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Abstract

Typical optimal design methods for inverse or parameter estimation problems are designed
to choose optimal sampling distributions through minimization of a specific cost function related
to the resulting error in parameter estimates. It is hoped that the inverse problem will produce
parameter estimates with increased accuracy using data from the optimal sampling distribution.
We present a new Prohorov metric based theoretical framework that permits one to treat suc-
cinctly and rigorously any optimal design criteria based on the Fisher Information Matrix (FIM).
A fundamental approximation theory is also included in this framework. A new optimal de-
sign, SE-optimal design (standard error optimal design), is then introduced in the context of
this framework. We compare this new design criteria with the more traditional D-optimal and
E-optimal designs. The optimal sampling distributions from each design are used to compute
and compare standard errors; the standard errors for parameters are computed using asymptotic
theory or bootstrapping and the optimal mesh. We use three examples to illustrate ideas: the
Verhulst-Pearl logistic population model [7], the standard harmonic oscillator model [7] and a
popular glucose regulation model [10, 13, 21].
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1 Introduction

Mathematical models are used to describe dynamics arising from biological, physical and engi-
neering systems. If the parameters in the model are known, the model can be used for simulation,
prediction, control design, etc. However, typically one does not have accurate values for the pa-
rameters. Instead, one must estimate the parameters using experimental data. The simulation and
predictive capabilities of the model depend on the accuracy of the parameter estimates. A major
question that experimentalists and inverse problem investigators alike often face is how to best col-
lect the data to enable one to efficiently and accurately estimate model parameters. This is the
well-known and widely studied optimal design problem.

Traditional optimal design methods (D-optimal, E-optimal, c-optimal) [1, 8, 14, 15] use infor-
mation from the model to find the sampling distribution or mesh for the observation times (and/or
locations in spatially distributed problems) that minimizes a design criterion, quite often a function
of the Fisher Information Matrix (FIM). Experimental data taken on this optimal mesh is then
expected to result in accurate parameter estimates.

Here we formulate the classical optimal design problem in the context of general optimization
problems over distributions of sampling times. We present a new Prohorov metric based theoretical
framework that allows one to treat succinctly and rigorously any optimal design criteria based on
the FIM. A fundamental approximation theory is also included in this framework. A new optimal
design, SE-optimal design (standard error optimal design), is then introduced in the context of
this framework. We compare this new design criteria with the more traditional D-optimal and
E-optimal designs. We consider the performance of these three different optimal design methods
for three different dynamical systems: the Verhulst-Pearl logistic population model, a harmonic
oscillator model and a simple glucose regulation model. SE-optimal design was first introduced in
[5]. The goal of SE-optimal design is to find the observation times τ = {ti} that minimize the
sum of squared normalized standard errors of the estimated parameters as defined by asymptotic
distribution results from statistical theories [4, 6, 12, 20]. D-optimal and E-optimal design methods
minimize functions of the covariance in the parameter estimates [1, 8, 15]. D-optimal design finds
the mesh that minimizes the volume of the confidence interval ellipsoid of the asymptotic covariance
matrix. E-optimal design minimizes the largest principle axis of the confidence interval ellipsoid of
the asymptotic covariance matrix.

In an effort to provide a reasonably fair comparison, for each optimal design method, standard
errors are computed by several methods using the optimal mesh. The optimal design methods are
compared based on these standard errors. Not surprisingly, we find that SE-optimal design often
results in smaller standard errors compared with the other optimal design method; this is likely be-
cause SE-optimal design optimizes directly on the standard errors themselves while the D-optimal
and E-optimal methods minimize other functions related to the standard errors through the FIM.

2 Optimal Design Formulations

Following [5], we introduce a formulation of ideal inverse problems in which continuous in time
observations are available-while not practical, the associated considerations provide valuable insight.
A major question in this context is how to choose sampling distributions in an intelligent manner.
Indeed, this is the fundamental question treated in the optimal design literature and methodology.

Underlying our considerations is a mathematical model
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ẋ(t) =g(t, x(t), q),

x(0) =x0,

f(t, θ) = C(x(t, θ)), t ∈ [0, T ],

(1)

where x(t) ∈ R
n is the vector of state variables of the system, f(t, θ) ∈ R

m is the vector of observable
or measurable outputs, q ∈ R

r are the system parameters, θ = (q, x0) ∈ R
p, p = r + n is the vector

of system parameters plus initial conditions x0, while g and C are mappings R
1+n+r → R

n and
R
n → R

m, respectively. To consider measures of uncertainty in estimated parameters [4], one also
requires a statistical model. Our statistical model is given by the stochastic process

Y (t) = f(t, θ0) + E(t). (2)

Here E is a noisy random process representing measurement errors and, as usual in statistical for-
mulations [4, 5, 20], θ0 is a hypothesized “true” value of the unknown parameters. We make the
following standard assumptions on the random variable E(t):

E(E(t)) = 0, t ∈ [0, T ],

VarE(t) = σ2
0, t ∈ [0, T ],

Cov(E(t)E(s)) = σ2
0δ(t − s), t, s ∈ [0, T ],

where δ(s) = 1 for s = 0 and δ(s) = 0 for s 6= 0. A realization of the observation process is given by

y(t) = f(t, θ0) + ε(t), t ∈ [0, T ],

where the measurement error ε(t) is a realization of E(t).

We introduce a generalized weighted least squares criterion

J(y, θ) =

∫ T

0

1

σ(t)2
(

y(t)− f(t, θ)
)2

dP (t), (3)

where P is a general measure on [0, T ]. We seek the parameter estimate θ̂ by minimizing J(y, θ) for
θ. Since P represents a weighting of the difference between data and model output, we can, without
loss of generality, assume that P is a bounded measure on [0, T ].

If, for points τ = {ti}, t1 < · · · < tN in [0, T ], we take

Pτ =

N
∑

i=1

∆ti , (4)

where ∆a denotes the Dirac delta distribution with atom {a}, we obtain

Jd(y, θ) =

N
∑

i=1

1

σ(ti)2
(

y(ti)− f(ti, θ)
)2
, (5)

which is the weighted least squares cost functional for the case where we take a finite number of
measurements in [0, T ]. Of course, the introduction of the measure P allows us to change the weights
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in (5) or the weighting function in (3). For instance, if P is absolutely continuous with density m(·)
the error functional (3) is just the weighted L2-norm of y(·)− f(·, θ) with weight m(·)/σ(·)2.

To facilitate our discussions we introduce the Generalized Fisher Information Matrix (GFIM)

F (P, θ0) ≡

∫ T

0

1

σ2(s)
∇T

θ f(s, θ0)∇θf(s, θ0) dP (s), (6)

where ∇θ is a row vector given by (∂θ1 , . . . , ∂θp) and hence ∇θf is an m× p matrix. It follows that
the usual discrete FIM corresponding to Pτ as in (4) is given by

F (τ) = F (Pτ , θ0) =
N
∑

j=1

1

σ2(tj)
∇θf(tj, θ0)

T∇θf(tj, θ0). (7)

Subsequently we simplify notation and use τ = {ti} to represent the dependence on P = Pτ when it
has the form (4). When one chooses P as simple Lebesgue measure then the GFIM reduces to the
continuous FIM

FC =

∫ T

0

1

σ2(s)
∇θf(s, θ0)

T∇θf(s, θ0) ds. (8)

The major question in optimal design of experiments is how to best choose P in some family P(0, T )
of observation distributions. We observe that one optimal design formulation we might employ is a
criterion that chooses the times τ = {ti} for Pτ in (6) so that (7) best approximates (8)–i.e., one
minimizes |FC − F (τ)| over τ where | · | is the norm in R

p×p–see [5]. We do not consider this design
here, but rather focus on the SE-optimal design also proposed in [5] and its comparison to more
traditional designs.

The introduction of the measure P above allows for a unified framework for optimal design
criteria which incorporates all the popular design criteria mentioned in the introduction. As already
noted, the GFIM F (P, θ) introduced in (6) depends critically on the measure P . We also remark
that we can, without loss of generality, further restrict ourselves to probability measures on [0, T ].
Thus, let P(0, T ) denote the set of all probability measures on [0, T ] and assume that a functional
J : Rp×p → R

+ of the GFIM is given. The optimal design problem associated with J is one of
finding a probability measure P̂ ∈ P(0, T ) such that

J
(

F (P̂ , θ0)
)

= min
P∈P(0,T )

J
(

F (P, θ0)
)

. (9)

A general theoretical framework for existence and approximation in the context of P(0, T ) taken
with the Prohorov metric [2, 11, 16, 19] is given for these problems in Section 4 of [5]. In particular,
this theory permits development of computational methods using weighted discrete measures (i.e.,
weighted versions of (4)).

2.1 Theoretical Summary

To summarize and further develop the theoretical considerations that are the basis of our efforts
here, we first recall that the Prohorov metric ρ on the space P(0, T ) of probability measures on
the Borel subsets of [0, T ] can be defined [2, 11, 16, 19] in terms of probabilities on closed subsets
of [0, T ] and their neighborhoods. However for our uses here it is far more useful to work with an
equivalent characterization in terms of convergences when viewing the probability measures P(0, T )
as a subset of the topological dual Cb[0, T ]

∗ of the bounded continuous functions on [0, T ] taken with
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the supremum norm. More precisely, ρ-convergence is equivalent to weak∗-convergence on P(0, T )
when considering P(0, T ) as a subset of Cb[0, T ]

∗. It is then known that (P(0, T ), ρ) is a complete,
compact and separable metric space. (We will hereafter just denote this space by P(0, T ) since the
ρ will be understood.)

Our first observation is that the GFIM as defined in (6) is ρ continuous on P(0, T ) for problems
in which the observation functions f(·, θ) are continuously differentiable on [0, T ]. Thus, whenever
J : Rp×p → R

+ is continuous we find that P → J (F (P, θ)) is continuous from P(0, T ) to R
+. Since

P(0, T ) is ρ compact, we obtain immediately the existence of solutions for the optimization problems

P̂J ≡ argminP∈P(0,T )J (F (P, θ0)). (10)

Our second observation is related to the separability of P(0, T ) and in particular to the den-
sity of finite convex combinations over rational coefficients of Dirac measures ∆a with atoms at a.
Specifically, one can prove [2] that the set

P0(0, T ) :=
{

P ∈ P(0, T )
∣

∣

∣
P =

k
∑

j=1

pj∆tj , k ∈ N
+, tj ∈ T0, pj ≥ 0, pj rational,

k
∑

j=1

pj = 1
}

is dense in P(0, T ) in the Prohorov metric ρ. Here T0 = {tj}
∞
j=1 is a countable, dense subset of

[0, T ]. In short, the set of P ∈ P(0, T ) with finite support in T0 and rational masses is dense in
P(0, T ). This leads, for a given choice J , to approximation schemes for P̂J as defined in (10). To
implement these for a given choice of J (examples are discussed below) would require approximation
by PN

{pj ,tj}
=
∑N

j=1 pj∆tj in the GFIM (6) and then optimization over appropriate sets of {pj , tj}

in (10) with P replaced by PN
{pj ,tj}

. For a fixed N , existence of minima in these problems follow

from the theory outlined above. In standard optimal designs these problems are approximated even
further by fixing the weights or masses pj as pj =

T
N

(which then becomes simply a scale factor in the
sum) and searching over the {tj}. This, of course, is equivalent to replacing the PN

{pj ,tj}
by Pτ of (4)

in (6) and searching over the τ = {tj} for a fixed number N of grid points. This embodies the tacit
assumption of equal value of the observations at each of the times {tj}. We observe that weighting
of information at each of the observation times is carried out in the inverse problems via the weights
σ(tj) for observation variances in (5). We further observe that the weights {pj} in PN

{pj ,tj}
are related

to the value of the observations as a function of the model sensitivities ∇θf(tj, θ0) in the FIM while
the weights 1

σ(tj )2
are related to the reliability in the data measurement processes. We note that all

of our remarks on theory related to existence above in the general probability measure case also hold
for this discrete minimization case.

The formulation (10) incorporates all strategies for optimal design which entail optimization
of a functional depending continuously on the elements of the Fisher information matrix. In case
of the traditional design criteria mentioned in the introduction, J is the determinant (D-optimal),
the smallest eigenvalue (E-optimal), or a quadratic form (c-optimal), respectively, of the inverse of
the Fisher information matrix. Specifically, the optimal design methods we consider are SE-optimal
design, D-optimal design, and E-optimal design. The design cost functional for the SE-optimal
design method is given by (see [5])

J (F ) =

p
∑

i=1

1

θ20,i
(F−1)ii,

where F = F (τ) is the FIM, defined above in (7), θ0 is the true parameter vector, and p is the
number of parameters to be estimated. Note that both inversion and taking the trace of a matrix are
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continuous operations. We observe that F−1
ii = SEi(θ0)

2. Therefore, SE-optimal design minimizes
the sum of squared normalized standard errors.

D-optimal design minimizes the volume of the confidence interval ellipsoid for the covariance
matrix (ΣN

0 = F−1). The design cost functional for D-optimal design is given by (see [8, 15])

J (F ) = det(F−1).

Again we note that taking the determinant is a continuous operation on matrices so that JD is
continuous in F as required by the theory.

E-optimal design minimizes the principle axis of the confidence interval ellipsoid of the covariance
matrix (defined in the asymptotic theory summarized in the next section). The design cost functional
for E-optimal design is given by (see [1, 8])

J (F ) = max
1

λi
,

where λi, i = 1 . . . p are the eigenvalues of F . Therefore 1
λi
, i = 1 . . . p, corresponds to the eigenvalues

of the asymptotic covariance matrix ΣN
0 = F−1.

2.2 Constrained Optimization and Implementations

Each optimal design computational method we employ is based on constrained optimization to
find the mesh of time points τ∗ = {t∗i }, i = 1, . . . , N that satisfy

J (F (τ∗, θ0, )) = min
τ∈T

J (F (τ, θ0)),

where T is the set of all time meshes such that 0 ≤ t1 ≤ · · · ≤ ti ≤ ti+1 ≤ · · · ≤ tN ≤ T .
These optimal design methods were implemented using constrained optimization algorithms,

either MATLAB’s fmincon or SolvOpt, developed by A. Kuntsevich and F. Kappel [17], with four
variations on the constraint implementation. We denote these different constraint implementations
(which result in different parameter and SE outcomes even in cases where the {ti} are initially
required to satisfy similar constraints) by (C1) − (C4). Complete details of the differences in the
algorithms are given in an appendix.

