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EXPLORATION OF SELF-REGULATION IN THE 
NATURAL SWIMMING OF THE PARAMECIUM'S CILIUM 

1. INTRODUCTION 

The paramecium is slipper-shaped ciliate protozoa widely found in oxygenated aquatic 
environments. Paramecia are 100 - 350 urn long, deformable, and may contain up to 3000 
flexible cilia populated around their body, each cilium being about 17 urn long and 0.25 urn in 
diameter (Pernberg and Machemer, 1995). For propulsion, each cilium beats at about 14.1 Hz in 
water while undergoing a complicated, three-dimensional, phase-dependent motion. The 
assemblage of cilia also undergoes a coordinated motion, called metachronic motion—i.e., the 
assemblage beats with a constant phase difference between neighboring cilia (Machemer, 1972). 
The paramecium twists while going forward. It backs off and swims in a new direction when it 
meets an obstruction. The paramecium's swimming speed is about two body lengths per second 
(0.44 mm/s for a 200-um-long paramecium (Wurzel, 2003)). The range of maneuvering motion 
that a paramecium can undergo is limited. In the following paragraphs, the literature on cilia 
motion and their metachronic assemblage and control is examined. 

1.1  LITERATURE REVIEW 

Information on the mathematical treatment of the three-dimensional motion of a single 
cilium can be found in Dillon and Fauci (2000), Hines and Blum (1978, 1983) and Brokaw 
(1966). Further information on metachronism can be found in Blake (1971), Gueron et al. 
(1997), Gueron and Levit-Guerevich (1999a, 1999b). Gueron and Liron (1992), Machemer 
(1972), and Ramia et al. (1993). 

Teunis and Machemer (1994) have reported high-speed stereomicroscopic measurements of 
cilia motion and have derived the variation of curvature and torsion with the beat phase. They 
have also identified the power and return strokes of cilia motion. (In the present work, the 
Teunis and Machemer results are revisited.) 

Dute and Kung (1978) have given the physiology of a cilium, indicating how the cilium 
motion is mechanically produced when a torque is applied at the cilium's base. Cilium motion is 
generated by a combination of a pair of linear tubular actuators (microtubules) at the center, 
which are surrounded by nine pairs of push-pull microtubules spaced at 40° apart (this actuator 
configuration of microtubules is called the "(9 + 2) structure"). Dute and Kung offer a 
mechanical model that bears some similarity to helicopter swashplates. 

Hines and Blum (1978, 1983) have carried out a nonlinear theoretical analysis of the motion 
of a flagellum (approximately a longer cilium) using a sliding filament model. They reproduce 
bending propagation and argue that the cilium must be twisting. Dillon and Fauci (2000) have 
hydrodynamically modeled the cilium, incorporating a most detailed (9+ 2 "axenome") internal 



elastic actuation structure. In their study, they reproduce the cilium beating as an emergent 
property of the coupling of the fluid and the actuator architecture. Gueron and Levit-Guerevich 
(2001) have incorporated the 9 + 2 architecture in their theoretical model. 

Cilium-cilium hydrodynamic interaction has been theoretically examined by Gueron and 
Liron (1992) and Gueron et al. (1997), extending the substantial earlier theoretical work on the 
hydrodynamics of a single cilium (see their paper for the earlier works). Their model is two- 
dimensional. They show that in two cilia beating at a random phase difference, they synchronize 
within two beat cycles when brought closer together; that is, the metachronal pattern develops 
autonomously. The implication is that metachronism is a self-organizing phenomenon. 

How the motion of the cilium (that is, the hydrodynamics) is controlled can be gleaned from 
the following. Machemer (1972), Nakaoka et al. (1984), and dePeyer and Machemer (1983) 
have shown that voltage stimulation affects cilia motility. Slow voltage ramps (5 to 10 mV/s) 
and moderate amplitudes (±20 mV) are shown to make the membrane properties time dependent, 
which affects ciliary response (cycle time and relaxation time). Pernberg and Machemer (1995) 
and Deitmer et al. (1984) have shown that the cilia beating frequency and reverse/forward 
motion switching are affected by calcium channel activation. Jaffe (2007) has examined 60 data 
sets on flagella and cilia and has shown that stretch-activated calcium channels cause calcium 
and other waves to propagate at speeds of 100 to 1000 um/s, which affects the tubular actuators 
mentioned earlier. 

