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1 Introduction

There are many topics of great importance and interest in the areas of modeling and inverse
problems which are properly viewed as essential in the use of mathematics and statistics in
scientific inquiries. A brief, noninclusive list of topics include the use of traditional sensitivity
functions (TSF) and generalized sensitivity functions (GSF) in experimental design (what
type and how much data is needed, where/when to take observations) [9, 10, 11, 16, 57],
choice of mathematical models and their parameterizations (verification, validation, model
selection and model comparison techniques) [7, 12, 13, 17, 21, 22, 24, 25, 41], choice of
statistical models (observation process and sampling errors, residual plots for statistical model
verification, use of asymptotic theory and bootstrapping for computation of standard errors,
confidence intervals) [7, 14, 30, 31, 55, 56], choice of cost functionals (MLE, OLS, WLS, GLS,
etc.) [7, 30], as well as parameter identifiability and selectivity. There is extensive literature
on each of these topics and many have been treated in surveys in one form or another ([30] is
an excellent monograph with many references on the statistically related topics) or in earlier
lecture notes [7].

We discuss here an enduring major problem: selection of those model parameters which
can be readily and reliably (with quantifiable uncertainty bounds) estimated in an inverse
problem formulation. This is especially important in many areas of biological modeling where
often one has large dynamical systems (many state variables), an even larger number of
unknown parameters to be estimated and a paucity of longitudinal time observations or data
points. As biological and physiological models (at the cellular, biochemical pathway or whole
organism level) become more sophisticated (motivated by increasingly detailed understanding
– or lack thereof – of mechanisms), it is becoming quite common to have large systems
(10-20 or more differential equations), with a plethora of parameters (25 – 100) but only a
limited number (50 – 100 or fewer) of data points per individual organism. For example, we
find models for the cardiovascular system [16, Chapter 1] (where the model has 10 state
variables and 22 parameters) and [51, Chapter 6] (where the model has 22 states and 55
parameters), immunology [49] (8 states, 24 parameters), metabolic pathways [32] (8 states,
35 parameters) and HIV progression [8, 43]. Fortunately, there is a growing recent effort
among scientists to develop quantitative methods based on sensitivity, information matrices
and other statistical constructs (see for example [9, 10, 11, 23, 28, 37, 38, 60]) to aid in
identification or parameter estimation formulations. We discuss here one approach using
sensitivity matrices and asymptotic standard errors as a basis for our developments. To
illustrate our discussions, we will use two models from the biological sciences: a) a recently
developed in-host model for HIV dynamics which has been successfully validated with clinical
data and used for prediction [4, 8]; b) a global non-pulsatile model for the cardiovascular
system which has been validated with data from bicycle ergometer tests [45, 16].

The topic of system and parameter identifiability is actually an old one. In the context
of parameter determination from system observations or output it is at least forty years old
and has received much attention in the peak years of linear system and control theory in the
investigation of observability, controllability and detectability [6, 18, 19, 33, 39, 44, 47, 53, 54].
These early investigations and results were focused primarily on engineering applications,
although much interest in other areas (e.g., oceanography, biology) has prompted more recent
inquiries for both linear and nonlinear dynamical systems [5, 15, 29, 35, 42, 48, 59, 60, 61, 62].
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2 Statistical Models for the Observation Process

One has errors in any data collection process and the presence of these errors is reflected in
any parameter estimation result one might obtain. To understand and treat this, one usually
specifies a statistical model for the observation process in addition to the mathematical model
representing the dynamics. To illustrate ideas here we use ordinary least squares (OLS)
consistent with an error model for absolute error in the observations. For a discussion of
other frameworks (maximum likelihood in the case of known error distributions, generalized
least squares appropriate for relative error models) see [7].

In order to be more specific we assume that the dynamics of the system is modeled by a
system of ordinary differential equations:

ẋ(t) = g(t, x(t), θ), t ≥ t0, x(t0) = x0(θ), (1)
z(t) = h(t, x(t), θ), t ≥ t0, θ ∈ A, (2)

where G ⊂ Rn and A ⊂ Rp are open sets and g : [t0,∞) × G × A → Rn, x0 : A → Rn and
h : [t0,∞) × G × A → R are sufficiently smooth functions. The set A is called the set of
admissible parameters and z(·) is the measurable output of the system, which for simplicity
we assume to be scalar. Let x(t) = x(t; θ) denote the solution of (1) for given θ ∈ A and set

f(t, θ) = h(t, x(t; θ), θ), t ≥ t0, θ ∈ A.

Then
z(t) = f(t; θ), t ≥ t0, θ ∈ A, (3)

is the output model corresponding to the model (1), (2). It is clear that an output model
of the form (3) can also originate from dynamical models, where instead of the ODE-system
(1) we may have a system of delay equations or some partial differential equation. In order
to describe the observation process we assume there exists a vector θ0 ∈ A, referred to as the
true or nominal parameter vector, for which the output z(t) = f(t, θ0) describes the output
of the real system exactly. At given sampling times

t0 ≤ t1 < · · · < tN ,

we have measurements yj for the output of the real system, j = 1, . . . , N . It is also reasonably
assumed that each of the N longitudinal measurements yj is affected by random deviations
εj from the true underlying output. That is, we assume that the measurements are given by

yj = f(tj ; θ0) + εj , j = 1, . . . , N. (4)

The measurement errors εj are assumed to be realizations of random variables Ej satisfying
the following assumptions:

(i) the errors Ej have mean zero, E
(Ej

)
= 0 ;

(ii) the errors Ej have finite common variance, var(Ej) = σ2
0 < ∞ ;

(iii) the errors Ej are independent (i.e., cov(Ej , Ek) = 0 whenever j 6= k) and identically
distributed.
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According to (4) the measurements yj are realizations of random variables Yj , the observations
at the sampling times tj . Then the statistical model for the scalar observation process is

Yj = f(tj ; θ0) + Ej , j = 1, . . . , N. (5)

Assumptions (i) – (iii) imply that the mean of the observations is equal to the model output
for the nominal parameter vector, E

(
Yj

)
= f(tj ; θ0), and the variance in the observations is

constant in time, var(Yj) = σ2
0, j = 1, . . . , N .

For given measurements y = (y1, . . . , yN )T the estimate θ̂OLS for θ0 is obtained by mini-
mizing

J(y, θ) =
N∑

j=1

(
yj − f(tj ; θ)

)2 = |y − F (θ)|2 = |F (θ)− F (θ0)− ε|2, (6)

where we have set

F (θ) =
(
f(t1; θ), . . . , f(tN ; θ)

)T
, ε =

(
ε1, . . . , εN

)T
,

and | · | is the Euclidean norm in RN . The estimate θ̂OLS is a realization of a random
variable, the least squares estimator ΘOLS. In order to indicate the dependence on N we
shall write θ̂N

OLS and ΘN
OLS when needed. From [55] we find that under a number of regularity

and sampling conditions, as N → ∞, ΘN
OLS is approximately distributed according to a

multivariate normal distribution, i.e.,

ΘN
OLS ∼ Np

(
θ0,ΣN

0

)
, (7)

where ΣN
0 = σ2

0

(
NΩ0

)−1 ∈ Rp×p and

Ω0 = lim
N→∞

1
N

χN (θ0)TχN (θ0).

