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1. Introduction

Energetic molecular crystals are found in military and industrial applications involving explosives
and propellants. For example, plastically bonded explosives consist of energetic crystals
embedded in a waxy binder phase (4). Defects in energetic materials are thought to affect their
initiation sensitivity. Local stresses may concentrate in the vicinity of cracks, pores, or lattice
defects, including dislocations and point defects, which may, in turn, affect initiation of reactions
associated with burning or detonation (5). In anisotropic single crystals, availability of slip
systems associated with glissile dislocations may lower peak stresses and decrease sensitivity to
shock initiation (6).

The focus of this work is the mechanical behavior of the energetic material cyclotrimethylene
trinitramine (C3H6N6O6), referred to as RDX (Research Development Explosive). Single
crystals of RDX belong to an orthorhombic space group with eight molecules per unit cell.
Dislocations in RDX have been characterized using etch pit (7) and x-ray topographic (8, 9)
techniques. Likely slip systems for dislocation glide in RDX have been suggested by analysis of
anisotropic hardness profiles (10) and indentation experiments (3, 11). The latter experiments
(3, 11) also provide an estimate of the critical resolved shear stress associated with slip initiation,
thought to be on the order of the theoretical strength (i.e., ≈ G/10−G/20, with G a
representative elastic shear modulus), which corresponds physically to homogeneous dislocation
nucleation. Inelastic behavior of RDX single crystals has also been probed using shock
experiments (6, 12) and molecular dynamics simulations (12–14). RDX undergoes a
polymorphic phase transition (α → γ) at pressures on the order of 4 GPa (15, 16); this phase
transformation has also been studied using atomic models (17, 18).

Continuum crystal plasticity theory permits predictive mesoscale modeling of materials behavior
at length scales larger than feasible using atomic or molecular models, but with greater resolution
than that afforded by macroscopic elastic-plastic models that omit description of anisotropy and
slip system activity. Grain interactions can be studied in direct numerical simulations via finite
element models, wherein each crystal of a polycrystal is resolved geometrically. Crystal
plasticity models have been implemented elsewhere to study shock loading of the energetic
materials cyclotetramethylene tetranitramine (HMX) (19) and pentaerythritol tetranitrate (PETN)
(20, 21). Aims of the present work are to develop and implementent a crystal plasticity model for
RDX.
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The single crystal elastic-plastic model developed in the present work extends the general
framework of Becker (22) formulated for cubic crystals loaded to possibly high pressures. Here,
the model is applied to crystals with orthorhombic symmetry characteristic of RDX. Anisotropic
elastic constants and pressure-dependent compressibility are obtained from the experimental
literature (1, 2, 23). Six slip systems (from four different families of systems) are implemented
following analysis of indentation loading profiles and surface impressions (3, 10). The model is
applied to study indentation, with a spherical indenter, of (001), (021), and (210) faces of single
crystals of RDX. Results are compared with numerical predictions from nonlinear isotropic
elasticity and analytical isotropic elastic (i.e., Hertzian) solutions. Critical shear strengths
associated with slip initiation are assigned upon comparison of results with load excursion data
from experiments (3). Bulk slip system activity is quantified, and residual surface slip activity is
compared with experimental observations.

This report is organized as follows. Constitutive theory and material properties are described in
section 2. Indentation simulations are reported in section 3. Conclusions follow in section 4.
Notation of continuum mechanics is used. Boldface type is used for vectors and tensors, which
are referred to a fixed Cartesian coordinate frame in the reference and current configurations.

2. Theory

A general theory for mechanical behavior of elastic-plastic single crystals is developed in section
2.1. Features and requisite properties particular to RDX are listed in section 2.2.

2.1 Single Crystal Model

Let xxx = χχχ(XXX , t) denote the motion of material points of the body. The deformation gradient is

∇χχχ = FFF = FFFEFFFP, (1)

where ∇(·) denotes the material gradient (i.e., FaA = ∇Aχa = ∂xa/∂XA in component notation),
FFFE denotes thermoelastic deformation of the crystal lattice, and FFFP represents plastic deformation
due to slip. Let a superposed dot denote the material time derivative (i.e., ∂/∂ t at fixed XXX), and
let superscript −1 denote inversion. The spatial velocity gradient is

∇χ̇χχ(∇χχχ)−1 = ḞFFFFF−1 = ḞFFEFFFE−1 +FFFELLLPFFFE−1, (2)

2



where the plastic velocity gradient associated with slip rates γ̇k, reference slip directions sssk
0, and

reference slip plane normals mmmk
0 on slip systems k is

LLLP = ḞFFPFFFP−1 = ∑
k

γ̇ksssk
0⊗mmmk

0. (3)

The tensor product is ⊗. Slip system geometry is pushed forward to the current configuration via

sssk = FFFEsssk
0, mmmk = FFFE−Tmmmk

0, (4)

where superscript T denotes the transpose. From the orthonormality of slip directions and slip
plane normals, plastic deformation is isochoric:

˙detFFFP = detFFFPtrLLLP = 0, J = detFFF = detFFFE > 0. (5)

The trace of a second-order tensor is denoted by tr(·). By the polar decomposition theorem, let
the thermoelastic deformation be split as follows:

FFFE = RRREUUUE , UUUE =UUUE T, RRRE−1 = RRRE T, detRRRE = 1. (6)

A logarithmic thermoelastic strain measure is defined as

εεε = lnUUUE =
1
2

ln(FFFE TFFFE), trεεε = ln[det(UUUE)] = lnJ. (7)

The logarithmic thermoelastic strain is split into deviatoric and volumetric parts as

εεε = εεε ′+
1
3

ε̄111, ε̄ = trεεε = lnJ, (8)

where 1 is the second-order unit tensor. Note that ε̄ = 0 when J = 1. Let σσσ denote the usual
Cauchy stress tensor. The stress tensor in the deformed but unrotated crystal coordinate system is

SSS = RRRE−1σσσRRRE . (9)

The nonlinear elastic component of the model follows (22). Henceforward, only the isothermal
case is considered, since isothermal conditions are an appropriate assumption for applications of
the model discussed in section 3. Let the unrotated stress be split into deviatoric and hydrostatic
parts:

SSS = SSS′+ S̄111, S̄ =
1
3

trSSS =
1
3

trσσσ =−p, (10)

3



with p the Cauchy pressure. The following operator extracts the deviatoric part of a second-order
tensor:

I′ = I− 1
3

111⊗111, I′ABCD = δACδBD− 1
3

δABδCD. (11)

The constitutive equations for the deviatoric stress and pressure are (22)

SSS′ = I′ : C : εεε ′+
1
3
(I′ : C : 111)ε̄, (12)

p =
B0

B′
[exp(−B′ε̄)−1]− 1

3
εεε ′ : C : 111. (13)

Here, B0 and B′ are the reference bulk modulus and the pressure derivative of the bulk modulus,
and C is the tensor of second-order elastic constants, referred to the (unrotated) crystal frame.
The colon denotes contraction over two pairs of indices, e.g., (C : εεε ′)AB = CABCDε ′CD. Pressure
dependence of shear elastic coefficients implemented elsewhere for cubic crystals (22) is omitted
in equation 13 because of limited experimental data for the material of present interest.