(C1) The first constraint implementation on the time points is given by, t1 ≥ 0, tN ≤ T and ti ≤ ti+1,
such that the optimal mesh may or may not contain 0 and T . In this case we optimize over N
variables.

(C2) The second constraint implementation is carried out in the same manner as the first, except
that the optimal mesh contains 0 and T . Hence we effectively optimize over N − 2 variables.

(C3) The third constraint implementation on the time points is given by ti = ti−1+νi, i = 2, . . . , N−
1, t1 = 0 and tN = T , with νi ≥ 0, i = 2, . . . , N − 1, and ν2 + . . . + νN−1 ≤ T . Note that
the optimal mesh always contains 0 and T as we optimize over N − 2 variables using slightly
different inequality constraints.

(C4) The last constraint implementation on the time points is given by, ti = ti−1 + νi, i = 2, . . . , N ,
and t1 = 0 with νi ≥ 0, i = 2, . . . , N , and ν2+ . . .+νN = T . This constraint is implemented by
defining νN = T −

∑N−1
i=2 νi. The optimal mesh again contains 0 and T , and we also optimize

over N − 2 variables but an equality constraint is added to the constraint system.
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3 Standard Error Methodology

We begin by finding the optimal discrete sampling distribution of time points τ = {ti}
N
i=1, for

a fixed number N of points in a fixed interval [0, T ], using one of three optimal design methods
described above. These three optimal design methods are then compared based on the standard er-
rors computed for parameters using these sampling times. Since there are different ways to compute
standard errors, we will compare the optimal design method using different techniques for computing
the standard errors. In the following sections we will describe the methods for computing standard
errors. First we consider the scalar observation case (m = 1).

3.1 Asymptotic Theory for Computing Standard Errors

Once we have an optimal distribution of time points we will obtain data or simulated data,
{yi}

N
i=1, a realization of the random process {Yi}

N
i=1, corresponding to the optimal time points,

τ = {ti}
N
i=1. Parameters are then estimated using inverse problem formulations as described in [4].

Since the variance Var(E(t)) = σ2
0 is assumed to be constant, the inverse problem is formulated using

ordinary least squares (OLS). The OLS estimator is defined by

ΘOLS = ΘN
OLS = argmin

θ

N
∑

j=1

[Yj − f(tj, θ)]
2.

The estimate θ̂OLS is defined as

θ̂OLS = θ̂NOLS = argmin
θ

N
∑

j=1

[yj − f(tj, θ)]
2.

To compute the standard errors of the estimated parameters, we first must compute the sensi-
tivity matrix

χj,k =
∂(Cx(tj))

∂θk
=

∂f(tj, θ)

∂θk
, for j = 1, . . . N, k = 1, . . . p.

Note that χ = χN is an N × p matrix. The true constant variance

σ2
0 =

1

N
E





N
∑

j=1

[Yj − f(tj, θ0)]
2



 ,

can be estimated by

σ̂2
OLS =

1

N − p

N
∑

j=1

[yj − f(tj, θ̂OLS)]
2.

The true covariance matrix is approximately (asymptotically as N → ∞) given by,

ΣN
0 ≈ σ2

0[χ
T (θ0)χ(θ0)]

−1.

Note that the approximate Fisher Information Matrix (FIM) is defined by

F = F (τ) = F (τ, θ0) = (ΣN
0 )−1, (11)
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and is explicitly dependent on the sampling times τ .
When the true values, θ0 and σ2

0 , are unknown, the covariance matrix is estimated by

ΣN
0 ≈ Σ̂N (θ̂OLS) = σ̂2

OLS[χ
T (θ̂OLS)χ(θ̂OLS)]

−1. (12)

The corresponding FIM can be estimated by

F̂ (τ) = F̂ (τ, θ̂OLS) = (Σ̂N (θ̂OLS))
−1. (13)

The asymptotic standard errors are given by

SEk(θ0) =
√

(ΣN
0 )kk, k = 1, . . . , p. (14)

These standard errors are estimated in practice (when θ0 and σ0 are not known) by

SEk(θ̂OLS) =

√

(Σ̂N (θ̂OLS))kk, k = 1, . . . , p. (15)

It can be shown, under certain conditions, for N → ∞, that the estimator ΘN
OLS is asymptotically

normal [20]; i.e., for N large
ΘN

OLS ∼ Np(θ0,Σ
N
0 ). (16)

3.2 Monte Carlo Method for Asymptotic Standard Errors

To account for the variability in the asymptotic standard errors due to the variability in the
residual errors in the simulated data, we use Monte Carlo trials to examine the average behavior.
For a single Monte Carlo trial, we generate simulated data on the optimal mesh {tj}

N
j=1,

yj = f(tj, θ0) + ǫj , j = 1, . . . N,

where ǫj are realizations of Ej ∼ N (0, σ2) for j = 1, . . . , N . Parameters are estimated using OLS with
initial parameter guess θ0 = 1.4θ0, where θ0 are the true parameters. Standard errors are estimated
using asymptotic theory (15). The parameter estimates and their estimated standard errors are
stored, and the process is repeated with new simulated data corresponding to the optimal mesh for
M = 1000 Monte Carlo trials. The average of the M = 1000 parameter estimates and standard
errors are used to compare the optimal design methods in one of our examples.

3.3 The Bootstrapping Method

An alternative way of computing parameter estimates and standard errors uses the bootstrapping
method [6]. Again we outline this for the case of scalar (m = 1) observations.

As in the previous section, assume we are given experimental data (y1, t1), . . . , (yN , tN ) from the
following underlying observation process

Yj = f(tj, θ0) + Ej, (17)

where j = 1, . . . , N and the Ej are independent identically distributed (iid) from a distribution
F with mean zero (E(Ej) = 0) and constant variance σ2

0, and θ0 is the “true” parameter value.
Associated corresponding realizations of Yj are given by

yj = f(tj, θ0) + ǫj .

8



The bootstrapping algorithm is presented for sample points corresponding to the tj , j = 1 . . . N .
To compare the optimal design methods based on their bootstrapping standard errors, we will take
our sample points corresponding to the optimal time distribution (τ = {ti}

N
i=1). The different optimal

design methods are described below.
The following algorithm [6] can be used to compute the bootstrapping estimate θ̂boot of θ0 and

its empirical distribution.

1. First estimate θ̂0 from the entire sample, using OLS.

2. Using this estimate define the standardized residuals:

r̄j =

√

N

(N − p)

(

yj − f(tj, θ̂
0)
)

for j = 1, . . . , N . Then {r̄1,. . . ,r̄N} are realizations of iid random variables R̄j from the
empirical distribution FN , and p for the number of parameters. Observe that

E(r̄j |FN ) = N−1
N
∑

j=1

r̄j = 0, Var(r̄j |FN ) = N−1
N
∑

j=1

r̄2j = σ̂2.

Set m = 0.

3. Create a bootstrap sample of size N using random sampling with replacement from the data
(realizations) {r̄1,. . . ,r̄N} to form a bootstrap sample {rm1 , . . . , rmN}.

4. Create bootstrap sample points
ymj = f(tj, θ̂

0) + rmj ,

where j = 1, . . . , N .

5. Obtain a new estimate θ̂m+1 from the bootstrap sample {ymj } using OLS. Add θ̂m+1 into the
vector Θ, where Θ is a vector of length Mp (M is the number of bootstrap samples) which
stores the bootstrap estimates.

6. Set m = m+ 1 and repeat steps 3–5.

7. Carry out the above iterative process M times where M is large (e.g., M=1000), resulting in
a vector Θ of length Mp.

8. We then calculate the mean and standard error from the vector Θ using the formulae

θ̂boot =
1
M

∑M
m=1 θ̂

m,

Cov(θ̂boot) =
1

M−1

∑M
m=1(θ̂

m − θ̂boot)
T (θ̂m − θ̂boot), (18)

SEk(θ̂boot) =

√

Cov(θ̂boot)kk.

We will compare the optimal design methods using the standard errors resulting from the op-
timal time points each method proposes. Since there are different ways to compute the standard
errors we will present results for several of these computational methods.
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4 The Logistic Growth Example

We first compare the optimal design methods for the logistic example using the Monte Carlo
method for asymptotic estimates and standard errors.

4.1 Logistic Model

The Verhulst-Pearl logistic population model describes a population that grows at an intrinsic
growth rate until it reaches its carrying capacity. It is given by the differential equation:

ẋ(t) = rx(t)

(

1−
x(t)

K

)

, x(0) = x0,

where K is the carrying capacity of the population, r is the intrinsic growth rate, and x0 is the initial
population size. The analytical solution to the differential equation above is given by,

x(t) = f(t, θ0) =
K

1 + (K/x0 − 1)e−rt
,

where θ0 = (K, r, x0) is the true parameter vector.
Our statistical model is given by

Y (t) = f(t, θ0) + E(t),

where we choose E ∼ N (0, σ2
0) to generate simulated data (with for use in the Monte Carlo calcula-

tions). A realization of the observation process is given by

y(t) = f(t, θ0) + ε(t), t ∈ [0, T ].

4.2 Logistic Results

For the logistic model, we use SolvOpt to solve for the optimal mesh for each of the optimal
design methods (D-optimal, E-optimal and SE-optimal), using the second constraint (C2) on the
time points: t1 ≥ 0, tN ≤ T and ti ≤ ti+1, such that the optimal mesh contains 0 and T . For this
example, we took T = 25 and N = 10 or N = 15. Figures 1 and 3 contain plots of the resulting
optimal distribution of time points for the different optimal design methods, along with the uniform
mesh, plotted on the logistic curve, for N = 10 and N = 15, respectively.

These optimal design methods are compared based on their average Monte Carlo asymptotic
estimates and standard errors. The simulated data was generated assuming the true parameter values
θ0 = (K, r, x0) = (17.5, 0.8, 0.1), and variance σ2

0 = 0.16. The average estimates and standard errors
are based on M = 1000 Monte Carlo trials. Since we obtain histograms of estimates and standard
errors from this Monte Carlo analysis, we can also gain information for comparison from the median
of these histograms or sampling distributions. Monte Carlo asymptotic estimates and standard errors
were also computed on the uniform mesh. We report the average and median estimates and standard
errors in Tables 1 and 2 (N = 10, and N = 15). Histograms for the Monte Carlo standard errors are
given in Figs. 2 and 4 for N = 10 and N = 15 respectively.

4.3 Discussion of Logistic Results

The average asymptotic estimates from the uniform distribution and each of the optimal design
methods are very close to the true values, θ0. For N = 10 (Table 1), SE-optimal has the closest
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Table 1: Average and Median estimates and standard errors using SolvOpt, N = 10, M = 1000, and θ0 = (17.5, 0.7, 0.1).
Optimization with constraint implementation (C2).

Parameter Method Average Estimate Median Estimate Average SE Median SE

K Unif 17.4978 17.4954 1.789 × 10−1 1.789 × 10−1

SE-opt 17.4985 17.4995 2.000 × 10−1 2.000 × 10−1

D-opt 17.5066 17.5024 2.039 × 10−1 2.038 × 10−1

E-opt 17.4959 17.4957 1.512 × 10−1 1.512 × 10−1

r Unif 0.7042 0.6996 5.020 × 10−2 4.983 × 10−2

SE-opt 0.7019 0.7000 3.473 × 10−2 3.444 × 10−2

D-opt 0.7020 0.7029 3.821 × 10−2 3.816 × 10−2

E-opt 0.7139 0.7033 9.696 × 10−2 9.090 × 10−2

x0 Unif 0.1037 0.0999 3.730 × 10−2 3.696 × 10−2

SE-opt 0.1018 0.1002 2.448 × 10−2 2.432 × 10−2

D-opt 0.1025 0.0982 2.947 × 10−2 2.859 × 10−2

E-opt 0.1103 0.0977 6.417 × 10−2 6.174 × 10−2
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Figure 1: The distribution of optimal time points and uniform sampling time points plotted on the logistic curve.
Optimal times points obtained using SolvOpt, with N = 10, and the optimal design methods SE-optimality, D-
optimality, and E-optimality. Optimization with constraint implementation (C2).

average and median estimates, followed by D-optimal (for r and x0) and E-optimal (for K). For
N = 15 (Table 2), the closest average estimate of K came from E-optimal, for r the closest average
estimate is from SE-optimal and for x0 it was D-optimal. Comparing the average and median
estimates, we see that for all cases the averages and medians are very close, indicating that the
parameter distributions are symmetric. However, for both N = 10 and N = 15 the averages
were slightly larger than the medians for r and x0 for all methods, implying that those parameter
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Figure 2: Using SolvOpt, with N = 10, a comparison of optimal design methods using SE-optimality, D-optimality,
E-optimality, with a uniform sampling time points in terms of SEK (panel (a)), SEr (panel (b)), and SEx0 (panel
(c)). Optimization with constraint implementation (C2).

distributions are slightly skewed to the right (see Tables 1 and 2).
Comparing the standard errors (Tables 1 and 2 and Figs. 2 and 4): For K, we find that E-

optimal has the smallest average standard errors, then the uniform grid, then SE-optimal when
N = 10 or D-optimal when N = 15. For r and x0, SE-optimal has the smallest average standard
errors, followed by D-optimal, then the uniform grid. The average and median standard errors are
very close. However the distribution of standard errors for r and E-optimal seem to be slightly
right-skewed.

In conclusion, all of the optimal design methods produce parameter estimates that are close to
the true value. In addition, the standard error estimates are similar comparing the different optimal
design methods. Based on the standard errors, E-optimal is more favorable for the accuracy of K,
and SE-optimal is more favorable for the accuracy of r and x0 (followed closely by D-optimal).
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Table 2: Average and Median estimates and standard errors using SolvOpt, N = 15, M = 1000, and θ0 = (17.5, 0.7, 0.1).
Optimization with constraint implementation (C2).