The N × p matrix χN (θ) is known as the sensitivity matrix of the system, and is defined as

χN (θ0) =
(∂f(ti; θ0)

∂θj

)
1≤i≤N, 1≤j≤p

=
∂F

∂θ
(θ0) = ∇θF (θ0). (8)

Asymptotic theory [7, 30, 55] requires existence and non-singularity of Ω0. The p× p matrix
ΣN

0 is the covariance matrix of the estimator ΘN .
If the output model (3) corresponds to the model (1), (2) then the derivatives of f with

respect to the parameters are given by

∂f

∂θj
(t, θ) =

∂h

∂x
(t, x(t; θ), θ)

∂x

∂θj
(t; θ) +

∂h

∂θj
(t, x(t; θ), θ), j = 1, . . . , p, (9)

where w(t; θ) =
(
(∂x/∂θ1)(t; θ), . . . , (∂x/∂θp)(t; θ)

) ∈ RN×p is obtained by solving

ẋ(t; θ) = g(t, x(t; θ), θ), x(t0; θ) = x0(θ),

ẇ(t, θ) =
∂g

∂x

(
t, x(t; θ), θ

)
w(t; θ) +

∂g

∂θ
(t, x(t; θ), θ), w(t0; θ) =

∂x0

∂θ
(θ),

(10)

from t = t0 to t = tN . One could alternatively obtain the sensitivity matrix using differ-
ence quotients (usually less accurately) or by using automated differentiation software (for
additional details on sensitivity matrix calculations see [7, 9, 27, 28, 34, 36]).
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The estimate θ̂OLS = θ̂N
OLS is a realization of the estimator ΘOLS, and is calculated using a

realization {yi}N
i=1 of the observation process {Yi}N

i=1, while minimizing (6) over θ. Moreover,
the estimate θ̂OLS is used in the calculation of the sampling distribution for the parameters.
The generally unknown error variance σ2

0 is approximated by

σ̂2
OLS =

1
N − p

N∑

j=1

(
yj − f(tj ; θ̂N

OLS)
)2

, (11)

while the covariance matrix ΣN
0 is approximated by

Σ̂N
OLS = σ̂2

OLS

(
χN (θ̂OLS)TχN (θ̂OLS)

)−1
. (12)

As discussed in [7, 30, 55] an approximate for the sampling distribution of the estimator
is given by

ΘOLS = ΘN
OLS ∼ Np(θ0,ΣN

0 ) ≈ Np(θ̂N
OLS, Σ̂

N
OLS). (13)

Asymptotic standard errors can be used to quantify uncertainty in the estimation, and they
are calculated by taking the square roots of the diagonal elements of the covariance matrix
Σ̂N

OLS, i.e.,

SEk(θ̂N
OLS) =

√
(Σ̂N

OLS)k,k, k = 1, . . . , p. (14)

Before describing the algorithm in detail and illustrating its use, we provide some moti-
vation underlying the use of the sensitivity matrix χ(θ0) of (8) and the Fisher Information
Matrix F(θ0) =

(
1/σ2

0

)
χT(θ0)χ(θ0). Both of these matrices play a fundamental role in the

development of the approximate asymptotic distributional theory resulting in (13) and (14).
Since a prominent measure of the ability to estimate a parameter is related to its associated
standard errors in estimation, it is worthwhile to briefly outline the underlying approximation
ideas in the asymptotic distributional theory.

Ordinary least squares problems involve choosing Θ = ΘOLS to minimize the difference
between observations Y and model output F (θ), i.e., minimize |Y − F (θ)|. However the
approximate asymptotic distributional theory (e.g., see [55, Chapter 12]) which is exact for
model outputs linear in the parameters, employs a fundamental linearization in the param-
eters in a neighborhood of the hypothesized “true” parameters θ0. Replacing the model
output with a first order linearization about θ0, we then may seek to minimize for θ in the
approximate functional

|Y − F (θ0)−∇θF (θ0)[θ − θ0]|.
If we use the statistical model Y = F (θ0) + E and let δθ = θ − θ0, we thus wish to minimize

|E − χ(θ0)δθ|,

where χ(θ0) = ∇θF (θ0) is the N × p sensitivity matrix defined in (8). This is a standard
optimization problem [46, Section 6.11] whose solution can be given using the pseudo inverse
χ(θ0)† defined in terms of minimal norm solutions of the optimization problem and satisfying
χ(θ0)† = (χ(θ0)Tχ(θ0))†χ(θ0)T = σ2

0F(θ0)†χ(θ0)T. The solution is

δΘ = χ(θ0)†E

or
ΘLIN = θ0 + χ(θ0)†E = θ0 + σ2

0F(θ0)†χ(θ0)TE .
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If F(θ0) is invertible, then the solution (to first order) of the OLS problem is

ΘOLS ≈ ΘLIN = θ0 + σ2
0F(θ0)−1χ(θ0)TE . (15)

This approximation, for which the asymptotic distributional theory is exact, can be a rea-
sonable one for use in developing an approximate nonlinear asymptotic theory if δΘ is small,
i.e., if the OLS estimated parameter is close to θ0.

From these calculations, we see that the rank of χ(θ0) and the conditioning (or ill-
conditioning) of F(θ0) play a significant role in solving OLS inverse problems as well as
in any asymptotic standard error formulations based on this linearization. Observe that the
error (or noise) E in the data will in general be amplified as the ill-conditioning of F in-
creases. We further note that the N × p sensitivity matrix χ(θ0) is of full rank p if and only
if the p× p Fisher matrix F(θ0) has rank p, or equivalently, is nonsingular. These underlying
considerations have motivated a number of efforts (e.g., see [9, 10, 11]) on understanding the
conditioning of the Fisher matrix as a function of the number N and longitudinal locations
{tj}N

j=1 of data points as a key indicator for well-formulated inverse problems and as a tool
in optimal design, especially with respect to computation of uncertainty (standard errors,
confidence intervals) for parameter estimates.

In view of the considerations above (which are very local in nature – both the sensi-
tivity matrix and the Fisher information matrix are taken at the nominal vector θ0), one
should be pessimistic about using these quantities to obtain any nonlocal selection methods
or criteria for estimation. Indeed, for nonlinear complex systems, it is easy to argue that
questions related to some type of global parameter identifiability are not fruitful questions
to be pursuing.