The second term on the right side of equation 12 accounts for possible effects of volume changes
on deviatoric stress in anisotropic crystals. The second term on the right side of equation 13
accounts for possible effects of deviatoric strains on pressure in anisotropic crystals. Viscoelastic
effects are omitted.

The flow rule for slip is (22)

τk = σσσ : (sssk⊗mmmk) = τk
0

[ |γ̇k|+ξ
γ̇0

]m

sgn(γ̇k). (14)

The resolved shear stress on slip system k is τk. Material parameters are initial and constant slip
strength τk

0 for each slip system, reference strain rate γ̇0, and rate sensitivity m. Constant ξ ¿ γ̇0

provides a finite strength at zero strain rate and is included for numerical reasons. Strain
hardening is omitted in equation 14 because sufficient data do not exist to construct more
complex slip system constitutive equations for the material of present interest.

2.2 RDX

Physical properties of RDX single crystals are listed in table 1. This description is restricted to
the α phase, which is the stable polymorph for pressures under ≈ 3.8 GPa and temperatures under
≈ 480 K. High pressure phases with different structures (γ , β ) and melting at higher temperatures
are not considered relevant to this application and are discussed elsewhere (15).
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Table 1. Structural and physical properties of RDX single crystals (ambient) .

Property Value Reference
Space group Pbca (10)

Crystal structure orthorhombic

Lattice parameters [nm] a = 1.3182 (10)

b = 1.1574

c = 1.0709

Mass density [g/cm3] 1.806 (2)

Elastic properties are listed in table 2, obtained from experiments. Isentropic second-order
elastic constants (1, 2) and the bulk modulus have been converted to isothermal values at 295 K
via the usual thermodynamic formulae (24) incorporating anisotropic thermal expansion (25) and
specific heat (17). Voigt’s notation is used, i.e., CABCD ↔Cαβ , where Greek indices 1,2, . . . ,6.
Voigt (GV ) and Reuss (GR) bounds (24, 26) on the effective shear modulus are also listed.
Differences between Voigt and Reuss bounds for the bulk modulus B0, on the order 1−3%, are
considered insignificant.

Table 2. Isothermal second-order elastic constants of RDX single crystals (ambi-
ent).

Property Value (1) Value (2)

C11 [GPa] 24.56 36.48

C22 [GPa] 18.85 24.49

C33 [GPa] 17.33 20.78

C12 [GPa] 7.61 0.90

C13 [GPa] 5.30 1.26

C23 [GPa] 5.24 8.16

C44 [GPa] 5.15 11.99

C55 [GPa] 4.06 2.72

C66 [GPa] 6.90 7.68

B0 [GPa] 10.5 11.2

GV [GPa] 6.06 9.26

GR [GPa] 5.72 6.40

As is evident from values listed in table 2, second-order elastic constants reported for different
sets of experiments on single crystals of RDX can vary substantially. Values obtained using
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resonant ultrasonic methods listed in table 2 (1) are in reasonably close agreement with those
reported by other researchers using the same method (27). Values obtained using Brillouin
scattering (2) listed in table 2 are notably different, with particularly larger shear stiffness. Values
obtained using a third technique, impulsive stimulated thermal scattering (28), are similar to those
obtained using resonant ultrasound spectroscopy. Values obtained using empirical atomic models
(18, 29) also display differences among one another and differences with those obtained in
experiments.

In this work, the two sets of elastic constants of Haussuhl (1) and Haycraft et al. (2) are used
because these are the softest and stiffest reported experimental measurements, respectively;
results obtained using these two sets are thought to provide an indication of the most and least
compliant expected response. Results obtained using the constants of Haussuhl (1) are very
similar to those that would be obtained using values from Schwarz et al. (27) and Sun et al. (28).

Pressure and temperature dependencies of second-order elastic coefficients have been calculated
using molecular dynamics (29); however, these predicted values have not been validated using
experiments, and some discrepancies exist among calculated second-order elastic constants at
room temperature and experimental values (2). For this reason, in this study the nonlinear elastic
model only incorporates pressure dependence of the compressibility (i.e., the bulk modulus)
obtained experimentally and not that of all elastic coefficients. The value used here is B′ = 6.95
(23, 30).

Potential slip systems in RDX–as identified from hardness versus orientation profiles (10),
indentation force versus depth data (3, 11), and residual surface impressions from indentation (3)–
are listed in table 3. Slip system geometry is referred to a Cartesian system with axes (X1,X2,X3)
parallel to lattice vectors (aaa,bbb,ccc). These slip systems are illustrated in figure 1.

Table 3. Slip systems in RDX single crystals (indentation).

System k Miller indices mmm0 sss0 Maximum strength [GPa] Reference
1 (021)[100] (0,0.880,0.475) [1,0,0] 0.885 (3, 10)

2 (02̄1)[100] (0,-0.880,0.475) [1,0,0]

3 (011)[100] (0,0.679,0.734) [1,0,0] 0.645 (3, 10)

4 (01̄1)[100] (0,-0.679,0.734) [1,0,0]

5 (010)[100] (0,1,0) [1,0,0] 0.885 (3)

6 (010)[001] (0,1,0) [0,0,1] 0.885 (3, 10)

Listed initial slip system strengths are upper bounds obtained from analysis of load excursion data
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1 plane x 1 direction
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{021}[100] slip

2 planes x 1 direction

(011)
(021)

Figure 1. Slip systems in RDX single crystals (unit cell parameters not to scale).

using the analytical Hertzian solution for frictionless spherical indentation into a semi-infinite,
linear elastic, isotropic material. It is noted that other systems may become active (and those
listed may become inactive) for loading regimes involving very different pressures, temperatures,
and/or strain rates. For example, molecular dynamics simulations (12) suggest that partial
dislocation loops may glide on (001)[010] during shock loading to pressures in excess of ≈ 1 GPa.