Understanding of the cilium bending at the cellular level due to cross-bridge linking has 
made rapid strides. Cordova et al (1992) have mechanically modeled the attachment of a single 
motor molecule. Electrostatic force between the cross-bridge and the binding site is used to 
generate the cross-bridge link motion, and against an elastic restoring force, the cross-bridge 
fluctuates and its step size varies nonlinearly with force. 

Tamm and Tamm (1989) have studied microtubule sliding experimentally; the attachment of 
a Ca ion to a cilium is found to involve locally confined oscillatory bending. 

Some say that the mechanism of metachronism is hydrodynamic coupling, and some say 
that it is electrical (membrane potential) in origin (Tamm, 1984). The former is largely based on 
two-dimensional fluid dynamics modeling, and the paramecium's cilia also show electro- 
mechanical response. (The present report explores these approaches from the point of view of 
self-regulation in mechanical systems.) 

A photon correlation technique has led to the measurement of relaxation times of 5 us in 
single muscle fiber (Yeh et al., 1990). A lower frequency of 370 kHz is also present. The high 
frequency comes from the cross-bridge linking and the low frequency from certain thick 
filaments. 

Bouzarth et al. (2007) have carried out modeling and experiments on the submicron-scale 
flow of cilia. They found a strong coupling between cilium motion and the flow: the fluid orbit 
is epicyclical (related to the slow motion of the cilium) with coherent fluctuations (related to the 
precession rate). 



Guirao et al. (2010) have shown that the alignment of ciliary beating to fluid flow direction 
is controlled by a mechanism in which certain cilia act as sensors for lowpass filtering of 
hydrodynamic forces and for generating a polarity signal for directional alignment. 

Small biorobotic cilia have also been fabricated, although their hardness remains unchanged. 
Kongthon et al. (2010) have shown that cilia-based PDMS (polydimethylsiloxane) actuators have 
lower resonant frequency in liquid than in air. They show that this can be explained by added 
mass effects only. Shields et al. (2010) describe an experiment on PDMS biomimetic cilia 
stirring. The Peclet number, which is a ratio of advective to diffusive motion, is estimated to be 
10; that is, their cilium flow is advection dominated. In both of these papers, phase dependent 
bending is absent. They find the flow within the conical cilia orbit to be non-unidirectional, but 
unidirectional beyond the tip, and they term it "mixing" and "pumping,', respectively. They 
model the flow to be a linear superposition of shear and pressure-driven flow between parallel 
plates. 

Theoretical formulation of the equations of motion of a cilium (and flagellum) remains a 
difficult problem. Gueron and Liron (1992) have applied corrections to Lighthill's theory. 
Although a large body of analytical research on flagellum motion was carried out during the 
1970s, that research (and interpretation of the research's measurements) did not predict that the 
motion is, in fact, three-dimensional. The finding by Hines and Blum (1978, 1983) that there is 
twist indicates an improvement in our understanding of how three-dimensionality evolves in the 
cilium actuator. Robotic modeling may be viewed as a supplementary tool to our understanding 
of three-dimensionality. Therefore, it would be useful to build a robotic model of the cilium 
where the phase-dependent deformations are produced by summing independent orthogonal 
oscillatory motions (IOOMs), as in typical coordinate systems (robotic simulations using coupled 
actuators make programming difficult). (The present report considers what these IOOMs are and 
explores the origin of coupled motions. Contemporary PDMS cilia actuators do not accurately 
reproduce the cilium motion, and it is hoped that the IOOMs will provide a solution.) 