3 Subset Selection Algorithm

The focus of our presentation here is how one chooses a priori (i.e., before any inverse problem
calculations are carried out) which parameters can be readily estimated with a typical longi-
tudinal data set. We illustrate an algorithm, developed recently in [28], to select parameter
vectors that can be estimated from a given data set using an ordinary least squares inverse
problem formulation (similar ideas apply if one is using a relative error statistical model and
generalized least squares formulations). Let q ∈ Rp0 be the parameter vectors being at our
disposal for parameter estimation and denote by q0 ∈ Rp0 the vector of the corresponding
nominal values. Given a number p < p0 of parameters we wish to identify, the algorithm
searches all possible choices of p different parameters among the p0 parameters and selects
the one which is identifiable (i.e., the corresponding sensitivity matrix has full rank p) and
minimizes a given uncertainty quantification (e.g., by means of asymptotic standard errors).
Prior knowledge of a nominal set of values for all parameters along with the observation
times for data (but not the values of the observations) will be required for our algorithm. For
p < p0 we set

Sp =
{
θ ∈ Rp| θ is a sub-vector of q ∈ Rp0

}
,

i.e., θ ∈ Sp is given as θ =
(
qi1 , . . . , qip

)T for some 1 ≤ i1 < · · · < ip ≤ p0. The corresponding
nominal vector is θ0 =

(
(q0)i1 , . . . , (q0)ip

)T.
As we have stated above, to apply the parameter subset selection algorithm we require

prior knowledge of nominal variance and nominal parameter values. These nominal values
of σ0 and θ0 are needed to calculate the sensitivity matrix, the Fisher matrix and the corre-
sponding covariance matrix defined in (12). For our illustration presented in Section 5, we
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use the variance and parameter estimates obtained in previous investigations of the models as
nominal values. In problems for which no prior estimation has been carried out, one must use
knowledge of the observation process error and some knowledge of viable parameter values
that might be reasonable with the model under investigation.

The uncertainty quantification we shall use is based on the considerations given in the
previous section. Let θ ∈ Rp be given. As an approximation to the covariance matrix of the
estimator for θ we take

Σ(θ0) = σ2
0

(
χ(θ0)Tχ(θ0)

)−1 = F(θ0)−1.

We introduce the coefficients of variation for θ

νi(θ0) =

(
Σ(θ0)i,i

)1/2

(θ0)i
, i = 1, . . . , p, (16)

and take as a uncertainty quantification for the estimates of θ the selection score given by
the Euclidean norm in θ ∈ Rp of ν(θ0), i.e.,

α(θ0) = |ν(θ0)|,

where ν(θ0) =
(
ν1(θ0), . . . , νp(θ0)

)T. The components of the vector ν(θ0) are the ratios of each
standard error for a parameter to the corresponding nominal parameter value. These ratios
are dimensionless numbers warranting comparison even when parameters have considerably
different scales and units (e.g., in case of the HIV-model NT is on the order of 101, while
k1 is on the order of 10−6, whereas in case of the CVS-model we have c` on the order 10−2

and Aexer
pesk on the order 102). A selection score α(θ0) near zero indicates lower uncertainty

possibilities in the estimation, while large values of α(θ0) suggest that one could expect to find
substantial uncertainty in at least some of the components of the estimates in any parameter
estimation attempt.

Let F0 be the Fisher information matrix corresponding to the parameter vectors q ∈ Rp0

and Fp the Fisher information matrix corresponding to the parameter vectors in θ ∈ Sp.
Then rankF0(q0) = p0 implies that rankFp(θ0) = p for any θ ∈ Sp, p < p0, i.e., if F0(q0) is
non-singular then also all Fp(θ0) are non-singular for all p < p0 and all θ0 corresponding to a
θ ∈ Sp. Moreover, if rankF0(q0) = p1 with p1 < p0, then rankF(θ0) < p for all p1 < p < p0

and all θ ∈ Sp.
On the basis of the considerations given above our algorithm proceeds as follows:

Selection Algorithm. Given p < p0 the algorithm considers all possible choices of indices
i1, . . . , ip with 1 ≤ i1 < · · · < ip ≤ p0 in lexicographical ordering starting with the first choice
(i(1)

1 , . . . , i
(1)
p ) = (1, . . . , p) and completes the following steps:

Initializing step: Set indsel = (1, . . . , p) and αsel = ∞.

Step k: For the choice (i(k)
1 , . . . , i

(k)
p ) compute r = rankF(

(q0)i
(k)
1

, . . . , (q0)i
(k)
p

)
)
.

If r < p, go to Step k + 1.
If r = p, compute αk = α

(
(q0)i

(k)
1

, . . . , (q0)i
(k)
p

)
)
.

If αk ≥ αsel, go to Step k + 1.
If αk < αsel, set indsel = (i(k)

1 , . . . , i
(k)
p ), αsel = αk and go to Step k + 1.

Following the initializing step the algorithm performs
(
p0

p

)
steps and provides the index

vector indsel =
(
i∗1, . . . , i

∗
p

)
which gives the sub-vector θ∗ =

(
qi∗1 , . . . , qi∗p

)T such that the
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selection score α
(
(q0)i∗1 , . . . , (q0)i∗p

)
is minimal among all possible choices of sub-vectors in Sp.

If rankFp0 = p0 then the rank test in Step k can be canceled, of course.

4 Models

In the following we shall illustrate the parameter selection ideas with results obtained by use
of the subset selection algorithm described in the previous section for two specific models.
These models have a moderate number of parameters to be identified yet are sufficiently
complex to make a trial-error approach unfeasible.

4.1 A Mathematical Model for HIV Progression with Treatment Interrup-
tion

As our first illustrative example we use one of the many dynamic models for HIV progression
found in an extensive literature (e.g., see [1, 2, 3, 4, 8, 20, 26, 50, 52, 58] and the many
references therein). For our example model, the dynamics of in-host HIV is described by the
interactions between uninfected and infected type 1 target cells (T1 and T ∗1 ) (CD4+ T-cells),
uninfected and infected type 2 target cells (T2 and T ∗2 ) (such as macrophages or memory cells,
etc.), infectious free virus VI , and immune response E (cytotoxic T-lymphocytes CD8+) to
the infection. This model, which was developed and studied in [1, 4] and later extended in
subsequent efforts (e.g., see [8]), is essentially one suggested in [26], but includes an immune
response compartment and dynamics as in [20]. The model equations are given by

Ṫ1 = λ1 − d1T1 −
(
1− ε̄1(t)

)
k1VIT1,

Ṫ ∗1 = (1− ε̄1(t)
)
k1VIT1 − δT ∗1 −m1ET ∗1 ,

Ṫ2 = λ2 − d2T2 − (1− f ε̄1(t))k2VIT2,

Ṫ ∗2 =
(
1− f ε̄1(t)

)
k2VIT2 − δT ∗2 −m2ET ∗2 ,

V̇I =
(
1− ε̄2(t)

)
103NT δ(T ∗1 + T ∗2 )− cVI

− (
1− ε̄1(t)

)
103k1T1VI − (1− f ε̄1(t))103k2T2VI ,

Ė = λE +
bE

(
T ∗1 + T ∗2

)

T ∗1 + T ∗2 + Kb
E − dE(T ∗1 + T ∗2 )

T ∗1 + T ∗2 + Kd
E − δEE,

(17)

together with an initial condition vector

(
T1(0), T ∗1 (0), T2(0), T ∗2 (0), VI(0), E(0)

)T
.