In numerical simulations of section 3, shear strengths for various families of systems are varied
parametrically between physically reasonable bounds on the order of the theoretical strength as
suggested in the literature (3, 11), where G = GR = 6.4 GPa (2). These and other parameters are
listed in table 4. Reference strain rate γ̇0 is on the order of the plastic slip rate experienced during
indentation simulations described later, and the very small value of rate sensitivity m provides for
a nearly rate insensitive response, the simplest numerically pragmatic assumption in the absence
of experimental data enabling calibration of this material parameter.

Table 4. Crystal plasticity model parameters for RDX.

Property Value
τk

0 G/40 . τk
0 . G/10

m 5×10−3

γ̇0 10−2 /s

ξ 10−7 /s
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3. Indentation

The indentation boundary value problem and numerical aspects are described in section 3.1.
Results for indentation of RDX with slip suppressed (i.e., nonlinear anisotropic elasticity) are
reported in section 3.2. Results for indentation of RDX with slip enabled are reported in section
3.3.

3.1 Boundary Value Problem

The constitutive model presented in section 2 is implemented in the ALE3D multi-physics code.
Simulations of indentation are performed using an implicit solver for static equilibrium (i.e., no
inertial terms in the balance of linear momentum).

The problem geometry is intended to mimic previous experimental studies (3, 11). A spherical
diamond indenter of radius R, with a nominal value of R = 1.482 µm, is used to indent a flat
surface of a single crystal of RDX of variable lattice orientation. Diamond is represented as an
isotropic nonlinear elastic material with properties listed in table 5.

Table 5. Isotropic elastic properties of diamond indenter.

Property Value Reference
B0 [GPa] 443 (31)

GV [GPa] 538

B′ 4.0 (32)

Following Nowak et al. (33), the substrate is represented by a right circular cylinder. The
cylinder is assigned a height and radius of 2R; further increases in dimensions of the cylinder did
not affect results of interest. The indenter is modeled as a half-sphere. Each body (i.e., indenter
and substrate) is discretized using eight-node hexahedral elements with selective reduced
integration; the entire problem consists of ≈ 55000 finite elements. The mesh of the substrate is
highly refined in the vicinity of contact beneath the indenter, where stress fields are
inhomogeneous, and the mesh coarsens progressively with distance from the initial contact point.
Simulations with smaller elements demonstrated that further increases in mesh refinement did not
affect results of interest. Anisotropic crystal plasticity simulations were also performed with the
original cylindrical mesh rotated by π/4 about the X3 axis (i.e., Z-axis) with the initial crystal
lattice orientation held fixed; nearly identical results were obtained for plastic slip contours,
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demonstrating that strain localization was not artificially sensitive to mesh construction.

During the loading phase, the upper face of the half-spherical indenter is assigned a constant
(downward) velocity of Ḋ = 10 nm/s, leading to strain rates similar to those of experiments (3).
The lower face of the cylinder is rigidly fixed, while the lateral sides (circumference) are traction
free. The indentation depth is denoted by D; actual depth d of the tip of the sphere in contact
with the surface is monitored as an outcome of the numerical solution procedure. Only for a rigid
indenter would d = D. Indentation force P is defined as the sum of nodal forces along the upper
face of the half sphere acting in the direction of D, i.e., the sum of forces work conjugate to the
prescribed nodal velocities.

In most of the simulations, contact between indenter and substrate is assumed frictionless,
following previous studies that rely on analytical solutions (3, 11). In some simulations discussed
later, unloading is also performed, whereby after a peak depth is attained, the upper face of the
indenter is assigned an upward velocity of Ḋ = 10 nm/s until contact is released. If plastic
deformation has occurred, some residual deformation remains in the substrate upon unloading.

Comparison of simulation results (and published experimental results) with the available
analytical solution proves useful. The Hertzian solution for spherical indentation of a linear
elastic isotropic half space is (3)

P =
4
3

ErR1/2d3/2, (15)

where the reduced elastic modulus is

Er = [(1−ν2
i )/Ei +(1−ν2

s )/Es]−1, (16)

with νi (νs) and Ei (Es) denoting Poisson’s ratio and Young’s modulus, respectively, of the
indenter (substrate). In the present context, these are computed from B0 and G using the standard
formulae (24). The solution is fairly insensitive to properties of diamond because its stiffness
exceeds that of RDX by 1–2 orders of magnitude. It is noted that equation 15 neglects nonlinear
aspects of the solution associated with large changes in geometry and nonlinear material behavior
(e.g., finite volume and shape changes and nonlinear elastic material properties). Effects of
anisotropy and plasticity are, of course, also omitted in the analytical solution.

Simulations of indentation onto (001), (021), and (210) planes are reported in the following.
Rotation matrices and second-order elastic constants associated with these crystal orientations are
listed in the appendix.
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3.2 Elastic Indentation

Isotropic elastic simulations are considered first in order to facilitate comparison with the
analytical solution, equation 15. Figures 2 and 3 show indentation force, P, versus tip depth, d,
for indentation simulations incorporating nonlinear isotropic elasticity with Voigt (GV ) and Reuss
(GR) bounds on the shear modulus. Also shown are predictions using GR with a constant bulk
modulus (B′ = 0). Results in figure 2 correspond to elastic constants of Haussuhl (1); results in
figure 3 correspond to elastic constants of Haycraft et al. (2). The indenter radius is R = 1.482
µm (3). Analytical solutions using the same bounds on the shear modulus, and incorporating
linear elastic behavior as in equation 15, are also plotted. As expected, force is larger when the
larger shear modulus (GV ) is used. For tip depth d & 50 nm, the pressure dependence of the bulk
modulus causes an increase in force relative to the case with B′ = 0.

Figure 2. Indentation force vs. tip depth: isotropic elastic simulation results and
analytical solutions, R = 1.482 µm, elastic constants of Haussuhl (1).
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Figure 3. Indentation force vs. tip depth: isotropic elastic simulation results and
analytical solutions, R = 1.482 µm, elastic constants of Haycraft et
al. (2).

Differences between analytical and numerical solutions become noticeable for d & 50 nm when
GR is used, and for d & 40 nm when GV is used. In both cases, numerical predictions are stiffer
than corresponding analytical solutions. Differences between numerical and analytical solutions
are attributed to the following features resolved by the calculation that are not included in the
analytical solution: (1) geometric nonlinearities associated with problem geometry, (2) finite
logarithmic deviatoric strain measures and true volume changes, (3) nonlinear compressibility for
cases with B′ > 0, and (4) finite size of the substrate. Recall from discussion in section 3.1 that
mesh construction did not influence results such as indentation force P; differences between
numerical and analytical solutions are not attributed to mesh resolution. All results discussed
hereafter involve nonlinear compressibility.

