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Abstract

We consider dynamic electromagnetic evasion-interrogation games where the evader
can use ferroelectric material coatings to attempt to avoid detection while the interroga-
tor can manipulate the interrogating frequencies to enhance detection. The resulting
problem is formulated as a two-player zero-sum dynamic differential game in which the
cost functional is based on the expected value of the intensity of the reflected signal.
We show that there exists a saddle point for the relaxed form of this dynamic differ-
ential game in which the relaxed controls appear linearly in the dynamics governed by
a partial differential equation.

1 Introduction

In an electromagnetic evasion-interrogation game, the evader wishes to minimize the intensity
of the reflected signal to remain undetected in carrying out his mission while the interrogator
wishes to maximize the intensity of reflected signal to detect the attacker. The results
in [5] demonstrated that it is possible to design ferroelectric materials with appropriate
dielectric permittivity and magnetic permeability to significantly attenuate reflections of
electromagnetic interrogation signals from highly conductive targets such as airfoils and
missiles. In addition, the results in [6] showed that if the evader employed a simple counter
interrogation design based on a fixed set (assumed known) of interrogating frequencies, then
by a rather simple counter-counter interrogation strategy (use of an interrogating frequency
little more than 10% different from the assumed design frequencies), the interrogator can
easily defeat the evader’s material coatings counter interrogation strategy to obtain strong
reflected signals. Thus, we can readily conclude from these two results that the evader and
the interrogator must each try to confuse the other by introducing significant uncertainty in
their design and interrogating strategies, respectively.

Based on this consideration, a static electromagnetic evasion-interrogation game (in the
spirit of mixed strategies introduced by von Neumann [25]) was considered in [2], where the
problem is mathematically formulated as a minimax game over sets of probability measures.
In this formulation, the evader does not choose a single coating, but rather has a set of
possibilities available for choice and only chooses the probabilities with which he will employ
the materials on a target. By choosing his coatings randomly (according to a best strategy to
be determined in a minmax game), he prevents adversaries from discovering which coating
he will use – indeed, even he does not know which coating will be chosen for a given target.
The interrogator, in a similar approach, determines best probabilities for choices of frequency
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and angle in the interrogating signals. A more realistic dynamic modeling is considered in
[3] by introducing time dynamics into the problem, wherein the evader is allowed to make
dynamic changes to his strategies in response to the dynamic input with uncertainty from
the interrogator. In this paper, we consider a two player zero-sum differential game, which
is formulated as a minimax problem over the sets of relaxed controls. In this formulation,
both evader and interrogator choose a probability measure at each time 𝑡 in the presence of
material uncertainty which is modeled as a stochastic process.

In Section 2 we present a description of our problem formulation and then show that
there exists a saddle point for the resulting dynamic game in Section 3. Some summary
remarks and proposed future research efforts are given in Section 4.

2 Problem Formulation

The minimax cost functional is based on the intensity of reflected signals from an object such
as an airfoil or missile coated by a radar absorbent material of constant thickness. There are
two ways to study the electromagnetic scattering [5, 6]. One way is to employ the far field
pattern for reflected waves computed directly using Maxwell’s equations. In two dimension,
for a reflecting body with a given coating layer with an interrogating plane wave 𝐸(𝑖), the
scattered field 𝐸(𝑠) satisfies the Helmholtz equation [11] as detailed in [2]. An alternative
and much less computationally expensive one (as well as equally accurate in this setting –
see [5, 6]) is to calculate the reflection coefficient based on a simple planar geometry (e.g.,
see Fig. 1) using Fresnel’s formula for a perfectly conducting half plane.
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Figure 1: Interrogating high frequency wave impinging (angle of incidence 𝜙) on coated
(thickness 𝑑) perfectly conducting surface

We will use the reflection coefficient to measure the strength of backscattering. In addi-
tion, we assume that a normally incident electromagnetic wave with the angular frequency
𝜔 is assumed to impinge the half plane. Then the corresponding wave length in the air is
2𝜋𝑐/𝜔, where the speed of light is 𝑐 = 3 × 108. Thus, the reflection coefficient 𝑅 for a wave
impinging on a coating layer of thickness 𝑑 with relative dielectric permittivity 𝜖 and relative
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magnetic permeability 𝜇 is given by

𝑅(𝜇, 𝜖, 𝜔, 𝑑) =
𝑟1 + 𝑟2
1 + 𝑟1𝑟2

, (2.1)

where

𝑟1 =
𝜖−√

𝜖𝜇

𝜖 +
√
𝜖𝜇

and 𝑟2 = exp (2𝑖
√
𝜖𝜇𝜔𝑑/𝑐) . (2.2)

This expression can be derived directly from Maxwell’s equation by considering the ratio of
reflected to incident waves for example in the case of parallel polarized (𝑇𝐸𝑥) incident wave
(e.g., see [5, 16]).

To incorporate some uncertainty in the reflected signal, we assume the real part 𝑥 of
the magnetic permeability 𝜇 = 𝑥 + 𝑖𝜇𝑖 of the coating has uncertainty described by an Itô
diffusion process satisfying the stochastic differential equation

𝑑𝑋𝑡 = 𝑏(𝑋𝑡)𝑑𝑡 + 𝜎(𝑋𝑡)𝑑𝐵𝑡. (2.3)

Here both 𝑏 and 𝜎 are non-random functions that are assumed to be Lipschitz continuous,
and 𝐵𝑡 denotes the standard Brownian motion. In addition, we assume that the interrogator
has control of the frequency 𝜔 of the interrogating electromagnetic signals, and the evader
has control of 𝜀, the real part of the dielectric permittivity of surface coatings. At each time
𝑡 ∈ [0, 𝑇 ], the interrogator chooses parameters 𝜔 from a compact admissible set Ω ⊂ ℝ+,
and the evader chooses parameters 𝜀 from a compact admissible set ℰ ⊂ ℝ+ in a measurable
way. (Here ℝ+ denotes the set of non-negative real numbers.) We can readily formulate
our problem as a minimax problem, where the cost functional is dependent on the expected
value of the intensity of the reflected signal.