The differences in infection rates and treatment efficacy help create a low, but non-zero,
infected cell steady state for T ∗2 , which is compatible with the idea that macrophages or
memory cells may be an important source of virus after T-cell depletion. The populations
of uninfected target cells T1 and T2 may have different source rates λi and natural death
rates di. The time-dependent treatment factors ε̄1(t) = ε1u(t) and ε̄2(t) = ε2u(t) represent
the effective treatment impact of a reverse transcriptase inhibitor (RTI) (that blocks new
infections) and a protease inhibitor (PI) (which causes infected cells to produce non-infectious
virus), respectively. The RTI is potentially more effective in type 1 target cells (T1 and T ∗1 )
than in type 2 target cells (T2 and T ∗2 ), where the efficacy is f ε̄1, with f ∈ [0, 1]. The relative
effectiveness of RTIs is modeled by ε1 and that of PIs by ε2, while the time-dependent

8



treatment function 0 ≤ u(t) ≤ 1 represents therapy levels, with u(t) = 0 for fully off and
u(t) = 1, for fully on. Although HIV treatment is nearly always administered as combination
therapy, the model allows the possibility of mono-therapy, even for a limited period of time,
implemented by considering separate treatment functions u1(t), u2(t) in the treatment factors.

As in [1, 4], for our numerical investigations we consider a log-transformed and reduced
version of the model. This transformation is frequently used in the HIV modeling literature
because of the large differences in orders of magnitude in state values in the model and the
data and to guarantee non-negative state values as well as because of certain probabilis-
tic considerations (for further discussions see [4]). This results in the nonlinear system of
differential equations

ẋ1 =
10−x1

ln(10)

(
λ1 − d110x1 − (

1− ε̄1(t)
)
k110x510x1

)
,

ẋ2 =
10−x2

ln(10)

((
1− ε̄1(t)

)
k110x510x1 − δ10x2 −m110x610x2

)
,

ẋ3 =
10−x3

ln(10)

(
λ2 − d210x3 − (

1− fε̄1(t)
)
k210x510x3

)
,

ẋ4 =
10−x4

ln(10)

((
1− fε̄1(t)

)
k210x510x3 − δ10x4 −m210x610x4

)
,

ẋ5 =
10−x5

ln(10)

((
1− ε̄2(t)

)
103NT δ

(
10x2 + 10x4

)− c10x5

− (
1− ε̄1(t)

)
ρ1103k110x110x5 − (

1− fε̄1(t)
)
ρ2103k210x310x5

)
,

ẋ6 =
10−x6

ln(10)

(
λE +

bE

(
10x2 + 10x4

)

10x2 + 10x4 + Kb
10x6

− dE

(
10x2 + 10x4

)

10x2 + 10x4 + Kd
10x6 − δE10x6

)
,

(18)

where the changes of variables are defined by

T1 = 10x1 , T ∗1 = 10x2 , T2 = 10x3 , T ∗2 = 10x4 , VI = 10x5 , E = 10x6 .

The initial conditions for equations (18) are denoted by xi(t0) = x0
i , i = 1, . . . , 6. We note

that this model has six state variables and the following 22 (in general, unknown) system
parameters in the right-hand sides of equations (18)

λ1, d1, ε1, k1, λ2, d2, f, k2,δ,m1,m2, . . .

. . . ε2, NT , c, ρ1, ρ2, λE , bE , Kb, dE ,Kd, δE .

We will also consider the initial conditions as unknowns and thus we have 28 unknown
parameters which we collect in the parameter vector θ,

θ =
(
x0

1, x
0
2, x

0
3, x

0
4, x

0
5, x

0
6, λ1, d1, ε1, k1, λ2, d2, f, k2, δ,m1, m2, . . .

. . . ε2, NT , c, ρ1, ρ2, λE , bE ,Kb, dE ,Kd, δE

)T
.

A list of the parameters in the model equations along with their units is given below in
Table 1.

As reported in [1, 4], data to be used with this model in inverse or parameter estimation
problems typically consisted of observations for T1 + T ∗1 and V over some extended time

9



Table 1: Parameters in the equations of the HIV model.

Parameter Units Description

λ1 cells/(ml day) production rate of type 1 target cells
d1 1/day death rate of type 1 target cells
ε1 — treatment efficacy of type 1 target cells
k1 ml/(virion day) infection rate of type 1 target cells
λ2 cells/(ml day) production rate of type 2 target cells
d2 1/day death rate of type 2 target cells
f — reduction of treatment efficacy for type 2 target cells
k2 ml/(virion day) infection rate of type 2 target cells
δ 1/day death rate of infected cells

m1 ml/(cell day) immune-induced clearance rate for type 1 target cells
m2 ml/(cell day) immune-induced clearance rate for type 2 target cells
ε2 — treatment efficacy for type 2 target cells
NT virions/cell virions produced per infected cell

c 1/day natural death rate of viruses
ρ1 virions/cell average number of virions infecting a type 1 cell
ρ2 virions/cell average number of virions infecting a type 2 cell
λE cells/(ml day) production rate for immune effectors
bE 1/day maximum birth rate for immune effectors
Kb cells/ml saturation constant for immune effector birth
dE 1/day maximum death rate for immune effectors
Kd cells/ml saturation constant for immune effector death
δE 1/day natural death rate for immune effectors

period. For the purpose of this paper we are only using the data for T1 + T ∗1 in case of
patient # 4 which we depict in Figure 1 together with the corresponding model output for
the parameters identified in [1, 4]. Thus our observations are

f(ti; θ0) = log10

(
10x1(ti;θ0) + 10x2(ti;θ0)

)
, (19)

where the nominal parameter vector θ0 is given at the beginning of Subsection 5.1.
While the inverse problem we are considering in this paper for the HIV-model is relatively

“small” compared to many of those found in the literature, it is still represents a nontrivial
estimation challenge and is more than sufficient to illustrate the ideas and methodology
we discuss in this presentation. Other difficult aspects (censored data requiring use of the
Expectation Maximization algorithm as well as use of residual plots in attempts to validate
the correctness of choice of corresponding statistical models introduced and discussed in
Section 2) of such inverse problems are discussed in the review chapter [7] and will not be
pursued here.
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Figure 1: Log-scaled data {yj} for CD4+ T-cells of Patient #4 (crosses), and model output z(t) (solid curve)

evaluated at the parameter estimates obtained in [1, 4].