Closer agreement between the numerical model (with constant bulk modulus) and linear elastic
analytical solutions can be obtained by the transformation d → d +δ in the analytical solution of
equation 15, where δ is a correction that accounts for the presence of the rigid boundary at a
depth Z = 2R from the surface of the substrate:

δ =− P
2πZEs

(3+νs−2ν2
s ). (17)

As shown in figure 4, equation 17 yields reasonably close agreement between model and
(corrected) analytical solutions, suggesting that differences between numerical predictions and
uncorrected analytical solutions may be due, at least in part, to the finite size of the substrate
modeled in the simulations. It should be noted that this correction, obtained from the analytical
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Boussinesq solution for displacement due to a point force applied to a linear elastic isotropic
half-space (34), is approximate.

Figure 4. Indentation force vs. tip depth: isotropic elastic simulation results and
analytical solutions with and without corrections, R = 1.482 µm; soft
elastic constants of Haussuhl (1) and stiff constants of Haycraft et al. (2),
Reuss shear modulus.

Results from simulations incorporating isotropic and anisotropic nonlinear elasticity are
compared in figures 5 and 6, which show force P versus applied indentation depth D. The
indenter radius is R = 1.482 µm (3). The difference between tip depth d and applied
displacement D is ≈ 1–2% over the duration of each simulation. Load excursion data thought to
correspond to the onset of slip in indentation experiments (3) are also shown.
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Figure 5. Indentation force vs. applied displacement: isotropic and anisotropic
elastic simulation results, and experimental initial load excursion data
(3), R = 1.482 µm, elastic constants of Haussuhl (1).

Figure 6. Indentation force vs. applied displacement: isotropic and anisotropic
elastic simulation results, and experimental initial load excursion data
(3), R = 1.482 µm, elastic constants of Haycraft et al. (2).
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First, consider the numerical predictions in figure 5, which are obtained using the relatively
compliant elastic constants reported by Haussuhl (1). Orientation (210) is relatively stiff, with
predicted force P exceeding that of the isotropic case using Voigt shear modulus GV . Orientation
(001) is the most compliant, with predicted force P less than that for the isotropic case using
Reuss shear modulus GR. Simulations predict P(001) < P(021) < P(210). As shown in the
appendix, the elastic stiffness component associated with indentation follows the sequence
C(001)

33 < C(021)
33 < C(210)

33 . Experiments (3) suggest that orientation (001) is most compliant, in
agreement with the present results. Experiments also suggest that (210) has a higher effective
modulus Er than (021), while (021) has a higher measured hardness than (210). Now compare
numerical predictions with experimental data in figure 5. Close agreement between model
predictions and load excursion data, within the accuracy of the data, e.g., ≈10–20% uncertainty in
measured P (3), is demonstrated for all three orientations of the RDX substrate.

Next consider the numerical predictions in figure 6, which are obtained using the relatively stiff
elastic constants reported by Haycraft et al. (2). Orientations (021) and (210) are relatively stiff,
with predicted force P comparable to the isotropic case using Voigt shear modulus GV .
Orientation (001) is relatively compliant, with predicted force P slightly exceeding the isotropic
case using Reuss shear modulus GR. In other words, simulations predict P(001) < P(021) ≈ P(210).
Next compare numerical predictions with experimental data in figure 6. For the (210)
orientation, the load curve from the elastic model coincides with the load excursion data, within
the accuracy of the data. Elastic model load curves are significantly stiffer than load excursion
data for (001) and (021) orientations. Molecular simulations suggest that all shear moduli of
RDX increase with increasing pressure (29); incorporation of such effects into the present
indentation simulations would seem to lead to an increase in tangent modulus with increasing
depth of indentation, further increasing differences between modeling using constants of Haycraft
et al. (2) and experiment.

Predictions obtained using each set of elastic constants (1, 2) are compared directly for substrate
orientations (001), (021), and (210) in figures 7, 8, and 9. Significantly closer agreement between
model and experiment (3) is obtained from the elastic constants of Haussuhl (1) for indentation
onto (001) and (021) planes. Comparable accuracy is obtained from either set of elastic constants
for indentation on (210) planes. Thus, the present simulations confirm that elastic constants
obtained using resonant ultrasonic methods (1, 27) provide a more realistic representation of
elastic stiffness during nano-indentation than elastic constants obtained from Brillouin scattering
(2), with the latter appearing too stiff.
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Figure 7. Indentation force vs. applied displacement for elastic indentation onto
plane (001): predictions obtained using stiff (2) and soft (1) elastic con-
stants compared to experiment (3).

Figure 8. Indentation force vs. applied displacement for elastic indentation onto
plane (021): predictions obtained using stiff (2) and soft (1) elastic con-
stants compared to experiment (3).
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Figure 9. Indentation force vs. applied displacement for elastic indentation onto
plane (210): predictions obtained using stiff (2) and soft (1) elastic con-
stants compared to experiment (3).
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The influence of indenter radius R on nonlinear anisotropic simulation results is shown in figures
10, 11, and 12; in each case, elastic constants of Haycraft et al. (2) are employed. For all three
orientations of the RDX substrate, indentation force is nearly proportional to R1/2, as in the
isotropic linear elastic analytical solution equation 15. For exact R1/2 proportionality, the three
curves within each of figures 10, 11, and 12 would coincide. This supports the assertion that
nonlinearities contribute to differences between numerical and analytical solutions.

Figure 10. Normalized force vs. tip depth for elastic indentation onto plane (001),
elastic constants of Haycraft et al. (2).

Figure 11. Normalized force vs. tip depth for elastic indentation onto plane (021),
elastic constants of Haycraft et al. (2).
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Figure 12. Normalized force vs. tip depth for elastic indentation onto plane (210),
elastic constants of Haycraft et al. (2).

All simulation results reported in figures in this work are obtained assuming frictionless contact.
In order to estimate an upper bound on indentation force for non-negligible sliding friction
between indenter and substrate, simulations incorporating nonlinear isotropic elasticity with GV

or GR of Haycraft et al. (2) were also conducted assuming fully tied tangential contact, i.e., no
sliding, full sticking, or an infinite friction coefficient. In such simulations, normal separation
was permitted. It was found that differences between frictionless and tied contact were
insignificant. For example, at D = 150 nm, for simulations incorporating GV , P = 2.56 mN for
frictionless contact and P = 2.57 mN for tied contact. Experimental measurements of dynamic
friction for RDX single crystals sliding on a glass substrate (35) suggest a friction coefficient on
the order of unity for loads under 1 g (≈ 10 mN) wherein contact is characterized as elastic, and a
friction coefficient of 0.35 for loads in excess of 10 g, wherein contact is characterized as plastic.
Experimental sliding velocities were on the order of 0.2 mm/s. The present indentation
simulations consider a different geometry, smaller system sizes (loads under 1 g), and slower
sliding velocities (on the order of 10 nm/s), so the reported experimental values for friction
coefficients (35) may not strictly apply here.