Parameter Method Average Estimate Median Estimate Average SE Median SE

K Unif 17.5004 17.5009 1.467 × 10−1 1.466 × 10−1

SE-opt 17.4941 17.4899 1.633 × 10−1 1.633 × 10−1

D-opt 17.5017 17.4974 1.553 × 10−1 1.552 × 10−1

E-opt 17.5006 17.5006 1.265 × 10−1 1.265 × 10−1

r Unif 0.7018 0.6983 4.118 × 10−2 4.086 × 10−2

SE-opt 0.7008 0.6993 2.739 × 10−2 2.721 × 10−2

D-opt 0.7022 0.7016 3.353 × 10−2 3.353 × 10−2

E-opt 0.7056 0.7004 8.078 × 10−2 7.799 × 10−2

x0 Unif 0.1027 0.1004 3.040 × 10−2 3.020 × 10−2

SE-opt 0.1016 0.0997 1.999 × 10−2 1.977 × 10−2

D-opt 0.1014 0.0992 2.476 × 10−2 2.440 × 10−2

E-opt 0.1078 0.0989 4.920 × 10−2 4.788 × 10−2
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Figure 3: The distribution of optimal time points and uniform sampling time points plotted on the logistic curve.
Optimal times points obtained using SolvOpt, with N = 15, and the optimal design methods SE-optimality, D-
optimality, and E-optimality. Optimization with constraint implementation (C2).
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Figure 4: Using SolvOpt, with N = 15, a comparison of optimal design methods using SE-optimality, D-optimality,
E-optimality, with a uniform sampling time points in terms of SEK (panel (a)), SEr (panel (b)), and SEx0 (panel
(c)). Optimization with constraint implementation (C2).
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5 The Harmonic Oscillator Model

In our next example, we consider the harmonic oscillator, also known as the spring-mass-dashpot
model. The model for the harmonic oscillator can be derived using Hooke’s Law and mass-balance
(see [7]) and is given by

mẍ+ cẋ+ kx = 0, ẋ(0) = x1, x(0) = x2.

Here, m is mass, c is damping, and k is the spring constant. Dividing through by m, and defining
C = c/m and K = k/m, we can reduce the number of parameters.

ẍ+ Cẋ+Kx = 0, ẋ(0) = x1, x(0) = x2.

The analytical solution for the position at time t can be obtained and is given by

x(t) = e−at (C1 cos bt+ C2 sin bt) ,

where C1 = x2, C2 = (x1 + ax2)/b, a = 1
2C, and b =

√

K − 1
4C

2. Substituting in C1 and C2, we

obtain,

x(t) = x(t, θ0) = f(t, θ0) = e−at

(

x2 cos bt+
x1 + ax2

b
sin bt

)

, for 0 ≤ t ≤ T,

where for our considerations the true parameter vector is given by θ0 = (C,K, x1, x2) = (0.1, 0.2,−1, 0.5)
in our examples here.

5.1 Results for the Oscillator Model

The first way we will compare these optimal design methods, given that we know θ0 = (C,K, x1, x2)
= (0.1, 0.2,−1, 0.5) and σ2

0 = 0.16, is to simply use their corresponding standard errors from the
asymptotic theory, i.e., the values of SE(θ0) given in (14). Recall that uncertainty is quantified
by constructing confidence intervals using parameter estimates with the asymptotic standard error.
Since our main focus here is the width of the confidence intervals, we can forgo the obtaining of the
parameter estimates themselves which, for now, we tacitly assume may be similar for the three data
sampling distributions we investigate here.

The optimal time points for each of the three optimal design methods are plotted with the model
for different T and N under the first constraint implementation (C1) in Fig. 5, the second constraint
implementation (C2) in Fig. 6, the third constraint implementation (C3) in Fig. 7, and the last
constraint implementation (C4) in Fig. 8. The standard errors (14) from the asymptotic theory
corresponding to these optimal meshes are given in Table 3-6, respectively for the four different
constraints.
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Figure 5: Plot of model with optimal time points resulting from different optimal design methods for θ0 = (C,K, x1, x2),
with T = 14.14 (one period) for N = 5 (panel (a)) and N = 10 (panel (c)) and T = 28.28 (two periods) for N = 10
(panel (b)) and N = 20(panel (d)). Optimization with constraint implementation (C1).
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Table 3: Approximate asymptotic standard errors from the asymptotic theory (14) resulting from different optimal
design methods for θ0 = (C,K, x1, x2), optimization with constraint implementation (C1).

T N Method SE(C) SE(K) SE(x1) SE(x2)

14.14 (1-period) 5 SE-optimal 7.603 × 10−2 4.320 × 10−2 2.869 × 10−1 3.714 × 10−1

5 D-optimal 8.244 × 10−2 2.539 × 10−2 2.551 × 10−1 3.940 × 10−1

5 E-optimal 1.243 × 10−1 2.508 × 10−2 3.685 × 10−1 3.815 × 10−1

14.14 (1-period) 10 SE-optimal 5.527 × 10−2 2.519 × 10−2 2.113 × 10−1 2.716 × 10−1

10 D-optimal 5.963 × 10−2 1.845 × 10−2 1.949 × 10−1 2.821 × 10−1

10 E-optimal 1.136 × 10−1 4.187 × 10−2 2.193 × 10−1 2.272 × 10−1

28.28 (2-periods) 10 SE-optimal 4.049 × 10−2 1.980 × 10−2 2.604 × 10−1 2.305 × 10−1

10 D-optimal 3.919 × 10−2 1.372 × 10−2 1.936 × 10−1 2.816 × 10−1

10 E-optimal 7.080 × 10−2 2.343 × 10−2 2.242 × 10−1 2.274 × 10−1

28.28 (2-periods) 20 SE-optimal 2.438 × 10−2 1.457 × 10−2 1.517 × 10−1 1.633 × 10−1

20 D-optimal 3.177 × 10−2 1.102 × 10−2 1.609 × 10−1 2.632 × 10−1

20 E-optimal 4.422 × 10−2 1.608 × 10−2 1.355 × 10−1 1.385 × 10−1

Table 4: Approximate asymptotic standard errors from the asymptotic theory (14) resulting from different optimal
design methods for θ0 = (C,K, x1, x2), optimization with constraint implementation (C2).

T N Method SE(C) SE(K) SE(x1) SE(x2)

14.14 (1-period) 5 SE-optimal 7.900 × 10−2 2.657 × 10−2 2.852 × 10−1 3.657 × 10−1

5 D-optimal 8.251 × 10−2 2.541 × 10−2 2.561 × 10−1 3.921 × 10−1

5 E-optimal 1.371 × 10−1 2.900 × 10−2 3.583 × 10−1 3.736 × 10−1

14.14 (1-period) 10 SE-optimal 5.667 × 10−2 2.484 × 10−2 1.964 × 10−1 2.310 × 10−1

10 D-optimal 6.055 × 10−2 1.648 × 10−2 1.986 × 10−1 2.822 × 10−1

10 E-optimal 8.507 × 10−2 2.657 × 10−2 2.211 × 10−1 2.283 × 10−1

28.28 (2-periods) 10 SE-optimal 3.430 × 10−2 2.149 × 10−2 1.970 × 10−1 2.274 × 10−1

10 D-optimal 7.445 × 10−2 1.711 × 10−2 4.314 × 10−1 3.919 × 10−1

10 E-optimal 8.826 × 10−2 2.532 × 10−2 2.132 × 10−1 2.169 × 10−1

28.28 (2-periods) 20 SE-optimal 2.457 × 10−2 1.500 × 10−2 1.516 × 10−1 1.784 × 10−1

20 D-optimal 3.254 × 10−2 1.166 × 10−2 1.722 × 10−1 2.867 × 10−1

20 E-optimal 5.135 × 10−2 1.628 × 10−2 1.451 × 10−1 1.492 × 10−1
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Figure 6: Plot of model with optimal time points resulting from different optimal design methods for θ0 = (C,K, x1, x2),
with T = 14.14 (one period) for N = 5 (panel (a)) and N = 10 (panel (c)) and T = 28.28 (two periods) for N = 10
(panel (b)) and N = 20(panel (d)). Optimization with constraint implementation (C2).
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Figure 7: Plot of model with optimal time points resulting from different optimal design methods for θ0 = (C,K, x1, x2),
with T = 14.14 (one period) for N = 5 (panel (a)) and N = 10 (panel (c)) and T = 28.28 (two periods) for N = 10
(panel (b)) and N = 20(panel (d)). Optimization with constraint implementation (C3).
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Table 5: Approximate asymptotic standard errors from the asymptotic theory (14) resulting from different optimal
design methods for θ0 = (C,K, x1, x2), optimization with constraint implementation (C3).

T N Method SE(C) SE(K) SE(x1) SE(x2)

14.14 (1-period) 5 SE-optimal 7.900 × 10−2 2.657 × 10−2 2.852 × 10−1 3.657 × 10−1

5 D-optimal 9.483 × 10−2 2.106 × 10−2 2.675 × 10−1 3.898 × 10−1

5 E-optimal 1.371 × 10−1 2.900 × 10−2 3.583 × 10−1 3.736 × 10−1

14.14 (1-period) 10 SE-optimal 5.666 × 10−2 2.484 × 10−2 1.963 × 10−1 2.309 × 10−1

10 D-optimal 6.071 × 10−2 1.656 × 10−2 1.978 × 10−1 2.828 × 10−1

10 E-optimal 1.125 × 10−1 2.838 × 10−2 2.532 × 10−1 2.639 × 10−1

28.28 (2-periods) 10 SE-optimal 3.673 × 10−2 2.399 × 10−2 1.925 × 10−1 2.000 × 10−1

10 D-optimal 3.764 × 10−2 1.373 × 10−2 1.881 × 10−1 2.812 × 10−1

10 E-optimal 7.949 × 10−2 2.509 × 10−2 2.154 × 10−1 2.183 × 10−1

28.28 (2-periods) 20 SE-optimal 2.671 × 10−2 1.812 × 10−2 1.368 × 10−1 1.413 × 10−1

20 D-optimal 2.882 × 10−2 1.057 × 10−2 1.176 × 10−1 1.959 × 10−1

20 E-optimal 6.467 × 10−2 2.604 × 10−2 1.361 × 10−1 1.376 × 10−1

Table 6: Approximate asymptotic standard errors from the asymptotic theory (14) resulting from different optimal
design methods for θ0 = (C,K, x1, x2), optimization with constraint implementation (C4).

T N Method SE(C) SE(K) SE(x1) SE(x2)

14.14 (1-period) 5 SE-optimal 7.900 × 10−2 2.657 × 10−2 2.852 × 10−1 3.657 × 10−1

5 D-optimal 8.249 × 10−2 2.538 × 10−2 2.553 × 10−1 3.935 × 10−1

5 E-optimal 1.371 × 10−1 2.900 × 10−2 3.583 × 10−1 3.736 × 10−1

14.14 (1-period) 10 SE-optimal 5.666 × 10−2 2.484 × 10−2 1.963 × 10−1 2.309 × 10−1

10 D-optimal 6.073 × 10−2 1.657 × 10−2 1.978 × 10−1 2.828 × 10−1

10 E-optimal 1.125 × 10−1 2.838 × 10−2 2.532 × 10−1 2.639 × 10−1

28.28 (2-periods) 10 SE-optimal 3.554 × 10−2 2.395 × 10−2 1.906 × 10−1 2.000 × 10−1

10 D-optimal 3.765 × 10−2 1.373 × 10−2 1.881 × 10−1 2.812 × 10−1

10 E-optimal 7.948 × 10−2 2.509 × 10−2 2.154 × 10−1 2.183 × 10−1

28.28 (2-periods) 20 SE-optimal 2.512 × 10−2 1.698 × 10−2 1.348 × 10−1 1.510 × 10−1

20 D-optimal 2.920 × 10−2 1.035 × 10−2 1.221 × 10−1 1.788 × 10−1

20 E-optimal 6.095 × 10−2 2.597 × 10−2 1.300 × 10−1 1.315 × 10−1
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Figure 8: Plot of model with optimal time points resulting from different optimal design methods for θ0 = (C,K, x1, x2),
with T = 14.14 (one period) for N = 5 (panel (a)) and N = 10 (panel (c)) and T = 28.28 (two periods) for N = 10
(panel (b)) and N = 20(panel (d)). Optimization with constraint implementation (C4).

21



5.2 Discussion for the Oscillator Model

The constrained optimization algorithm, SolvOpt, was chosen over MATLAB’s fmincon for
comparisons using the harmonic oscillator example because it overall resulted in more well-behaved
standard errors (real and finite values), and fmincon often did not.

In most cases, optimal meshes with a larger number of points were nested in the optimal meshes
with a reduced the number of points. In some cases for T = 28.28 (Figs 5 and 6) doubling the
number of points resulted in extra points being dispersed to otherwise empty regions, while other
points were nested in the optimal mesh with fewer points. Often the larger number of points in the
optimal mesh resulted in smaller standard errors.

Examining the asymptotic standard errors (Tables 3-6), different optimal sampling distributions
produced the smallest standard errors for different parameters, with no optimal design method having
consistently smaller standard errors. For C, most of the time SE-optimal had the smallest standard
error, then D-optimal. For K, D-optimal most often had the smallest standard error, followed by
SE-optimal. For x1, D-optimal had the smallest standard errors in most cases. For x2, either
SE-optimal or E-optimal had the smallest standard errors.

The standard errors from the different optimal design methods were usually on the same order
of magnitude. No method was always the best while comparing asymptotic standard errors, though
for specific parameters some optimal sampling distributions were favorable.

Since the asymptotic standard errors appear explicitly in the cost function we are minimizing for
SE-optimal design, it may not be fair to compare these methods based on their asymptotic standard
errors. To account for any possible bias in our comparison, we will compare these optimal design
methods in the next section using simulated data and the inverse problem to estimate parameters
using asymptotic theory and bootstrapping. In these computations, we will compare the optimal
design methods based on how close their parameter estimates are to the true parameters, and the
values of their estimated standard errors and covariances.

5.3 Results for the Oscillator Model - with the Inverse Problem

We solve the inverse problem with the OLS formulation to obtain parameter estimates and
standard errors from both asymptotic theory (15) and the bootstrapping method (18). We create
simulated noisy data (in agreement with our statistical model (2)) corresponding to the optimal time
meshes using true values θ0 = (C,K, x1, x2) = (0.1, 0.2,−1, 0.5) and iid noise with Ej ∼ N (0, σ2

0).
In this section we only estimate a subset of the parameters θ = (C,K). In addition to the estimates
and standard errors, we also report the estimated Cov(C,K) according to asymptotic theory (12)
and bootstrapping (18). For comparison purposes we also present these results for a uniform grid
using the same T and N .