2.1 Evolution of Expected Value of Intensity of Reflected Signal

and Dynamic Differential Game

Let 𝜒(𝑥, 𝜀, 𝜔) = ∣𝑅(𝑥 + 𝑖𝜇𝑖, 𝜀 + 𝑖𝜖𝑖, 𝜔, 𝑑)∣, where 𝜇𝑖 and 𝜖𝑖 denote the imaginary parts of 𝜇
and 𝜖, respectively, which are assumed fixed in this paper. We then define

𝑣(𝑡, 𝑥) = 𝔼
𝑥

[∫ 𝑡

0

𝜆𝑒𝜆𝑠𝜒(𝑋𝑠, 𝜀(𝑠), 𝜔(𝑠)) 𝑑𝑠 + 𝑣0(𝑋𝑡)

]

where 𝔼
𝑥[ ⋅ ] denotes the expectation with respect to the probability law of {𝑋𝑡 : 𝑡 ≥ 0}

when its initial value is 𝑋0 = 𝑥, 𝜆 > 0 is a discount parameter, and 𝑣0 is a nonnegative
function that is used to denote the initial intensity of reflected signal. Following a standard
technique for treating integrals (see section 10.3 of [21]), we next define

𝑍𝑡 =

∫ 𝑡

0

𝜆𝑒𝜆𝑠𝜒(𝑋𝑠, 𝜀(𝑠), 𝜔(𝑠)) 𝑑𝑠.

Then the process 𝑌𝑡 = (𝑋𝑡, 𝑍𝑡)
𝑇 satisfies

𝑑

(
𝑋𝑡

𝑍𝑡

)
=

(
𝑏(𝑋𝑡)
𝜆𝑒𝜆𝑡𝜒(𝑋𝑡, 𝜀(𝑡), 𝜔(𝑡))

)
𝑑𝑡 +

(
𝜎(𝑋𝑡)
0

)
𝑑𝐵𝑡.
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Let 𝑔(𝑡, (𝑥, 𝑧)) = 𝔼[𝑍𝑡 + 𝑣0(𝑋𝑡) ∣ 𝑌0 = (𝑥, 𝑧)𝑇 ], where 𝔼[ ⋅ ∣ ⋅ ] denotes the conditional
expectation. Then we have

𝑣(𝑡, 𝑥) = 𝑔(𝑡, (𝑥, 0)).

Here the generator of the Itô diffusion process {𝑌𝑡 : 𝑡 ≥ 0} is

ℒ𝜙(𝑥, 𝑧) = 𝑏(𝑥)
∂

∂𝑥
𝜙(𝑥, 𝑧) +

1

2
𝜎2(𝑥)

∂2

∂𝑥2
𝜙(𝑥, 𝑧) + 𝜆𝑒𝜆𝑡𝜒(𝑥, 𝜀(𝑡), 𝜔(𝑡))

∂

∂𝑧
𝜙(𝑥, 𝑧).

It then follows from Section 8.1 in [21] that 𝑔 satisfies the backward Kolmogorov equation

∂

∂𝑡
𝑔 = ℒ𝑔, 𝑔(0, (𝑥, 𝑧)) = 𝑧 + 𝑣0(𝑥). (2.4)

A discussion of the relationship between this state and the semigroup generated by ℒ can
be found in [13]. Since 𝑔 = 𝑣 + 𝑧 is the solution to (2.4), it follows that 𝑣 satisfies

∂

∂𝑡
𝑣(𝑡, 𝑥) = 𝑏(𝑥)

∂

∂𝑥
𝑣(𝑡, 𝑥) +

1

2
𝜎2(𝑥)

∂2

∂𝑥2
𝑣(𝑡, 𝑥) + 𝜆𝑒𝜆𝑡𝜒(𝑥, 𝜀(𝑡), 𝜔(𝑡)),

𝑣(0, 𝑥) = 𝑣0(𝑥).

Now let 𝑣(𝑡, 𝑥) = 𝑒−𝜆𝑡𝑣(𝑡, 𝑥). It is easy to show that 𝑣 satisfies

∂

∂𝑡
𝑣(𝑡, 𝑥) = 𝒜𝑣(𝑡, 𝑥) + 𝜆𝜒(𝑥, 𝜀(𝑡), 𝜔(𝑡)),

𝑣(0, 𝑥) = 𝑣0(𝑥),

where

𝒜𝑣(𝑡, 𝑥) = 𝑏(𝑥)
∂

∂𝑥
𝑣(𝑡, 𝑥) +

1

2
𝜎2(𝑥)

∂2

∂𝑥2
𝑣(𝑡, 𝑥) − 𝜆𝑣(𝑡, 𝑥).

We note that the state 𝑣 in this formulation is

𝑣(𝑡, 𝑥) = 𝔼
𝑥

[∫ 𝑡

0

𝜆𝑒−𝜆(𝑡−𝑠)𝜒(𝑋𝑠, 𝜀(𝑠), 𝜔(𝑠)) 𝑑𝑠 + 𝑒−𝜆𝑡𝑣0(𝑋𝑡)

]
,

the expected value of a measure of the reflected intensity.
We restrict 𝑥 to be in a finite interval [𝑥, �̄�], and set the boundary conditions to be zero.

