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Image feature detection and matching in underwater 
conditions 

Kenton Oliver", Weilin Hou6, and Song Wanga 

"University of South Carolina, 201 Main Street, Columbia, South Carolina, USA; 
''Naval Research Lab, Code 7333, 1009 Balch Blvd., Stennis Space Center, Mississippi, USA 

ABSTRACT 

The main challenge in underwater imaging and image analysis is to overcome the effects of blurring due to the 
strong scattering of light by the water and its constituents. This blurring adds complexity to already challenging 
problems like object detection and localization. The current state-of-the-art approaches for object detection and 
localization normally involve two components: (a) a feature detector that extracts a set of feature points from an 
image, and (b) a feature matching algorithm that tries to match the feature points detected from a target image 
to a set of template features corresponding to the object of interest. A successful feature matching indicates 
that the target image also contains the object of interest. For underwater images, the target image is taken 
in underwater conditions while the template features are usually extracted from one or more training images 
that are taken out-of-water or in different underwater conditions. In addition, the objects in the target image 
and the training images may show different poses, including rotation, scaling, translation transformations, and 
perspective changes. In this paper we investigate the effects of various underwater point spread functions on the 
detection of image features using many different feature detectors, and how these functions affect the capability 
of these features when they are used for matching and object detection. This research provides insight to further 
develop robust feature detectors and matching algorithms that are suitable for detecting and localizing objects 
from underwater images. 

Keywords: Underwater Imaging, Object Detection, Object Recognition, Feature Detection, Feature Descrip- 
tion, Point Spread Function 

1. INTRODUCTION 

Detection, description, and matching of discriminative image features are fundamental problems in computer 
vision and have been studied for many years. Algorithms to solve these problems play key roles in many vision 
applications, such as image stitching,1,2 image registration,3,4 object detection,5 object localization,6 and object 
recognition.7 In practice, feature descriptors are made to be invariant to certain spatial transformations, such 
as scaling and rotation. 

Geodesic Invariant Histograms (GIH)8 model a grayscale image as a 2D surface embedded in 3D space, 
where the height of the surface is defined by the image intensity at the corresponding pixel. Under this surface 
model a feature descriptor, based on geodesic distances on the surface, is defined which is invariant to some 
general image deformations. A local-to-global framework was adopted in9 where multiple support regions are 
used for describing the features. This removes the burden of finding the optimal scale as both local and global 
information is embedded in its descriptor. The Scale-Invariant Feature Transform (SIFT)10 is a well-known 
choice for detecting and describing features. Comparison studies11 have shown that SIFT and its derivatives11-13 

perform better than other feature detectors in various domains. SIFT is invariant to rotation and scaling, and 
has been shown to be invariant to small changes in illumination and perspective (up to 50 degrees). 
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All of these feature detectors and descriptors only address invariance in the spatial domain. They are not 
invariant when the considered image undergoes a destructive intensity transformation, where the image intensity 
values change substantially, inconsistently and irreversibly. Such transformations often significantly increase 
the complexity in discerning any underlying features and structures in the image, as shown in.11 A typical 
example is intensity transformation introduced by underwater imaging. Light behaves differently underwater.14 

The added complexities of impure water introduce issues such as turbulence, air bubbles, particles (such as 
sediments), and organic matter that can absorb and scatter light, which can result in a very blurry and noisy 
image. Since available feature descriptors are not invariant under such intensity transformations, matching the 
features detected from an underwater image and a clean out-of-water image, or the features detected from two 
underwater images taken in different underwater conditions, is a very challenging problem. 

