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Abstract

We present a framework for modeling the spread of pathogens throughout a pop-
ulation and generating policies that minimize the impact of those pathogens on
the population. This framework is used to study the spread of human viruses be-
tween cities via airplane travel. It combines agent-based simulation, mathematical
analysis, and an Evolutionary Algorithm (EA) optimizer. The goal of this study
is to develop tools that determine the optimal distribution of a vaccine supply in
the model. Using plausible benchmark vaccine allocation policies of uniform and
proportional distribution, we compared their effectiveness to policies found by the
EA. We then designed and tested a new, more effective policy which increased the
importance of vaccinating smaller cities that are flown to more often. This “im-
portance factor” was validated using U.S. influenza data from the last four years.

Key words: epidemiology, evolutionary algorithm, influenza, migration,
vaccination.

1. Introduction

At the beginning of each influenza season, there are widespread concerns in
the U.S. about the supply and distribution of the latest vaccine. Public fear is fu-
elled by stories of ineffective influenza vaccine batches, a limited availability of
the vaccine, and deadly new strains that could possibly become pandemic. Iden-
tifying the urgent need for an effective vaccination policy, this paper presents a
novel framework for modeling the spread of pathogens throughout a population
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and a way to generate and evaluate policies that minimize the impact of those
pathogens on the population. This framework is a combination of agent-based
simulation, mathematical analysis, and a sophisticated optimization tool.

The objective of our model is to study of the spread of human viruses between
cities via air travel. Previous continuous models of the spread of disease between
cities include Rvachev and Longini [26], Hyman and LaForce [16], Colizza, et al.
[9], and Grais, et al. [11]. These types of epidemiological models use differential
equations with mass action [1, 20, 25] or migration [2, 18] coupling terms be-
tween subpopulations. Another approach is in agent-based simulations of disease
spread, such as [21, 10]. While these models fold the transport between weakly
connected subpopulations into the existing model, we layer the model into two
parts. We use an agent-based simulation to model the movement between the
subpopulations and differential equations to govern the state of the agents within
each subpopulation. The complete simulation is parallelized by running each is-
land (subpopulation) on a separate computer processor.

We extend the model to include a supply of vaccine, which is to be distributed
in an optimal fashion. By mathematical analysis of this model, we determine the
feasibility of a vaccination policy. Using a sophisticated in-house optimization
toolkit [27, 28], based on Evolutionary Algorithms (EA), we search for vacci-
nation policies that minimize the number of infected people. We compare these
policies to plausible benchmark policies to verify that the EA policies are more
effective. Analysis of the EA policies indicates that the vaccine is generally dis-
tributed to (1) the city of origin for the virus, (2) cities that are traveled to most
often, and (3) smaller cities. The latter observation is most surprising and counter-
intuitive.

Finally, we design a new benchmark policy to improve upon the EA results,
based on the three observations given above. This new policy is superior to all
of our benchmark policies and the EA-generated policies. The key to the perfor-
mance is an “importance factor”, which emphasizes the vaccination of small cities
that are flown to most often. Confirmation of this “importance factor” is provided
by real-world data that monitored the spread of the influenza virus during the win-
ters of the last four years. We believe this new policy is quite general. However,
if the model changes sufficiently, new policies will eventually be required. In that
case the EA is always available to guide the human in the creation of the new
policies for changing situations.
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2. The Model

Our virus spread model has two basic levels – an inter-city level, called the
“micro-level”, and the intra-city level, called the “macro-level” or air-travel model.
The micro-level model is governed by differential equations (the island part of the
model, e.g., see [4, 30]). Connecting the islands is the macro-level model, using
a Markov chain probability transition matrix, that simulates the intra-city traffic
by airline flights (the weakly-connected part of the model). The combination of
levels allows us to model roughly 55 million people within the United States.

2.1. The Micro-Level Model

To simulate the disease spread within a city, we use a compartmental model
that assumes the population transitions between Susceptible, Asymptomatic, In-
fected, and Recovered states, called the SAIR model. The Susceptible, Infected,
and Recovered states are standard states of health used in SIR models. We also use
an Asymptomatic state, which represents the period of time after initial infection
that a person in unaware of the infection (due to a complete lack of symptoms)
but is contagious [13]. We also assume that a person in that state may fly in the
macro-level model, while an infected person can not fly.

The variables that represent the proportion of the city’s population in each state
are: the susceptible states, the asymptomatic statea, the infected statei, and the
recovered stater. The proportions are changed each time-step of the simulation
according to the following system of differential equations:

ds
dt = δ ′r −αs
da
dt = αs−µa
di
dt = µa−δ i
dr
dt = δ i−δ ′r.

(1)

The parametersα, µ, δ , andδ ′ are the probabilities of an individual transitioning
between states, on a daily basis. We can think ofα as the infection rate, 1/µ as
the expected asymptomatic time of the virus (how long an individual is contagious
before showing symptoms), 1/δ as the expected length of time a person spends
infected until recovery, and 1/δ ′ as the expected time it takes for an individual to
lose resistance to the virus. The population in the absence of air travel is assumed
to be constant and we have the relationships+ a+ i + r = 1. The parametersµ,
δ , andδ ′ are constants. Figure 1 gives a diagram of the health states and the
transitions between them.
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Figure 1: SAIR State Diagram

The infection rate (α) is related to the proportion of the population that can
infect an individual (i.e.a andi). The probability of an individual being infected is
related to the number of people the individual interacts with (b̄) and the probability
the individual will be infected from an encounter with an infected person (β ).
Sinceβ is the probability of being infected by an infected neighbor, 1−β is the
probability of not being infected by an infected neighbor. We knowa+ i is the
proportion of the population that is contagious andb̄ is the number of neighbors a
person has, so there are approximately(a+ i)b̄ infected neighbors for a particular
person. This yields a probability of not being infected of(1−β )(a+i)b̄. But since
we are interested in the probability of being infected, we use the complement of
the probability of not being infected forα. This yields the following equation
which can be interpreted to be the probability an individual will be infected by at
least one of his/her̄b neighbors:

α = 1− (1−β )(a+i)b̄. (2)

In the simulation, we use this expression to compute the infection rate.
The constant parametersµ, δ , andδ ′ are assumed to be the same for each

city. The infection rate (α) is the only variable that could change between cities,
because it depends on̄b (which is related to the population density). Our airports
are in large U.S. cities, so there shouldn’t be significant changes inb̄. Further, the
ODE model is not sensitive to small changes inα (the dynamics are qualitatively
similar) and the infection spread will just slightly speed up or slow down. There-
fore, small changes in that parameter should not improve the accuracy drastically.
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We continue with a brief overview of the steady state solutions of this system
and their stabilities. These fixed points will be written in the form(s,a,i, r). For
the analysis of the behavior of the differential equations, we use the following
approximation for smallβ and(a+ i)b̄,

α ≈ 1− (1−β b̄(a+ i)) = β b̄(a+ i). (3)

The disease free equilibrium (DFE), which represents the die out of the dis-
ease, is the point(1,0,0,0). A common method of determining its local stability
is linearizing the system about the steady state. The resulting eigenvalues are

λ1 = 0
λ2 = −δ ′

λ3 =
β b̄−(δ+µ)+

√
(β b̄−(δ+µ))2+4(β b̄(δ+µ)−µδ )

2

λ4 =
β b̄−(δ+µ)−

√
(β b̄−(δ+µ))2+4(β b̄(δ+µ)−µδ )

2 .

(4)

We have local stability when these eigenvalues are nonpositive, orβ b̄(µ+δ )
µδ < 1.

The other steady state solution represents the endemic equilibrium(se,ae, ie, re),
which is given by

se = µδ
β b̄(δ+µ)

ae = 1−se
1+µ

δ + µ
δ ′

ie = µae
δ

re = µae
δ ′ .

(5)

To find the replacement numberR, we follow Hethcote, et al. [12]. Assuming
that a person is contagious in the asymptomatic and infected states, a person is
infective for about 1/µ + 1/δ days. If a person is contagious, he/she will infect
approximatelyβ b̄ people, so we can estimateRas follows:

R =
β b̄(δ + µ)

µδ
=

1
se

. (6)

WhenR< 1, the virus dies off. This agrees with the local stability analysis of the
DFE. WhenR> 1, the virus spreads.

2.2. The Macro-Level Model

The micro-level model for the cities provides the island part of the weakly
connected island modeling framework, but we need to provide the connections
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between the islands. We are interested in the effect of airplane travel between
cities as a means of spreading a virus. To model this, we searched for data on
airplane travel in the United States to figure out which cities have the biggest
airports. As a first-order approximation, we concentrated on the the top 12 U.S.
airports. Table 1 shows the 12 cities chosen ordered by population size with each
city’s yearly total passengers.

City Pop. Size Passengers/Year % of Total
Las Vegas 1.314 35.009 6.742
Denver 1.985 35.651 6.866
Minneapolis 2.389 32.628 6.284
Phoenix 2.907 35.547 6.846
Atlanta 3.500 76.876 14.806
Houston 3.823 33.905 6.530
Detroit 3.903 32.477 6.255
Dallas 4.146 52.828 10.174
San Francisco 4.767 31.456 6.058
Miami 4.919 30.060 5.789
Chicago 8.307 66.565 12.820
Los Angeles 13.296 56.223 10.828
Total 55.256 519.229 100.000

Table 1: Cities Ordered by Population Size (in millions)

We used this information to estimate the percentage of passengers for each
city, which yielded a initial probability distribution for allocating planes to cities.
We then computed the frequency of flights between the cities. We booked non-
stop flights between each city on a particular Wednesday to estimate the number
of flights between each city on http://www.expedia.com. Since there are twelve
cities, we booked 132 (11×12) different flights and counted the number of non-
stop flights between the cities. Table 2 shows the number of flights between each
city.

To convert the number of flights into transition probabilities, we divide each
entry in the matrix in Table 2 by its row sum, yielding the probabilityQi j of
traveling from the row cityi to the column cityj. Table 3 shows the resulting
Q-matrix. Note that the table is not symmetric about the diagonal, soQi j 6= Q ji .
Q is ergodic and has an equilibrium distribution.

For the twelve cities, the number of daily flights is 1979, (see Table 2). Ac-
cording to the fleet composition of United Airlines we assume that each plane can
carry between 160 and 300 passengers. Assuming that the average flight carries
roughly 130 passengers (at least 43% to 82% of capacity), this yields about 95
million passengers per year. Since we are modeling roughly 18% of the airport
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City Atl Chi LA Dal Den Pho LV Hou Minn Det SF Mia Total

Atl 0 21 18 23 23 14 10 22 17 16 15 19 198
Chi 20 0 18 22 18 20 18 19 22 22 22 19 220
LA 17 18 0 21 18 21 16 15 12 7 17 14 176
Dal 21 22 20 0 19 18 19 18 17 14 21 9 198
Den 22 21 17 20 0 20 20 18 21 10 18 8 195
Pho 14 20 19 20 20 0 11 16 16 12 22 2 172
LV 11 17 16 19 20 11 0 7 8 7 18 3 137
Hou 23 18 15 16 18 16 15 0 9 9 13 8 160
Minn 18 22 11 17 20 16 8 9 0 15 8 3 147
Det 17 21 7 14 10 12 7 9 14 0 3 6 120
SF 12 22 18 20 19 22 17 13 8 3 0 6 160
Mia 20 17 14 9 9 2 3 8 3 6 5 0 96
Total 195 219 173 201 194 172 144 154 147 121 162 97 1979