That is, we will consider the following state equation

∂

∂𝑡
𝑣(𝑡, 𝑥) = 𝒜𝑣(𝑡, 𝑥) + 𝜆 𝜒(𝑥, 𝜀(𝑡), 𝜔(𝑡)),

𝑣(𝑡, 𝑥) = 0, 𝑣(𝑡, �̄�) = 0,

𝑣(0, 𝑥) = 𝑣0(𝑥),

(2.5)

The objective of the game for the evader is to choose a strategy such that the intensity of
the reflected signal is as small as possible while the objective for the interrogator is to choose
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a strategy so that the intensity of the reflected signal is as large as possible. Hence, the cost
functional for a minmax game with uncertainty can be formulated by

𝐽(𝜀, 𝜔) =

∫ 𝑇

0

∫ 𝑥

𝑥

𝑣(𝑡, 𝑥; 𝜀, 𝜔)𝑑𝑥𝑑𝑡. (2.6)

It is well known that in general such problems may not have a saddle point over the pure
strategies (e.g., see [7, 15]). A common approach that is used to circumvent this difficulty is
to enlarge the class of controls to include relaxed controls (e.g., see [12, 22, 29]). Hence we
will consider the game in a corresponding relaxed form.

2.2 Relaxed Form of Dynamic Differential Game

The notion of relaxed control, or generalized curve, was introduced into the calculus of
variations (in the 40’s) and optimal control (in the 60’s) by a number of distinguished
contributors such as Young [30, 31], McShane [18, 19, 20], Filippov [14] and Warga [26,
27, 28]. Since then, it has been studied by many other researchers (e.g., see [1, 9, 10, 17]).

Before we give the relaxed forms for (2.5) and (2.6), we will introduce needed theoretical
background information on relaxed controls (e.g., see [12, 27, 28]). Let 𝐶(Ω) and 𝐶(ℰ)
denote the spaces of continuous functions equipped with usual supremum norm, and 𝐶∗(Ω)
and 𝐶∗(ℰ) be their corresponding topological dual spaces taken with the weak star topology
which is equivalent to the Prohorov metric topology [8, 23] used in the static games in [2].
We define the spaces 𝒫(Ω) and 𝒫(ℰ) as the spaces of all regular probability measures defined
on the Borel subsets of Ω and ℰ , respectively. Then with the Prohorov metric, 𝒫(Ω) and
𝒫(ℰ) are compact and convex subsets of 𝐶∗(Ω) and 𝐶∗(ℰ), respectively. In addition, as
noted above convergence in the Prohorov metric is equivalent to weak star convergence. For
more information on Prohorov metric, the interested readers can refer to [8, 23].

Let 𝐿1 (0, 𝑇 ;𝐶(Ω)) be the Banach space of Lebesgue integrable functions from [0, 𝑇 ] to
𝐶(Ω) with the norm

∥𝑔𝜔∥𝐿1(0,𝑇 ;𝐶(Ω)) =

∫ 𝑇

0

∥𝑔𝜔(𝑡)∥𝐶(Ω)𝑑𝑡.

The Banach space 𝐿1 (0, 𝑇 ;𝐶(ℰ)) and its norm is similarly defined. It is known that
both 𝐿1 (0, 𝑇 ;𝐶(Ω)) and 𝐿1 (0, 𝑇 ;𝐶(ℰ)) are separable. We denote the topological dual of
𝐿1(0, 𝑇 ;𝐶(Ω)) and 𝐿1(0, 𝑇 ;𝐶(ℰ)) by 𝐿1(0, 𝑇 ;𝐶(Ω))∗ and 𝐿1(0, 𝑇 ;𝐶(ℰ))∗, respectively. By
the Dunford-Pettis theorem (e.g., see [28, Theorem IV.1.8]), we know that

𝐿1 (0, 𝑇 ;𝐶(Ω))∗ ∼= 𝐿∞(0, 𝑇 ;𝐶∗(Ω))

and
𝐿1 (0, 𝑇 ;𝐶(ℰ))∗ ∼= 𝐿∞(0, 𝑇 ;𝐶∗(ℰ)).

Here 𝐿∞(0, 𝑇 ;𝐶∗(Ω)) is a Banach space of essentially bounded measurable functions from
[0, 𝑇 ] to 𝐶∗(Ω) with the norm

∥𝜓𝜔∥𝐿∞(0,𝑇 ;𝐶∗(Ω)) = ess sup
𝑡∈[0,𝑇 ]

∣𝜓𝜔(𝑡)∣(Ω).
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The Banach space 𝐿∞(0, 𝑇 ;𝐶∗(ℰ))) and its norm is similarly defined. However, in this paper
we shall consider 𝐿∞(0, 𝑇 ;𝐶∗(Ω)) and 𝐿∞(0, 𝑇 ;𝐶∗(ℰ)) taken with the weak star topology.
A sequence {𝜓𝜔,𝑗} in 𝐿∞(0, 𝑇 ;𝐶∗(Ω)) is said to be convergent in this topology if there exists
a point 𝜓𝜔 ∈ 𝐿∞(0, 𝑇 ;𝐶∗(Ω)) such that for any 𝑔𝜔 ∈ 𝐿1(0, 𝑇 ;𝐶(Ω)) we have

lim
𝑗→∞

∫ 𝑇

0

∫
Ω

𝑔𝜔(𝑡, 𝜔)𝜓𝜔,𝑗(𝑡)(𝑑𝜔)𝑑𝑡 =

∫ 𝑇

0

∫
Ω

𝑔𝜔(𝑡, 𝜔)𝜓𝜔(𝑡)(𝑑𝜔)𝑑𝑡.

The convergence of a sequence in 𝐿∞(0, 𝑇 ;𝐶∗(ℰ)) with the weak star topology is similarly
defined.