In this paper we investigate the performance of current high level detectors and descriptors in underwater 
images. We look at detectors based on corner and blob detection, Harris and Hessian respectively, and two 
well-known feature descriptors SIFT and Gradient Location and Orientation Histograms11 (GLOH). We quanti- 
tatively look at both detector and descriptor performance independently and jointly using a measure of detection 
repeatability and matching precision and recall. The rest of the paper is organized as follows: Section 2 gives 
a brief overview of problems associated with underwater imaging and vision and the model used to simulate 
these effects. Section 3 briefly introduces the region detectors used in this study and Section 4 explains the 
region descriptors. Section 5 explains our approach to evaluating detector and descriptor performance. Section 6 
presents our results. 

2. UNDERWATER IMAGING 

Underwater Imaging is an area with many applications including mine countermeasures, security, search and 
rescue, and conducting scientific experiments in harsh, unreachable environments. On a clear day, a person can 
see miles to the horizon out-of-water, but in many underwater conditions one cannot see more than a few meters, 
and what can be seen is blurred and difficult to discern. This reduction in visibility is due to the absorption 
and scattering of light by the water and particles in the water. There are numerous particles such as sediment, 
plankton, and organic cells in the water which cause light scattering and absorption. Even optical turbulence and 
bubbles effect how light is transmitted. Light that is spread out by this scattering is the source of the blurriness 
and fuzziness common in underwater images. 

This absorption and scattering of light in water can be modeled mathematically, and much work has been 
done to develop robust models to this effect by Jaffe,15 Dolin,16 and Hou.17,18 These models are typically some 
form of a point spread function (PSF) which models a system's response to an impulse signal (point source). 
For this work, we use a simplified version of Dolin's PSF model,16,17 to simulate underwater conditions. Given 
an out-of-water image, convolution with the PSF creates a synthetic underwater image. Dolin's model takes the 
form 

»a 
G(06lTfc) ^<Tn + 0.525^e<-2-<7-^ + |k[2- (1 + u)e-n]e(-0,<w4-(W+W (1) 
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2
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where, 0q is the scattering angle—the angle at which light is refracted away from its original direction—and 
Tt = TU, where r is the optical depth and u is the single scattering albedo, the ratio of light scattered to the 
total light attenuation. More details can be found in.16'17 In this paper we will use the notation PSF(-,T,W) to 
refer to the operation of convolution with a PSF with parameters T and u. 

Proc. of SPIE Vol. 7678 76780N-2 

Downloaded from SPIE Digital Library on 23 Apr 2010 to 128.160.24.76. Terms of Use.  http:"spiodl.org/tt»rms 



3. REGION DETECTION 

For our experiments we examined region detection schemes based on the Harris19 detector along with its scale 
and affine invariant extensions, and the Hessian matrix along with its scale and affine invariant extensions. For 
more detailed information and an extensive study of current region detectors on various spatial transforms please 
refer to Tuytelaars.20 

3.1 Interest Point Detectors 

The Harris detector is based on the second moment matrix which describes local gradient information around a 
point. It is defined as 

M = <T2Dg{o,)* 
/2(x,aD) /x(x,fTD)/y(x,<TD) 

Ix(x,CD)Iy{x,(7D) I%(X,(TD) («) 

The image's local derivatives are estimated with a Gaussian kernel with scale (X/j, and the derivatives are 
smoothed over the neighborhood with a Gaussian of scale 07. 

/.(x,«r)«g£g(<r)*/(x) (7) 

g(") = ^-2e~~^~ (8) 

Cornerness is then measured as the difference of the determinant and the trace: 

det(M)-Atrace(M) (9) 

As an interest point detector, non-maximum suppression is used to extract local corner maxima. 

The Hessian is the second matrix issued from the Taylor expansion of the image intensity function: 

H = 

with 

IXX(X,0D)      Ixy(x,(TD) 
Jxi/(x,0-£))        Iyy(x,aD) 

(10) 

Wx,(T) = |;^g(a)*J(x). (11) 

Local maxima of the trace and determinant give strong responses to blob- and ridge-like structures, with the 
trace being the Laplacian. One approach to obtain more stable respones is to find points which achieve a local 
maximum of the determinant and trace simultaneously. 