The optimal time points for each of the three optimal design methods are plotted with the model
for T = 14.14 and T = 28.28 for N = 15 under the first constraint implementation (C1) in Fig. 9,
the second constraint implementation (C2) in Fig. 10, the third constraint implementation (C3) in
Fig. 11, and the last constraint implementation (C4) in Fig. 12. The estimates, standard errors,
and covariance between parameters as estimated from the asymptotic theory (15) corresponding
to these optimal meshes are given in Table 7, 9, 11, and 13, respectively for the four different
constraint implementations. The estimates, standard errors, and covariance between parameters
when estimated from the bootstrapping method (18) corresponding to these optimal meshes are
given in Table 8, 10, 12, and 14, respectively for the four different constraints. In each of the tables
are also results on the uniform grid of time points for the same T and N . Since this is unaffected by

22



constraints, the results for the uniform grid are repeated in the tables.
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Optimal mesh with N=15, and θ = (C,K) using SolveOpt algorithm.
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Optimal mesh with N=15, and θ = (C,K) using SolveOpt algorithm.
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Figure 9: Plot of model with optimal time points resulting from different optimal design methods for θ0 = (C,K),
N = 15, with T = 14.14 (one period) (panel (a)) and T = 28.28 (two periods) (panel (b)). Optimization with constraint
implementation (C1).

Table 7: Estimates and standard errors from the asymptotic theory (15) resulting from different optimal design methods
(as well as for the uniform mesh) for θ0 = (C,K) = (0.1, 0.2) and N = 15, optimization with constraint implementation
(C1).

T Method Ĉasy ŜE(Ĉasy) K̂asy ŜE(K̂asy) Ĉov(Ĉasy, K̂asy)

14.14 SE-optimal 0.0865 1.369 × 10−2 0.1979 1.165 × 10−2 −3.597 × 10−5

14.14 D-optimal 0.1112 2.104 × 10−2 0.2038 8.974 × 10−3 −1.027 × 10−4

14.14 E-optimal 0.0592 3.009 × 10−2 0.1736 1.285 × 10−2 −9.801 × 10−5

14.14 Uniform 0.1300 3.529 × 10−2 0.1938 1.278 × 10−2 −2.803 × 10−4

28.28 SE-optimal 0.1111 3.221 × 10−2 0.2040 2.827 × 10−2 −3.391 × 10−4

28.28 D-optimal 0.0705 1.710 × 10−2 0.1974 7.444 × 10−3 −6.045 × 10−5

28.28 E-optimal 0.0843 1.664 × 10−2 0.1953 1.381 × 10−2 4.378 × 10−5

28.28 Uniform 0.0854 1.792 × 10−2 0.2122 7.326 × 10−3 −6.219 × 10−5

5.4 Discussion of Oscillator Results with the Inverse Problem

The simulated data was created using the “true” parameter values θ0 = (C,K) = (0.1, 0.2). So
we can compare the optimal design methods based on how close the parameter estimates are as well
as how large the estimates of the standard errors and covariances are.

For asymptotic estimates:
Comparing optimal design methods based on which has parameter estimates closest to the

true values, there is no method that is always the best. For constraint implementation (C1), with
T = 14.14 (Table 7) the closest parameter estimates result from either SE-optimal or D-optimal. For
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Table 8: Estimates and standard errors from the bootstrap method (18) resulting from different optimal design methods
(as well as for the uniform mesh) for θ0 = (C,K) = (0.1, 0.2), M = 1000 bootstraps and N = 15, optimization with
constraint implementation (C1).

T Method Ĉboot ŜE(Ĉboot) K̂boot ŜE(K̂boot) ˆCov(Ĉboot, K̂boot)

14.14 SE-optimal 0.0871 1.460 × 10−2 0.1988 1.092 × 10−2 8.013 × 10−5

14.14 D-optimal 0.1035 1.565 × 10−2 0.2025 8.225 × 10−3 −1.731 × 10−5

14.14 E-optimal 0.0603 2.861 × 10−2 0.1743 1.297 × 10−2 6.383 × 10−5

14.14 Uniform 0.1170 2.469 × 10−2 0.1989 1.009 × 10−2 −4.978 × 10−5

28.28 SE-optimal 0.0827 2.486 × 10−2 0.1991 1.624 × 10−2 1.567 × 10−4

28.28 D-optimal 0.0705 1.428 × 10−2 0.1972 7.177 × 10−3 −5.355 × 10−6

28.28 E-optimal 0.0843 2.138 × 10−2 0.2035 2.598 × 10−2 3.099 × 10−6

28.28 Uniform 0.0837 1.475 × 10−2 0.2122 6.350 × 10−3 −4.436 × 10−6
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Optimal mesh with N=15, and θ = (C,K) using SolveOpt algorithm.

 

 

SE−optimal

D−optimal

E−optimal

model

(a)

0 5 10 15 20 25
−2

−1.5

−1

−0.5

0

0.5

1

1.5

t

Optimal mesh with N=15, and θ = (C,K) using SolveOpt algorithm.
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Figure 10: Plot of model with optimal time points resulting from different optimal design methods for θ0 = (C,K),
N = 15, with T = 14.14 (one period) (panel (a)) and T = 28.28 (two periods) (panel (b)). Optimization with constraint
implementation (C2).

constraint implementation (C2) (Table 9), either D-optimal or E-optimal had the closest parameter
estimates to the true values. For constraint implementation (C3) (Table 11), either D-optimal or
E-optimal had the closest parameter estimate for C, and either SE-optimal or D-optimal has the
closest estimate for K. For constraint implementation (C4) (Table 13), SE-optimal and D-optimal
had the closest estimates for T = 14.14, and E-optimal had the closest estimates for T = 28.28.

Comparing the optimal design methods based on the estimated standard errors and covariance
between parameters, we find that no method is always the best. For constraint implementation
(C1) (Table 7), when T = 14.14 SE-optimal had the smallest standard errors and covariance, when
T = 28.28 either E-optimal or D-optimal had the smallest standard errors and covariances. For
constraint implementation (C2) (Table 9), the smallest standard errors and covariances came from
E-optimal when T = 14.14 and SE-optimal when T = 28.28, and followed by D-optimal in both
cases. For constraint implementation (C3) (Table 11), the smallest standard errors and covariances
came from D-optimal or E-optimal when T = 14.14, and from D-optimal followed by SE-optimal
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Table 9: Estimates and standard errors from the asymptotic theory (15) resulting from different optimal design methods
(as well as for the uniform mesh) for θ0 = (C,K) = (0.1, 0.2) and N = 15, optimization with constraint implementation
(C2).

T Method Ĉasy ŜE(Ĉasy) K̂asy ŜE(K̂asy) Ĉov(Ĉasy, K̂asy)

14.14 SE-optimal 0.0841 2.852 × 10−2 0.2314 1.996 × 10−2 −3.540 × 10−4

14.14 D-optimal 0.0934 2.635 × 10−2 0.2054 9.968 × 10−3 −1.414 × 10−4

14.14 E-optimal 0.1076 2.220 × 10−2 0.1952 1.060 × 10−2 −9.008 × 10−5

14.14 Uniform 0.1300 3.529 × 10−2 0.1938 1.278 × 10−2 −2.803 × 10−4

28.28 SE-optimal 0.0649 1.440 × 10−2 0.1842 7.006 × 10−3 2.883 × 10−6

28.28 D-optimal 0.1088 1.888 × 10−2 0.2086 8.425 × 10−3 −6.880 × 10−5

28.28 E-optimal 0.1115 2.397 × 10−2 0.2046 2.073 × 10−2 −1.256 × 10−4

28.28 Uniform 0.0854 1.792 × 10−2 0.2122 7.326 × 10−3 −6.219 × 10−5

Table 10: Estimates and standard errors from the bootstrap method (18) resulting from different optimal design
methods (as well as for the uniform mesh) for θ0 = (C,K) = (0.1, 0.2), M = 1000 bootstraps and N = 15, optimization
with constraint implementation (C2).

T Method Ĉboot ŜE(Ĉboot) K̂boot ŜE(K̂boot) ˆCov(Ĉboot, K̂boot)

14.14 SE-optimal 0.0783 2.076 × 10−2 0.2320 1.628 × 10−2 4.751 × 10−5

14.14 D-optimal 0.0976 2.243 × 10−2 0.2070 9.921 × 10−3 −4.040 × 10−5

14.14 E-optimal 0.1031 1.930 × 10−2 0.1956 9.636 × 10−3 3.043 × 10−5

14.14 Uniform 0.1170 2.469 × 10−2 0.1989 1.009 × 10−2 −4.978 × 10−5

28.28 SE-optimal 0.0576 1.479 × 10−2 0.1842 6.057 × 10−3 3.937 × 10−5

28.28 D-optimal 0.1194 1.694 × 10−2 0.2105 8.317 × 10−3 4.750 × 10−6

28.28 E-optimal 0.0947 2.161 × 10−2 0.2045 1.927 × 10−2 1.499 × 10−4

28.28 Uniform 0.0837 1.475 × 10−2 0.2122 6.350 × 10−3 −4.436 × 10−6

when T = 28.28. For constraint implementation (C4) when T = 14.14, E-optimal had the smallest
standard errors and covariances followed by D-optimal.

For bootstrap estimates:
Comparing optimal design methods based on which has bootstrapping parameter estimates clos-

est to the true value, again no method is always the best. For constraint implementations (C1) and
(C4) (Tables 8 and 14), when T = 14.14 either SE-optimal or D-optimal have the closest estimates.
For constraint implementation (C2) (Table 10), either D-optimal or E-optimal had parameter esti-
mates closest to the true values. For T = 14.14 (Table 10), the parameter estimate for K was in fact
closest from the uniform mesh, followed by D-optimal. For constraint implementation (C3) (Table
12), when T = 14.14 either D-optimal or E-optimal had the closest estimates. For cases that were
not reported, there was no method that was consistently better in terms of closeness of parameter
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Optimal mesh with N=15, and θ = (C,K) using SolveOpt algorithm.
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Optimal mesh with N=15, and θ = (C,K) using SolveOpt algorithm.
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Figure 11: Plot of model with optimal time points resulting from different optimal design methods for θ0 = (C,K),
N = 15, with T = 14.14 (one period) (panel (a)) and T = 28.28 (two periods) (panel (b)). Optimization with constraint
implementation (C3).

Table 11: Estimates and standard errors from the asymptotic theory (15) resulting from different optimal design
methods (as well as for the uniform mesh) for θ0 = (C,K) = (0.1, 0.2) and N = 15, optimization with constraint
implementation (C3).

T Method Ĉasy ŜE(Ĉasy) K̂asy ŜE(K̂asy) Ĉov(Ĉasy, K̂asy)

14.14 SE-optimal 0.1238 2.515 × 10−2 0.2028 2.302 × 10−2 −1.640 × 10−4

14.14 D-optimal 0.0970 2.061 × 10−2 0.1997 7.973 × 10−3 −9.382 × 10−5

14.14 E-optimal 0.1156 2.204 × 10−2 0.1953 2.055 × 10−2 6.635 × 10−5

14.14 Uniform 0.1300 3.529 × 10−2 0.1938 1.278 × 10−2 −2.803 × 10−4

28.28 SE-optimal 0.0899 1.617 × 10−2 0.2015 1.368 × 10−2 −5.288 × 10−5

28.28 D-optimal 0.0966 1.540 × 10−2 0.2084 6.787 × 10−3 −4.422 × 10−5

28.28 E-optimal 0.1029 1.705 × 10−2 0.2098 2.111 × 10−2 −1.575 × 10−4

28.28 Uniform 0.0854 1.792 × 10−2 0.2122 7.326 × 10−3 −6.219 × 10−5

estimates to the true values.
Comparing optimal design methods based on which method produces the smallest bootstrap-

ping estimated standard errors and parameter estimates, no method is consistently favorable. For
constraint implementation (C1) (Table 8), D-optimal has the smallest standard errors and covari-
ances. For constraint implementation (C2) (Table 10), when T = 14.14 the smallest standard errors
and covariances come from E-optimal, when T = 28.28 either SE-optimal or the uniform grim had
the smallest standard errors and covariances, followed by D-optimal. For constraint implementa-
tion (C3) (Table 12), the smallest standard errors and covariances are from D-optimal, followed by
SE-optimal. For constraint implementation (C4) (Table 14), when T = 14.14 the smallest stan-
dard errors and covariances come from D-optimal followed by E-optimal, when T = 28.28 either
SE-optimal or D-optimal were the smallest.

In conclusion, all of the optimal design methods are favorable under specific conditions. In
many of the cases the parameter estimates, standard errors, and covariances are on the same order
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Table 12: Estimates and standard errors from the bootstrap method (18) resulting from different optimal design
methods (as well as for the uniform mesh) for θ0 = (C,K) = (0.1, 0.2), M = 1000 bootstraps and N = 15, optimization
with constraint implementation (C3).

T Method Ĉboot ŜE(Ĉboot) K̂boot ŜE(K̂boot) ˆCov(Ĉboot, K̂boot)

14.14 SE-optimal 0.1204 2.652 × 10−2 0.2047 2.186 × 10−2 3.199 × 10−4

14.14 D-optimal 0.0919 1.574 × 10−2 0.1978 7.301 × 10−3 −2.363 × 10−5

14.14 E-optimal 0.1069 2.756 × 10−2 0.1978 1.967 × 10−2 3.763 × 10−4

14.14 Uniform 0.1170 2.469 × 10−2 0.1989 1.009 × 10−2 −4.978 × 10−5

28.28 SE-optimal 0.0870 1.753 × 10−2 0.2028 1.542 × 10−2 8.280 × 10−5

28.28 D-optimal 0.0906 1.133 × 10−2 0.2030 5.540 × 10−3 5.491 × 10−6

28.28 E-optimal 0.0926 1.783 × 10−2 0.2113 2.202 × 10−2 4.422 × 10−5

28.28 Uniform 0.0837 1.475 × 10−2 0.2122 6.350 × 10−3 −4.436 × 10−6
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Optimal mesh with N=15, and θ = (C,K) using SolveOpt algorithm.
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Optimal mesh with N=15, and θ = (C,K) using SolveOpt algorithm.
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Figure 12: Plot of model with optimal time points resulting from different optimal design methods for θ0 = (C,K),
N = 15, with T = 14.14 (one period) (panel (a)) and T = 28.28 (two periods) (panel (b)). Optimization with constraint
implementation (C4).

of magnitude resulting from different optimal design criteria.

27



Table 13: Estimates and standard errors from the asymptotic theory (15) resulting from different optimal design
methods (as well as for the uniform mesh) for θ0 = (C,K) = (0.1, 0.2) and N = 15, optimization with constraint
implementation (C4).