3.3 Elastic-Plastic Indentation

Results are now reported for indentation of RDX single crystals described by the complete
nonlinear crystal plasticity constitutive model of section 2. Because strengths of families of slip
systems are not known precisely a priori from experiments, shear strengths τk

0 are varied
parametrically over the range listed in table 4. This range, which corresponds to slip resistance
on the order of the theoretical strength, is physically descriptive of homogeneous nucleation of
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glissile dislocation lines and loops.

Results of indentation force versus applied indention depth are shown in figures 13, 14, and 15.
In each of these figures, results correspond to elastic constants of Haycraft et al. (2). For
situations in which one family (consisting of one or two systems, as in figure 1) is assigned
strength τk

0 = G/20, the remaining systems are assigned strength G/10. Recall that Miller
indices corresponding to slip system numbers 1–6 are listed in table 3. For indentation on (001),
only slip system 6 exhibits significant activity; lowering the strength of any of the other systems
1–5 from G/10 to G/20 does not noticeably affect indentation force P. For indentation on (021),
lowering the strength of system 6 to G/20 provides the greatest reduction in indentation force.
However, lowering the strength of the other families of systems does produce a slight decrease in
force. For indentation on (210), the opposite trend is observed. Lowering the strength of system
6 to G/20 produces a small reduction in force, whereas lowering the strength of the other families
of systems produces a more substantial reduction.

Figure 13. Force vs. depth for elastic-plastic indentation onto plane (001); slip sys-
tems have strength G/10 unless noted otherwise, elastic constants of
Haycraft et al. (2).
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Figure 14. Force vs. depth for elastic-plastic indentation onto plane (021); slip sys-
tems have strength G/10 unless noted otherwise, elastic constants of
Haycraft et al. (2).

Figure 15. Force vs. depth for elastic-plastic indentation onto plane (210); slip sys-
tems have strength G/10 unless noted otherwise, elastic constants of
Haycraft et al. (2).
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Model predictions for uniform slip strength τk
0 = G/20 are compared with experimental data of

Ramos et al. (3) in figures 16, 17, and 18, with predictions obtained using elastic constants of
references (1) and (2). Predicted forces exceed experimental values at larger indendation depths
in each orientation and for both sets of elastic constants. Results corresponding to more
compliant elastic constants (1) provide closer agreement to experimental values than results
corresponding to stiffer elastic constants (2).

Figure 16. Force vs. depth for elastic-plastic indentation onto plane (001). Model
results assume all slip systems have same strength G/20; predictions
obtained using stiff (2) and soft (1) elastic constants; experimental data
(3) shown for comparison.
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Figure 17. Force vs. depth for elastic-plastic indentation onto plane (021). Model
results assume all slip systems have same strength G/20; predictions
obtained using stiff (2) and soft (1) elastic constants; experimental data
(3) shown for comparison.

Figure 18. Force vs. depth for elastic-plastic indentation onto plane (210). Model
results assume all slip systems have same strength G/20; predictions
obtained using stiff (2) and soft (1) elastic constants; experimental data
(3) shown for comparison.
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Model predictions for uniform slip strengths τk
0 of G/10, G/20, and G/40 are compared with

experimental data (3) in figures 19, 20, and 21, with predictions obtained using elastic constants
of Haycraft et al. (2). Further reduction of slip strengths below G/40 enables closer agreement
with experimental data at larger indentation depths, but also leads to significant under-prediction
of the force at smaller depths near initial yield.

Figure 19. Force vs. depth for elastic-plastic indentation onto plane (001), elastic
constants of Haycraft et al. (2). Model results assume all slip systems
have same strength; experimental data (3) shown for comparison.
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Figure 20. Force vs. depth for elastic-plastic indentation onto plane (021), elastic
constants of Haycraft et al. (2). Model results assume all slip systems
have same strength; experimental data (3) shown for comparison.

Figure 21. Force vs. depth for elastic-plastic indentation onto plane (210), elastic
constants of Haycraft et al. (2). Model results assume all slip systems
have same strength; experimental data (3) shown for comparison.
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As noted in section 3.2, uncertainty in the true tip radius R of the indenter could lead to
discrepancies between simulations and experiments. Also noted in section 3.2, surface fractures
and/or subsurface fractures could contribute to a loss of stiffness that would be reflected only in
the experimental data. RDX is prone to cleavage fracture on planes (001), (010), (001), (241),
and (24̄1) (3, 7, 9). Experimental data demonstrate nearly horizontal steps in force versus
displacement corresponding to discrete slip (and possibly fracture) events that are not readily
resolved by a constant strength continuum crystal plasticity model such as the one formulated
here.

Details of slip system interactions and pressure dependence of shear strength are omitted in the
present model. Indentation experiments have suggested the importance of cross slip (3), and
atomic modeling has noted that different slip mechanisms may become important at high
pressures (12). Incorporation of these effects into a more complex slip model might provide
closer agreement with experiment, e.g., if glide resistance were to decrease with pressure, since
local pressures under the indenter achieve several GPa, as will be shown later. Atomic modeling
(12, 36) may provide insight into dependence of slip resistance on pressure (and temperature, etc.)
not available from experimental methods.

In subsequent figures presented in this work, elastic constants obtained from resonant ultrasound
spectroscopy (1) are used, and all systems are assigned a strength of τk

0 = G/20 = 0.32 GPa. The
intent is not necessarily reproduction of experimental force-displacement data, but rather to
deduce activity of which slip system(s) is most prominent for indentation on particular planes.
The present crystal plasticity simulations enable direct quantification of surface and subsurface
slip on each system. In contrast, hardness or indentation experiments (3, 10, 11) require
significant interpretation of data to deduce slip activity and do not provide a quantitative measure
of the relative contributions of each slip system to the overall plastic strain field. In the
aforementioned experiments, visual observations of slip traces are restricted to residual surface
profiles, whereas simulations enable visualization of subsurface slip activity.

Simulations demonstrated sufficient mesh refinement for elastic-plastic simulations. In
particular, doubling of the number of elements in the mesh resulted in a less than 1% change in P

for indentation depths up to 300 nm for all three orientations of the substrate with τk
0 = G/20

assigned for all k.