Table 2: Number of Flights Between Each City

Atl Chi LA Dal Den Pho LV Hou Minn Det SF Mia

Atl 0.000 0.106 0.091 0.116 0.116 0.071 0.051 0.111 0.086 0.081 0.076 0.096
Chi 0.091 0.000 0.082 0.100 0.082 0.091 0.082 0.086 0.100 0.100 0.100 0.086
LA 0.097 0.102 0.000 0.119 0.102 0.119 0.091 0.085 0.068 0.040 0.097 0.080
Dal 0.106 0.111 0.101 0.000 0.096 0.091 0.096 0.091 0.086 0.071 0.106 0.046
Den 0.113 0.108 0.087 0.103 0.000 0.103 0.103 0.092 0.108 0.051 0.092 0.041
Pho 0.081 0.116 0.111 0.116 0.116 0.000 0.064 0.093 0.093 0.070 0.128 0.012
LV 0.080 0.124 0.117 0.139 0.146 0.080 0.000 0.051 0.058 0.051 0.131 0.022
Hou 0.144 0.113 0.094 0.100 0.113 0.100 0.094 0.000 0.056 0.056 0.081 0.050
Minn 0.122 0.150 0.075 0.116 0.136 0.109 0.054 0.061 0.000 0.102 0.054 0.020
Det 0.142 0.175 0.058 0.117 0.083 0.100 0.058 0.075 0.117 0.000 0.025 0.050
SF 0.075 0.138 0.113 0.125 0.119 0.138 0.106 0.081 0.050 0.019 0.000 0.038
Mia 0.208 0.177 0.146 0.094 0.094 0.021 0.031 0.083 0.031 0.063 0.052 0.000
Total 1.259 1.419 1.073 1.244 1.203 1.022 0.830 0.911 0.853 0.703 0.943 0.540

Table 3: Probability Transition MatrixQ

traffic, this is consistent with the estimate of 519 million passengers per year (see
Table 1).

The connection between the macro-level and micro-level models is as follows.
We assume a well–mixed population and we randomly sample a group to migrate
from city to city. Homogeneity inside city populations is a standard assumption in
these models (e.g., see [8]). Over many trials, the average of the randomly picked
group should represent the properties of the population. Specifically, the arrivals
deplane, and then a random sample of the population gets on the plane. Hence,
at the beginning of each flight, the proportions of susceptible, asymptomatic, and
recovered (but not infected) people on the plane are a sample of the population of
the city the plane currently resides in. Infected people are assumed to be too sick
to fly. We also do not model the spread of the disease within the airplane itself.
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3. Introducing Vaccines

Thus far our model has not included any mechanisms for containment. There
are many types of containment, including vaccines, anti-viral medications, and
quarantine. In this paper we focus on vaccines, and extend our mathematical
model to include vaccinations.

We model vaccinated individuals as people with a decreased probability of be-
ing infected by an infected neighbor. So we effectively have two subpopulations in
our model - vaccinated and unvaccinated people. We make a simplifying assump-
tion that vaccination has no effect on the asymptomatic and infected times. With
that simplifying assumption, we only need to change the infection rateα. Let f
be the proportion of the population that is vaccinated (0≤ f ≤ 1). We assumef
applies to each health state equally - that isf is the proportion of the susceptible
people that are vaccinated as well as the proportion of the asymptomatic people
that have been vaccinated, etc. Letβ be the probability an unvaccinated person
is infected by an infected neighbor andβ ′ < β be the probability a vaccinated
person is infected by an infected neighbor. Therefore, we have two infection rates
- one for the unvaccinated (α) and the other for the vaccinated (α ′) proportions of
the population,

α = 1− (1−β )(a+i)b̄

α ′ = 1− (1−β ′)(a+i)b̄. (7)

The average probability of infection̄α is given by

ᾱ = f α ′ +(1− f )α. (8)

As before, we can approximatēα as

ᾱ ≈ (a+ i)b̄( f β ′ +(1− f )β ). (9)

Hence, the new differential equations model with vaccination is

ds
dt

= δ ′r − ᾱs

da
dt

= ᾱs−µa

di
dt

= µa−δ i

dr
dt

= δ i−δ ′r. (10)
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The disease free equilibrium (DFE) is the point(1,0,0,0). The eigenvalues
from the linearization about this point is

λ1 = 0
λ2 = −δ ′

λ3 =
b̄ω−(δ+µ)+

√
(b̄ω−(δ+µ))2+4(b̄ω(δ+µ)−µδ )

2

λ4 =
b̄ω−(δ+µ)−

√
(b̄ω−(δ+µ))2+4(b̄ω(δ+µ)−µδ )

2 ,

(11)

with ω =( f β ′+(1− f )β ). The DFE has local stability whenb̄( f β ′+(1− f )β )(µ+δ )
µδ <

1.
The other steady state solution represents the endemic equilibrium, which is

given by
se = δ µ

b̄(δ+µ)( f β ′+(1− f )β )

ae = 1−se
1+µ

δ + µ
δ ′

ie = aeµ
δ

re = aeµ
δ ′ .

Then, the replacement numberR is

R = b̄( f β ′ +(1− f )β )(
1
µ

+
1
δ

). (12)

As before, whenR< 1, the virus dies off. WhenR> 1, the virus spreads.
It is helpful to quantify the lower limit for an effective vaccination ratefe.