T Method Ĉasy ŜE(Ĉasy) K̂asy ŜE(K̂asy) Ĉov(Ĉasy, K̂asy)

14.14 SE-optimal 0.0837 2.312 × 10−2 0.2136 2.087 × 10−2 −2.385 × 10−4

14.14 D-optimal 0.0771 2.206 × 10−2 0.1827 8.461 × 10−3 −1.074 × 10−4

14.14 E-optimal 0.0343 1.387 × 10−2 0.1719 7.166 × 10−3 2.825 × 10−5

14.14 Uniform 0.1300 3.529 × 10−2 0.1938 1.278 × 10−2 −2.803 × 10−4

28.28 SE-optimal 0.0908 1.473 × 10−2 0.2206 1.330 × 10−2 −1.480 × 10−4

28.28 D-optimal 0.1160 2.358 × 10−2 0.1875 9.149 × 10−3 −9.691 × 10−5

28.28 E-optimal 0.0964 1.218 × 10−2 0.2070 1.445 × 10−2 −4.984 × 10−5

28.28 Uniform 0.0854 1.792 × 10−2 0.2122 7.326 × 10−3 −6.219 × 10−5

Table 14: Estimates and standard errors from the bootstrap method (18) resulting from different optimal design
methods (as well as for the uniform mesh) for θ0 = (C,K) = (0.1, 0.2), M = 1000 bootstraps and N = 15, optimization
with constraint implementation (C4).

T Method Ĉboot ŜE(Ĉboot) K̂boot ŜE(K̂boot) ˆCov(Ĉboot, K̂boot)

14.14 SE-optimal 0.0856 2.185 × 10−2 0.2184 2.027 × 10−2 1.904 × 10−4

14.14 D-optimal 0.0658 1.611 × 10−2 0.1822 7.297 × 10−3 −2.611 × 10−5

14.14 E-optimal 0.0334 1.769 × 10−2 0.1729 6.841 × 10−3 7.838 × 10−5

14.14 Uniform 0.1170 2.469 × 10−2 0.1989 1.009 × 10−2 −4.978 × 10−5

28.28 SE-optimal 0.0835 8.868 × 10−3 0.2111 7.826 × 10−3 2.677 × 10−5

28.28 D-optimal 0.1265 1.872 × 10−2 0.1986 9.266 × 10−3 −1.156 × 10−5

28.28 E-optimal 0.0963 1.594 × 10−2 0.2195 2.443 × 10−2 −1.188 × 10−4

28.28 Uniform 0.0837 1.475 × 10−2 0.2122 6.350 × 10−3 −4.436 × 10−6
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6 A Simple Glucose Regulation Model

Next we will consider a well-known model for the intervenous glucose tolerance test (IVGTT).
This model is referred to as the minimal model in the literature [10, 13, 21]. Prior to the IVGTT
the patient is asked to fast. When the patient comes in for the IVGTT, measurements of their
baseline glucose and insulin concentrations, Gb and Ib, respectively, are first taken. The IVGTT
procedure consists of injecting a bolus resulting in an initial concentration p0 of glucose into the
blood, and measuring the glucose and insulin concentrations in the blood at various time points
after the injection.

The body carefully regulates the glucose concentration in the blood within a narrow range.
Extremely high blood glucose concentration is referred to as hyperglycemia, whereas hypoglycemia
results when the blood glucose concentration is too low. The IVGTT initially brings the blood
glucose concentration to hyperglycemic levels. In normal healthy patients, the high level of glucose
in the blood signals the beta cells of the pancreas to secrete insulin. Insulin helps the fat and muscle
cells to uptake glucose from the blood, either for fuel or for storage as glycogen. When the blood
glucose concentration is too low, the pancreas secretes glucagon which releases glucose stored in the
liver into the blood. Glucagon is another dynamic variable [3] during the IVGTT. Though glucagon
is not included in this model, it is acknowledged that the liver can regulate glucose independently
from insulin through glucagon.

6.1 Model

The minimal model is given by the following system of ordinary differential equations (see
[10, 13, 21] for details):

Ġ(t) = −p1
(

G(t) −Gb

)

−X(t)G(t), G(0) = p0, (19)

Ẋ(t) = −p2X(t) + p3
(

I(t)− Ib
)

, X(0) = 0, (20)

İ(t) = p4tmax
(

0, G(t) − p5
)

− p6
(

I(t)− Ib
)

, I(0) = p7 + Ib, (21)

where G(t) is the glucose concentration (in mg/dl) in plasma at time t, I(t) is the insulin concentra-
tion (in µU/ml) in plasma at time t and X(t) represents insulin-dependent glucose uptake activity
(proportional to a remote insulin compartment) in units 1/min.

We use the following approximate max function in equation (21) since it is continuously differ-
entiable:

maxfunc1(v) =















v for v > ǫ0,

0 for v < −ǫ0,
1

4ǫ0

(

v + ǫ0
)2

for v ∈ [−ǫ0, ǫ0],

where ǫ0 > 0 is chosen sufficiently small (for example, ǫ0 = 10−5).
An interpretation of the parameters is given in Table 15.
In the following we will describe the model and its underlying assumptions.

Equation (19) (Glucose concentration in plasma)
At t = 0 a bolus of glucose is injected such that the initial glucose concentration in the blood

is p0. The first term represents hepatic glucose balance, which occurs independent of insulin level.
The second term is the loss of glucose due to insulin-dependent uptake by peripheral tissues.
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Table 15: Description of model parameters and typical values.

θ Description value

Gb basal pre-injection level of glucose 83.7 mg/dl

Ib basal pre-injection level of insulin 11 µU/ml

p0 the theoretical glucose concentration in plasma at 279 mg/dl

time t = 0

p1 the rate constant of insulin-independent glucose 2.6 × 10−2 min−1

uptake in muscles, and adipose tissue

p2 the rate constant for decrease in tissue glucose 0.025 min−1

uptake ability

p3 the rate constant for the insulin-dependent increase 1.25× 10−5 min−2(µU/ml)−1

in glucose uptake ability in tissue per unit of insulin

concentration above Ib

p4 the rate constant for insulin secretion by the 4.1× 10−3 (µU/ml) min−2(mg/dl)−1

pancreatic β-cells after the glucose injection and

with glucose concentration above p5

p5 the threshold value of glucose in plasma above 83.7 mg/dl

which the pancreatic β-cells secrete insulin

p6 the first order decay rate for insulin in plasma 0.27 min−1

p7 p7 + Ib is the theoretical insulin concentration in 352.7 µU/ml

plasma at time t = 0

Equation (20) (Insulin-dependent glucose uptake activity)
At t = 0 there is no glucose uptake activity. Spontaneously tissue loses the ability to uptake

glucose, even in the presence of insulin. Glucose uptake activity increases proportionally to the
amount by which insulin concentration is greater than baseline insulin concentration.

Equation (21) (Insulin concentration in the plasma)
At t = 0 the initial insulin concentration is at some level over baseline, given by p7 + Ib.

The increase in insulin concentration is proportional to the amount by which glucose concentration
exceeds some threshold, p5, and the amount of time that has elapsed since the glucose injection.
There is a loss of insulin to degradation in the plasma. The pancreas secretes low levels of insulin,
even in hypoglycemic conditions, to maintain insulin concentration at or above baseline Ib.

The analysis of this model found in [10, 21] gives a metabolic portrait for the first phase sensitiv-
ity to glucose (φ1) (corresponding to initial secretion of insulin), the second phase glucose sensitivity
(SG) (corresponding to a secondary phase of insulin secretion), and the insulin sensitivity index (SI).
The metabolic portrait which is given by

SI =
p3
p2

, SG = p1, φ1 =
Imax − Ib

p6
(

p0 −Gb

) , (22)
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where Imax is the maximal value of insulin concentration in plasma.

Bergman et al. [9] suggest the use of this model in the clinical IVGTT setting. Parameters
from the model are estimated using patient-specific data. The parameter estimates are then used
in the metabolic portrait for diabetes diagnosis purpose for that patient. This process was made
readily available to clinicians in the computer software MINMOD [18]. Since the estimation of these
parameters plays such a crucial role in the diagnosis, it appears that optimal design methods would
be of great assistance. Data sampled at the optimal time points would result in the most accurate
metabolic portrait produced by this mathematical model.

Next we will describe the corresponding statistical model for this system involving vector ob-
servations. We obtain numerical solutions using MATLAB’s ode45 since there does not exist an
analytical solution to this system of differential equations. Let ~z(t, θ0) = (G(t, θ0),X(t, θ0), I(t, θ0))

T

represent our model solution. Since we can observe realizations of G(t, θ0) and I(t, θ0), but not
X(t, θ0), our observation process is given by

~y(t) = ~f(t, θ0) = (G(t, θ0), I(t, θ0))
T .

Our statistical model is given by the stochastic process

~Y (t) = ~f(t, θ0) + ~E(t),

where ~E(t) is a noisy vector random process. We assume the following about the vector random
variable ~E(t):

E(~E(t)) = 0, t ∈ [0, T ],

Var~E(t) = diag(σ2
0,G, σ

2
0,I), t ∈ [0, T ],

Cov(E1(t)E1(s)) = σ2
0,Gδ(t− s), t, s ∈ [0, T ],

Cov(E2(t)E2(s)) = σ2
0,Iδ(t − s), t, s ∈ [0, T ],

Cov(E1(t)E2(s)) = 0, t, s ∈ [0, T ].

We assume constant variance, σ2
0,G = 25 and σ2

0,I = 4. A realization of the observation process is
given by

~y(t) = ~f(t, θ0) + ~ε(t), t ∈ [0, T ],

where the measurement error ~ε(t) is a realization of ~E(t).

6.2 Methods

Though the vector methodology is similar to that in the scaler case, for completeness we outline
it here for a system of differential equations such as the simple glucose regulation model.

We begin by finding the optimal discrete sampling distribution of time points τ = {ti}
N
i=1, for

a fixed number of points, N , and a fixed final time, T , using either SE-optimal, D-optimal, or E-
optimal. These three optimal design methods are then compared based on the asymptotic standard
errors formulae for parameters using these sampling times.

More specifically, once we have an optimal distribution of time points we will obtain data or
simulated data, {~yi}

N
i=1, a realization of the random process {~Yi}

N
i=1 = {(Gi, Ii)

T }Ni=1 given by

~Yi = ~f(ti, θ0) + ~Ei,
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corresponding to the optimal time points, τ = {ti}
N
i=1, where

~Ei = ~E(ti).

Define V0 = Var(~Ei) = diag(σ2
0,G, σ

2
0,I).

A subset of the parameters is estimated by inverse problem methodology [4]. Since the variance
is assumed to be constant, the inverse problem is formulated using ordinary least squares (OLS).
The OLS estimator for a vector system is defined by

ΘOLS = ΘN
OLS = argmin

θ

N
∑

j=1

[~Yj − ~f(tj , θ)]
TV −1

0 [~Yj − ~f(tj, θ)].

For a given realization {yj}, the OLS estimate θ̂OLS is defined as

θ̂OLS = θ̂NOLS = argmin
θ

N
∑

j=1

[~yj − ~f(tj, θ)]V
−1
0 [~yj − ~f(tj , θ)].

The definition of variance gives

V0 = diag E





1

N

N
∑

j=1

[~Yj − ~f(tj , θ0)][~Yj − ~f(tj , θ0)]
T



 .

In the case that V0 is unknown an unbiased estimate can be obtained from the realizations {~yi}
N
i=1

and θ̂ by

V0 ≈ V̂ = diag





1

N − p

N
∑

j=1

[~yj − ~f(tj, θ̂)][~yj − ~f(tj , θ̂)]
T



 ,

which is solved simultaneously (in an iterative procedure - see [4]) with normal equations for the
estimate θ̂ = θ̂OLS, where p is the number of parameters being estimated.

To compute the standard errors of the estimated parameters, we first must compute the 2 × p
sensitivity matrices Dj(θ) = DN

j (θ) which are given by

Dj =

(

∂f1(tj ,θ)
∂θ1

∂f1(tj ,θ)
∂θ2

. . .
∂f1(tj ,θ)

∂θp
∂f2(tj ,θ)

∂θ1

∂f2(tj ,θ)
∂θ2

. . .
∂f2(tj ,θ)

∂θp

)

,

for j = 1, . . . , N . For this system we can rewrite Dj in terms of (G(tj , θ), I(tj , θ))
T

(since (f1(tj, θ), f2(tj, θ))
T = (G(tj , θ), I(tj , θ))

T ). We have

Dj =

(

∂G(tj ,θ)
∂θ1

∂G(tj ,θ)
∂θ2

. . .
∂G(tj ,θ)

∂θp
∂I(tj ,θ)

∂θ1

∂I(tj ,θ)
∂θ2

. . .
∂I(tj ,θ)

∂θp

)

.

The true covariance matrix is approximately (asymptotically as N → ∞) given by

ΣN
0 ≈





N
∑

j=1

DT
j (θ0)V

−1
0 Dj(θ0)





−1

.

When the true values, θ0 and V0, are unknown, the covariance matrix is estimated by

ΣN
0 ≈ Σ̂N =





N
∑

j=1

DT
j (θ̂OLS)V̂

−1Dj(θ̂OLS)





−1

.

The corresponding FIM, asymptotic standard errors and asymptotic distribution are again given
by (13), (14), (15), and (16), respectively.
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6.2.1 The Bootstrap Method for a system

The bootstrap method for a system of differential equations is the same as described in the
previous section, except that each state variable has its own residuals that must be separately sam-
pled with replacement. The first four steps of the bootstrap algorithm of Section 3.3 modified for a
system with vector observations is outlined here for completeness.

1. First estimate θ̂0 from the entire sample, using OLS.

2. Using this estimate define the standardized residuals:

r̄G,j =

√

N

(N − p)

(

y1,j − f1(tj, θ̂
0)
)

,

r̄I,j =

√

N

(N − p)

(

y2,j − f2(tj , θ̂
0)
)

for j = 1, . . . , N . Then {r̄G,1,. . . ,r̄G,N},{r̄I,1,. . . ,r̄I,N} are realizations of iid random variables

from the empirical distribution ~FN , and p for the number of parameters.

Set m = 0.

3. Create a two different bootstrap samples of size N using random sampling with replacement
from the data (realizations) {r̄G,1,. . . ,r̄G,N} and {r̄I,1,. . . ,r̄I,N} to form the bootstrap samples
{rmG,1, . . . , r

m
G,N} and {rmI,1, . . . , r

m
I,N}.

