We consider the Frobenius norm of the difference between the limit systems

on the source boundary ω4. We will take values at time points tj = j−1
20 for

j ∈ {1, 2, . . . 101} and nodes xi = i−1
20 for i ∈ {1, 2, . . . 41}. For each simulation,

we calculated the Frobenius norm of ‖U − urand‖F

‖U − urand‖F =
√∑41

i=1

∑101
j=1 (U(xi, 0, tj)− urand(xi, 0, tj))

2
, (28)

and ‖U − uε‖F . We report the average and standard deviation of these quan-
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θ = 0.9 θ = 0.95 θ = 0.98

Mean ‖urand − U‖F 1.21 0.631 0.267
St. Dev. ‖urand − U‖F 0.245 0.109 0.042
Mean ‖uε − U‖F 1.322 0.656 0.267
St. Dev. ‖uε − U‖F 0.258 0.109 0.042

Table 5: The first and third row contain the mean Frobenius norm of
the difference of the solutions for the 200 simiulations. The second and
fourth row contain the standard deviation of the Frobenius norm of the
difference of the solutions for the 200 simulations.

tities for each porosity level in Table 5. As θ increases, U better approximates

both urand and uε. However, it is not clear that U better approximates ei-

ther uε or urand which is interesting to note but would need a more analytical

treatment to investigate.

5 Conclusion and Future Work

We have selected and analyzed two models, which we can use to represent

a flash-heat experiment mathematically. The first model, system (9), corre-

sponds to a small loss across the surface of the cross section, and the second,

system (13), corresponds to imperfect insulation leading to small loss on all of

the boundary of the cross section. We plan to continue to use these in future

investigations. In our future efforts though, we will focus on (13) to model the

flash-heat experiment as it is a more physically relevant model than (9). The

results of homogenization theory in Section 4 are encouraging. It is also clear

in Section 4 that the choice of reference domain, specifically the location of

pores in Ωε in relation to the source boundary ω4 determines the efficacy of

U to approximate uε. Similarly, the location of the pores in Ω in the random

domain determine the behavior of urand in relation to the approximation U .

We also observed that U approximates urand best at the lowest level of poros-

ity, 98% or θ = 0.98. In the future work we would like to use limit system

(23) developed in Section 3 as a model to carry out parameter estimation on
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data simulated with (18) with added noise to evaluate the use of this work as

a model to describe data and eventually characterize damage.
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