WhenR= 1,

fe =

δ µ
b̄(δ+µ)

−β

β ′−β
. (13)

We can define the “vaccine feasibility region” as follows:

0≤ fe < f ≤ 1. (14)

If fe < 1, then it is feasible to stop the spread of the virus. Accomplishing this
requires that a fractionfe < f ≤ 1 of the population be vaccinated. Iff < fe
or fe > 1, then the vaccine merely slows the spread of the virus. An “effective”
vaccine can stop the virus spread by causing herd immunity and the disease will
die out. Vaccines that have this capability are in the vaccine feasibility region.
Vaccines not in this region will only lower the endemic threshold of the population
(the stable state of infected individuals).
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Figure 2 shows an example of a theoretically derived feasibility region for a
reasonable choice of parameter settings. The parameter settings are inspired by a
typical influenza virus. Withµ = 0.35, the asymptomatic time is almost 3 days.
The period of infection is roughly one week (δ = 0.15). Finally, we assume that
it takes roughly three years before you become susceptible again (δ ′ = 0.001).
The upper left area above the curve in black is the region of feasible vaccine
efficacy, where the efficacy is measured byβ ′ (the probability an infective will
infect a vaccinated susceptible). Note that even if the vaccine is perfect (β ′ = 0),
then greater than 62% of the population must be vaccinated to eliminate the virus
spread. As the vaccine efficacy decreases (higherβ ′), then that fraction increases.
Onceβ ′ > 0.012, vaccines will merely slow the spread of the virus.

betap

f

Feasible
Region

0

0.2

0.4

0.6

0.8

1

0.005 0.01 0.015 0.02 0.025 0.03

fe

β’

Figure 2: Theoretical Vaccine Feasibility Region (b̄= 9, µ = 0.35,β = 0.03,δ = 0.15,δ ′ = 0.001)

We compared the theoretical prediction with our simulation. We ran our sim-
ulation for 300 days (using the same parameter settings), and monitored the total
number of “sick days” (we do not model births or deaths in our simulation). Fig-
ure 3 summarizes the results of these experiments. This graph was generated
by running the simulation withf = 0.0 to f = 1.0 in increments of 0.01 and
with β ′ = 0 to β ′ = β = 0.03 in increments of 0.001. The colors represent the
sum of sick days taken after 300 days of simulation time (i.e. the sum of the
infected population after each day for 300 days). Inside the feasibility region the
virus resulted in less than one million sick days. Outside of that region the number
of sick days increased enormously. The boundary of the region represents a phase
transition.
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Figure 3: Experimental Vaccine Feasibility Region (b̄ = 9, β = 0.03, µ = 0.35, δ = 0.15, δ =
0.001)

As a brief implementation note, our simulation is written in C++, using MPI
to allow for the use of multiple processors. The simulation was thoroughly veri-
fied and validated to ensure agreement with the differential equation steady-state
distribution and the Markov chain equilibrium distribution.1 We used a Beowulf
cluster with 13 processors. One processor was used for each of the 12 cities. A
thirteenth processor was used to control the communication (the flights) between
each city. One year of simulation time takes less than one half a minute of real
time.

4. Benchmark Vaccination Policies

In order to better understand the effects of vaccination on our model, we cre-
ated several benchmark vaccination policies and examined their performance over
several scenarios. In each scenario the virus starts as a small population of 100
asymptomatic people in one city. In order to examine the effects of city popula-
tion size, we chose three cities – Las Vegas, Atlanta and Los Angeles. Las Vegas

1In addition, a separate StarLogo implementation was written, and all results were within 1%
of the C++ version

11



is the smallest city, while Los Angeles is the largest. Atlanta is a city of average
size.

For each city we also examined three vaccination delays (from the day the
infection starts) of 15, 30, and 45 days. These delays can be considered to be a
sum of two effects, (1) a delay in giving vaccination shots, and (2) a delay in how
long it takes for the vaccine to take effect.

Using the influenza virus parameters mentioned earlier in the paper, the pro-
portion of the population that must be vaccinated to ensure that the virus is quickly
eliminated isf > fe ≈ 92% (assumingβ ′ = 0.01). Since the total population size
is roughly 55 million people, theory indicates that at least roughly 51 million vac-
cines are required to quickly eliminate the virus. However, this is unlikely to be
the case, so we consider having the number of vaccinesV range from 5 million to
55 million, in increments of 5 million. Hence, when there are less than 50 million
vaccines, it is impossible to completely stop the spread of the virus. Instead, our
goal is to allocate the vaccines in such a way as to minimize the impact. Our mea-
sure of “impact” is the total number of sick days taken by the population over 450
days.

We first considered two possible benchmark vaccination policies. The “uni-
form” vaccination strategy allocates 1/Nof the number of vaccines to each of the
N cities. In this model,N = 12. The “proportional” vaccination strategy allocates
vaccines according to population size (e.g., a city that has twice as many people
will receive twice as many vaccines). We also considered a possible modification
to these two policies. Preliminary runs indicated that fully vaccinating the city of
viral origin was important. This turned out to always hold, so our policies were
modified as follows:

Name Description

Fully vaccinate the city of origin,
Uniform uniformly distributing the rest

to the remaining cities
Fully vaccinate the city of origin,

distributing the rest to the
Proportional remaining cities according to their

proportion total population minus
the population of the city of origin.

Figure 4: Two Benchmark Vaccine Allocation Policies
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Our results were remarkably consistent, regardless of the city of origin and
the vaccine delay. Hence, in this paper we present only the results for Atlanta
with a 30 day delay in vaccination. In Figure 5, we see that the proportional and
uniform allocation policies are roughly equivalent up to 20 million vaccines.2 Be-
tween 25 and 40 million vaccines, the uniform allocation policy was considerably
better than the proportional policy. Above 40 million vaccines, the two policies
are roughly equivalent again. Overall, the uniform allocation of vaccines was
definitely superior.