3.2 Scale and Affine Invariant Detectors 

For this paper we look at two extensions of the above detectors, the Harris-Laplace and Hessian-Laplace, 
which are scale-invariant. Harris-Affine and Hessian-Affine are the affine-invariant extensions.20,21 The Harris- 
Laplace/Hessian-Laplace detector uses a multiscale Harris or Hessian detector to locate local features. Scale 
selection is based on the idea proposed by Lindeberg,22 where the characteristic scale of a local structure is 
determined by searching for extrema of a function in scale-space, which is the convolution of the function with 
Gaussian kernels of various sizes. 

The Affine extension20'21 applies an iterative process to points detected by the Harris/Hessian-Laplace de- 
tectors to estimate elliptical affine regions proposed by Lindeberg:23 

1. Initial region detection with Harris/Hessian-Laplace 

2. Use second moment matrix to estimate the shape 

3. Normalize affine region to a circular region 

4. Re-detect next location and scale on normalized image 

5. Repeat from 2 if eigenvalues of the second moment matrix are not equal 
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4. REGION DESCRIPTION 

SIFT is a very well-known and popular choice of image descriptor. SIFT and its extensions have been shown 
to perform better than other descriptors in comparison studies.11 For these reasons we chose to focus on the 
performance of SIFT and one of its extensions, GLOH. 

4.1 Scale-Invariant Feature Transform 

SIFT7'10 features are rotation, scale, and translation invariant, and have been shown to be robust against some 
lighting and viewpoint transformations. There are four stages associated with SIFT: (1) scale-space extrema 
detection, (2) region keypoint localization, (3) orientation assignment, and (4) region descriptor generation. For 
this work, we are only interested in the latter two stages (namely, SIFT's ability as a descriptor) so we replace the 
first two stages with the Harris- and Hessian-based detectors. SIFT assigns orientation by building a histogram of 
gradient-magnitude-weighted gradient orientations. The gradients are computed over the region at the selected 
region scale. Peaks in the histogram are detected by selecting the highest bin and any other bin with 80% of the 
highest. In this manner, a single region can yield multiple detectors. The region descriptor is then represented 
relative to the location, characteristic scale, and dominant orientation(s) of the region. To get the descriptor 
the region gradient magnitude and orientations are again calculated, relative to the dominant orientation, at 
the selected scale. The descriptor is a 4x4 array of 8 bins each, organized by gradient orientation, each being a 
gradient-magnitude-weighted histograms yielding a 128 dimensional descriptor vector. 

4.2 Gradient Localization and Orientation Histogram 

The GLOH11 descriptor is an extension of SIFT using radial histogram binning and PC A to reduce the descriptor 
dimension. The SIFT descriptor is computed for a log-polar location grid with 3 radial and 8 angular bins 
resulting in 17 location bins. Gradient orientations are then quantized into 16 bins resulting in a 272 bin 
histogram. This is reduced from 272 to 128 with PCA using the 128 largest eigenvectors. 

5. BENCHMARK 

To test the performance of the various detection and description schemes, we use the same benchmark as Miko- 
lajczyk11 and Tuytelaars.20 The authors in these works examined the performance of detectors and descriptors 
for a range of geometric and photometric transforms. They measured performance of the detectors and the 
region selection consistency. The descriptors were then matched using distance thresholding, nearest neighbor, 
and ratio of nearest neighbor and second nearest neighbor schemes. These schemes were then rated based on 
the number of correct descriptor matches. 

Region detection performance is based on the repeatability metric—that the same regions, under transform, 
are found in the original and transformed images. For example, if T is a geometric transform and /, J are images 
such that J = T(I) and R C I and S C J are regions such that S = T(r) then S repeats R, and /?, S both cover 
the same scene area in their respective images. 