4.2 A model for the reaction of the cardiovascular system to an ergometric
workload

As a second example to illustrate our methods we chose a model for cardiovascular function.
The model was developed in order to describe the reaction of the cardiovascular system to a
constant ergometric workload of moderate size. The building block of the model are the left
ventricle, the arterial and venous systemic compartments representing the systemic circuit
as well as the right ventricle, arterial and venous pulmonary compartments representing the
pulmonary circuit. The model is non-pulsatile and includes the baroreceptor loop as the
essential control loop in the situation to be modeled. The feedback control which steers the
system from the equilibrium corresponding to rest to the equilibrium corresponding to the
imposed workload is obtained by solving a linear quadratic regulator problem. Furthermore
the model includes a sub-model describing the so called autoregulation process, i.e., the
control of local blood flow in response to local metabolic demands. The model equations are
given as (for details see [45], [16, Chapter 1]):
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˙Pas =
1

cas

(
Q` − 1

Rs
(Pas − Pvs)

)
,

˙Pvs =
1

cvs

( 1
Rs

(Pas − Pvs)−Qr

)
,

˙Pap =
1

cap

(
Qr − 1

Rp
(Pap − Pvp(Pas, Pvs, Pap))

)
,

Ṡ` = σ`,

σ̇` = −α`S` − γ`σ` + β`H,

Ṡr = σr,

σ̇r = −αrSr − γrσr + βrH,

Ṙs =
1
K

(
Apesk

(Pas − Pvs

Rs
Ca,O2 −M0 − ρW

)
− (Pas − Pvs)

)
,

Ḣ = u(t)

(20)

with

Pvp = Pvp(Pas, Pvs, Pap) :=
1

cvp

(
Vtot − casPas − cvsPvs − capPap

)
,

Q` = H
c`Pvp(Pas, Pvs, Pap)a`(H)S`

a`(H)Pas + k`(H)S`
,

Qr = H
crPvsar(H)Sr

ar(H)Pap + kr(H)Sr
,

(21)

where

k`(H) = e−(c`R`)
−1td(H) and a`(H) = 1− k`(H),

kr(H) = e−(crRr)−1td(H) and ar(H) = 1− kr(H).
(22)

For the duration td of the diastole we use Bazett’s formula (duration of the systole = κ/H1/2)
which implies

td = td(H) =
1

H1/2

( 1
H1/2

− κ
)
. (23)

Introducing x =
(
Pas, Pvs, Pap, S`, σ`, Sr, σr, Rs,H

)T ∈ R9 system (20) can be written as

ẋ(t) = f(x(t),W, θ, u(t)),

where W = W rest = 0 (Watt) for t <= 0 and W = W exer = 75 (Watt) for t > 0. Moreover, θ
is the parameter vector of the system. We distinguish two values for each of the parameters
Rp and Apesk, one for the resting situation and one for the exercise situation. Consequently
we have the parameters Rrest

p , Arest
pesk and Rexer

p and Aexer
pesk instead of Rp and Apesk. The initial

value for system (20) is the equilibrium xrest, which is computed from f(xrest,W rest, θ, 0) = 0.
Analogously xexer is the equilibrium corresponding to the constant workload W exer (satisfying
f(xexer, W exer, θ, 0) = 0).

Let B =
(
0, . . . , 0, 1

)T ∈ R9, C =
(
1, 0, . . . , 0) ∈ R1×9 and A(θ) = ∂f(x,W exer,θ,0)

∂x

∣∣
x=xexer ,

the Jacobian of the right-hand side of system (20) at the equilibrium xexer. The control u(t)
is obtained as the solution of the linear-quadratic regulator problem for the linear system

ξ̇(t) = A(θ)ξ(t) + Bu(t), ξ(0) = xrest − xexer, (24)

12



where we have set ξ(t) = x(t)− xexer, and the quadratic cost functional

J(u) =
∫ ∞

0

(
q2
as(Pas(t)− P exer

as )2 + u(t)2
)
dt. (25)

This functional reflects the fact that the baroreceptor loop, which is the basic control loop
for the situation we are considering here, generates the control using the arterial systemic
pressure Pas(t).

According to the theory of the linear-quadratic control problem u(t) is given by

u(t) = −BTXξ(t) = −BTX(x(t)− xexer), t ≥ 0, (26)

where X = X(θ) is the solution of the Riccati matrix equation XA(θ)+A(θ)TX−XBBTX+
CTC = 0. The feedback control (26) is also a stabilizing control for system (20), i.e., we have
limt→∞ x(t) = xexer provided ‖x(0)− xexer‖2 is sufficiently small.

Table 2: Parameters of the CVS-model.

Parameter Units Description

cas liter/mmHg compliance of the arterial systemic compartment
cvs liter/mmHg compliance of the venous systemic compartment
cap liter/mmHg compliance of the arterial pulmonary compartment
cvp liter/mmHg compliance of the venous pulmonary compartment
c` liter/mmHg compliance of the relaxed left ventricle
cr liter/mmHg compliance of the relaxed right ventricle

Vtot liter total blood volume
Rp mmHgmin/liter resistance in the peripheral region of the pulmonary circuit
R` mmHgmin/liter inflow resistance of the left ventricle
Rr mmHgmin/liter inflow resistance of the right ventricle

κ min1/2 coefficient in Bazett’s formula (see (23))
Ca,O2 1 O2-concentration in arterial systemic blood

K liter constant in the formula for the biochemical energy flow,
Mb = −K dCv,O2/dt

Apesk mmHgmin/liter constant in the formula relating peripheral systemic resistance and
venous O2 concentration (Rs = ApeskCv,O2)

M0 liter/min metabolic rate in the systemic tissue region corresponding to zero
workload

ρ liter/(minWatt) coefficient of W in the differential equation for Rs

qas min−2(mmHg)−1 weighting factor for Pas in the cost functional (25)
α` min−2 coefficient of S` in the differential equation for S`

αr min−2 coefficient of Sr in the differential equation for Sr

β` mmHg/min coefficient of H in the differential equation for S`

βr mmHg/min coefficient of H in the differential equation for Sr

γ` min−1 coefficient of Ṡ` in the differential equation for S`

γr min−1 coefficient of Ṡr in the differential equation for Sr

The parameter vector of the system is

q =
(
c`, cr, cas, cvs, cap, cvp, R`, Rr, α`, αr, β`, βr, γ`, . . .

. . . γr, K, κ, M0, ρ, Ca,O2 , qas, Vtot, R
rest
p , Arest

pesk, R
exer
p , Aexer

pesk

)T ∈ R25. (27)

Tables 2 and 3 contain the descriptions and units for the parameters q and the state variables
x, respectively, of the system.
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Table 3: The state variables and other variables of the CVS-model.