Model predictions of cumulative slip for indentation to a depth of D = 200 nm onto planes (001),
(021), and (210) are shown in figures 22, 23, and 24. Corresponding pressure contours are shown
in figures 25, 26, and 27. In each case, a slice along the centerline of the cylinder normal to the
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laboratory X1 axis (i.e., X-axis) is shown. For indentation on (001) and (021) planes the X1 axis
is normal to a (100) plane; for indentation on (210) the X1 axis is approximately normal to a (23̄0)
plane. Cumulative total slip γ is defined as

γ = ∑
k

γk = ∑
k

∫
|γ̇k|dt, (18)

with γk the monotonically increasing cumulative slip on system k. Slip activity is greater for
indentation into (021) and (210) planes than for indentation on (001). For this particular viewing
plane, slip and pressure contours for indentation on (021) are noticeably asymmetric. Maximum
local pressure (but not average pressure) is highest for indentation on (001) despite the lower
elastic stiffness for this orientation. The wireframe mesh of the indenter is drawn in each figure;
in order to enable clear visualization of heterogeneous slip and pressure distributions in the RDX,
the mesh of the substrate, which is considerably more refined than that of the indenter, is not
shown.

Figure 22. Cumulative total slip contours for indentation to depth D = 200 nm
onto plane (001); a slice along the centerline of the cylinder normal to
the laboratory X1 axis [i.e., X-axis or (100)] is shown.
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Figure 23. Cumulative total slip contours for indentation to depth D = 200 nm
onto plane (021); a slice along the centerline of the cylinder normal to
the laboratory X1 axis [i.e., X-axis or (100)] is shown.

Figure 24. Cumulative total slip contours for indentation to depth D = 200 nm
onto plane (210); a slice along the centerline of the cylinder normal to
the laboratory X1 axis [i.e., X-axis or (23̄0)] is shown.
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Figure 25. Hydrostatic pressure contours for indentation to depth D = 200 nm onto
plane (001); a slice along the centerline of the cylinder normal to the
laboratory X1 axis [i.e., X-axis or (100)] is shown.

Figure 26. Hydrostatic pressure contours for indentation to depth D = 200 nm onto
plane (021); a slice along the centerline of the cylinder normal to the
laboratory X1 axis [i.e., X-axis or (100)] is shown.
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Figure 27. Hydrostatic pressure contours for indentation to depth D = 200 nm onto
plane (210); a slice along the centerline of the cylinder normal to the
laboratory X1 axis [i.e., X-axis or (23̄0)] is shown.
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Tables 6 and 7 list maximum local cumulative slip (i.e., the maximum value of γk at any location
in the RDX substrate) at an indentation depth D = 200 nm when the respective elastic constants
of references (1) and (2) are implemented. Total slip γ listed in the bottom row of each table is
not necessarily the sum of all γk listed in a given column because the location in the substrate
where total slip is maximum does not necessarily correspond to the location where each γk is
maximum. Consistent with figure 13, orientation (001) exhibits slip primarily on system 6.
Significant activity of multiple slip systems is evident for indentation onto (021) and (210) planes.
It appears that, for compatibility reasons, slip system 6 is active for indentation on (210) because
it is the only system with a slip direction different from [100] (see figure 1 and table 3). Trends
are qualitatively similar regardless of choice of elastic constants. Cumulative slip magnitudes are
generally slightly larger in table 7 than in table 6 because larger stresses are attained at the same
depth of indentation when stiffer elastic constants are prescribed.

Table 6. Maximum local slip γk at indentation depth of 200 nm for indentation on
(001), (021), and (210) planes, elastic constants of Haussuhl (1).

System k Plane (001) Plane (021) Plane (210)

1 0.01 0.19 0.40

2 0.01 0.00 0.40

3 0.08 0.16 0.29

4 0.08 0.00 0.29

5 0.00 0.10 0.51

6 0.31 0.41 0.16

all (γ) 0.31 0.46 0.52

Table 7. Maximum local slip γk at indentation depth of 200 nm for indentation on
(001), (021), and (210) planes, elastic constants of Haycraft et al. (2).

System k Plane (001) Plane (021) Plane (210)

1 0.01 0.19 0.41

2 0.01 0.00 0.41

3 0.06 0.13 0.28

4 0.06 0.00 0.28

5 0.01 0.10 0.52

6 0.35 0.51 0.26

all (γ) 0.35 0.56 0.58
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Loading-unloading simulations of indentation on (001), (021), and (210) planes of RDX are
performed to enable comparison with experimental observations. Force versus displacement
predictions are shown in figure 28 for a single load-unload cycle corresponding to loading to
D≈ 200 nm and then unloading to D = 0. During much of the loading phase, orientation (001) is
slightly less stiff than orientations (021) and (210). However, at D≈ 200 nm, P is largest for
orientation (001). Recall that orientation (001) demonstrates a lower elastic stiffness, but also
less slip activity. Hence at larger indentation depths, increased slip activity for orientations (021)
and (210) lowers their effective tangent stiffness, and hence P, below that of orientation (001).

Figure 28. Indentation force vs. applied displacement for a single load-unload cy-
cle on each of (001), (021), and (210) planes.

Hysteresis is also substantially greater for indentation on (021) and (210) than for (001), again
demonstrating less slip activity in the latter. Orientation (210) demonstrates the most hysteresis
(and greatest slip activity) and the largest elastic stiffness for much of the unloading phase.

Residual cumulative slip contours for indentation to a depth of D≈ 200 nm onto planes (001),
(021), and (210) are shown in figures 29, 30, and 31. In each case, a slice along the centerline of
the cylinder normal to the laboratory X1 axis (i.e., X-axis) is shown. Contours are similar to those
shown in figures 22, 23, and 24, but with greater magnitudes of cumulative slip apparent after
unloading on (001) and (210). Recall from equation 18 that cumulative slip can never decrease in
time, and slip in forward and reverse directions on a given system both contribute positively;
hence, residual slip contours can demonstrate a larger magnitude as a result of any forward or
reverse slip occurring during unloading. Cumulative slip shown in figure 30 is exceeded by that
in figure 23 since in the former the depth of indentation does not attain 200 nm (figure 28).
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Figure 29. Residual cumulative total slip contours for indentation to depth D ≈
200 nm, followed by unloading, onto plane (001). A slice along the
centerline of the cylinder normal to the laboratory X1 axis [i.e., X-axis
or (100)] is shown.