4. Create bootstrap sample points

ym1,j = f1(tj, θ̂
0) + rmG,j,

ym2,j = f2(tj , θ̂
0) + rmI,j,

where j = 1,. . . ,N .

5. Steps 5-8 are the same as those of the algorithm for scalar observations in Section 3.3.

We compute the optimal time mesh using SE-optimality, D-optimality, and E-optimality, as
defined in the previous section, for a subset of the parameters θ = (p1, p2, p3, p4), and a fixed number
of time points (N = 30) and a final time of T = 150 minutes. We remark that a subset of parameters
was chosen to avoid an ill-conditioned FIM. The subset of parameters was chosen based on the
traditional sensitivity functions. The glucose and insulin model solutions were most sensitive to
θ = (p1, p2, p3, p4). The approximate asymptotic standard errors (14) for θ = (p1, p2, p3, p4) were
computed on the optimal mesh corresponding to an optimal design method.

The optimal design methods were implemented using the constrained minimization algorithm
SolvOpt. The variations on the constraint employed were the same as in the previous section.
We compare SE-optimal, D-optimal and E-optimal design methods based on these approximate
asymptotic standard errors.
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6.3 Results for the Glucose Regulation Model

The optimal time points (found using the SolvOpt algorithm) for each of the three optimal
design methods are plotted with the model for T = 150 minutes and N = 30 under the first
constraint implementation (C1) in Fig. 13, the second constraint implementation (C2) in Fig. 14,
the third constraint implementation (C3) in Fig. 15, and the last constraint implementation (C4)
in Fig. 16. The standard errors (14) from the asymptotic theory corresponding to these optimal
meshes are given in Table 16-19, respectively for the four different constraint implementations.

Note that for constraint implementations (C2) and (C4) initializing SolvOpt with the uniform
mesh resulted in a terminal error for D-optimal, stating that the gradient at the starting point was
zero. In these cases other initial mesh points were chosen such that D-optimal’s initial gradient was
non-zero, and optimization could be achieved. To be consistent, all three methods were initialized by
the same non-uniform mesh. For (C2) the initial mesh was τ0 = {0, . . . , 0, 10, 37, 150, . . . , 150}, and
for (C4) it was τ0 = {5, 15, 19, 21, 24, 26, 42, 59, 63, 73, 82, 95, 98, 98, 102, 111, 114, 119, 120, 122, 127,
136, 137, 137, 140, 144, 144, 144, 145, 146}. Optimal design methods are guaranteed to converge in a
local sense.
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Figure 13: Plot of model with optimal time points resulting from different optimal design methods for θ0 =
(p1, p2, p3, p4), with T = 150 for N = 30. Optimal time points with the Glucose model in panel (a) and with the
Insulin model in panel (b). Optimization, using SolvOpt, with constraint implementation (C1).

Table 16: Approximate asymptotic standard errors from the asymptotic theory (14) resulting from different optimal
design methods for θ0 = (p1, p2, p3, p4), optimization, using SolvOpt, with constraint implementation (C1).

Method SE(p1) SE(p2) SE(p3) SE(p4)

SE-optimal 4.173 × 10−3 6.501 × 10−3 3.100 × 10−6 2.959 × 10−4

D-optimal 8.411 × 10−3 1.236 × 10−2 6.133 × 10−6 1.714 × 10−4

E-optimal 4.381 × 10−3 6.520 × 10−3 3.182 × 10−6 4.941 × 10−4

34



0 50 100 150
50

100

150

200

250

300

t

Optimal mesh with N=30, and T=150 using SolveOpt algorithm.

 

 
SE−optimal
D−optimal
E−optimal
model: Glucose

(a)

0 50 100 150
0

50

100

150

200

250

300

350

400

t

Optimal mesh with N=30, and T=150 using SolveOpt algorithm.
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Figure 14: Plot of model with optimal time points resulting from different optimal design methods for θ0 =
(p1, p2, p3, p4), with T = 150 for N = 30. Optimal time points with the Glucose model in panel (a) and with the
Insulin model in panel (b). Optimization, using SolvOpt, with constraint implementation (C2).

Table 17: Approximate asymptotic standard errors from the asymptotic theory (14) resulting from different optimal
design methods for θ0 = (p1, p2, p3, p4), optimization, using SolvOpt, with constraint implementation (C2).

Method SE(p1) SE(p2) SE(p3) SE(p4)

SE-optimal 4.019 × 10−3 6.451 × 10−3 3.088 × 10−6 3.452 × 10−4

D-optimal 8.322 × 10−3 1.103 × 10−2 6.230 × 10−6 2.748 × 10−4

E-optimal 3.882 × 10−3 6.284 × 10−3 3.063 × 10−6 5.390 × 10−4

Table 18: Approximate asymptotic standard errors from the asymptotic theory (14) resulting from different optimal
design methods for θ0 = (p1, p2, p3, p4), optimization, using SolvOpt, with constraint implementation (C3).

Method SE(p1) SE(p2) SE(p3) SE(p4)

SE-optimal 4.205 × 10−3 6.535 × 10−3 3.151 × 10−6 3.041 × 10−4

D-optimal 7.434 × 10−3 1.517 × 10−2 6.171 × 10−6 1.181 × 10−4

E-optimal 7.528 × 10−3 1.123 × 10−2 5.509 × 10−6 1.833 × 10−4

6.4 Discussion for the Glucose Regulation Model

Comparing the optimal design methods using approximate asymptotic standard errors, we find
that the optimal design methods that are best for (p1, p2, p3) are different than the ones best for
the standard error of p4. For constraint implementation (C1) (Table 16), SE-optimal followed by
E-optimal had the smallest standard errors for (p1, p2, p3), and D-optimal followed by SE-optimal
had the smallest standard errors for p4. For constraint implementation (C2) (Table 17), the smallest
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Optimal mesh with N=30, and T=150 using SolveOpt algorithm.
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Optimal mesh with N=30, and T=150 using SolveOpt algorithm.
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Figure 15: Plot of model with optimal time points resulting from different optimal design methods for θ0 =
(p1, p2, p3, p4), with T = 150 for N = 30. Optimal time points with the Glucose model in panel (a) and with the
Insulin model in panel (b). Optimization, using SolvOpt, with constraint implementation (C3).
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Optimal mesh with N=30, and T=150 using SolveOpt algorithm.
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Optimal mesh with N=30, and T=150 using SolveOpt algorithm.
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Figure 16: Plot of model with optimal time points resulting from different optimal design methods for θ0 =
(p1, p2, p3, p4), with T = 150 for N = 30. Optimal time points with the Glucose model in panel (a) and with the
Insulin model in panel (b). Optimization, using SolvOpt, with constraint implementation (C4).

standard errors were from E-optimal followed by SE-optimal for (p1, p2, p3), and for p4 it was D-
optimal followed by SE-optimal. For constraint implementations (C3) and (C4) (Tables 18 and 19),
SE-optimal followed by E-optimal had the smallest standard errors for (p1, p2, p3), and D-optimal
followed by E-optimal had the smallest standard errors for p4.

In conclusion, D-optimal tended to have the smallest standard errors for p4, whereas SE-optimal
or E-optimal had the smallest standard errors for (p1, p2, p3). In the next section we compute the
estimated standard errors from simulated data using asymptotic theory and bootstrapping as a
different method of comparing the optimal design methods.
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Table 19: Approximate asymptotic standard errors from the asymptotic theory (14) resulting from different optimal
design methods for θ0 = (p1, p2, p3, p4), optimization, using SolvOpt, with constraint implementation (C4).

Method SE(p1) SE(p2) SE(p3) SE(p4)

SE-optimal 4.921 × 10−3 6.995 × 10−3 3.633 × 10−6 4.796 × 10−4

D-optimal 8.767 × 10−3 1.249 × 10−2 6.405 × 10−6 1.965 × 10−4

E-optimal 7.154 × 10−3 1.020 × 10−2 5.253 × 10−6 2.302 × 10−4

6.5 Result for the Glucose Regulation Model with the Inverse Problem

As in the harmonic oscillator example, we use the inverse problem with the OLS formulation
to obtain parameter estimates and standard errors from both asymptotic theory (15) and the boot-
strapping method (18). We create simulated noisy data corresponding to the optimal time meshes
(presented in the previous section) in agreement with our statistical model (absolute error, with
independent error processes for G and I) assuming true values θ0 to be the parameter values found
in Table 15 and iid noise with ~Ej ∼ N (0, ~σ2

0). We assume the true variances: σ2
0,G = 25 and σ2

0,I = 4.
In this section we only estimate a subset of the parameters θ = (p1, p2, p3, p4). In addition to the
estimates and standard errors, we also report the estimated covariance between estimated parame-
ters according to asymptotic theory (15) and bootstrapping (18). For comparison purposes we also
present these results for a uniform grid using the same T = 150 and N = 30.

The optimal time points for each of the three optimal design methods are the same as computed
in the previous results section, and are plotted with the model in Figs. 13-16 for the four differ-
ent constraints. The parameter estimates, standard errors and covariances are estimated from the
asymptotic theory (15) corresponding to these optimal meshes are given in Tables 20, 22, 24, and
26, respectively for the four different constraints. The parameter estimates, standard errors, and
covariance between parameters are estimated from the bootstrapping method (18) corresponding
to these optimal meshes are given in Tables 21, 23, 25, and 27, respectively for the four different
constraints. In each of the tables are also results on the uniform grid of time points.

6.6 Discussion for the Glucose Regulation Model with the Inverse Problem

Comparing the resulting parameter estimates from simulated data on the different optimal
meshes to the true parameter values, θ0 = (p1, p2, p3, p4) = (2.6× 10−2, 2.5× 10−2, 1.25× 10−5, 4.1×
10−3), we find there is no optimal design method that is always favorable. Using either asymptotic
theory or bootstrapping to compute parameter estimates for different optimal design methods and
different constraints, we examine how close the parameter estimates are to the true values. Often
(but not always) these parameter estimates from the different optimal meshes are the same order of
magnitude as the true values.

The results for the uniform mesh are given for comparison. In most cases, the optimal design
methods produce closer parameter estimates with smaller standard errors and covariances (as esti-
mated by asymptotic theory and bootstrapping) than the uniform mesh.

Asymptotic theory: parameter estimates.
For the constraint implementation (C1) using asymptotic theory (Table 20), the estimates for

p1, p2, p3, and p4 are closest to the true values for D-optimal followed by E-optimal. In other
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Table 20: Estimates, standard errors, and covariances between parameters from the asymptotic theory (15) resulting
from different optimal design methods (as well as for the uniform mesh) for θ0 = (p1, p2, p3, p4) = (2.6 × 10−2, 2.5 ×

10−2, 1.25× 10−5, 4.1× 10−3) and N = 30, optimization, using fmincon, with constraint implementation (C1).

SE-optimal D-optimal E-optimal Uniform

p̂1 3.036 × 10−2 2.303 × 10−2 2.267 × 10−2 2.045 × 10−2

ŜE(p̂1) 4.977 × 10−3 1.138 × 10−2 4.634 × 10−3 1.056 × 10−2

p̂2 2.180 × 10−2 2.723 × 10−2 2.818 × 10−2 3.607 × 10−2

ŜE(p̂2) 7.657 × 10−3 1.660 × 10−2 6.818 × 10−3 1.536 × 10−2

p̂3 9.213 × 10−6 1.414 × 10−5 1.565 × 10−5 1.766 × 10−5

ŜE(p̂3) 3.946 × 10−6 8.421 × 10−6 3.732 × 10−6 7.787 × 10−6

p̂4 3.544 × 10−3 4.174 × 10−3 4.238 × 10−3 4.027 × 10−3

ŜE(p̂4) 7.822 × 10−4 4.510 × 10−4 1.140 × 10−3 4.817 × 10−4

Ĉov(p̂1, p̂2) −3.377 × 10−5 −1.846 × 10−4 −2.779 × 10−5 −1.579 × 10−4

Ĉov(p̂1, p̂3) −1.873 × 10−8 −9.520 × 10−8 −1.630 × 10−8 −8.160 × 10−8

Ĉov(p̂1, p̂4) 5.458 × 10−7 8.794 × 10−7 1.117 × 10−6 8.615 × 10−7

Ĉov(p̂2, p̂3) 2.815 × 10−8 1.383 × 10−7 2.289 × 10−8 1.181 × 10−7

Ĉov(p̂2, p̂4) 2.851 × 10−7 −6.379 × 10−7 2.679 × 10−7 −5.341 × 10−7

Ĉov(p̂3, p̂4) −5.0551 × 10−10 −5.785 × 10−10 −1.308 × 10−9 −5.605 × 10−10

constraint implementations, which optimal sampling distribution produced estimates closest to the
true values was different depending on the parameter.

For constraint implementation (C2) (Table 22), parameters estimates of (p1, p2, p3) were closest
to the true values for the optimal sampling distributions from D-optimal and then SE-optimal. For
p4 the closest parameter estimates were from the uniform mesh, followed by D-optimal.

For constraint implementation (C3) (Table 24), the closest parameter estimate for p1 came
from D-optimal followed by SE-optimal. For (p2, p3, p4) the closest estimates came from E-optimal
followed by SE-optimal (for p2, p3) and D-optimal (for p4).

For the last constraint implementation (C4) (Table 26), D-optimal followed by SE-optimal had
parameter estimates closest to the true values for parameters (p1, p2, p3). E-optimal followed by
SE-optimal had the closest estimate of p4.

Asymptotic theory: standard errors.
Here we compare the optimal design methods based on which has the smallest standard error

estimates. Again, the results are dependent on the parameter and the constraint implementation.
For the first constraint implementation (C1) (Table 20), the smallest standard errors estimated

using asymptotic theory are from D-optimal followed by SE-optimal for parameters (p1, p2, p3), and
followed by E-optimal for p4.

For the constraint implementation (C2) (Table 22), the smallest standard error for parame-
ters (p1, p2, p3) come from SE-optimal followed by E-optimal. For p4, the smallest standard error
estimates are from the uniform mesh followed by D-optimal.

For the constraint implementation (C3) (Table 24), the standard error estimates for parameters
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Table 21: Estimates, standard errors, and covariances between parameters from the bootstrap method (18) resulting
from different optimal design methods (as well as for the uniform mesh) for θ0 = (p1, p2, p3, p4) = (2.6 × 10−2, 2.5 ×

10−2, 1.25 × 10−5, 4.1 × 10−3), M = 1000 bootstraps and N = 30, optimization, using fmincon, with constraint
implementation (C1).