Variable Unit Description

Pas mmHg pressure in the arterial systemic compartment
Pvs mmHg pressure in the venous systemic compartment
Pap mmHg pressure in the arterial pulmonary compartment
Pvp mmHg pressure in the venous pulmonary compartment
S` mmHg contractility of the left ventricle
σ` mmHg/min time derivative of S`

Sr mmHg contractility of the right ventricle
σr mmHg/min time derivative of Sr

Rs mmHgmin/liter peripheral resistance in the systemic circuit
H min−1 heart rate

Q` liter/min cardiac output of the left ventricle
Qr liter/min cardiac output of the right ventricle
W Watt workload imposed on the test person

5 Results and Discussion

5.1 The HIV-model

As the nominal parameter vector we take the estimates obtained in [1, 4] for Patient #
4. More precisely, we assume that the error variance is σ2

0 = 0.11, and that the nominal
parameter values (for description and units see Table 1) are given as:

x0
1 = log10(1.202e+3), x0

2 = log10(6.165e+1), x0
3 = log10(1.755e+1),

x0
4 = log10(6.096e-1), x0

5 = log10(9.964e+5), x0
6 = log10(1.883e-1),

λ1 = 4.633, d1 = 4.533× 10−3, ε1 = 6.017× 10−1,

k1 = 1.976× 10−6, λ2 = 1.001× 10−1, d2 = 2.211× 10−2,

f = 5.3915× 10−1, k2 = 5.529× 10−4, δ = 1.865× 10−1,

m1 = 2.439× 10−2, m2 = 1.3099× 10−2, ε2 = 5.043× 10−1,

NT = 1.904× 101, c = 1.936× 101, ρ1 = 1.000,

ρ2 = 1.000, λE = 9.909× 10−3, bE = 9.785× 10−2,

Kb = 3.909× 10−1, dE = 1.021× 10−1, Kd = 8.379× 10−1,

δE = 7.030× 10−2.

In Figure 1 above we depicted the log-scaled longitudinal observations {yi} on the number
of CD4+ T-cells and the model output z(tj) = f(tj , θ0), j = 1, . . . , N , evaluated at the
nominal parameter vector and given in (19).

It is assumed that the following parameters are always fixed at the values given above:

x0
3, x0

4, x0
6, ρ1, and ρ2.

In other words, the parameters to be selected for estimation will always constitute a sub-
vector of

q =
(
x0

1, x
0
2, x

0
5, λ1, d1, ε1, k1, λ2, d2, f, k2, δ, . . .

. . .m1,m2, ε2, NT , c, λE , bE ,Kb, dE ,Kd, δE

) ∈ R23. (28)
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Let F23 denote the Fisher information matrix of system (18) for the 23 parameters of q
as given in (28) at their nominal values q0 as given above. Then we have

condF23(q0) = 1.712× 1024,

i.e., F23(q0) is non-singular, but ill-conditioned. Since F23(q0) is non-singular, the Fisher
information matrix for any sub-vector θ of q at the corresponding nominal parameter values
is also non-singular. Consequently the regularity check for the Fisher information matrix in
the subset selection algorithm can be deleted in case of the HIV-model.

Table 4: The top five parameter vectors obtained with subset selection algorithm for p = 11. For each parameter

vector θ the condition number κ(F(θ0)) of the Fisher information matrix and the selection score α(θ0) are displayed.

The next two lines show κ(F(θ0)) and α(θ0) for the sub-vector θ ∈ R9 which is common to the top five parameter

vectors and for the optimal parameter vector in R9. The last line presents the sub-vector in R11 with the largest

selection score.

Parameter vector θ κ(F(θ0)) α(θ0)

(x0
1, x0

5, λ1, d1, ε1, λ2, d2, k2, δ, ε2, NT ) 9.841×1010 2.881×101

(x0
1, x0

5, λ1, d1, ε1, λ2, d2, k2, δ, ε2, c) 9.845×1010 2.883×101

(x0
1, x0

5, λ1, d1, ε1, k1, λ2, d2, k2, δ, ε2) 4.388×1016 2.896×101

(x0
2, x0

5, λ1, d1, ε1, λ2, d2, k2, δ, ε2, NT ) 9.235×1010 2.904×101

(x0
2, x0

5, λ1, d1, ε1, λ2, d2, k2, δ, ε2, c) 9.241×1010 2.906×101

(x0
5, λ1, d1, ε1, λ2, d2, k2, δ, ε2) 9.083×1010 2.193×101

(x0
1, x0

5, λ1, d1, k1, d2, k2, δ, ε2) 4.335×1015 1.050×101

(d2, k2, δ, m2, NT , λE , bE , Kb, dE , Kd, δE) 7.247×1017 2.340×105

In [1, 4], the authors estimate the parameter vector

θ =
(
x0

1, x
0
2, x

0
5, λ1, d1, ε1, k1, ε2, NT , c, bE

)T ∈ R11. (29)

The selection score for this parameter vector is α(θ0) = 4.611 × 103. In Table 4 we display,
for the five selections of sub-vector θ ∈ R11 of q with the minimal selection scores, the
condition numbers of the corresponding Fisher information matrices and the selection scores.
In addition we also show the selection θ ∈ R11 with the maximal selection score. As we can
see, the selection score values range from 2.881× 101 to 2.340× 105 for the

(
23
11

)
= 1352 078

different parameter vectors in R11 which can be selected from the 23 parameters in (28).
As we also can see from Table 4 that the selection algorithm chooses most of the parame-

ters in the vector (29). For instance, the sub-vector (x0
5, λ1, d1, ε1, ε2) of (29) appears in every

one of the top five parameter vectors displayed in Table 4. In fact the top five parameter
vectors have the sub-vector

(
x0

5, λ1, d1, ε1, λ2, d2, k2, δ, ε2) ∈ R9 in common and differ only by
one or two of the parameters x0

1, x0
2, k1, c, and NT . Use of the subset selection algorithm

discussed here (had it been available) might have proved valuable in the efforts reported in
[1, 4].

In Figure 2(a) we depict the minimal selection score as a function of the number of
parameters. Table 5 contains the values of the corresponding selection scores. Figure 2(b) is
a semilog plot of Figure 2(a), i.e., it displays the logarithm of the selection score as a function
of the number of parameters. Figure 2, (b), suggests that parameter vectors with more
than thirteen parameters might be expected to have large uncertainty when estimated from

15



(a)

0 5 10 15 20 25
0

2

4

6

8

10

12
x 10

4

p

α m
in

(p
)

(b)

0 5 10 15 20 25
−2

−1

0

1

2

3

4

5

6

p

lo
g

10
(α

−
m

in
(p

))

Figure 2: (a) Minimal selection scores (crosses) and exponential approximations (30) (grey solid line) respectively

(31) (grey dashed line) versus the number of parameters p. (b) Logarithm of minimal selection scores (crosses)

and regression lines corresponding to (30) (gray solid line) respectively to (31) (grey dashed line) versus number of

parameters p.
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Table 5: Minimal selection scores αmin(p) for sub-vectors in Rp of (28), p = 1, 2, . . . , 22.

p 1 2 3 4 5 6 7 8

αmin(p) 0.0340 0.0523 0.1203 0.1679 9.3796 0.6511 1.1375 2.4166

p 9 10 11 12 13 14 15 16

αmin(p) 10.503 17.482 28.81 92.91 243.34 336.77 566.86 2 274.3

p 17 18 19 20 21 22

αmin(p) 3 372.4 5 047.9 9 664.4 16 585 51 631 95 128

observations, because the minimal selection score is already larger than 100. Figure 2(b) also
depicts the regression line, which fits the logarithm of the selection score. From this linear
regression we conclude the selection score αmin(p) grows exponentially with the number p of
parameters to be estimated. More precisely, we find