The relaxed control for the interrogator is a mapping 𝜓𝜔 : [0, 𝑇 ] → 𝒫(Ω), and this

mapping is measurable (respectively, continuous) if

∫
Ω

ℎ𝜔(𝜔)𝜓𝜔(𝑡)(𝑑𝜔) is measurable (re-

spectively, continuous) function of 𝑡 ∈ [0, 𝑇 ] for every continuous real-valued function ℎ𝜔 on
Ω. A relaxed control for the evader 𝜓𝜀 : [0, 𝑇 ] → 𝒫(ℰ) is defined similarly. We shall identify
these controls which differ only on a set of measure zero. Let

R(Ω) = {𝜓𝜔 ∣ 𝜓𝜔 : [0, 𝑇 ] → 𝒫(Ω) is measurable}.
and

R(ℰ) = {𝜓𝜀 ∣ 𝜓𝜀 : [0, 𝑇 ] → 𝒫(ℰ) is measurable}.
Let BΩ and Bℰ denote the unit ball of 𝐿∞(0, 𝑇 ;𝐶∗(Ω)) and 𝐿∞(0, 𝑇 ;𝐶∗(ℰ)), respectively.
That is,

BΩ = {𝜓 ∈ 𝐿∞(0, 𝑇 ;𝐶∗(Ω)) ∣ ∥𝜓∥𝐿∞(0,𝑇 ;𝐶∗(Ω)) ≤ 1}
and

Bℰ = {𝜓 ∈ 𝐿∞(0, 𝑇 ;𝐶∗(ℰ)) ∣ ∥𝜓∥𝐿∞(0,𝑇 ;𝐶∗(ℰ)) ≤ 1}.
Then the weak norm topology and weak star topology of BΩ (respectively, Bℰ) coincide, and
with this topology BΩ (respectively, Bℰ) is a compact metric space (see [28, Theorem I.3.11
and Theorem I.3.12]). Note that for any 𝜓𝜔 ∈ R(Ω) and 𝜓𝜀 ∈ R(ℰ) we have 𝜓𝜔(𝑡)(Ω) = 1
and 𝜓𝜀(𝑡)(ℰ) = 1. Hence, R(Ω) ⊂ BΩ and R(ℰ) ⊂ Bℰ . In addition, we have the following
important results.

Theorem 2.1. (See [28, IV.2.1] or [12, Theorem 3.9]) The sets R(Ω) and R(ℰ) can be
considered as closed convex subsets of the unit ball of 𝐿∞(0, 𝑇 ;𝐶∗(Ω)) and 𝐿∞(0, 𝑇 ;𝐶∗(ℰ)),
respectively, so with the weak star topology both R(Ω) and R(ℰ) are compact.

Let 𝜓𝜔 ∈ R(Ω) and 𝜓𝜀 ∈ R(ℰ). Then by Lemma 3.13 in [12] we know that 𝜓𝜀 × 𝜓𝜔

is a measurable relaxed control on ℰ × Ω, and 𝜓𝜀 × 𝜓𝜔 can be considered to belong to the
unit sphere of the topological dual 𝐿∞(0, 𝑇 ;𝐶∗(ℰ × Ω)) of 𝐿1(0, 𝑇 ;𝐶(ℰ × Ω)). With this
background information on relaxed controls, we can now put the state equation (2.5) into
relaxed form

∂

∂𝑡
𝑣(𝑡, 𝑥) = 𝒜𝑣(𝑡, 𝑥) + 𝑓(𝑡, 𝑥),

𝑣(𝑡, 𝑥) = 0, 𝑣(𝑡, �̄�) = 0,

𝑣(0, 𝑥) = 𝑣0(𝑥),

(2.7)
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where

𝑓(𝑡, 𝑥) = 𝜆

∫
Ω

∫
ℰ
𝜒(𝑥, 𝜀, 𝜔)𝜓𝜀(𝑡)(𝑑𝜀) 𝜓𝜔(𝑡)(𝑑𝜔). (2.8)

The cost functional corresponding to the relaxed controls 𝜓𝜀 and 𝜓𝜔 is defined by

𝐽(𝜓𝜀, 𝜓𝜔) =

∫ 𝑇

0

∫ 𝑥

𝑥

𝑣(𝑡, 𝑥;𝜓𝜀, 𝜓𝜔)𝑑𝑥𝑑𝑡. (2.9)

Hence, for this relaxed formulation (2.9) with (2.7), the evader does not choose a single
coating at each time 𝑡, but rather has a set of possibilities available for choices. The inter-
rogator, in a similar approach, determines best probabilities for choices of frequency in the
interrogating signals at each time 𝑡.

Remark 2.2. By (2.1), it is easy to see that 𝜒 is continuous in [𝑥, �̄�]×ℰ×Ω. By assumption
both ℰ and Ω are compact. Hence, 𝜒 is bounded. Let

𝑓𝜀(𝑡, 𝑥, 𝜔) =

∫
ℰ
𝜒(𝑥, 𝜀, 𝜔)𝜓𝜀(𝑡)(𝑑𝜀).

Then by Lebesgue dominated convergence theorem we know that 𝑓𝜀(𝑡, ⋅, ⋅) is continuous in
[𝑥, �̄�]×Ω for fixed 𝑡, and by the definition of relaxed controls we know 𝑓𝜀(⋅, 𝑥, 𝜔) is measurable
for fixed (𝑥, 𝜔). In addition, we have

∣𝑓𝜀(𝑡, 𝑥, 𝜔)∣ ≤ ∥𝜒∥𝐶([𝑥,�̄�]×ℰ×Ω)𝜓𝜀(𝑡)(ℰ)

= ∥𝜒∥𝐶([𝑥,�̄�]×ℰ×Ω).
(2.10)

Thus, 𝑓𝜀 ∈ 𝐿∞(0, 𝑇 ;𝐶([𝑥, �̄�]×Ω)), which implies that 𝑓𝜀 ∈ 𝐿1(0, 𝑇 ;𝐶([𝑥, �̄�]×Ω)). Note that

𝑓(𝑡, 𝑥) = 𝜆

∫
Ω

𝑓𝜀(𝑡, 𝑥, 𝜔)𝜓𝜔(𝑡)(𝑑𝜔).