To measure the repeatability, the benchmark requires that the homography transform between two images 
be known. A region R C I and a region S C J correspond if the projection of S onto I, S = T(I) and R. have 

small overlap error, i.e. 1 — Rn£ < S. Since, for our purposes, we are only interested in photometric transforms, 
T is the identity, and R and S are compared directly. Repeatability is then measured as the ratio of the number 
of corresponding regions to the number of regions in /. For regions that have multiple correspondences, the one 
with the least overlap error is chosen. 

To measure descriptor performance, we look at the precision and recall for a matching between two image's 
region descriptors. Precision gives an indication of how well a set of matches is with respect to itself, while recall 
is a global measure of the matches. These measures are given by: 

#of correct matches found # of correct matches found .    . 
precision = — - - , and recall = — • . (12) 

# of matches found jfofcorrectmatches 

These measures don't provide much information on their own. For example, it is possible to have a set of matches 
which are all correct (high precision) but fail to find very many of the possible matches (low recall). In this case, 
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looking only at the precision the would give false confidence in the quality of the matching, which is why it is 
common to look at precision given a certain recall. The F-score, which combines precision and recall, is a good 
overall measure and is given by the harmonic mean: 

2 * precision * recall ,    . 
F-score = —. (13) 

precision + recall 

To calculate the precision, recall, and F-scores, a ground truth matching is needed. This is obtained from 
the correspondences determined from the region overlap error, which was used in the repeatability performance. 
Two descriptors should be matched if their regions have small overlap error. For matching descriptors we looked 
at three different matching techniques. The first is a simple threshold matchingi. Given two regions R, S and 
their respective descriptors r, s, R and S are matched according to the following criteria 

matcht(Ä,S) = {j   lr:s
Sl^t[ (14) 

This approach to matching has the added difficulty that a good threshold must be chosen to obtain accurate 
matchings. Also, under this approach, a region can have multiple matchings. 

Another approach is to match based on the nearest neighbor (NN). Let Rl... RN be the set of regions detected 
from an image and S a region detected from another image. These regions have corresponding descriptors denoted 
r1 ... rN, and s. The nearest neighbor matching is then defined as 

!1    if k = argmin||rl - s||2 

n    •* •    / *~ '"'•   II t        II (15) 0    if k ft argmin ||r' - s||2 
i=l,...,N 

The third approach attempts to address problems with the nearest neighbor method. Given /?'... RN, S and 
their descriptors r1 ... rN, s, by definition s will always have a nearest neighbor in r1... rN, but the descriptors 
may still be distant from each other resulting in a noisy match. The ratio of nearest neighbors (RNN) approach 
works under the assumption that if a NN match is noisy then the distance between the nearest neighbor and 
second nearest neighbor should both be relatively large. Whereas a good nearest neighbor should be sufficiently 
closer than the second nearest neighbor. This matching criteria is formulated as 

Define l(k)    =       argmin    ||rl - s||2 (16) 
i=l N;i?k 

1 if k = argmin||r* - s||2, and ||jlr<li"-Hjj3 
< l 

l=1'-'N „ (17) 
0    if k 7^ argmin||r' — s||2 or k = argmin||r' - s||2 and Jin.) 'K.   > t 

i=l N i=l N l|r "2 

matchRNN(fl ,S) 

6. RESULTS 

To test the performance of the detectors and descriptors we captured an original out-of-water image and apply 
different PSFs to simulate different underwater conditions. Using each region detector, regions are detected for 
the original and each PSF-convoluted image. The regions are then evaluated by the benchmark. In the following 
figures TJ, = ru where w is the optical depth and r is the scatter-absorption ratio. These parameters are used to 
generate PSFs from Dolin's model as described in Section 2. For all of our tests we use two images; the first is a 
stuffed teddy bear chosen because of its textured fur, the second is a Secchi disk which is a well-known tool for 
measuring visibility. 
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Figure 1. The two test images, a bear and a Secchi disk, images convoluted with PSF(-,T = l,w = 1.0), the convoluted 
images with detected regions. 