The cilium topic is of interest because it is a model of microscopic, elementary, natural 
swimming propulsion. A substantial amount of experimental and theoretical information is 
available on its physiology, motion, theoretical hydrodynamic modeling, metachronism, and 
control. Metachronism by itself is a very interesting example of cilium-cilium coupling. There 
is evidence of self-organization, as well as evidence of ionic control of cilium beating. The 
potential relationship of natural swimming and self-organization plus ionic control has far- 
reaching consequences in the sense that hydrodynamics and control may have co-evolved—see 
Llinas(2001). 

1.2 PURPOSE OF THIS WORK 

The present work addresses autonomy and three-dimensionality. The focus is on different 
sources of resonant oscillations. Also considered is how three-dimensionality develops in a solid 
surface, and how the development of this three-dimensionality and control are integrated. The 
approach taken is that modeling of how the different aspects of the problem are integrated as a 
whole is a fruitful way of understanding autonomy. 



The degree of three-dimensionality and control in the cilium varies with the power and 
return strokes. Hence, it is important to determine their phase accurately. How long is the 
propulsion stroke? Per Teunis and Machemer (1994), it is 1/7 to 2/7 of the beat period. This 
finding is revisited here because the cilium motion shows that near the extremities of the power 
and return strokes, the outer and inner parts of the cilium change the stroke at different phases, 
which makes it difficult to determine the exact ends of the strokes. For self-regulation to be 
explored, the phase transition between the power and return strokes needs to be determined 
accurately. 

Voltage stimulation experiments have shown that ion flow in the microtubules controls the 
torque produced. Theoretical work has shown that (1) the cilium motion emerges when 
appropriate moments are applied at the cilium microtubules, and (2) neighboring cilia interact 
and phased motion ensues between them autonomously. The links between autonomous 
regulation, ion flow-based control, and cilium motion need to be examined because they may 
provide clues as to how hydrodynamics and control are integrated in natural swimming. 

To understand the motion of a cilium, this report brings in several tools that have not been 
used previously in cilium investigations. These tools—Frenet's equation, nonlinear oscillatory 
modeling, biorobotics, and materials science—provide an opportunity to integrate structure, 
hydrodynamics, and control, whereby a more internally consistent understanding can be reached, 
and perhaps applied to nonlinear transduction, which is not well developed. Our physical 
rendition is a way to understand internal consistency when different disciplines such as 
hydrodynamics and control are being integrated. 

In the following sections, a theoretical model on torsional oscillation of the cilium is first 
developed, and this is followed by a nonlinear model of the moments applied at the base. After 
this, the motion of the biological cilium is examined by revisiting Teunis and Machemer's 
(1994) cilium orbits. The relationship of the analysis of the cilium motion to the models is 
examined. Cilium motion is robotically reproduced in a scaled-up model and compared with that 
of the biological cilium. Finally, a synthesis of the results is given and a modified fracture 
theory is applied to explain the origin of variation in hardness. The process of self-regulation is 
discussed. The report contains a substantial amount of supporting information in the appendix, 
which covers the following topics: 

• Two-dimensional hydrodynamic modeling based on Frenet's equations assuming the 
cilium to be composed of hinged links. 

• Robotic exploration of the independent orthogonal oscillatory motions that produce the 
cilium motion. 

• Development of "frictionless" actuators, continuing the theme of resonant oscillation 
when one expects the amplitude of oscillation and quality factor to increase. 

• Hardware operation of the cilium IOOMs via analog olivo-cerebellar dynamics. 
• Experimental investigation to understand how torsional modulus affects the development 

of three-dimensionality. 
• Consideration of how the microcosm of actuation and control in the tiny paramecium's 

cilium could conceivably be related to natural swimmers at higher Reynolds numbers. 



2. MODELING 

Here, natural swimming is defined as one where the cilium actuator is forced at the natural 
frequency of oscillation and the resulting motion is describable by dynamic systems, is nonlinear 
with the potential for chaotic motion, and has a self-regulating nature. 