Hence, 𝑓(𝑡, ⋅) is continuous in [𝑥, �̄�] for fixed 𝑡, and 𝑓(⋅, 𝑥) is measurable for fixed 𝑥. Similarly,
we find

∣𝑓(𝑡, 𝑥)∣ ≤ 𝜆∥𝜒∥𝐶([𝑥,�̄�]×ℰ×Ω). (2.11)

Thus, 𝑓 ∈ 𝐿∞(0, 𝑇 ;𝐶([𝑥, �̄�])). In addition, by Fubini’s theorem we can exchange the order
of integration in (2.8).

3 Existence of Saddle Points

In this section we will show that the relaxed form of the dynamic differential game (2.9)
subject to (2.7) has a saddle point. We assume that there exists a positive constant 𝜎inf

such that 𝜎(𝑥) ≥ 𝜎inf for any 𝑥 ∈ [𝑥, �̄�]. Let 𝐻 = 𝐿2(𝑥, �̄�), 𝑉 = 𝐻1
0 (𝑥, �̄�), and denote the

topological dual space 𝑉 ∗ by 𝑉 ∗ = 𝐻−1(𝑥, �̄�). If we identify 𝐻 with its topological dual 𝐻∗

then 𝑉 ↪→ 𝐻 = 𝐻∗ ↪→ 𝑉 ∗ is a Gelfand triple. Throughout this presentation ∥ ⋅ ∥𝐻 and ∥ ⋅ ∥𝑉
and ∥ ⋅ ∥𝑉 ∗ are used to denote the norms in 𝐻 , 𝑉 and 𝑉 ∗, respectively, ⟨⋅, ⋅⟩ denotes the
inner product in 𝐻 , and ⟨⋅, ⋅⟩𝑉 ∗,𝑉 represents the duality paring between 𝑉 ∗ and 𝑉 . Following
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standard conventions, we use an over dot ( ˙) to denote the derivative with respect to the
time variable 𝑡, and use prime ( ′ ) to represent the derivative with respective to the space
variable 𝑥. In addition, for convenience we may use ∥ ⋅ ∥∞ to denote both the norms in
𝐿∞(𝑥, �̄�) and 𝐶([𝑥, �̄�]).

Define the sesquilinear form 𝑎 on 𝑉 × 𝑉 by

𝑎(𝜙, 𝜑) = −⟨𝑏𝜙′, 𝜑⟩ +
1

2
⟨𝜙′, (𝜎2𝜑)′⟩ + 𝜆⟨𝜙, 𝜑⟩.

By Remark 2.2, we know that 𝑓(𝑡) ∈ 𝐶([𝑥, �̄�]). Hence, we may now rewrite (2.7) in the weak
form

⟨�̇�(𝑡), 𝜑⟩𝑉 ∗,𝑉 + 𝑎(𝑣(𝑡), 𝜑) = ⟨𝑓(𝑡), 𝜑⟩,
𝑣(0) = 𝑣0

(3.1)

for any 𝜑 ∈ 𝑉 . Here and elsewhere 𝑣(𝑡) and 𝑓(𝑡) denote the functions 𝑣(𝑡, ⋅) and 𝑓(𝑡, ⋅),
respectively.

Theorem 3.1. Given 𝑣0 ∈ 𝐻. Then there exists a unique solution 𝑣 for (3.1) with 𝑣 ∈
𝐻1(0, 𝑇 ;𝑉 ∗) ∩ 𝐿2(0, 𝑇 ;𝑉 ). In addition, there exists a positive constant 𝜅 such that for any
𝑡 ∈ [0, 𝑇 ]

∥𝑣(𝑡)∥2𝐻 ≤ 𝜅

(
∥𝑣0∥2𝐻 +

∫ 𝑡

0

∥𝑓(𝑠)∥2𝑉 ∗𝑑𝑠

)
, (3.2)

and ∫ 𝑇

0

∥𝑣(𝑡)∥2𝑉 𝑑𝑠 ≤ 𝜅

(
∥𝑣0∥2𝐻 +

∫ 𝑇

0

∥𝑓(𝑡)∥2𝑉 ∗𝑑𝑠

)
. (3.3)

Furthermore, we have 𝑣 ∈ 𝐶(0, 𝑇 ;𝐻).

Proof. Note that 𝑉 is continuously imbedded in 𝐻 , and 𝐻 is continuously imbedded in 𝑉 ∗.
Hence, there exists a constant 𝛾 > 0 such that

∥𝜑∥𝐻 ≤ 𝛾∥𝜑∥𝑉 , for any 𝜑 ∈ 𝑉, (3.4)

and
∥ℎ∥𝑉 ∗ ≤ 𝛾∥ℎ∥𝐻 , for any ℎ ∈ 𝐻. (3.5)

Since 𝜎 is Lipshcitz continuous, 𝜎′ ∈ 𝐿∞(𝑥, �̄�). Thus, by (3.4) and (3.5) we find that for any
𝜙, 𝜑 ∈ 𝑉 we have

∣𝑎(𝜙, 𝜑)∣ ≤ ∥𝑏∥∞∥𝜙′∥𝐻∥𝜑∥𝐻 +
1

2
∥𝜎2∥∞∥𝜙′∥𝐻∥𝜑′∥𝐻

+∥𝜎∥∞∥𝜎′∥∞∥𝜙′∥𝐻∥𝜑∥𝐻 + 𝜆∥𝜙∥𝐻∥𝜑∥𝐻

≤ 𝛾∥𝑏∥∞∥𝜙∥𝑉 ∥𝜑∥𝑉 +
1

2
∥𝜎2∥∞∥𝜙∥𝑉 ∥𝜑∥𝑉

+𝛾∥𝜎∥∞∥𝜎′∥∞∥𝜙∥𝑉 ∥𝜑∥𝑉 + 𝛾2𝜆∥𝜙∥𝑉 ∥𝜑∥𝑉 .