This result is counter-intuitive. There is a two-fold explanation. First, the
probability of infection depends on theproportionof asymptomatic and infected
people. Hence, having the virus start as a small population of 100 asymptomatic
people yields a smaller proportion in larger cities. One can consider this to be
a “dilution factor” and explains why outbreaks appear to spread much faster in
very small communities. Second, the passengers on a plane are a representative
sampling of the city that the plane is in. The odds of an asymptomatic person
boarding the plane are much higher in a small city. Hence, it is actually better to
vaccinate smaller cities.

350
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Figure 5: Atlanta Uniform and Proportional Baselines Comparison with 30 Day Delay (β = 0.03,
β ′ = 0.01, b̄ = 9, µ = 0.35,δ = 0.15,δ ′ = 0.001)

Given this explanation, we hypothesized that an “inverse proportional” allo-
cation policy might be even more effective (smaller cities get proportionally more

2All data points are averaged over 100 independent runs.
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vaccine). Our algorithm for computing inverse proportions is as follows [23]. Let
N be the total population of the cities,ni be the population of cityi, andpi be the
proportion of the total population for cityi, computed aspi = ni/N.

Let pmaxbe the proportion of the population of the largest city,ui = 1− pi (the
proportion of the population not in cityi), andmbe the minimum of the values of
ui (the proportion of the population not in the largest city or 1− pmax). Then let
wi = ui/m, andW = ∑12

i=1 wi. Theninvi = wiW are the inverse proportions of the
city populations. In this model,

invi =
1− pi

1− pmax

12

∑
i=1

1− pi

1− pmax
. (15)

The algorithm is shown in Figure 6.

Name Description

Fully vaccinate the city of origin,
distributing the rest to the remaining

Inverse cities such that each city gets a vaccine
Proportional supply inversely proportional to its

proportion of the population (smaller
cities get more than larger cities).

Figure 6: Inverse Proportional Baseline Vaccine AllocationPolicy

Figure 7 shows how the new inverse proportional vaccine allocation policy
compares with proportional and uniform vaccine allocation policies. The inverse
proportional policy is competitive with or better than the prior two policies.

5. Evolved Vaccination Policies

Are there even better vaccination policies? We have a well-defined optimiza-
tion problem, namely, to allocate vaccines such that the number of sick days is
minimized. Hence, we turned to evolutionary algorithms (EAs) to automate our
search for better vaccination policies. EAs have had excellent success at solving
real–world problems such as in forensics [17], stock price forecasting [7], data
compression in wireless sensor networks [22], path planning [35], and evolving
static output feedback controllers [34]. If the EA could find better policies, our
hope was that we could analyze the policies to explain what the EA had discov-
ered.
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Figure 7: Atlanta Inverse Proportional Policy Baseline Comparison with 30 Day Delay

EAs are inspired by evolutionary theory, especially the concept of “survival
of the fittest”. The EA maintains a population of individuals. Each individual
represents a possible solution to a problem. A fitness function converts the rep-
resentation into a real number that measures the quality of the solution. The EA
takes a population of solutions and evolves them to a better fitness level. Selec-
tion serves to focus the search, and exploit the knowledge gained thus far. Genetic
operators provide a random component, allowing for exploration of the search
space. Patel, Longini and Halloran [24] also use an EA to evolve optimal vaccina-
tion strategies. However, their focus is on the optimal allocation of vaccine to five
age groups: pre-school, school, young adults, middle aged adults, and old adults.
Our focus is entirely different (although complementary), since we are concerned
with the optimal allocation of vaccines to geographic regions of the country.

Specifically, we used a (µ, λ ) Evolution Strategy (ES) withµ = 10 parents
creatingλ = 30 children via mutation (described below). Theµ = 10 best children
then constitute the population at the next generation. The basic execution of our
ES is the following:

1) Randomly initialize the population ofµ parents.
2) Evaluate the population using the fitness function.
3) Apply mutation to createλ children.
4) Evaluate the children using the fitness function.
5) Select theµ best children to form the next population.
6) Repeat 3-5 until some termination criteria are met.
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In our case, an individual represents the allocation of vaccines to each of the
twelve cities. We use an integer vector of length twelve,~v = (v1,v2, . . . ,v12),
wherevi represents the number of vaccines allocated to cityi. The values are
constrained such that the sum of the vaccines allocated to each city equals the total
number of available vaccines (V = ∑12

i=1 vi).3 We created a “delta-swap” genetic
operator to mutate the individuals. Two cities swap a random amount of vaccine.
This preserves the constraint thatV = ∑12

i=1 vi. We also constrain the number of
vaccines allocated to a city to be no greater than the population size of that city
(vi ≤ ni).

The details of “delta-swap” are as follows. Two cities are chosen uniformly
randomly (however, the two cities can not be the same). DenoteS as the source
city (not to be confused with the Susceptible state of health), whileD is the city
of destination. LetvS be the amount of vaccine currently at cityS, while vD is
the amount of vaccine at cityD. The amount of vaccine to swap, denoted∆v,
is chosen uniformly from U(0, min(vS, 200000)). In other words, the amount
of vaccine to swap is chosen uniformly between 0 and 200000, or 0 andvS (if
vS < 200000). Finally, ifvD + ∆v < nD the swap occurs and∆v vaccine is added
to D and is subtracted fromS.