6.1  Region Detection Performance 

The repeatability performance for the different region detectors is shown in Figure 2(a) and Figure 3(a) and the 
raw number of correspondences in Figure 2(b) and Figure 3(b) for the bear and Secchi disk images respectively. 
These figures show that the rate of detecting repeatable regions drops off very quickly as water conditions become 
worse, for all detectors. 

In terms of pure repeatability the Hessian-based detectors clearly outperform the Harris-based detectors on 
both test images. This outcome seems to agree with the intuition that a blob detector would be more robust 
against blurring, whereas corners, which are finer details, would be obscured in more turbid water. In terms of 
the raw number of correspondences on the bear image, the Harris-based dectors perform better, which is to be 
expected since the bear has textures from the fur and sweater to respond to the corner detection. When looking 
at a more structured scene such as the Secchi disk, this advantage disappears. Overall, the choice seems to 
depend on the application or water conditions encountered, however all methods fail as water clarity decreases. 

—*— Harrta-Laptac« 
v     Heasian- Laplace 
•     Harrta-Aftlna 

—i— H—ajan-Afflna 

(a) Repeatability rates for the region detectors across a (b) Number of region correspondences based on region 
range of underwater conditions. overlap error, across a range of underwater conditions. 

Figure 2. Repeatability and raw number of correspondences for the bear image. 

6.2  Region Description Performance 

To test the descriptor performance we conduction two experiments. First descriptors are built from the detected 
regions in each image; however, as shown in Section 6.1, repeatability of regions falls off very quickly as image 
conditions worsen. While this gives a more accurate picture of overall performance, we would like to also isolate 
the descriptors to have an idea of their performance alone. To accomplish this we assume that the region detectors 
have 100% repeatability. Regions are detected on the original image then, for the different PSF convoluted images, 
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- Harns-Lapiac« 
Haulan-Laptac* 
Himt-Afflrw 
H«s*«n-AnWi« 

(a) Repeatability rates for the region detectors across a (b) Number of region correspondences based on region 
range of underwater conditions. overlap error, across a range of underwater conditions. 

Figure 3. Repeatability and raw number of correspondences for the Secchi disk image. 

descriptors are built for the regions detected in the original. Since our only transformation between the images 
is photometric (PSF convolution) and no spatial transformations are introduced this simulates our assumption 
of a 100% repeatable detector. In general, if spatial transforms were introduced, this assumption could still be 
made but regions from the original would need to be transformed using the homography and then descriptors 
built on them. 

Figures 4, 5, 6, 7 show the matching performance for Nearest Neighbor, Threshold, and Ratio of Nearest 
Neighbors matching. The Nearest Neighbor and Threshold curves were genereated by thresholding matches 
based on descriptor distances of the matching while the Ratio of Nearest Neighbors was thresholded by ratios 
1 to 1.5 by 0.05, 1.8 to 3.4 by 0.2. The maxmimum F-score achieved is shown in the legend. The point on the 
curve where the maximum F-score is achieved is denoted by the large marker. 

Figures 4, 6 show the descriptor performance with a 100% repeatable detector for SIFT (left side) and 
GLOH(right side) of the stuffed bear and Secchi disk images respectively. It is evident that for all instances, 
the descriptors built on the Hessian-based regions perform much better than the descriptors on Harris regions. 
However, they still perform fairly poorly overall, with a trend for hitting a wall in recall score with NN matching, 
with the best performance hitting this wall around 0.5. This best performance is achieved by Hessian-Affine on 
an image with Tb = 0.1, which is the clearest test parameter, yet we still only get a performance yielding half of 
the total correct matches. 

For the experiements where the real detected regions are used, the overall conclusion is the same, though 
here the Hessian-based regions have more separation from the Harris-based regions for the stuffed bear. They 
are noticibly better on the Secchi disk as well, though the separation from Harris-base regions is not as distinct. 
They still appear to reach a limit aroun 0.5 — 0.6 recall for the stuffed bear and 0.3 — 0.4 for the Secchi disk. 