Let 𝜚 = 𝛾∥𝑏∥∞ +
1

2
∥𝜎2∥∞ + 𝛾∥𝜎∥∞∥𝜎′∥∞ + 𝛾2𝜆. Then by the above inequality we have

∣𝑎(𝜙, 𝜑)∣ ≤ 𝜚∥𝜙∥𝑉 ∥𝜑∥𝑉 , for any 𝜙, 𝜑 ∈ 𝑉. (3.6)
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For any 𝜑 ∈ 𝑉 we also obtain

𝑎(𝜑, 𝜑) ≥
(

1

2
𝜎2
inf − 2𝜃

)
∥𝜑∥2𝑉 − ∥𝑏∥2∞ + ∥𝜎∥2∞∥𝜎′∥2∞

4𝜃
∥𝜑∥2𝐻 .

Setting 𝜃 =
1

8
𝜎2
inf , we have

𝑎(𝜑, 𝜑) + 𝛼𝐻∥𝜑∥2𝐻 ≥ 𝛼𝑉 ∥𝜑∥2𝑉 , (3.7)

where 𝛼𝑉 =
1

4
𝜎2
inf and 𝛼𝐻 =

∥𝑏∥2∞ + ∥𝜎∥2∞∥𝜎′∥2∞
4𝜃

. By Remark 2.2, we know that 𝑓 ∈
𝐿∞(0, 𝑇 ;𝐶([𝑥, �̄�])). Hence, 𝑓 ∈ 𝐿2(0, 𝑇 ;𝑉 ∗). Thus, by Theorem 2.1 in [4] we know that for
any 𝑣0 ∈ 𝐻 there exists a unique solution 𝑣 for (3.1) with 𝑣 ∈ 𝐻1(0, 𝑇 ;𝑉 ∗) ∩ 𝐿2(0, 𝑇 ;𝑉 ),
and (3.2) and (3.3) hold for some positive constant 𝜅. Furthermore, 𝑣 ∈ 𝐶(0, 𝑇 ;𝐻), and
thus the initial condition in (3.1) is meaningful.

Remark 3.2. By Remark 2.2, we know that 𝑓(𝑡) ∈ 𝐶([𝑥, �̄�]), which implies that 𝑓(𝑡) ∈ 𝐻.
Thus, we can easily obtain from (2.11)

𝜅𝐻 ≡ ∥𝑓(𝑡)∥2𝐻 ≤ (�̄�− 𝑥)𝜆2∥𝜒∥2𝐶([𝑥,�̄�]×ℰ×Ω). (3.8)

By (3.2), (3.3), (3.5) and (3.8) we find

∥𝑣(𝑡)∥2𝐻 ≤ 𝜅
(∥𝑣0∥2𝐻 + 𝑇𝛾2𝜅𝐻

)
, (3.9)

and ∫ 𝑇

0

∥𝑣(𝑡)∥2𝑉 𝑑𝑠 ≤ 𝜅
(∥𝑣0∥2𝐻 + 𝑇𝛾2𝜅𝐻

)
. (3.10)

From (3.9) and (3.10), we see that both ∥𝑣(𝑡)∥2𝐻 and

∫ 𝑇

0

∥𝑣(𝑡)∥2𝑉 𝑑𝑠 are bounded by a positive

constant which is independent of the choices of 𝜓𝜔 and 𝜓𝜀.

Remark 3.3. Let 𝑣(𝑡, 𝑥) be the solution to (3.1). Then by (3.4) and (3.6) we find

∣⟨�̇�(𝑡), 𝜑⟩𝑉 ∗,𝑉 ∣ = ∣ − 𝑎(𝑣(𝑡), 𝜑) + ⟨𝑓(𝑡), 𝜑⟩∣
≤ 𝜚∥𝑣(𝑡)∥𝑉 ∥𝜑∥𝑉 + 𝛾∥𝑓(𝑡)∥𝐻∥𝜑∥𝑉 ,

which implies that
∥�̇�(𝑡)∥𝑉 ∗ = sup

∥𝜙∥𝑉 ≤1

{∣⟨�̇�(𝑡), 𝜙⟩𝑉 ∗,𝑉 ∣ ∣ 𝜙 ∈ 𝑉 }

≤ 𝜚∥𝑣(𝑡)∥𝑉 + 𝛾∥𝑓(𝑡)∥𝐻.
By (3.8) and the above equation, we obtain

∥�̇�(𝑡)∥2𝑉 ∗ ≤ 2𝜚2∥𝑣(𝑡)∥2𝑉 + 2𝛾2𝜅𝐻 .

Thus, by (3.10) and integrating the above equation we have

∫ 𝑇

0

∥�̇�(𝑡)∥2𝑉 ∗𝑑𝑡 ≤ 2𝜚2𝜅∥𝑣0∥2𝐻 + 2𝑇𝛾2𝜅𝐻(𝜚2𝜅 + 1). (3.11)
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From the above equation we see that

∫ 𝑇

0

∥�̇�(𝑡)∥2𝑉 ∗𝑑𝑡 is bounded by a positive constant that is

independent of the choices of 𝜓𝜔 and 𝜓𝜀.