All that remains is to measure the “fitness” of an individual. For this appli-
cation, fitness is simply the number of sick days that occur, given the allocation
of vaccines defined by the individual. Since we are minimizing, “better fitness”
means that we want a lower number of sick days. One complication is that our
viral simulation is stochastic. Hence, the fitness must be averaged over a num-
ber of independent trials. If the number is too large, the EA is too slow. If the
number is too small, we can not trust the results (due to variance). We chose an
alternative approach, based on our work where we evolve finite-state machines
in non-deterministic environments [31, 32]. First the EA uses a relatively small
number of trials (10) to estimate the fitness of an individual. If the fitness is bet-
ter than the best fitness ever seen, then the EA re-evaluates that individual over a
larger number of trials (40) . This approach worked quite well. Our termination
criterion was 100 generations, after which the best individual was evaluated over
100 runs of the simulation as with our benchmark policies.

Figure 8 shows the results for Atlanta with a 30 day delay in introducing the
vaccine. The results are very impressive. The policy found by the EA is clearly

3Although our representation is fixed length, our motivation came from the variable length
representation in theproportionalgenetic algorithm as described in [36].
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Figure 8: Atlanta EA and Inverse Proportional Policy Baseline Comparison with 30 Day Delay

superior to our inverse proportional policy.

6. A Better Vaccination Policy

Recall that that EA policies are simply vectors of twelve integers. As such,
the reason for the good performance is not immediately obvious. Hence, we con-
ducted a thorough analysis of a number of good EA policies, and found a number
of commonalities.

First, as expected, the city of origin always received a large number of vac-
cines. Second, (and also expected), the EA gave more vaccine to smaller cities.
This is in line with our inverse proportional policy. However, the EA policy is
superior to the inverse proportional policy. Why is this the case? The key is to
note what information the EA has implicitly available. The first commonality was
based on figuring out the city of origin. The second commonality was based on
the EA taking advantage of population size.4

However, there is a third source of important information that we have not
taken into account, namely, the probability transition matrixQ. When we took
this into consideration we found that the EA was not only focusing on small cities,
but on cities that are flown to most often! TheQ-matrix gives us the likely next

4It is important to clarify that the EA does not reason at this level. However, the EA is perfectly
capable of taking advantage of useful features and structures in the search space. We are providing
a human interpretation of these features and structures.
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location for each plane, so it makes sense that this information is incredibly im-
portant in predicting where the virus spreads from a certain city or cities and thus
contributes greatly to better vaccine allocation policies.

In order to mimic what the EA is doing, we created an “importance factor”.
This factor captures the notion that the cities that are important to vaccinate are
those that are small and are flown to most often. Let~S0 be the initial distribution
of the virus. For example, if the virus starts in Las Vegas, then our initial distri-
bution is~S0 = [0,0,0,0,0,0,1,0,0,0,0,0]. If the virus starts in Atlanta and Las
Vegas, then~S0 = [0.5,0,0,0,0,0,0.5,0,0,0,0,0]. Then~S1 = ~S0 · Q represents
the probability distribution of where the virus will travel, in the next time step.
Let ni be the population size of cityi, and impi denote the importance of cityi,
impi = S1,i/ni.

Cities are then vaccinated in descending order based on their importance.
However, is it necessary to fully vaccinate the important cities? We also noted
that the EA tended to vaccinate roughly 92% of the city population! Recall, that
for the experiments reported in this paper, theory indicated that at least 92% of
the population of a city must be vaccinated, in order to rapidly eliminate the virus
( fe ≈ 92%). The EA clearly learned that providing more vaccine was wasteful,
and that the excess should be distributed to the other cities.

Figure 9 describes a new vaccine allocation policy based on the city of origin,
the predicted importance of a city, and the vaccine efficacy.

Name Description

Fully vaccinate the city of origin, then
vaccinate the rest in order of importance

Markov (those cities most flown to with smaller
population sizes) up to the steady state

level of vaccinationfe

Figure 9: Policy CombiningQ-Matrix, Population Size, and Vaccine Efficacy

Figure 10 shows the results with the new policy. It is competitive with the EA
policy, and is better at 15 million and 20 million vaccines. The only weakness is
at 5 million vaccines. However, it is clear that we have captured and explained
much of the EA policy.
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7. Confirmation of the Model

The key to our new vaccination strategy is the importance factor defined above.
Although we cannot (currently) evaluate the vaccination strategy in the real world,
we realized that we can in fact evaluate the importance factor itself. As stated
above, the importance factor captures the central concept that the virus will have a
greater impact on small cities that are flown to most often. If this importance factor
is correct, it should be consistent with the spread of the real influenza throughout
the U.S.

We examined the spread of the last four influenza seasons, using the CDC
influenza maps. Our twelve cities are based in ten states - Arizona, California,
Colorado, Florida, Georgia, Illinois, Michigan, Minnesota, Nevada, and Texas.
We examined the situation where the influenza became “widespread” in a state
(or states), and then we used the importance factor to predict where the influenza
would spread to next. Widespread influenza activity is defined as “Outbreaks of
influenza or increases in ILI [influenza-like illness] cases and recent laboratory-
confirmed influenza in at least half the regions of the state.”[6]

7.1. 2005/2006 Influenza Season

In week 51 of 2005, the influenza virus reached widespread levels in California
and Arizona (Figure 11). We split the infected percentages between Arizona and
California, dividing it amongst the cities in those states. This gave us an initial dis-
tribution of ~S0 = [0,0,0.3̄,0,0,0.3̄,0,0,0,0,0.3̄,0]. We computed the importance
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factors for each city (state). Three states had importance values much greater
than the rest (Texas, Nevada, and Colorado). In week 52 of 2005 (Figure 12)
and weeks 1 and 2 of 2006, these three states attain and maintain a widespread
influenza activity level. This particular season was not especially virulent.