αmin(p) ≈ 0.01133e0.728p, p = 1, . . . , 22. (30)

Computing the minimal selection scores for p = 1, . . . , 22 requires one to consider all possible
choices for sub-vectors of (28) in Rp, p = 1, . . . , 22, i.e., to consider

∑22
i=1

(
23
i

)
= 8 388 605

cases. If we determine the regression line only using the minimal selection scores for p =
1, 2, 3, 20, 21, 22 we obtain

αmin(p) ≈ 0.01441e0.710p, p = 1, . . . , 22. (31)

Table 6: Time for computing θ ∈ Rp with the minimal selection score on a laptop computer, once the 23 × 23

Fisher information matrix for the HIV-model has been computed.

p 1 2 3 4 5 6 7 8

time (sec) 0.054 0.015 0.075 0.472 1.66 5.52 14.05 29.81

p 9 10 11 12 13 14 15 16

time (sec) 53.49 80.02 100.4 105.8 96.74 74.01 47.15 24.09

p 17 18 19 20 21 22

time (sec) 10.69 3.64 1.02 0.211 0.034 0.0041

Computing the minimal selection scores needed for (31) requires to consider only
(
23
1

)
+(

23
2

)
+

(
23
3

)
+

(
23
20

)
+

(
23
21

)
+

(
23
22

)
= 2

((
23
1

)
+

(
23
2

)
+

(
23
3

))
= 4094 cases. In Figures 2(a), we show

the curves given by (30) and (31), whereas in Figures 2(b), also the corresponding regression
lines are depicted. Table 6 shows the time it takes on a laptop computer with an Intel c©

CoreTM2 Duo processor using a MATLAB programm to compute αmin(p), p = 1, . . . , 22,
once the 23 × 23 Fisher information matrix for the nominal parameter vector q0 has been
computed.

Figure 3 is the same as Figure 2(b), but for p = 1, . . . , 11. The curves (30) respectively
(31) can be used to determine p such that the selection score αmin(p) is smaller than a
given upper bound. From Figure 3 we can see that in order to have αmin(p) < 5 we should
choose p ≤ 8, which is correct according to each of the two curves (see Table 5). In order to
have αmin < 10 the curves suggest p ≤ 9, which is not quite correct, because according to
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Figure 3: Minimal selection scores (crosses) and and exponential approximation (30) (grey solid line) for p =

1, . . . , 11.

Table 7: The top 5 parameter vectors θ ∈ R11 selected according the the criterion of minimal condition number

for the Fisher information matrix.

Parameter vector θ κ(F(θ0)) α(θ0)

(x0
1, x0

2, λ1, ε1, f, m1, m2, NT , λE , dE , δE) 1.735×106 1.908×103

(x0
1, x0

2, λ1, ε1, f, m1, m2, NT , λE , bE , δE) 1.738×106 1.897×103

(x0
1, x0

2, λ1, ε1, f, m1, m2, c, λE , dE , δE) 1.744×106 1.908×103

(x0
1, x0

2, λ1, ε1, f, m1, m2, c, λE , bE , δE) 1.747×106 1.896×103

(x0
2, x0

5, λ1, ε1, f, m1, m2, c, λE , dE , δE) 1.788×106 1.910×103

Table 5 we have αmin(9) = 10.5, so that we should choose p ≤ 8. In Figure 4 we graph (in
logarithmic scales) the condition number κ(Fp(θ0)) of the corresponding Fisher information
matrix versus the smallest selection score αmin(p) for p = 1, . . . , 22. It is clear from Figure 4
that the condition numbers for the Fisher information matrix corresponding to the selected
parameter vector θ ∈ Rp does not show a monotone behavior with respect to p. We could
also determine the selection of parameters according to the criterion of minimal condition
number for the corresponding Fisher information matrix. In Table 7 we present the best
5 selections θ ∈ R11 according to this criterion together with the condition numbers of the
Fisher information matrix and the corresponding selection scores.

In Table 8 we examine the effect that removing parameters from an estimation has in
uncertainty quantification. The coefficient of variation (CV) is shown for each parameter
(see (16)). Five cases are considered:

(i) The parameter vector

θ(18) =
(
x0

2, x
0
5, λ1, d1, ε1, k1, λ2, d2, f, k2,m1, ε2, c, λE , dE ,Kd, δE

)T
,

which is the sub-vector in R18 with the minimal selection score.

(ii) The parameter vector
θ(5,1) =

(
x0

5, λ1, d1, k1, ε2
)T

,
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Figure 4: Condition number κ(Fp(θ0)) versus minimal selection score αmin(p) for the HIV-model, where θ ∈ Rp,

is the sub-vector of (28) with the minimal selection score, p = 1, . . . , 22. Both axes are in logarithmic scale.

which is the sub-vector of θ(18) in R5 with the minimal selection score.

(iii) The parameter vector
θ(5,2) =

(
x0

1, λ1, k1, δ, ε2
)T

,

which is the sub-vector in R5 of q as given by (28) with the minimal selection score.

(iv) The parameter vector
θ(5,3) =

(
ε1, λ2,m1, ε2, λE

)T
,

which is the sub-vector of θ(18) in R5 with the maximal selection score.

(v) The parameter vector
θ(5,4) =

(
m1, bE ,Kb, dE ,Kd

)T
,

which is the sub-vector in R5 of q as given by (28) with the maximal selection score.

We see that here are substantial improvements in uncertainty quantification when considering
θ(5,1) instead of θ(18). However, just taking a considerably lower dimensional sub-vector of
θ(18) in R5 does not lead necessarily to a drastic improvement of the estimate.
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Table 8: Coefficient of variation (CV) of the parameter vectors for the HIV-model as listed above

CV for

Parameter θ(18) θ(5,1) θ(5,2) θ(5,3) θ(5,4)

x0
1 — — 4.09×10−2 — —

x0
2 3.80 — — — —

x0
5 1.58×101 3.43×10−1 — — —

λ1 8.19×10−1 3.56×10−1 1.13×10−1 — —

d1 9.39×10−1 3.94×10−1 — — —

ε1 1.26×102 — — 8.49 —

k1 7.67×102 8.17×10−2 9.57×10−2 — —

λ2 4.74×101 — — 9.99 —

d2 4.62×101 — — — —

f 2.51×102 — — — —

k2 7.53×102 — — — —

δ — — 3.29×10−1 — —

m1 2.29×103 — — 9.85×102 2.10×101

ε2 1.63×102 1.11×10−1 9.33×10−2 6.34 —

c 7.74×102 — — — —

λE 2.18×103 — — 9.83×102 —

bE — — — — 1.22×104

Kb 2.55×103 — — — 4.62×103

dE 4.56×102 — — — 1.16×104

Kd 1.98×103 — — — 4.40×103

δE 1.72×103 — — — —

α(·) 5.05×103 6.47×10−1 3.75×10−1 1.39×103 1.80×104
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5.2 The CVS-model

For this model we take as the nominal parameters the following estimates obtained in [45]
using data obtained at bicycle ergometer tests (for a description and units see Table 2):

c` = 0.02305, cr = 0.04413, cas = 0.01016,
cvs = 0.6500, cap = 0.03608, cvp = 0.1408,

R` = 0.2671, Rr = 0.04150, α` = 30.5587,
αr = 28.6785, β` = 25.0652, βr = 1.4132,

γ` = −1.6744, γr = −1.8607, K = 16.0376,
κ = 0.05164, M0 = 0.35, ρ = 0.011,

Ca,O2 = 0.2, qas = 163.047, Vtot = 5.0582,

Rrest
p = 1.5446, Arest

pesk = 177.682, Rexer
p = 0.3165,

Aexer
pesk = 254.325.