2.1       MODELING OF THE NATURAL FREQUENCY OF OSCILLATION OF THE 
BIOLOGICAL CILIUM 

Consider the cilium to be a torsional pendulum (as shown in figure la) subjected to 
opposing torque r and drag D. For small rotational angles 6, 

r = -r/t6>, 

where T k is a torsional spring constant.  If/ is the moment of inertia, 

w = T=-Tk0, 

and the solution is, for m = l7ift>, with f0 being the natural beat frequency (1/s), 

m = yjTklI. 

In our case, for Reynolds number Re ~ 0.1 and drag coefficient Cp, CD » Re (I is constant), 

m  cc  \ITk   cc  JCD ocV/te, 

which gives 

f0 oc Vte. 

For the same cilium in different fluids, 

where v is the kinematic viscosity, /u is the dynamic viscosity, and p is the density of the fluid. 
Assuming p to be constant, 



where K is a constant. Therefore, as /u drops, the oscillation frequency/, increases. This 
relationship is compared with Machemer's measurements in figure lb. The trend is in agreement 
with Machemer's (1972) measurements. In view of the variable hardness of the cilium during 
the power and return strokes, this relationship is approximate. 
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Figure 1. (a) Schematic of the Torsional Pendulum Model 
of the Cilium; (b) Comparison of the Model 

(solid line:f0 - K(l/Vfi), K = 75, and ft in cp) with 
Measurements (dots) Due to Machemer (1972)) 

2.2 DYNAMIC SYSTEMS MODELING OF CILIUM MOTION 

In this section, olivo-cerebellar dynamics, which owes its origin to the inferior-olive (IO) 
neuron dynamics work of Llinas and Yarom (1981), and Kazantsev et al. (2003, 2004), is applied 
to the cilium motion. Direct evidence of the existence of such neurons in paramecium is lacking. 
However, there is corroborating evidence of a role of Ca ions in paramecium and cilium motion 
control (describable probably as a primitive neuron), and one can assume that each cilium has its 
own ion-related control. At the very least, it is noted that IO neurons are merely one of many 
situations in nature where equations such as that in equation (1) apply. 

Following Kazantsev et al. (2003), the model of the /h ion-related controller is given as 
follows: 



p,Az,)-w, + 
0 

~SCa 
/«*('), (1) 

where the variables z, and w, are associated with sub-threshold oscillations and low-threshold 
(Co-dependent) spiking in olivo-cerebellar dynamics (the higher threshold (MJ

+-dependent) 
spiking oscillator of Kazantsev et al.'s model is not considered). The constant parameter Eca 

controls the oscillation time scale; and Ica drives the depolarization levels. The nonlinear 
function is 

pl.(zl) = z,(zl -a,)(l-z,). 

The function lex, (/) is the extracellular stimulus, whose amplitude and duration are used for 
the purpose of control (changing the motion of paramecium direction, for example). If /«, (t) = 0 
(independent oscillator), the nonlinear function is given by pr (z,) = z, (z, - a, )(1 - zt), where a, 
is a constant parameter associated with the nonlinear function. Equation (1) can be written as 

z,+F(z/)i(+fe/+£/ = 0, (2) 

where F is a cubic polynomial function and k is a constant. Equation (2) bears resemblance to 
Lienard's oscillator (in contrast, the function F is a well-defined quadratic in the familiar van der 
Pol's oscillator) (Khalil, 1996; Slotine and Li. 1991). The oscillator exhibits a closed-orbit T, in 

the state space (z^z,); that is, (z, - wl), which is also known as limit cycle oscillation (LCO), 

the constant parameters determining the form of r,. Equation (1) is solved using the analog 
oscillators described in Bandyopadhyay et al. (2008). 

The (z, w) waveform data are gathered from Simulink and saved into files for reading; these 
are z, w waveforms, their derivatives, and their second derivatives (not shown in figure 2 due to 
the presence of an inflection point in the first derivative). In figure 2, the phase maps are scaled 
to the same size as the experimental data and centered at the same point so that waveforms can 
be compared. The modeled phase maps are also rotated to the proper orientation, which is a 10° 
rotation for position data (z, w) and -55° for derivative data (z, w). 