By the definition for 𝐽 defined in (2.9), we know that to show 𝐽 is separately continuous in
each of its variables, it suffice to show that for given 𝜓𝜀 ∈ R(ℰ) and a sequence {𝜓𝜔,𝑗} ⊂ R(Ω)
converging to 𝜓𝜔 in R(Ω) we have

lim
𝑗→∞

∫ 𝑇

0

∫ �̄�

𝑥

𝑣(𝑡, 𝑥;𝜓𝜀, 𝜓𝜔,𝑗)𝑑𝑥𝑑𝑡 =

∫ 𝑇

0

∫ �̄�

𝑥

𝑣(𝑡, 𝑥;𝜓𝜀, 𝜓𝜔)𝑑𝑥𝑑𝑡, (3.12)

and for given 𝜓𝜔 ∈ R(Ω) and a sequence {𝜓𝜀,𝑗} ⊂ R(ℰ) converging to 𝜓𝜀 in R(ℰ) we have

lim
𝑗→∞

∫ 𝑇

0

∫ �̄�

𝑥

𝑣(𝑡, 𝑥;𝜓𝜀,𝑗, 𝜓𝜔)𝑑𝑥𝑑𝑡 =

∫ 𝑇

0

∫ �̄�

𝑥

𝑣(𝑡, 𝑥;𝜓𝜀, 𝜓𝜔)𝑑𝑥𝑑𝑡. (3.13)

Actually by using (3.9), (3.10) and (3.11) and similar arguments as in [10, Lemma 2.1],
we can show that (3.12) and (3.13) both hold, that is, 𝐽 is separately continuous in each
variable. For convenience of the reader, we will take (3.12) as a example to show that it
holds in the following lemma.

Lemma 3.4. Given 𝜓𝜀 ∈ R(ℰ), and assume that the sequence {𝜓𝜔,𝑗} ⊂ R(Ω) is convergent
to 𝜓𝜔 in R(Ω). Then we have (3.12).

Proof. For notation convenience, we let 𝑓𝑗 = 𝑓(⋅, ⋅ ; 𝜓𝜀, 𝜓𝜔,𝑗) and 𝑣𝑗 = 𝑣(⋅, ⋅ ; 𝜓𝜀, 𝜓𝜔,𝑗). By
(3.9), (3.10) and (3.11) , we know that {𝑣𝑗} is bounded in 𝐶(0, 𝑇 ;𝐻) and also in 𝐿2(0, 𝑇 ;𝑉 ),
and {�̇�𝑗} is bounded in 𝐿2(0, 𝑇 ;𝑉 ∗). Thus, there exists a subsequence - again denoted by 𝑣𝑗
- such that

𝑣𝑗 → 𝑣 weakly in 𝐿2(0, 𝑇 ;𝑉 ),

�̇�𝑗 → ˙̂𝑣 weakly in 𝐿2(0, 𝑇 ;𝑉 ∗).

Observe that 𝑉 is also compactly imbedded in 𝐻 . Hence, by Theorem 2.1 in [24] we have

𝑣𝑗 → 𝑣 strong in 𝐿2(0, 𝑇 ;𝐻). (3.14)

Note that 𝐿2(0, 𝑇 ;𝐻) is continuously imbedded in 𝐿1(0, 𝑇 ;𝐿1(𝑥, �̄�)). Hence, by (3.14) we
know that 𝑣𝑗 is strongly convergent to 𝑣 in 𝐿1(0, 𝑇 ;𝐿1(𝑥, �̄�)), that is,

lim
𝑗→∞

∫ 𝑇

0

∫ �̄�

𝑥

𝑣(𝑡, 𝑥;𝜓𝜀, 𝜓𝜔,𝑗)𝑑𝑥𝑑𝑡 =

∫ 𝑇

0

∫ �̄�

𝑥

𝑣(𝑡, 𝑥)𝑑𝑥𝑑𝑡.

Thus, to complete the proof we only need to show that 𝑣 = 𝑣(⋅, ⋅ ; 𝜓𝜀, 𝜓𝜔).
Let 𝑔(𝑡, 𝑥) = 𝜂(𝑡)𝜑(𝑥), where 𝜑 ∈ 𝑉 , and 𝜂 ∈ 𝐶1(0, 𝑇 ) with 𝜂(0) = 0 and 𝜂(𝑇 ) = 0. We

set 𝑣 = 𝑣𝑗 in (3.1), and then multiply (3.1) by 𝜂(𝑡) and integrate to find

∫ 𝑇

0

⟨�̇�𝑗(𝑡), 𝜑⟩𝑉 ∗,𝑉 𝜂(𝑡)𝑑𝑡 +

∫ 𝑇

0

𝑎(𝑣𝑗(𝑡), 𝜑)𝜂(𝑡)𝑑𝑡 =

∫ 𝑇

0

⟨𝑓𝑗(𝑡), 𝜑⟩𝜂(𝑡)𝑑𝑡.
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Integrating by parts for the first term of the above equation, we have

−
∫ 𝑇

0

⟨𝑣𝑗(𝑡), 𝜑⟩�̇�(𝑡)𝑑𝑡 +

∫ 𝑇

0

𝑎(𝑣𝑗(𝑡), 𝜑)𝜂(𝑡)𝑑𝑡 =

∫ 𝑇

0

⟨𝑓𝑗(𝑡), 𝜑⟩𝜂(𝑡)𝑑𝑡. (3.15)

By Fubini’s theorem, the right-hand side of (3.15) can be written as

∫ 𝑇

0

⟨𝑓𝑗(𝑡), 𝜑⟩𝜂(𝑡)𝑑𝑡

=

∫ 𝑇

0

[∫ �̄�

𝑥

𝜆𝜑(𝑥)

(∫
Ω

𝑓𝜀(𝑡, 𝑥, 𝜔)𝜓𝜔,𝑗(𝑡)(𝑑𝜔)

)
𝑑𝑥

]
𝜂(𝑡)𝑑𝑡

=

∫ �̄�

𝑥

𝜆𝜑(𝑥)

[∫ 𝑇

0

∫
Ω

𝜂(𝑡)𝑓𝜀(𝑡, 𝑥, 𝜔)𝜓𝜔,𝑗(𝑡)(𝑑𝜔)𝑑𝑡

]
𝑑𝑥.