For the estimates given above measurements for Pas, H and Q` were available. The sampling
times tj for the measurements of Pas and H were uniformly distributed on the time interval
from 0 to 10 minutes with tj+1 − tj = 2 seconds, i.e., 601 measurements for Pas and H.
The measurements for Q` were obtained by Doppler echo-cardiography and consequently
were much less frequent (only 20 measurements) and also irregularly distributed. In the
following we shall consider Pas as the only measured output of the system, i.e., we have
f(t; θ) = Pas(t; θ). The variance of the measurement errors was roughly estimated to be
σ2
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Figure 5: The Pas-component of the solution of system (20) with the nominal parameter values and the Pas-

measurements.

The equilibria xrest and xexer are given in Table 9 (for units see Table 2).
As for the HIV-model also in case of the CVS-model the Fisher information matrix F25(q0)

at the nominal values of the parameters (27) is non-singular, but highly ill-conditioned:

condF25(q0) = 2.5755× 1031.
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Table 9: The equilibria xrest and xexer for the CVS-model.

variable Pas Pvs Pap Pvp S` σ` Sr σr Rs H

xrest 105.595 4.277 12.474 5.367 64.675 0 3.886 0 22.020 78.85

xexer 122.115 3.595 10.441 7.844 88.092 0 5.293 0 14.445 107.4

Therefore we can also delete the regularity test for the Fisher information matrix in the
selection algorithm in case of the CVS-model. In Figure 7 we show the minimal selection
scores for p = 3, . . . , 20, whereas in Table 10 we list the minimal selection scores αmin(p),
p = 1, . . . , 24. Table 10 clearly shows the effect of the Fisher information matrix F25 extreme

Table 10: Minimal selection scores αmin(p), p = 1, . . . , 24, for the CVS-model.

p 1 2 3 4 5 6

αmin(p) 9.397×10−4 2.042×10−2 5.796×10−2 1.096×10−1 2.315×10−1 3.299×10−1

p 7 8 9 10 11 12

αmin(p) 4.340×10−1 6.251×10−1 8.018×10−1 1.084 1.723 3.238

p 13 14 15 16 17 18

αmin(p) 6.336 17.13 37.31 59.37 2.224×102 4.301×102

p 19 20 21 22 23 24

αmin(p) 1.015×103 1.265×105 3.038×105 2.396×1031 1.834×1034 2.459×10108

ill-conditioning. We see an extreme increase of the selection score from 3 · 105 at p = 21 to
2.4 · 1031 at p=22. This is also reflected in Figure 6 which clearly shows that there is no
reasonable approximation of log

(
αmin(p)

)
, p = 1, . . . , 24, by a regression line. However, a

regression line makes sense for p = 1, . . . , 21 as can be see from Figure 6. In Figure 7 we
depict the minimal selection scores αmin(p), p = 2, . . . , 19, together with the approximating
exponential functions

αmin(p) ≈ 0.00670e0.580p, p = 1, . . . , 19. (32)

obtained from the regression line for p = 1, . . . , 19 (solid grey line) and

αmin(p) ≈ 0.00799e0.610p, p = 1, . . . , 19. (33)

obtained for p = 2, 3, 4, 17, 18, 19 (dashed grey line).
In Table 12 we present the sub-vector θ ∈ R10 of q given by (27) with the minimal

selection score together with the coefficients of variation. In Figure 8 we depict the classical
sensitivities for the chosen sub-vector θ ∈ R10 (black solid lines) and the sensitivities for the
other 15 parameters (grey dashed lines). The right panel is a blow up for the sensitivities with
values between −0.1 and 0.1. We see that the algorithm chooses predominantly parameters
with larger sensitivities.
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Figure 6: Logarithm of the minimal selection scores, p = 1, . . . , 24, for the CVS-model.

Table 11: Time for computing θ ∈ Rp with the minimal selection score on a laptop computer, once the 25 × 25

Fisher information matrix for the CVS-model has been computed.

p 1 2 3 4 5 6 7 8 9

time (sec) 0.0038 0.018 0.104 0.564 2.364 7.848 21.24 46.60 88.31

p 10 11 12 13 14 15 16 17 18

time (sec) 139.7 188.3 211.1 208.9 172.9 123.1 71.41 36.10 14.92

p 19 20 21 22 23 24

time (sec) 5.137 1.382 0.329 0.093 0.0645 0.0005

Table 12: Coefficients of variance for the sub-vector θ ∈ R10 with the minimal selection score.

θ ∈ R10 c` α` αr γ` γr ρ qas Vtot Rrest
p Arest

pesk

CV 0.465 0.087 0.172 0.353 0.622 0.114 0.454 0.290 0.248 0.213

αmin(10) 1.084
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6 Concluding Remarks

As we have noted, inverse problems for complex system models containing a large number
of parameters are difficult. There is great need for quantitative methods to assist in posing
inverse problems that will be well formulated in the sense of the ability to provide parameter
estimates with quantifiable small uncertainty estimates. We have introduced and illustrated
use of such an algorithm that requires prior local information about ranges of admissible
parameter values and initial values of interest along with information on the error in the
observation process to be used with the inverse problem. These are needed in order to
implement the sensitivity/Fisher matrix based algorithm.

Because sensitivity of a model with respect to a parameter is fundamentally related to
the ability to estimate the parameter, and because sensitivity is a local concept, we observe
that the pursuit of a global algorithm to use in formulating parameter estimation or inverse
problems is most likely a quest that will go unfulfilled.
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[23] M. Burth, G.C. Verghese, and M. Vélez-Reyes, Subset selection for improved parameter
estimation in on-line identification of a synchronous generator, IEEE T. Power Syst. 14
(1999), 218 – 225.

[24] K.P. Burnham and D.R. Anderson, Model Selection and Multimodel Inference: A Prac-
tical Information-Theoretic Approach, Springer, Berlin, Heidelberg, New York, 2002.

[25] K.P. Burnham and D.R. Anderson, Multimodel inference: Understanding AIC and BIC
in model selection, Sociological Methods and Research 33 (2004), 261 – 304.

[26] D.S. Callaway and A.S. Perelson, HIV-1 infection and low steady state viral loads, Bul-
letin of Mathematical Biology 64 (2001) 29 – 64.
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