Figure 30. Residual cumulative total slip contours for indentation to depth D ≈
200 nm, followed by unloading, onto plane (021). A slice along the
centerline of the cylinder normal to the laboratory X1 axis [i.e., X-axis
or (100)] is shown.
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Figure 31. Residual cumulative total slip contours for indentation to depth D ≈
200 nm, followed by unloading, onto plane (210). A slice along the
centerline of the cylinder normal to the laboratory X1 axis [i.e., X-axis
or (23̄0)] is shown.
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Figures 32–42 show total cumulative slip, γ , and cumulative slip, γk, for active individual slip
systems on unloaded surfaces of (001), (021), and (210) planes. In each case, the maximum
indentation depth prior to unloading is D≈ 200 nm. Non-circular contours are consistent with
activity of fewer than five geometrically independent systems necessary to accommodate an
arbitrary plastic strain field (3).

Figure 32. Surface residual cumulative slip contours for indentation to depth D ≈
200 nm, followed by unloading, onto plane (001): total slip.
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Figure 33. Surface residual cumulative slip contours for indentation to depth D ≈
200 nm, followed by unloading, onto plane (001): slip on system 6
(010)[001].

Figure 34. Surface residual cumulative slip contours for indentation to depth D ≈
200 nm, followed by unloading, onto plane (021): total slip.
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Figure 35. Surface residual cumulative slip contours for indentation to depth D ≈
200 nm, followed by unloading, onto plane (021): slip on system 1
(021)[100].

Figure 36. Surface residual cumulative slip contours for indentation to depth D ≈
200 nm, followed by unloading, onto plane (021): slip on system 3
(011)[100].

36



Figure 37. Surface residual cumulative slip contours for indentation to depth D ≈
200 nm, followed by unloading, onto plane (021): slip on system 6
(010)[001].

Figure 38. Surface residual cumulative slip contours for indentation to depth D ≈
200 nm, followed by unloading, onto plane (210): total slip.
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Figure 39. Surface residual cumulative slip contours for indentation to depth D ≈
200 nm, followed by unloading, onto plane (210): slip on system 1
(021)[100].

Figure 40. Surface residual cumulative slip contours for indentation to depth D ≈
200 nm, followed by unloading, onto plane (210): slip on system 2
(02̄1)[100].
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Figure 41. Surface residual cumulative slip contours for indentation to depth D ≈
200 nm, followed by unloading, onto plane (210): slip on system 5
(010)[100].

Figure 42. Surface residual cumulative slip contours for indentation to depth D ≈
200 nm, followed by unloading, onto plane (210): slip on system 6
(010)[001].
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As shown in figures 32 and 33, surface slip activity results primarily from system 6 for
indentation on (001). Slight contributions to the circular total slip trace in figure 32 are due to
systems 3 and 4, i.e., {011}[100] (not shown). As shown in figures 34–37, surface slip activity is
predominantly from system 6, with minor contributions from systems 1 and 3, for indentation on
(021). As shown in figures 38–42, surface slip activity is predominantly from system 5, with
contributions from systems 1, 2, and 6, for indentation on (210). Faint contributions from
systems 3 and 4 (not shown) also occur for indentation on (210).

Active slip planes during the loading history at the specimen surface as predicted by the present
simulations are compared with those deduced from experimental surface impressions (3) in table
8. It is noted that in simulations of indentation on (210), systems 3 and 4, i.e., {011}[100],
demonstrate substantial activity within the bulk material (i.e., beneath the surface), but little
cumulative slip at the surface. Experiments suggest that {011}[100] slip traces exist for indented
(210) surfaces of RDX (3). Though not presented in this report, predicted residual bulk and
surface slip contours were also obtained using the relatively stiff elastic constants of Haycraft et
al. (2). Trends in results for slip activity were usually qualitatively similar regardless of choice of
elastic constants from references (1) or (2).

Table 8. Significantly active slip planes at the specimen surface during indentation
of (001), (021), and (210) planes.

Indentation surface Present results Experiment (3)

(001) (010),{011} (010),{011},{021}
(021) (010),(011),(021) not reported

(210) (010),{011},{021} (010),{011},(021̄)

4. Conclusions

A nonlinear anisotropic elastic-plastic model has been developed for single crystals of RDX. The
model accounts for orthorhombic elastic constants, pressure-dependent compressibility, and
dislocation glide on up to six distinct slip systems from four families of crystallographically
equivalent slip systems.

Numerical simulations of spherical indentation on (001), (021), and (210) planes of single
crystals have been performed. Results show significant influences of elastic anisotropy and
elastic nonlinearity on force-displacement data. Model predictions for initial elastic response
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using constants measured with resonant ultrasound spectroscopy agree with experimental
force-displacement data for indentation on (001), (021), and (210) planes. Model predictions for
initial elastic response using constants measured with Brillouin scattering are in reasonable
agreement with experiments for indentation on (210), but are stiffer than experiments for
indentation on (001) and (021). Orientation (001) is elastically most compliant with respect to
indentation force, in agreement with experiments.

Model predictions of force for larger indentation depths, wherein local plastic slip is substantial,
tend to exceed experimental values regardless of which set of elastic constants is used. The
constant strength (i.e., perfectly plastic) slip model implemented in the present work is unable to
replicate nearly horizontal steps in indentation force observed in experiments. Such steps may
correspond to discrete slip events of width too fine to be captured by a conventional continuum
slip model. Dependencies of shear strength and shear stiffness on slip history and pressure have
been omitted; incorporation of such physics, for example, as suggested by atomic simulations,
might provide improved agreement. Uncertainties in true indenter tip geometry, and fractures
observed in experiments (at the surface) or not observed (subsurface) could also contribute to
discrepancies between simulations and experiments.

Critical shear strengths associated with plastic yielding have been estimated on the order of G/20,
where G is a representative elastic shear modulus. Simulations suggest that slip planes (010) and
{011} contain active systems for indentation on (001), with slip on system (010)[001] dominating
the inelastic response; experimental surface observations confirm that these and {021} slip planes
may also be active. Simulations suggest that slip planes (010) and {021}, and to a lesser extent
{011}, are active at the specimen surface for indentation on (210); these same planes have also
been confirmed as active in experiments. Simulations suggest that planes (010), (011), and (021)
contain active systems for indentation on (021); particular slip planes active for this orientation
have not been reported from experimental observations.

The present simulations suggest that system (010)[001] provides the largest contribution to the
inelastic material response (i.e., post-yield force versus displacement curve) for indentation on
(001) and (021) planes, while five systems {021}[100], {011}[100], and (010)[100] all contribute
to inelastic response for indentation on (210) planes. Plastic deformation and hysteresis are more
extensive for indentation on (021) and (210) than for indentation on (001).