(3.16)

By Remark 2.2, we know that 𝑓𝜀 ∈ 𝐿∞(0, 𝑇 ;𝐶([𝑥, �̄�] × Ω)). Since 𝜂 ∈ 𝐶1(0, 𝑇 ), we have
𝜂𝑓𝜀 ∈ 𝐿∞(0, 𝑇 ;𝐶([𝑥, �̄�] × Ω)), which implies 𝜂𝑓𝜀 ∈ 𝐿1(0, 𝑇 ;𝐶([𝑥, �̄�] × Ω)). Since 𝜓𝜔,𝑗 is
convergent to 𝜓𝜔 in R(Ω), letting 𝑗 → ∞, passing to the limit in (3.16) and using Fubini’s
theorem we find

lim
𝑗→∞

∫ 𝑇

0

⟨𝑓𝑗(𝑡), 𝜑⟩𝜂(𝑡)𝑑𝑡 =

∫ 𝑇

0

⟨𝑓(𝑡), 𝜑⟩𝜂(𝑡)𝑑𝑡.

Now we let 𝑗 → ∞ and pass the limit through term by term for (3.15) to obtain

−
∫ 𝑇

0

⟨𝑣(𝑡), 𝜑⟩�̇�(𝑡)𝑑𝑡 +

∫ 𝑇

0

𝑎(𝑣(𝑡), 𝜑)𝜂(𝑡)𝑑𝑡 =

∫ 𝑇

0

⟨𝑓(𝑡), 𝜑⟩𝜂(𝑡)𝑑𝑡.

Integrating by parts for the first term in the above equation, we find
∫ 𝑇

0

(
⟨ ˙̂𝑣(𝑡), 𝜑⟩𝑉 ∗,𝑉 + 𝑎(𝑣(𝑡), 𝜑)

)
𝜂(𝑡)𝑑𝑡 =

∫ 𝑇

0

⟨𝑓(𝑡), 𝜑⟩𝜂(𝑡)𝑑𝑡. (3.17)

Note that the class of 𝜂’s for which the above holds are dense in 𝐿2(0, 𝑇 ). Hence, we have
(3.17) holding for all 𝜂 ∈ 𝐿2(0, 𝑇 ). Thus, we have 𝑣 satisfies the first equation of (3.1). To
obtain 𝑣(0) = 𝑣0, we may use the same arguments with arbitrary 𝜂 ∈ 𝐶1(0, 𝑇 ) with 𝜂(𝑇 ) = 0
but 𝜂(0) ∕= 0. Therefore, by the uniqueness of the solution for (3.1) we have 𝑣 = 𝑣.

Remark 3.5. As the example given in [12] shows that the identity mapping from R(ℰ) ×
R(Ω) → R(ℰ × Ω) is not jointly continuous, the cost functional 𝐽 defined by (2.9) is not
jointly continuous over the space R(ℰ) × R(Ω).

Theorem 3.6. (See [32, Corollary 3.2]) Let 𝕏 be a nonempty compact and convex subset of
a Hausdorff topological vector space, and let 𝕐 be a nonempty convex subset of a Hausdorff
topological space, respectively. Suppose that Φ : 𝕏 × 𝕐 → ℝ satisfies (i) for each fixed
𝑥 ∈ 𝕏, 𝑦 �−→ Φ(𝑥, 𝑦) is lower semicontinuous and quasiconvex; (ii) for each fixed 𝑦 ∈ 𝕐,
𝑥 �−→ Φ(𝑥, 𝑦) is upper semicontinuouos and quasiconcave. Then we have

max
𝑥∈𝕏

min
𝑦∈𝕐

Φ(𝑥, 𝑦) = min
𝑦∈𝕐

max
𝑥∈𝕏

Φ(𝑥, 𝑦).

Moreover, if 𝕐 is compact, then Φ has a saddle point in 𝕏× 𝕐.
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Note that 𝐽 is continuous and linear in each variable. Thus, by Theorems 2.1 and 3.6 we
know that 𝐽 has a saddle point, which is summarized in the following theorem.

Theorem 3.7. There exists a pair of relaxed controls 𝜓∗
𝜔 ∈ R(Ω) and 𝜓∗

𝜀 ∈ R(ℰ) such that

𝐽(𝜓∗
𝜀 , 𝜓𝜔) ≤ 𝐽(𝜓∗

𝜀 , 𝜓
∗
𝜔) ≤ 𝐽(𝜓𝜀, 𝜓

∗
𝜔)

for any 𝜓𝜀 ∈ R(ℰ) and 𝜓𝜔 ∈ R(Ω).

4 Concluding Remarks

In this paper a two-player zero-sum dynamic differential game is considered in the context of
electromagnetic pursuit-evasion. The problem is formulated as a minimax game over the sets
of relaxed controls, where the cost functional is based on the expected value of the intensity
of reflected signal. We have established that this game has a saddle point.

From Remark 3.5, we know that the cost functional 𝐽 is not jointly continuous, which
implies that there are challenges in carrying out standard numerical approximations in the
domain R(ℰ)×R(Ω). Hence, an immediate effort is to identify a subset of this domain that
is still compact and on which 𝐽 is jointly continuous. One can then develop a computational
framework similar in spirit to that employed in the static case in [2].
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