7. CONCLUSION 

This work asses what problems need to be addressed in the area of underwater feature detection, description 
and matching in order to use computer vision techniques for object detection and recognition in underwater 
environments. Our results show that all three components have major limitations when dealing with photometric 
transformations introduced when imaging underwater. The Hessian based detectors performed best, though their 
performance is not great and trails off quickly as the water gets murkier. The descriptors do not perform any 
better, with recalls consistently below 0.5 on regions which are already few in number. While more robust 
and photometric invariant descriptors are needed, the problem might also be approached by developing novel 
matching techniques which take advantage of, or see through, the murkiness of the features. 
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Figure 4. Descriptor performance for the bear image with simulated 100% repeatability. 
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Figure 5. Descriptor performance for the bear image with actual repeatability. 

Proc. ofSPIEVol. 7678 76780N-10 

Downloaded from SPIE Digital Library on 23 Apr 2010 to 128.160.24.76. Terms of Use:  hUp.//spiedl.orgr"terms 



•   Ham*- 1 aplacc (V- 0 1) 1 F • OH 
© Hami-Upiact (V- * <»   F " 
• ll«m,   lip!«. Itj,- 10 ) 11 0 07 

«V Hemm- Lapbce (V- 0 1) | F -0.3J 
t^Heia.an-L«pl»rc <V i 0)1 F -019 

A Ham«   Affine IV••() 1)   F•     (>> 
* Hafm-Affiiie(v-*0>  F~° " 
-»VH«ni«-Affine(v,- IO).F-OOH 

••Hemm   Affine IV   (II I   F- 061 
<"i HeMun-AffiM (v- ' '" 1 F • 0.34 
*i Hewian-Affine IV I'M   F 0 24 

• Kami-[^*tacc((h-n " F-021 
'' H.m« I «pi«..- (V- 5-0) F - 0 IS 
-«-HMm-UplMe (tj,- 10 )| F - 007 

- Il,«iiii   lipU,- (I.     iM I    I      li  I.' 
•  I HCMiafl   I apl».- It    Mh    1     li I ft 

Henian-LaftlacrfV 10) I F-0 11 

A Ham«   Affine It«,    IM I    1      0 21 
m Hwni-AfTh»« (V- 5 0) | F - 0 14 
*Hami-Affine(v 10)jF-009 

f»Hr«i.n    \ffim-lt.     II I H F - 0.52 
O He-Mwi-AfTinr fv- 5 0)! F - 0 19 
 Affine (y 10 )f F -0.24 

(a) SIFT with Nearest Neighbor Matching (b) GLOH with Nearest Neighbor Matching 
Harm-l »place lb,-° 01 F - 0 19 

-<^H»nu-L*ptar* (V * °)' F " ono» 
-•~H«rra-U*Uc* «J,- 10)' F - 0006 

»  Htwiin   LaptKC<V    IM)    F     0.2J 
& Heman l^placc (v- 5 0) | F - 0.19 

-—L^bcefv,- 10)! F-0 15 

A Hams Affine It'lllil HI» 
V Harm-Affine (tu- <• 011 F - 0 00* 
-frHimi-Affine <v 10 H F - 0 006 

-«-HmiwAdiiK fv- 0 1); F - 0 41 
OHeMun-AnrnertT-^Ol F - (1 26 
<} He*«««-Affine(v IO||F-0.|0 

Him« lipl.-f nK (i 1)1 F-021 
4» Huni-iy« It,- 5 0)   F - 0 14 
 I«,l«iib   Id i   I     li I 