The modeled states (z, w) are compared with measurements in figure 2. Note that the 
experimental data are for axes shown in figure 13 for the biological cilium for a given value of s. 
The agreement, even in the first derivative, is rather good for a, = 0.015.  The simulation shows 
that the cilium follows a track that is descrihahle as a limit cycle. Therefore, it has an autonomic 
character; the cilium is controlled without sensors. 

The (- =  0   u- = 0) location is an inflection point (figure 2b) in both the biological cilium 
and the modeled state map. This is a new finding and that is significant from the point of view 
of the nonlinear oscillatory behavior of the cilium. 
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(a) (b) 

Figure 2. Comparison of the Tracks of the Cilium of a Paramecium as Measured by 
Machemer (1972) and Per the Present Authors' Computation ofLCO (Limit Cycle 

Oscillation) Using the Lienard Oscillator (Equation (2)) 
(The model is in blue, and the cilium distal point data are in red. Position is plotted on the left 

and velocity on the right The value of at is 0.015. (a) (z, w), and (b) i, w. Arbitrary units. 

The (z, w) waveforms and the attractor basins have been computed (not shown here). There 
is an option to show the component phases of each waveform. The user may also show a certain 
percentage of the data saved by Simulink, with small values showing the limit cycle and large 
values showing the entire limit cycle approach from the initial condition. For comparing 
waveforms, a small percentage (20% or lower) is most convenient. To see the entire attractor 
basin paths from multiple initial conditions, the user can show 100% of the data, which is a time- 
consuming process. These graphs may be obtained from the lead author. When the paramecium 
hits an obstacle, its return to natural beating would be described by these attractor maps 
(4,*0). 



3. BIOLOGICAL AND ROBOTIC CILIUM DATA 

A rigid link modeling of the hydrodynamics of the cilium has been undertaken by our co- 
worker Norman Toplosky (NUWC Code 1532) (see section A.l in the appendix). Thus far, a 
two-dimensional simulation has been completed, and the three-dimensional simulation results 
are awaited. The cilium stiffness is arbitrarily varied between the power and the return strokes. 
An asymmetric beating pattern is produced (figure A-2). The base force integral over the beat 
cycle shows some positive thrust (figure A-3). In the three-dimensional simulation, higher thrust 
is expected to be produced. To complement this work, the present authors undertook the 
approach of biorobotic simulation of the fluid-loaded cilium and an analysis of the biological 
cilium, drawing from the published data of Teunis and Machemer (1994). 

3.1 REVISITING BIOLOGICAL CILIUM DATA 

3.1.1 Collection and Processing of the Teunis and Machemer (1994) Data 

To revisit Teunis and Machemer s (1994) experiments, their orthogonal cilium stereo- 
microscopy pictures were electronically digitized in pixels; the cilium motion given by the 
position vector (in pixels) of a space curve r{s,t) = {x(s,t), y(s,t), z(s,t)}. This is shown for the 
propulsion longitudinal plane in figure A-4 of the appendix. The cilium is divided into 20 
segments (initially of non-uniform spacing). Define s as the axial length from the base to the 
distal point (L) of the particular cilium segment; also define an orthogonal coordinate system (x, 
y, z) that represents the propulsive (or stream-wise), vertical, and spanwise directions, 
respectively, and / is time. 

The University of British Columbia (UBC) Biology Department has produced a useful gif 
animation of the cilium motion using these stereoscopic data (see figure 13a, left column, 326- 
kB gif \magc). In this report, the term "revisited TM data" pertains to our (pixel) digitization of 
the cilium motion as it appears in the UBC gif graph, with the data due to Teunis and Machemer 
(1974), and their subsequent parametric processing and smoothing. The graphs used for 
digitization are from the UBC gif file because the cilium position, velocity, and acceleration do 
not visually exhibit any spatio-temporal kink (smooth gradients of time and length). 