Since much plastic deformation occurs in the bulk of the material, and since different slip
mechanisms may be prominent at the surface and in the bulk, these results offer new insight into
inelastic mechanical behavior of RDX not available from experimental observations of residual
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surface topography alone.

In summary, the model developed here, when used with elastic constants obtained from resonant
ultrasonic methods, is thought to provide an accurate representation of the nonlinear anisotropic
response of RDX single crystals in the elastic regime of indentation. This model is also thought
to provide a qualitatively realistic depiction of activity of different slip systems when a uniform
and constant shear strength on the order of G/20 is prescribed. However, refinements of the
model are needed to address any reduction in stiffness associated with discrete or highly localized
slip events and cleavage fractures observed at larger indentation depths.

Some information contained in this report appears, in abbreviated form with far fewer figures, in a
recently submitted publication (37).
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Appendix. Rotated Elastic Constants

Let C(i jk) be the fourth-order matrix of elastic constants of the crystal oriented for indentation
into crystallographic plane (i jk). Let RRR(i jk) be the corresponding rotation matrix. Then

C(i jk)
ABCD = R(i jk)

AE R(i jk)
BF R(i jk)

CG R(i jk)
DH CEFGH , (A-1)

where CEFGH corresponds to the isothermal elastic constants of table 2. Let C(i jk)
αβ denote the

rotated elastic constants in Voigt’s notation.

For indentation into (001) planes of RDX,

RRR(i jk) = [R(001)
AB ] =




1 0 0
0 1 0
0 0 1


 . (A-2)

The second-order elastic constants of Haussuhl (1) are

C(i jk) = [C(001)
αβ ] =




24.56 7.61 5.30 0 0 0
18.85 5.24 0 0 0

17.33 0 0 0
5.15 0 0

symm 4.06 0
6.90




GPa. (A-3)

The second-order elastic constants of Haycraft et al. (2) are

C(i jk) = [C(001)
αβ ] =




36.48 0.90 1.26 0 0 0
24.49 8.16 0 0 0

20.78 0 0 0
11.99 0 0

symm 2.72 0
7.68




GPa. (A-4)
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For indentation into (021) planes of RDX,

RRR(i jk) = [R(021)
AB ] =




1 0 0
0 0.475 −0.880
0 0.880 0.475


 . (A-5)

Rotated second-order elastic constants of Haussuhl (1) are

C(i jk) = [C(021)
αβ ] =




24.56 5.82 7.09 0.97 0 0
16.78 6.13 −0.27 0 0

17.62 0.90 0 0
6.04 0 0

symm 6.26 1.19
4.70




GPa. (A-6)

Rotated second-order elastic constants of Haycraft et al. (2) are

C(i jk) = [C(021)
αβ ] =




36.48 1.18 0.98 −0.15 0 0
24.94 4.84 2.96 0 0

26.98 −1.40 0 0
8.67 0 0

symm 6.56 2.07
3.84




GPa. (A-7)

For indentation into (210) planes of RDX,

RRR(i jk) = [R(210)
AB ] =




0.495 −0.869 0
0 0 −1

0.869 0.495 0


 . (A-8)

Rotated second-order elastic constants of Haussuhl (1) are

C(i jk) = [C(210)
αβ ] =




20.15 5.26 7.72 0 1.16 0
17.33 5.29 0 0.03 0

23.06 0 1.29 0
4.33 0 −0.47

symm 7.01 0
4.88




GPa. (A-9)
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Rotated second-order elastic constants of Haycraft et al. (2) are

C(i jk) = [C(210)
αβ ] =




22.17 6.47 6.16 0 −0.54 0
20.78 2.95 0 −2.97 0

28.29 0 5.70 0
4.99 0 −3.99

symm 12.94 0
9.72




GPa. (A-10)

Perhaps most pertinent to indentation in the X3-direction, C(210)
33 > C(021)

33 > C(001)
33 for either set of

experimentally measured elastic constants for RDX. It is also noted that C(i jk)
33 from Brillouin

scattering reported by Haycraft et al. (2) always exceeds the corresponding value from resonant
ultrasonic measurements reported by Haussuhl (1).

Rotation matrices and elastic coefficients listed in equation A-2–A-10 are non-unique since
additional rotation about the normal to plane (i jk) would not change the crystallographic plane
normal to the direction of indentation. While some elastic constants would change under such
additional rotation, the elastic constant C(i jk)

33 would be unaffected. Furthermore, for spherical
indentation into a cylindrical substrate, the total indentation force P would be unaffected by rigid
rotation of the crystal lattice about X3.

It is also illustrative to consider the elastic compliance matrix S obeying the reciprocity relations

SABEFCEFCD =
1
2
(δACδBD +δADδBC). (A-11)

Components of the 6×6 compliance tensor Sαβ are those of the inverse of Cαβ . Young’s moduli
are defined as

E11 = 1/S11 = 1/S1111, E22 = 1/S22 = 1/S2222, E33 = 1/S33 = 1/S3333. (A-12)

Values for Young’s modulus for orientations corresponding to indentation on (001), (021), and
(210) planes, with X3 the direction of indentation, are listed in table A-1 for each set of elastic
constants given in table 2.

Values of E(i jk)
33 do not follow trends mentioned for those of C(i jk)

33 , and trends for Young’s
modulus also differ between different sets of experimentally measured constants. In particular,
for elastic constants of Hausshul (1), E(210)

33 > E(001)
33 > E(021)

33 . For elastic constants of Haycraft
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et al. (2), E(021)
33 > E(210)

33 > E(001)
33 . It is remarked that E(i jk)

αα from Haycraft et al. (2) always
exceeds the corresponding value from Haussuhl (1) for α = 1,2,3.

Table A-1. Young’s modulus of RDX single crystals oriented for indentation on
planes (001), (021), and (210).

Plane [ref.(1)] Plane [ref.(2)]

Modulus (001) (021) (210) (001) (021) (210)

E11 [GPa] 20.85 20.85 16.72 36.40 36.40 19.12

E22 [GPa] 15.69 14.05 15.40 21.28 22.84 18.04

E33 [GPa] 15.40 14.19 19.31 18.04 25.55 23.61
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D CASEM
J CLAYTON (10 CPS)
D DANDEKAR
M GREENFIELD
C HOPPEL
R KRAFT
B LEAVY
D POWELL
M RAFTENBERG
S SATAPATHY
M SCHEIDLER
T WEERISOORIYA
C WILLIAMS

RDRL WMP C
T BJERKE
S SEGLETES

RDRL WMP F
N GNIAZDOWSKI

RDRL WMP G
R EHLERS
N ELDREDGE
S KUKUCK
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