SE-optimal D-optimal E-optimal Uniform

p̂1 2.908 × 10−2 2.220 × 10−2 2.073 × 10−2 1.973 × 10−2

ŜE(p̂1) 6.215 × 10−3 8.052 × 10−3 5.708 × 10−3 8.563 × 10−3

p̂2 2.486 × 10−2 2.855 × 10−2 3.126 × 10−2 3.730 × 10−2

ŜE(p̂2) 1.179 × 10−2 1.169 × 10−2 9.810 × 10−3 1.279 × 10−2

p̂3 1.075 × 10−5 1.552 × 10−5 1.864 × 10−5 1.916 × 10−5

ŜE(p̂3) 6.541 × 10−6 6.570 × 10−6 6.302 × 10−6 8.017 × 10−6

p̂4 3.688 × 10−3 4.215 × 10−3 3.809 × 10−3 3.984 × 10−3

ŜE(p̂4) 3.743 × 10−4 1.855 × 10−4 6.223 × 10−4 2.098 × 10−4

Ĉov(p̂1, p̂2) −6.799 × 10−5 −9.116 × 10−5 −5.323 × 10−5 −1.053 × 10−4

Ĉov(p̂1, p̂3) −3.868 × 10−8 −5.198 × 10−8 −3.479 × 10−8 −6.722 × 10−8

Ĉov(p̂1, p̂4) −3.337 × 10−7 2.268 × 10−7 1.075 × 10−7 5.716 × 10−8

Ĉov(p̂2, p̂3) 7.452 × 10−8 7.529 × 10−8 6.005 × 10−8 9.990 × 10−8

Ĉov(p̂2, p̂4) 1.050 × 10−6 −1.262 × 10−7 7.158 × 10−7 2.310 × 10−7

Ĉov(p̂3, p̂4) 5.432 × 10−10 −8.735 × 10−11 −1.465 × 10−10 8.308 × 10−11

(p1, p2, p3) are smallest using the mesh from SE-optimal, followed by D-optimal (for p1) and E-
optimal (for p2, p3). For parameter p4, the smallest standard error is from D-optimal followed by
E-optimal.

For the last constraint implementation (C4) (Table 26), E-optimal has the smallest standard
errors for parameters (p1, p3, p4), followed by SE-optimal (for p1, p3) and D-optimal (for p4). For p2,
the smallest standard errors are from SE-optimal followed by E-optimal.

Asymptotic theory: covariance estimates.
We also compare the optimal design methods based on which has the smallest covariance esti-

mates in absolute value.
For the first constraint implementation (C1) (Table 20), the smallest in absolute value covariance

estimates come from either SE-optimal or E-optimal for different pairs of parameters.
For constraint implementation (C2) (Table 22), SE-optimal or D-optimal have the smallest in

absolute value covariance estimates.
For constraint implementation (C3) (Table 24), SE-optimal or D-optimal have the smallest in

absolute value covariance estimates, except for ˆCov(p̂2, p̂4) where E-optimal is the smallest.
For constraint implementation (C4) (Table 26), E-optimal has the smallest in absolute value

covariance estimates, except for ˆCov(p̂1, p̂2) where SE-optimal is the smallest.

Bootstrapping: parameter estimates.
Here we compare the optimal design methods based on which had bootstrapping parameter
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Table 22: Estimates, standard errors, and covariances between parameters from the asymptotic theory (15) resulting
from different optimal design methods (as well as for the uniform mesh) for θ0 = (p1, p2, p3, p4) = (2.6 × 10−2, 2.5 ×

10−2, 1.25× 10−5, 4.1× 10−3) and N = 30, optimization, using fmincon, with constraint implementation (C2).

SE-optimal D-optimal E-optimal Uniform

p̂1 2.118 × 10−2 2.232 × 10−2 2.116 × 10−2 2.045 × 10−2

ŜE(p̂1) 5.063 × 10−3 8.596 × 10−3 5.298 × 10−3 1.056 × 10−2

p̂2 3.509 × 10−2 3.337 × 10−2 4.356 × 10−2 3.607 × 10−2

ŜE(p̂2) 8.020 × 10−3 1.139 × 10−2 8.465 × 10−3 1.536 × 10−2

p̂3 1.772 × 10−5 1.628 × 10−5 1.958 × 10−5 1.766 × 10−5

ŜE(p̂3) 4.247 × 10−6 6.573 × 10−6 4.874 × 10−6 7.787 × 10−6

p̂4 4.486 × 10−3 3.993 × 10−3 4.249 × 10−3 4.027 × 10−3

ŜE(p̂4) 9.537 × 10−4 5.919 × 10−4 1.607 × 10−3 4.817 × 10−4

Ĉov(p̂1, p̂2) −3.569 × 10−5 −9.416 × 10−5 −3.811 × 10−5 −1.579 × 10−4

Ĉov(p̂1, p̂3) −2.036 × 10−8 −5.566 × 10−8 −2.376 × 10−8 −8.160 × 10−8

Ĉov(p̂1, p̂4) 6.620 × 10−7 1.227 × 10−7 1.774 × 10−6 8.615 × 10−7

Ĉov(p̂2, p̂3) 3.131 × 10−8 7.280 × 10−8 3.585 × 10−8 1.181 × 10−7

Ĉov(p̂2, p̂4) 4.626 × 10−7 4.238 × 10−7 9.670 × 10−7 −5.341 × 10−7

Ĉov(p̂3, p̂4) −6.824 × 10−10 9.532 × 10−13 −2.353 × 10−9 −5.605 × 10−10

estimates closest to the true values. Often these results are different for the different parameters, as
well as the constraint implementation.

For the first constraint implementation (C1) (Table 21), bootstrapping parameter estimates for
(p1, p2, p3) were closest to the true values for SE-optimal followed by D-optimal. For p4, the closest
parameter estimates came from D-optimal and then E-optimal.

For constraint implementation (C2) (Table 23), parameter estimates for p1 the closest parameter
estimates came from E-optimal followed by D-optimal. For p2, the closest parameter estimates came
from the uniform mesh followed by E-optimal. For p3, the uniform mesh then SE-optimal had the
closest parameter estimates to the true value. For p4 the closest estimate came from D-optimal
followed by E-optimal.

For constraint implementation (C3) (Table 25), the closest estimates for p1 came fromD-optimal
followed by E-optimal. For (p2, p3, p4) the closest estimates came from E-optimal followed by SE-
optimal (for p2, p3) and D-optimal (for p4).

For the last constraint (C4) (Table 27), the closest estimates for (p1, p2, p3) came fromD-optimal
and then SE-optimal. For p4 the closest estimate to the true value came from SE-optimal followed
by E-optimal.

None of the optimal design methods are consistent with parameter estimates that are the closest
to the true values for all cases.

Bootstrapping: standard errors.
We compare the optimal design methods based on how small their standard errors are as esti-

mated by the bootstrap method.
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Table 23: Estimates, standard errors, and covariances between parameters from the bootstrap method (18) resulting
from different optimal design methods (as well as for the uniform mesh) for θ0 = (p1, p2, p3, p4) = (2.6 × 10−2, 2.5 ×

10−2, 1.25 × 10−5, 4.1 × 10−3), M = 1000 bootstraps and N = 30, optimization, using fmincon, with constraint
implementation (C2).

SE-optimal D-optimal E-optimal Uniform

p̂1 1.874 × 10−2 1.883 × 10−2 2.104 × 10−2 1.973 × 10−2

ŜE(p̂1) 6.619 × 10−3 8.291 × 10−3 6.397 × 10−3 8.563 × 10−3

p̂2 4.034 × 10−2 4.249 × 10−2 4.337 × 10−2 3.730 × 10−2

ŜE(p̂2) 1.305 × 10−2 1.458 × 10−2 1.409 × 10−2 1.279 × 10−2

p̂3 2.124 × 10−5 2.069 × 10−5 2.075 × 10−5 1.916 × 10−5

ŜE(p̂3) 8.241 × 10−6 8.799 × 10−6 7.733 × 10−6 8.017 × 10−6

p̂4 4.341 × 10−3 3.920 × 10−3 3.988 × 10−3 3.984 × 10−3

ŜE(p̂4) 4.228 × 10−4 3.107 × 10−4 6.192 × 10−4 2.098 × 10−4

Ĉov(p̂1, p̂2) −8.157 × 10−5 −1.149 × 10−4 −7.952 × 10−5 −1.053 × 10−4

Ĉov(p̂1, p̂3) −5.272 × 10−8 −7.128 × 10−8 −4.687 × 10−8 −6.722 × 10−8

Ĉov(p̂1, p̂4) 1.240 × 10−8 1.275 × 10−7 −5.657 × 10−7 5.716 × 10−8

Ĉov(p̂2, p̂3) 1.048 × 10−7 1.249 × 10−7 1.042 × 10−7 9.990 × 10−8

Ĉov(p̂2, p̂4) 4.220 × 10−7 8.311 × 10−8 2.226 × 10−6 2.310 × 10−7

Ĉov(p̂3, p̂4) 6.133 × 10−11 −2.764 × 10−11 9.390 × 10−10 8.308 × 10−11

Comparing the standard error estimates from the first constraint implementation (C1) (Table 21)
we find that for parameters (p1, p2, p3) the optimal mesh from E-optimal has the smallest standard
errors followed by SE-optimal. For p4, the smallest standard errors come from D-optimal followed
by E-optimal.

For the second constraint implementation (C2) (Table 23), the smallest standard errors for
parameters (p1, p3) are from E-optimal followed by SE-optimal. For p2, the uniform mesh has
the smallest standard errors, followed by SE-optimal. For p4, the uniform mesh has the smallest
standard errors followed by the optimal mesh from D-optimal.

For the constraint implementation (C3) (Table 25), the smallest standard errors come from
SE-optimal for parameters (p1, p2) followed by D-optimal. For parameters (p3, p4) the optimal mesh
from D-optimal has the smallest standard errors, followed by SE-optimal (for p3) and E-optimal
(for p4).

For the last constraint implementation (C4) (Table 27), the smallest standard errors for pa-
rameters (p1, p2, p3) are from E-optimal followed by SE-optimal. For parameter p4, the smallest
standard errors are from E-optimal followed by D-optimal.

Bootstrapping: covariance estimates.
For the first constraint implementation (C1) (Table 21), the smallest in absolute value covariance

estimates as estimated by the bootstrapping method came from the optimal meshes of D-optimal
(for ˆCov(p̂2, p̂4)) or E-optimal (for ˆCov(p̂1, p̂2), ˆCov(p̂1, p̂3), and ˆCov(p̂2, p̂3)) or the uniform mesh
(for ˆCov(p̂1, p̂4) and ˆCov(p̂3, p̂4)).
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Table 24: Estimates, standard errors, and covariances between parameters from the asymptotic theory (15) resulting
from different optimal design methods (as well as for the uniform mesh) for θ0 = (p1, p2, p3, p4) = (2.6 × 10−2, 2.5 ×

10−2, 1.25× 10−5, 4.1× 10−3) and N = 30, optimization, using fmincon, with constraint implementation (C3).

SE-optimal D-optimal E-optimal Uniform

p̂1 2.960 × 10−2 2.851 × 10−2 2.970 × 10−2 2.045 × 10−2

ŜE(p̂1) 5.210 × 10−3 8.937 × 10−3 9.018 × 10−3 1.056 × 10−2

p̂2 1.894 × 10−2 1.303 × 10−2 1.951 × 10−2 3.607 × 10−2

ŜE(p̂2) 7.987 × 10−3 1.853 × 10−2 1.338 × 10−2 1.536 × 10−2

p̂3 9.558 × 10−6 8.981 × 10−6 1.018 × 10−5 1.766 × 10−5

ŜE(p̂3) 4.201 × 10−6 7.459 × 10−6 6.701 × 10−6 7.787 × 10−6

p̂4 3.915 × 10−3 3.945 × 10−3 4.166 × 10−3 4.027 × 10−3

ŜE(p̂4) 8.373 × 10−4 2.882 × 10−4 4.366 × 10−4 4.817 × 10−4

ˆCov(p̂1, p̂2) −3.688 × 10−5 −1.563 × 10−4 −1.168 × 10−4 −1.579 × 10−4

ˆCov(p̂1, p̂3) −2.081 × 10−8 −6.595 × 10−8 −5.988 × 10−8 −8.160 × 10−8

ˆCov(p̂1, p̂4) 5.971 × 10−7 1.045 × 10−8 5.570 × 10−7 8.615 × 10−7

ˆCov(p̂2, p̂3) 3.113 × 10−8 1.353 × 10−7 8.834 × 10−8 1.181 × 10−7

ˆCov(p̂2, p̂4) 3.520 × 10−7 4.275 × 10−7 −2.100 × 10−7 −5.341 × 10−7

ˆCov(p̂3, p̂4) −5.579 × 10−10 5.546 × 10−11 −3.461 × 10−10 −5.605 × 10−10

For constraint implementation (C2) (Table 23), D-optimal or E-optimal have the smallest in
absolute value covariance estimates, except for ˆCov(p̂1, p̂4) where SE-optimal is the smallest and
ˆCov(p̂2, p̂3) where the uniform mesh is the smallest.

For the third constraint implementation (C3) (Table 25), D-optimal or SE-optimal have the
smallest in absolute value covariance estimates, except for ˆCov(p̂2, p̂4) where E-optimal is the small-
est.

For the last constraint implementation (C4) (Table 27), the smallest in absolute value covariance
estimates are from E-optimal, except for ˆCov(p̂1, p̂4) where SE-optimal is the smallest.

Comparing the optimal design methods based on the bootstrapping covariance estimates, we
find there is not one method that is always favorable.
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Table 25: Estimates, standard errors, and covariances between parameters from the bootstrap method (18) resulting
from different optimal design methods (as well as for the uniform mesh) for θ0 = (p1, p2, p3, p4) = (2.6 × 10−2, 2.5 ×

10−2, 1.25 × 10−5, 4.1 × 10−3), M = 1000 bootstraps and N = 30, optimization, using fmincon, with constraint
implementation (C3).