Due to cilium bending, initially, the positions (in pixels) along the length were not equally 
spaced in the longitudinal and top-view planes. For this reason, the digitization had to be 
processed in the following manner. With cilium bending, the (y(s,t)) distances could be 
determined more accurately from the (x(t),y(t)) view (side view), and the (x(s,t), z(s,t)) position 
values could be determined from the (x(t), z{t)) view (top view). The initial length was obtained 
from the three coordinates obtained this way. From the polynomial fits at each time step (TS), 
the cilium was digitized at equal length intervals (r(s, /)). The data were further smoothed along 
the orbits. Subsequently, a three-dimensional parametric fit (figure 3c) was applied; see 
Zwillinger (1996). The result was a smoothed position distribution both along the cilium lengths 
at each time step and also of their rotational orbits obtained from position vectors at equispaced s 
locations. 



The improvement in the accuracy due to axial and rotational track smoothing of the cilium 
position vector data is given in the tables A-2 through A-4 in the appendix. The cilium length of 
17 urn is maintained at all time steps (the diameter is 0.25 urn) (Pernberg and Machemer, 1995); 
the local lengths are also maintained at all positions along the length of the cilium at all time 
steps. Figure 6 of Machemer (1972) shows that the biological cilium data used here are for water 
(viscosity of 40 cP). Figure 3 shows the variation of the cilium surface length for one beat cycle, 
dividing the cilium into 10 lengths; the top plot shows the raw data, the middle plot shows the 
smoothed data and the bottom plot shows the parametric fit to the data smoothed along length 
and orbit. 

Top and side views of biological cilium data, with time step (TS) numbers, are shown in 
figure 4. These plots show that the beat period is composed of two kinds of cilium forms; the 
cilium remains fairly straight from TS 38 to 14 and its form is substantially curved from TS 14 to 
38. The cilium would impart greater momentum into the fluid when it produces higher velocities 
in the outer region; therefore, TS 38 to 14 are likely to indicate the power stroke. During the 
power stroke, the cilium stays fairly close to the (z = 0) plane. Therefore, the cilium trajectory is 
shaped approximately like the capital letter D. This observation is used for the robotic 
simulation; see section A.3 in the appendix. 
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Figure 3.  Variation of the (ilium Axial Distance from the Base with Beat Phase (- Time Step 
Number) in the Digitized Biological Cilium in the Revisited TM Data—(a): Raw Distribution; 
(b): After Smoothing Along Cilium Length; (c); After Parametric Fit of the Closed Orbits to 

Smoothed Axial Data 
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Figure 4a.  Top View (x, z) of the Cilium Beat Cycle in the Revisited TM Data (Axes: urn.) 
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Figure 4b. Side View (x, y) of the Cilium in the Plane of the Power Stroke During the 
Beat Cycle in the Revisited TM Data (Axes: pm.) 
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3.1.2 Analysis of the Teunis and Machemer (1994) Data 

Using the smoothed biological cilium data, the velocities and accelerations in the (x(/), y(t), 
z(t)) directions were calculated. The units are as follows: length (urn), velocity (um/s), 
acceleration (um/s ), curvature (rad/um), and torsion (rad/um). 

The straightness of the cilium, which is a measure of its hardness, is considered in figure 5. 
The cilium is divided into 20 axial segments. Figure 5 shows the distributions of (a) the angle of 
the velocity from the x-axis, and (b) the angle between the axial length segments and the x-axis. 
See section A.2.5 for definitions. In (a), the velocity angles are nearly equal in all length 
segments from 45° to 0° to 90° values, a duration that is identified as the power stroke. On the 
other hand, during the return stroke, the velocity angles vary widely from 90° to 180° to 45°. 
The velocity angles along the cilium length fan out, pivoting near TS 13 in (a). The significance 
of this phase is considered later. In (b). the cilium position angle also varies widely during the 
return stroke. 