Figure 11: U.S. Influenza Activity Week Ending December 24, 2005

Figure 12: U.S. Influenza Activity Week Ending December 31, 2005
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7.2. 2006/2007 Influenza Season

These 2005/2006 results are pleasing, but are a bit weak, since the states are
adjacent. The 2006/2007 influenza season, however, was more interesting. In
week 49 of 2006, influenza was widespread in Florida (Figure 13). If we use the
initial distribution ~S0 = [0,0,0,0,0,0,0,0,0,0,0,1], our model predicts that five
states had importance factors much greater than the rest (in order, Georgia, and
then to Colorado, Texas, Nevada, and Minnesota). This influenza is slower to
spread, yet our predictions were surprisingly accurate.

In week 50 of 2006, we see that Georgia and Florida have widespread in-
fluenza conditions, which corresponds to the prediction that Atlanta would be next
(Figure 14). We then have to jump ahead to week 4 of 2007, where Texas and Min-
nesota have become widespread (Figure 15). If we jump ahead another 4 weeks
to week 8 of 2007, we see Colorado is now widespread (Figure 16). Our only
important error was with respect to Nevada, which did not become widespread.
However, it is important to note that these states are not adjacent, so it does seem
reasonable to conclude that the spread was via air travel.

Figure 13: U.S. Influenza Activity Week Ending December 9, 2006

7.3. 2007/2008 Influenza Season

In week 49 of 2007, the influenza was widespread in Texas, so we started
our initial distribution in Houston and Dallas. Our model predicts that the virus
should spread first to Colorado, and then to Nevada, Georgia, Arizona, Minnesota,
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Figure 14: U.S. Influenza Activity Week Ending December 16, 2006

California, Michigan, Illinois, and Florida (in that order). This influenza was
especially virulent – every state became widespread.

In week 1 of 2008, Colorado became widespread. Then, in week 5 of 2008
both Georgia and Arizona were widespread. In week 6 the influenza became
widespread in Nevada, Minnesota, California, Michigan, and Illinois. Finally, in
week 9 Florida became widespread. Our only error was again with respect to
Nevada, which became widespread after Georgia and Arizona.

7.4. 2008/2009 Influenza Season

In week 1 of 2009 the influenza became widespread in Virginia. However,
our model does not include any airports in Virginia, so we could not begin there.
However, the second state to become widespread was Texas in week 3 of 2009.
Hence, we ran the same model as with the 2007/2008 influenza season. This
season was not as virulent – quite a few states never became widespread.

Of the states we model, Colorado became widespread next, in week 4. Then
in week 5 both Nevada and Georgia became widespread. In week 6 Arizona and
Florida became widespread. Finally, California became widespread in week 11.
Minnesota, Michigan, and Illinois never became widespread. Our model has
a minor error in that Minnesota never became widespread, although California
did. However, an investigation of the importance factors showed that the num-
bers for both states were almost identical. Recall that the influenza really started
in Virginia – this quite naturally has an affect on the real-world spread which
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Figure 15: U.S. Influenza Activity Week Ending January 27, 2007

Figure 16: U.S. Influenza Activity Week Ending February 24, 2007

we could not model. This is reflected in our one significant error. Florida be-
came widespread very early in the season, as opposed to very late. Again we
consider this to be caused by Virginia (there are a lot of flights from the Vir-
ginia/Washington D.C./Maryland airports to Florida.
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7.5. 2009/2010 Current Influenza Season

The CDC influenza maps monitor “Influenza-like Illnesses” (ILI), but don’t
separate the different versions. Hence the surveillance reports do not or cannot
subtype influenza A into H1, H3, and H1N1. Due to the longevity of H1N1, and
the mixed data, it is impossible to separate out the normal influenza strains in
order to make predictions.

7.6. Quantitative Confirmation of the Model

In this subsection we quantitatively analyze the accuracy of our predictions.
As an illustrative example, consider the 2008/2009 influenza season. Colorado
became widespread on January 31, both Nevada and Georgia became widespread
on February 7, and both Arizona and Florida became widespread on February 14.
Finally, California became widespread on March 21. Since the CDC maps are
updated weekly, the result is a partial ordering ofr states:CO < NV ≤ GA <
AZ≤ FL < CA wherex < y meansx occurs temporally beforey (note, we adopt
the USPS state abbreviations for conciseness). There are four possible strict total
orderings resulting from the partial ordering:

1. CO< NV < GA< AZ < FL < CA
2. CO< GA< NV < AZ < FL < CA
3. CO< NV < GA< FL < AZ < CA
4. CO< GA< NV < FL < AZ < CA

As shown above, our model uses the importance factors to provide a strict total
ordering ofp states. Because not all states will necessarily become widespread,
r ≤ p. For the 2008/2009 influenza season our model predicts the following total
ordering:CO< NV < GA< AZ < MN < CA< MI < IL < FL.

We now want to create a distance metric from the predicted ordering to the real
world partial ordering. Our distance metric is the minimum number of “2 swaps”
required to make the predicted ordering “consistent” with the real world partial
ordering5. The predicted ordering is consistent if the firstr cities of the predicted
ordering match one of the real world total orderings.

In the case given above, ifMN andFL are swapped in the predicted ordering,
we getCO< NV < GA< AZ < FL < CA< MI < IL < MN. This is consistent
with the real world partial ordering, so the distance of the predicted ordering from

5The 2 swap operator randomly chooses two different states and swaps their positions.
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Influenza Season Model Random Predictions X Statistics
δ µX σX skew(X) Prob(X≤ δ ) Wilcoxon p

2005/2006 2 3.34 0.85 -0.29 12% < 0.00001
2006/2007 2 3.22 0.74 -0.72 14% < 0.00001
2007/2008 1 3.17 0.75 -0.56 2% < 0.00001
2008/2009 1 4.23 1.02 -0.80 1% < 0.00001

Table 4: Quantitative Analysis

reality is one. For the first three influenza seasons (2005/2006, 2006/2007, and
2007/2008) the distance from reality is two, two, and one, respectively. Hence,
all predictions were close to reality, with the last two seasons having the best
predictions. The “δ ” column in Table 4 summarizes those results.