-  HoMin^l*!'^   «li   I     mil 
rtHeaaiaji-l-aplacelv-'OllF-Olft 

HeALUI   laplafrlV,    KM    ! HI I 

eVHuni  Affine(%-0 I). F -021 
i Hams-Affine (V- A 0> | F - 0 14 

H«mi-Affine (v* 10 ) | F - 0 I 

*»• Hcwian    Mline (V- 0 11 i F - 0 40 
i,'i He».«t- Affine ft- * OH F - 0 26 
< He*M*n- Affine ty- I0)|F-02| 

(c) SIFT with Threshold Matching (d) GLOH with Threshold Matching 
H-mi-l^pUcr | V ° 111 F - 0 24 

-^Harni-Lap.Bct-IV-^0' F-0 17 
» Ham-   I apl.ee (tj,    10) IF-0 1 

* Hwwian-Laptace IV- 0 I) | F - 0.33 
I f Heaainn-Laptacc IV *-°> I F - 0.18 

H«»nn  I jpU.-ir,,   in ,   I     ii n 

-tV Ham»-Affine lyiili  1  • 0 24 
* Hnmi-Affine(V^)|F-0 1S 
-frHami-AffinefV 10)1 F-0 II 

-S>-He«w»n-Affine (v- 0 1) i F - 0 M 
••  ' Ho«nn   Affine IV    *• 0)   F - 0 12 
•Ö Heaainn-Affine ttj,- 101   F - 0 21 

- Ham.-Laplaeefy OIHF-021 
9 Hamt-I «place <v- 50)  F - 0 16 
»Mim«   l«|'l*t iif,   III i   I     (iox 

- Heaaian-l aplace (V- 0 I) | F - 0.29 
S Hei.n-UpJ.ce (v- * 0) | F - 0 | 3 

Hcsuan-LapJacc<y 1031 F - 007 

-A-Harrn Affine IV n 'I I "--1 

• Hami-Affine (V- Ml I   1     0 I I 
• HajTw-Affincfy- 10 )i F-0 11 

f«Hnii.n   Mlinriy-ll I > | F - 0 4« 
O He-tan-AfTlne <v- «. 0); F - 0 15 

•- llmin   Affine It«,    UM    I  •   H.'ti 

0.1        0.2       0.3        04        0.6       0.S        0.7        0.8 

(e) SIFT with Ratio of Nearest Neighbors Matching (f) GLOH with Ratio of Nearest Neighbors Matching 

Figure 6. Descriptor performance for the Secchi disk image with simulated 100% repeatability. 

Proc. ofSPIEVol. 7678 76780N-11 

Downloaded from SPIE Digital Library on 23 Apr 2010 to 128.160.24.76. Terms of Use:  http./'spiedl.ofg/terms 



H.m,   Ijpl^n.    III!    V     II' 
e-H«ni-U|>Uce (v- 5 0| | F - 0 13 

-»-HMTit-LjpUee ft},- 10 ) | F - 0 09 

» Hnuan-L^tlace (v- 0 I) | F - 0 35 
€>He»u«n-L»pl»ce (il- SO) | F - 0 24 

HouMi-UpUcefV 10 )   V     IM 4 

-A-HMiit-Aflm«(v0 1)I F-025 
V Hwm-AfTiiMv-'OHF-0" 
-*HMnt-AfT»e(v 10 ) i F - 0 17 

*> llf«im    Affine iw    il I I   F-035 
^Heswwi-Affine (v- 5 0) | F - 0 2« 
^Hewtn-AffinecV- 10 11 F - 0.07 

Hwn.-|j^l»«; l-u,- 0 I)   F-020 
i» Hmi-Uptftce ft- ' °> I F " 0 » 
-•-H«ni-L*fitaw (V 10 ) | F - 0 08 

" Hcwair-Lipbce(y 0 1 )| F-0 .3* 
• t HwMMi-l^plw.» |w- 5 0)| F-0 31 

He««n-UpUce (V 10)IF-01ft 

-A-Hwrn-AfTwi* (v 0 I) | F - 0 25 
V H«rni-Affiiie (y 5 0) | F - 0.22 

*rUm»-Affii»e (V 10 11 F - 0.13 

Time (V- 0 I) | F - 0.3.1 
^H««—-Affine <y- 5 0) | F - 021 
-*Hcmi*m-Affliie ty 10 ) | F - 01 