The velocities are shown in figure 6, and the accelerations are shown in figures 7 and 8. 
During the power and return strokes, the velocities lie approximately in two separate orthogonal 
planes. The velocities are high during the power stroke and are reduced during the return stroke. 
Shields et al. (2010) report tip speeds in their rigid biological cilium of 700-800 um/s and tracer 
speeds of 200 um/s. Figure 7 shows that the cilium produces an inward "tornado," with the 
magnitude increasing away from the base. Two-dimensional cilium motion cannot produce the 
tornado. The acceleration limits drop by a factor of 3 if the cilium length is reduced from 50 to 
17 urn. 

The velocity field folds at (x = 0, y - 0, i = 0). The time instant occurs nearly at the shift 
from the power stroke to the return stroke. This time instant appears in figure 2b as a point of 
inflection. As per the nonlinear modeling given earlier, this phase denotes neutral equilibrium in 
a nonlinear pendulum (this is the vertical position in a nonlinear pendulum if the string is 
replaced by a solid rod; the topology is a saddle—a neutral equilibrium position that is very 
sensitive to disturbances; 180° later, it is a focus—a stable phase). The physical significance of 
this phase is further explored later. 

13 



180 

Cilium velocity angle from x-axis for Chosen Path(s) 
Biological Cilia -17 urn length - 10-Jan-2012 

(a) 

(b) 

15       20        25       30 
Step number 

Cilium angle from x-axis for Chosen Path(s) 
Biological Cilia -17 urn length - 10-Jan-2012 

15        20        25        30 
Step number 

45 

45 

Figure 5. Variation of the Local Axial Angle of the Orbital Velocity and Position 
of the Biological Cilium Length Segments with Respect to the x-Axis (Power 

Stroke Axis) During the Beat Cycle in the Revisited TM Data 
(The graph is independent of cilium length (50 or 17 fxm). Color code: Different 
color signifies every 5% of cilium length starting from the base. The horizontal 

lines in (a) are at 45° and 90° angles.) 
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Figure 6.  Variation ofXdot(t) (= x(t)) vs ydot(t) (= y{t)) vs zdot(t) (= z(t)) 
Using the Revisited TM Data 

(Color code: Different color every 10% ofcilium length 
starting from the base; velocities are in pm/s.) 

Smoothed X, Y, Z Accelerations 
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Figure 7. Inward Acceleration for the Revisited TM Data 
(Color code: Red loops of constant cilium length appear every 10% of 

cilium length; acceleration arrows are in blue; acceleration is in fim/s2.) 
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Average X, Y, Z Accelerations Along Length 
x 10    Biological Cilia -17 urn length - 07-Dec-2011 

2 
Figure 8. Calculated Acceleration Components (ftm/s ) in the 

Biological Cilium Using the Revisited TM Data 

How long is the power stroke? There is some ambiguity as to the boundary of the power 
stroke. Teunis and Machemer (1994) do not explicitly define the extent of the power stroke but 
seem to suggest it to be from where jc-acceleration crosses the zero value to where it reaches the 
maximum value. Defining the power stroke as when the cilium is moving in the negative 
propulsion direction seems most reasonable, thereby pushing the cilium in the positive 
propulsion direction. This is also when acceleration is increasing in figure 8—approximately 
from TS 35 to 12. (The end of the power stroke can be ambiguous because the proximal part 
starts the return stroke prior to the distal part.). The total duration of the power stroke is 0.50 of 
the beat period, which is larger than the range (0.14 to 0.28) arrived at by Teunis and Machemer 
(1994). The extent of the power stroke cannot be accurately determined from the cilium position 
data alone; accurate calculation of acceleration is a more reliable indicator. 

An average radius of the cilium Ravg was defined, as given in section A.2 of the appendix. 
The motion of the cilium is modeled as a disc whose velocity varies radially (Wakeling and 
Ellington, 1997). The disc area is divided equally at Ravg such that the momentum imparted to 
the fluid by the inner and the outer areas is equal. The variation of Ravg with phase is shown in 
figure 9. 
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Figure 9.  Variation of Calculated Average Radius (Ravg in f*m) of the Biological Cilium 
During the Beat Cycle in the Revisited TM Data 

(Location P is a point of inflection on the cilium at TS 14; see figure 17a.) 