SE-optimal D-optimal E-optimal Uniform

p̂1 2.812 × 10−2 2.738 × 10−2 2.749 × 10−2 1.973 × 10−2

ŜE(p̂1) 5.495 × 10−3 6.344 × 10−3 7.838 × 10−3 8.563 × 10−3

p̂2 2.160 × 10−2 1.513 × 10−2 2.300 × 10−2 3.730 × 10−2

ŜE(p̂2) 9.465 × 10−3 1.166 × 10−2 1.183 × 10−2 1.279 × 10−2

p̂3 1.122 × 10−5 1.030 × 10−5 1.240 × 10−5 1.916 × 10−5

ŜE(p̂3) 5.360 × 10−6 5.291 × 10−6 6.429 × 10−6 8.017 × 10−6

p̂4 3.695 × 10−3 4.011 × 10−3 4.188 × 10−3 3.984 × 10−3

ŜE(p̂4) 3.244 × 10−4 1.311 × 10−4 1.946 × 10−4 2.098 × 10−4

ˆCov(p̂1, p̂2) −4.787 × 10−5 −6.858 × 10−5 −8.971 × 10−5 −1.053 × 10−4

ˆCov(p̂1, p̂3) −2.768 × 10−8 −3.288 × 10−8 −4.933 × 10−8 −6.722 × 10−8

ˆCov(p̂1, p̂4) −1.523 × 10−7 2.531 × 10−8 9.876 × 10−8 5.716 × 10−8

ˆCov(p̂2, p̂3) 4.913 × 10−8 5.882 × 10−8 7.443 × 10−8 9.990 × 10−8

ˆCov(p̂2, p̂4) 6.607 × 10−7 9.576 × 10−8 9.573 × 10−8 2.310 × 10−7

ˆCov(p̂3, p̂4) 3.331 × 10−10 3.083 × 10−11 4.247 × 10−11 8.308 × 10−11
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Table 26: Estimates, standard errors, and covariances between parameters from the asymptotic theory (15) resulting
from different optimal design methods (as well as for the uniform mesh) for θ0 = (p1, p2, p3, p4) = (2.6 × 10−2, 2.5 ×

10−2, 1.25× 10−5, 4.1× 10−3) and N = 30, optimization, using fmincon, with constraint implementation (C4).

SE-optimal D-optimal E-optimal Uniform

p̂1 3.285 × 10−2 2.540 × 10−2 3.401 × 10−2 2.045 × 10−2

ŜE(p̂1) 6.396 × 10−3 1.102 × 10−2 6.353 × 10−3 1.056 × 10−2

p̂2 1.783 × 10−2 2.452 × 10−2 1.079 × 10−2 3.607 × 10−2

ŜE(p̂2) 8.983 × 10−3 1.562 × 10−2 9.052 × 10−3 1.536 × 10−2

p̂3 9.094 × 10−6 1.226 × 10−5 6.025 × 10−6 1.766 × 10−5

ŜE(p̂3) 5.375 × 10−6 8.277 × 10−6 4.850 × 10−6 7.787 × 10−6

p̂4 3.980 × 10−3 3.958 × 10−3 4.040 × 10−3 4.027 × 10−3

ŜE(p̂4) 1.362 × 10−3 4.896 × 10−4 4.257 × 10−4 4.817 × 10−4

ˆCov(p̂1, p̂2) −5.251 × 10−5 −1.692 × 10−4 −5.587 × 10−5 −1.579 × 10−4

ˆCov(p̂1, p̂3) −3.260 × 10−8 −9.060 × 10−8 −3.043 × 10−8 −8.160 × 10−8

ˆCov(p̂1, p̂4) 2.000 × 10−6 1.1481 × 10−6 4.352 × 10−7 8.615 × 10−7

ˆCov(p̂2, p̂3) 4.436 × 10−8 1.281 × 10−7 4.316 × 10−8 1.181 × 10−7

ˆCov(p̂2, p̂4) −2.356 × 10−7 −1.016 × 10−6 −2.022 × 10−7 −5.341 × 10−7

ˆCov(p̂3, p̂4) −2.203 × 10−9 −8.152 × 10−10 −3.102 × 10−10 −5.605 × 10−10
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Table 27: Estimates, standard errors, and covariances between parameters from the bootstrap method (18) resulting
from different optimal design methods (as well as for the uniform mesh) for θ0 = (p1, p2, p3, p4) = (2.6 × 10−2, 2.5 ×

10−2, 1.25 × 10−5, 4.1 × 10−3), M = 1000 bootstraps and N = 30, optimization, using fmincon, with constraint
implementation (C4).

SE-optimal D-optimal E-optimal Uniform

p̂1 3.243 × 10−2 2.409 × 10−2 3.304 × 10−2 1.973 × 10−2

ŜE(p̂1) 4.851 × 10−3 7.282 × 10−3 3.410 × 10−3 8.563 × 10−3

p̂2 1.899 × 10−2 2.659 × 10−2 1.262 × 10−2 3.730 × 10−2

ŜE(p̂2) 6.864 × 10−3 1.056 × 10−2 5.304 × 10−3 1.279 × 10−2

p̂3 9.688 × 10−6 1.385 × 10−5 6.571 × 10−6 1.916 × 10−5

ŜE(p̂3) 3.843 × 10−6 5.780 × 10−6 2.220 × 10−6 8.017 × 10−6

p̂4 4.117 × 10−3 3.967 × 10−3 4.025 × 10−3 3.984 × 10−3

ŜE(p̂4) 7.050 × 10−4 2.147 × 10−4 1.892 × 10−4 2.098 × 10−4

Ĉov(p̂1, p̂2) −2.970 × 10−5 −7.462 × 10−5 −1.700 × 10−5 −1.053 × 10−4

Ĉov(p̂1, p̂3) −1.680 × 10−8 −4.139 × 10−8 −7.230 × 10−9 −6.722 × 10−8

Ĉov(p̂1, p̂4) 2.879 × 10−8 6.162 × 10−8 9.816 × 10−8 5.716 × 10−8

Ĉov(p̂2, p̂3) 2.477 × 10−8 5.986 × 10−8 1.133 × 10−8 9.990 × 10−8

Ĉov(p̂2, p̂4) 6.321 × 10−7 1.286 × 10−7 2.627 × 10−9 2.310 × 10−7

Ĉov(p̂3, p̂4) 4.890 × 10−11 2.363 × 10−11 −1.770 × 10−11 8.308 × 10−11
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7 Conclusions

We compared D-optimal, E-optimal and SE-optimal design methods for a simple differential
equation model: the logistic population model, a second order differential equation: the harmonic
oscillator model, and a vector system for glucose regulation. D-optimal and E-optimal design meth-
ods are more established in the literature. Our comparisons test the performance of SE-optimal
design, which is a relatively newer method.

For the logistic example, the optimal design methods were compared using the Monte Carlo
method for asymptotic standard errors. Comparing the average and median parameter estimates to
their true values, we find that SE-optimal has closest parameter estimates for N = 10 time points.
For N = 15, no method had estimates that were always closest to the true values. In all cases
each optimal design methods produced estimates close to the true values. The average and median
standard errors for K were smallest from the optimal mesh from E-optimal. For parameters r and
x0, SE-optimal had the smallest average and median standard errors. Overall, no optimal design
method is consistently favorable for this logistic example.

For the harmonic example, comparing the approximate asymptotic standard errors, we found
that different optimal design methods were favorable for different parameters. D-optimal often had
the smallest standard errors for K and x1. SE-optimal often had the smallest standard errors for
C. For x2, either SE-optimal or E-optimal had the smallest standard errors. We also compared
methods using the inverse problem with simulated data and asymptotic theory and bootstrapping.
Comparing methods based on who’s parameter estimates were closest to the true values, and who
had the smallest standard errors or covariances, there was no method that was preferred over the
others. In each comparison, the best optimal design method often depended on the constraint
implementation, the choice of T = 14.14 or T = 28.28, and the parameter.

For the glucose regulation model, comparing the approximate asymptotic standard errors, we
found that for parameters (p1, p2, p3) either SE-optimal or E-optimal had the smallest standard
errors. D-optimal tended to have the smallest standard errors for p4. We also compared the optimal
design methods for the inverse problem using asymptotic theory and bootstrapping. Comparing
the parameter estimates to their true values, none of the optimal design methods were consistently
closer. Comparing the optimal design methods based on who had the smallest standard errors
and covariances we found that no method was preferable over the others. However, the optimal
design methods often had smaller standard errors and covariances than the uniform mesh. The
constraint implementation, parameter, and choice of asymptotic theory or bootstrapping influenced
which optimal design method would be favorable for this example.

The best choice of optimal design method depends on the complexity of the model, the type of
constraint one is using, the subset of parameters you are estimating, and even the choice of N and
T . The examples in this comparison provide evidence that SE-optimal design is competitive with
D-optimal and E-optimal design, and in some cases SE-optimal design is a more favorable method.
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Appendix-Constraints and Implementation of Constrained Optimiza-

tion

We used several constrained optimization algorithms to solve the grid selection minimization
problem of the form

~ν∗ = min
~ν

J(~ν),

subject to the constraint(s)
A~ν ≤ b, and/or Aeq~ν = beq,

where ~ν is a N -vector, A is a (N +1)×N matrix, b is a (N +1)-vector, Aeq is a N ×N matrix, and
beq is a scalar.

For our problem, we have the constraint

0 ≤ ν1 ≤ ν2 ≤ . . . ≤ νN ≤ 1,

where ~t = (t1, ..., tN ) = ~νT = (ν1T, ..., νnT ), then

0 ≤ t1 ≤ t2 ≤ . . . ≤ tN ≤ T.

To express this constraint in the form

A~ν ≤ b, and/or Aeq~ν = beq,

we have several options in algebraic formulations. Our four different constraint implementations are
detailed below and the differences in the implementations of the constrained optimization algorithm
account for the differences in the optimal meshes generated. As is explained, a primary difference in
carrying out the optimizations is the number of points over which we optimize (i.e., the number of
degrees of freedom in the problem).

Constraint implementation (C1): For this constraint implementation, it differs from the other
three in that it is not required that the end points are included in the optimal mesh. For this
constraint we define the (N + 1)×N matrix,

A =



















1 0 0 0 · · ·

−1 1 0 0 · · ·

0 −1 1 0 · · ·
...

. . .
. . .

. . .
. . .

0 · · · 0 −1 1



















.

We define the (N + 1)-vector
b = [0, · · · , 0, 1]T.

The constraint Aν ≤ b, implies
0 ≤ ν1 ≤ ν2 ≤ . . . ≤ νN ≤ 1.

Setting ~t = ~νT , we obtain
0 ≤ t1 ≤ t2 ≤ . . . ≤ tN ≤ T.
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In this case we optimize over N points.
Constraint implementation (C2):

For this constraint implementation, we require that the end points are included in the optimal
mesh. We optimize over the remaining mesh points (t2, . . . tN−1). For this constraint we define the
(N − 1)× (N − 2) matrix,

A =



















1 0 0 0 · · ·

−1 1 0 0 · · ·

0 −1 1 0 · · ·
...

. . .
. . .

. . .
. . .

0 · · · 0 −1 1



















.

We define the (N − 1)-vector
b = [0, · · · , 0, 1]T.

The constraint Aν ≤ b, implies

0 = ν1 ≤ ν2 ≤ ν2 ≤ . . . ≤ νN−1 ≤ νN = 1.

Upon setting ~t = ~νT , we obtain

0 = t1 ≤ t2 ≤ . . . ≤ tN−1 ≤ tN = T.

In this case we optimize over N − 2 points.
Constraint implementation (C3):

For the third constraint implementation, we include the end points in the optimal mesh. We optimize
over the remaining mesh points (t2, . . . tN−1). For this constraint we define the (N − 1) × (N − 2)
matrix,

A =























−1 0 0 0 · · ·

0 −1 0 0 · · ·

0 0 −1 0 · · ·
...

. . .
. . .

. . .
. . .

0 · · · 0 0 −1

1 · · · 1 1 1























.

We define the (N − 1)-vector,
b = [0, · · · , 0, T ]T.

The constraint Aν ≤ b, implies

νi ≥ 0, for i = 2, . . . , N − 1

and
ν2 + ν3 . . . + νN−1 ≤ T.

To form ~t from ~ν, we first must define the (N − 2)× (N − 2) matrix

B =



















1 0 0 0 · · ·

1 1 0 0 · · ·

1 1 1 0 · · ·
...

. . .
. . .

. . .
. . .

1 · · · 1 1 1



















.
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Setting t1 = 0, tN = T and
[t2, . . . , tN−1]

T = B[ν2, . . . , νN−1]
T,

which implies that

tk =

k
∑

j=2

νj, for all k = 2, . . . N − 1.

Then
0 = t1 ≤ ν2 ≤ ν2 + ν3 ≤ . . . ≤ (ν2 + ν3 + . . .+ νN−1) ≤ tN = T,

or equivalently,
0 = t1 ≤ t2 ≤ . . . ≤ tN−1 ≤ tN = T.

We again optimize over N − 2 points.
Constraint implementation (C4):

For the fourth constraint, we include the end points in the optimal mesh. For this constraint we
define the (N − 1)× (N − 1) matrix,

A =



















−1 0 0 0 · · ·

0 −1 0 0 · · ·

0 0 −1 0 · · ·
...

. . .
. . .

. . .
. . .

0 · · · 0 0 −1



















.

We define the (N − 1)-vector,
b = [0, · · · , 0]T.

The constraint Aν ≤ b, implies

νi ≥ 0, for i = 2, . . . , N.

In addition, we define the (N − 1)-row vector

Aeq = [1, 1, . . . , 1],

and the scalar beq = T . The additional constraint, Aeqν = beq, implies

N
∑

j=2

νj = T

To form ~t from ~ν, we first must define the (N − 1)× (N − 1) matrix

B =



















1 0 0 0 · · ·

1 1 0 0 · · ·

1 1 1 0 · · ·
...

. . .
. . .

. . .
. . .

1 · · · 1 1 1



















.
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Setting t1 = 0 and
[t2, . . . , tN ]T = B[ν2, . . . , νN ]T,

which implies that

tk =

k
∑

j=2

νj , for all k = 2, . . . N.

Then
0 = t1 ≤ ν2 ≤ ν2 + ν3 ≤ . . . ≤ (ν2 + ν3 + . . .+ νN ) = tN = T,

or equivalently,
0 = t1 ≤ t2 ≤ . . . ≤ tN−1 ≤ tN = T.

In this algorithm we again effectively optimize over N − 2 points.
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