As a baseline comparison, we also created 100 random predictions for each
of the four influenza seasons. If our model is correctly capturing the dynamics
of the real world, the predictions from the model should be significantly better
than predictions provided by random orderings. The random variableX denotes
the distance of the random prediction from the real world. The mean, standard
deviation and skewness ofX are also shown in Table 4, denoted byµX, σX, and
skew(X). In all cases the mean distance of the random distributions is higher than
the prediction created by our model. For the first two influenza seasons the quality
of model prediction is roughly 1.5 standard deviations better than the mean. For
the last two influenza seasons the quality of the model prediction is roughly three
standard deviations better than the mean.

It is helpful to calculate the probability that the random predictions could
match or outperform the quality of the model prediction. Those probabilities are
given in Table 4, under Prob(X≤ δ ). For all four seasons, the probabilities are
12%, 14%, 2% and 1%. Treated as a whole, it is therefore highly unlikely for
random predictions to perform nearly as well as our model.

Although all results indicate that our model is performing better than random,
the results for the last two seasons are exceptionally good. We believe the reason
for this is that we only created oneQ matrix, reflecting current flight usage. Flight
usage varies by year, and it is quite reasonable that the currentQ matrix would not
model older seasons as accurately.

For one final test, we performed a Wilcoxon signed-rank test. This test does
not assume any particular underlying distribution, and can be used when the distri-
bution is reasonably symmetric. The values ofskew(X) (which are low) indicate
that the Wilcoxon test can be applied. For all four seasons, the significance level
p is much less than 0.00001, confirming again that it is extremely unlikely for the
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quality of random predictions to be nearly as good as the quality of the model
predictions.

7.7. Summary

Although we do not attempt to predict the speed of the viral spread (as ex-
plained below), the predicted ordering of viral spread is surprisingly accurate,
given that we are modeling flights from only 12 cities.

8. Conclusion

We have created a framework for simulating and analyzing weakly connected
island models. This framework consists of two levels. First, a micro-level de-
scribes the behavior of individuals within an island. Second, the macro-level mod-
els the travel of individuals between islands. The two levels are largely separate,
from a functional point of view. The micro-level is used to calculate thespeedof
the viral spread. The macro-level is used to calculatewherethe virus will spread.
The key to the accurate modeling of the micro-level is to fit the virus parameters
to the observable quantities of a particular virus. However, once this is done, it is
extremely difficult to draw general conclusions. This is the reason why we mod-
eled a rather generic influenza virus and a small number of airports - it lends itself
to a reductionist interpretation far more readily.

Our reductionist approach serves as a contrast to the work with large epidemi-
ological “engines”, where the models are extremely difficult to analyze. One ex-
ample is the work by Colizza, et al. [9], that uses the largest 3,100 airports.6

However, the model is then used to simulate the spread of only one influenza
virus in only nine “surveillance regions” within the U.S., as opposed to examin-
ing individual states. No reductionist interpretation is provided.

We applied our model to the spread of a virus between cities via air travel. This
model has been verified and validated, by demonstrating that the steady state of
the micro-level (differential equations) and the macro-level (Markov) agree with
mathematical analysis. We then augmented the model to include vaccinations and
used an EA optimizer to generate good polices. We then examined those policies
to explain and develop superior policies. It is important to point out that the EA
was used both as an optimizer and a tool for discovery. Without the EA it would
have been extremely difficult for us to understand the dynamics of the model.

6International Air Transport Association database (http://www.iata.org)
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The key to our success is an “importance factor”, which statesthat the cities
of importance (both from the point of view of viral spread and their need for vac-
cines) are those that are small yet are flown to most often. Smaller cities experi-
ence a more rapid response to an invading infected population. They also produce
infected individuals more quickly as a result. Cities that are flown to more often
are dangerous because more planes are carrying infected people to these cities.
This factor provides a highly valuable reductionist interpretation of a complex
model.

We have also demonstrated that there is a connection between our importance
factor and the spread of influenza in the real world by comparing the previous
four influenza seasons to our importance factor predictions. This suggests that we
have captured a good first-order approximation of the effect of air-travel as a virus
vector on the United States. It is important to note that this success comes despite
the fact that each influenza season involves a different virus with different micro-
level parameters that we did not attempt to model. In fact, an alternative micro-
level model omits the Asymptomatic state of health - namely, the SIR model. In
this situation Infected people can fly. Our studies indicate that, once again, due
to the functional separation between the micro-level and macro-level models, this
change affects the speed of the virus (as would be expected), but not the ordering.

Due to the number of studies we have performed (there is insufficient room in
this paper to include them all), we believe that these observations are quite general
and hold in a wide variety of circumstances [29]. However, the nice aspect of our
framework is that if conditions change radically, the EA can always be invoked by
the user to generate new policies automatically.

In this paper we developed the “importance factor” via human inspection of
the data (a set of high fitness EA individuals). However, suppose we include
additional cities from other countries. Then there could be significant changes in
b̄ (due to differences in population density in different countries). Although our
simulation framework would have no difficulty with these changes, and the EA
could still be applied, human inspection of the resulting high fitness individuals
will become much more difficult. One of the main challenges is that our human
reasoning involved more than just inspection of the individuals, but required an
understanding of the underlying simulation model, including the city of origin,
the size of the populations, the proper interpretation of the probability transition
matrix, and the vaccine feasibility region. Hence, future work will require the
addition of sophisticated data mining (e.g., [19, 15, 14]) and equation discovery
components [5, 33, 3], to automate the reductionist approach taken in this paper.
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