0.6        0.7        0.8        0.9 

(a) SIFT with Nearest Neighbor Matching (b) GLOH with Nearest Neighbor Matching 
• Hirrw-Ujpbce (y 0 DI F -0.23 

-e-Hams- LjpUoc |y 5 0) | F - 0.18 
-*-H«m»-L*pUc« (if,-10 ) | F - 0 18 

*-H«««r-L^)tace (V- 0 1) I F - 0 IT 
Q Hewun-L^Uet <y 5 0) | F - 0 24 

(V 10)1 F-020 

-A-H^fni-Afftnt(v 0 I) | F - 0 31 
H«•  Aflii>e<v 5 0)| F-0.31 

-*H«m«-Affii»e<y 10MF-022 

Affine <t,-01)|F-031 
Q Hcwiin-Affine fC- 5 0) I F - 0 21 
-*Hesuan-Affine<y IO)lF-0I3 

- Hwm-LftnU«iy0 1)|F-022 
*^H«m*-L^lKe <y 5 0) | F - 0 19 

-*-Hvn*-Lmplm:r (y 10 ) | F - 0 20 
- Hcnwt-UfHacc <y 0 I) | F - 0 33 

r*Hew»r-Lj|»4ftce<y 5 0)   F-020 
H<-*mr.  I jpl*.( it^   in i   I     020 

oHin» AITmrlL, IMI I il U 
V Harm-Affine it,, 50) | F - 0.» 
+H«mi-Affine (y 10 ) | F - 0.22 

>-HeMiin-Affine nt, n h I 0 28 
l> Hewn- Affine 0*,- 5 0) | F - 0 21 
*He«i«i-Affine<V 10 >| F -0.15 

(c) SIFT with Threshold Matching (d) GLOH with Threshold Matching 
I H«rm-L«f>i»ce(ih-01>|F-02] 

-e-H«im-Upt«ce (t- 5 0) | F -009 
-»-Htrnt-Upt«* (y 10 ) | F - 0 09 

- Hwiin lnfLt (t. - 0 I) 1 F - 0 35 
Ö Hc»uaft-Laplace <y 5.0) | F - 0.21 

Hosun   litilnrlt,,-   HI I    I      II [4 

-eV Hwn»-AfTme <y 0 I) | F - 0 2A 
V Hirm-AfYlne (y 5 0) i F - 0 13 

^Hiim-Altine (y 10 ) | F - 0 17 

-fc^He»«*n-AiTm« (u,- 0 1) | F - 0.34 
U HcMiMT-Affine fy 5 0) | F - 0.29 
«He*tu«n-Affine fy IO)|F-005 

*  Huni-L*placc<y 
-e-Hafm-LjpUoe (y 
» Hun.   1 iplfcf fy 

o.i) 1 r 
5 0) IF 
10)1 F 

0 22 
018 
008 

- rlcaua 
t.+H««rw 

Hcni •t-L^I.«^ 

-0l)|F 
-50)11 
- I0)i F 

-0)2 
-0 3T 
-012 

V Hntif 
*Him. 

-Affine fy 0 1)|F- 
AfTinc(v- 5 0)| F- 

-Affine<y I0)| F- 
0.19 
0 13 

#- Hciaian- Affine fv- 
0 He^Mi-Affinc <y 
4 Hnurr Affine (y 

0l)IF 
5 0) | F 
10)|F 

-031 
•021 
-008 

0.1        0.2       0.3        0.4 

(e) SIFT with Ratio of Nearest Neighbors Matching (f) GLOH with Ratio of Nearest Neighbors Matching 

Figure 7. Descriptor performance for the Secchi disk image with actual repeatability. 
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