The Ravg (this is a curved length radius average) values were multiplied by the local velocity 
in the propulsion direction (x-axis) to determine the directionality and relative scale of the 
momentum imparted to the fluid. The results are shown in figure 10. At TS 15, Ravg is a 
minimum; P is a point of inflection on the cilium at TS 14, just prior to when Ravg is a minimum. 
The variable (velocity x Ravg length) crosses zero at TS 35 and 14 (figure 10). This is an 
indication that the power stroke extends from TS 38 to 14, and the return stroke extends from TS 
14 to 38. Recall that the demarcating phases (TS 14 and 38) have been identified as saddle and 
focus, respectively. Figures 9 and 10 show that the reduction of Ravg (the reduction in the 
hardness causing an "unfurling" of the cilium, as discussed later) is a mechanism for reducing 
drag during the cilium return stroke; conversely, the full extension of Ravg (increase in hardness) 
is a mechanism for maximizing the output power during the power stroke. The x-acceleration in 
figure 8 has maxima and minima at the boundaries of the strokes. The use of Ravg has produced 
consistent results. Considering the area about the zero crossings, the thrust efficiency (the 
difference between the positive and negative areas divided by the total area under the curve) is 
estimated to be 0.125. 
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Figure 10. Calculated Variation of the Variable (Velocity x Ravg in nm2/s) 
of the Biological Cilium in the Revisited TM Data 
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3.2 ROBOTIC CILIUM 

Before arriving at the final design of the cilium drive, several studies were carried 
out to better understand the nature of cilium motion. These included a computer-aided 
design (CAD) simulation, the development of a hardware D-cam pendulum, development 
of an early drive mechanism using orthogonal bucket handles, and a robotic cilium design 
for bending motion (see appendix sections A.3 and A.4 for details of these studies). 

The inset in figure 11 shows a set of independent orthogonal oscillatory motions 
(IOOMs) in a Cartesian coordinate system that has been used to generate the motion in 
the final design of the biorobotic cilium. It has two roll oscillations in orthogonal x- and 
z-axes. Also, a twist oscillation in the v-axis and a bending oscillation have been added 
to account for the variation of Ravg during the power and return strokes. 

In section A.4 of the appendix and in the DVD in Bandyopadhyay (2009), it is noted 
that these IOOMs have the ability to reproduce the motion of the pectoral fins in larger 
swimming animals as well; see section A.7. Among the robotic IOOMs, the x and z roll 
motors and the twist motor apply moments, and the push-pull forces are applied to 
generate in-plane bending. 

Figure 11 is a photograph of the four-oscillating-motor apparatus producing the 
actuations shown in the inset. Each motor (Maxon) has position encoders, and the torque 
can be determined from the input current. The bending oscillation is produced by a pair 
of sliding flats as shown in figure A-9 of the appendix; a flexible tube encapsulates the 
push-pull sliding flats. The robotic cilium length is 0.21 m. 

Figure 12 is a strobe picture sequence of cilium position during the return stroke 
produced in the apparatus shown in figure 11. The strobe picture may be compared with 
figure 4b. 
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Figure 11. Photograph of the Scaled-Up Model of a Single Robotic Cilium 
(The x- and z-motors (roll) lie in the plane of the horizontal aluminum frame and are visible. 

The y-motor (twist) and the bending motor lie underneath the flat aluminum frame. Inset: 
Elementary orthogonal oscillations of a cilium protruding from a surface (x, z). Power stroke 

lies predominantly in the (x, y) plane; (y, z) is the transverse plane.) 

Figure 12. Strobe Picture of the Cilium in the Apparatus Shown in Figure 11 
(Return stroke is shown; -X is upstream direction.) 
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3.3 COMPARISON OF ROBOTIC CILIUM AND BIOLOGICAL CILIUM 

In this section, the motions of the scaled-up robotic cilium are compared with those of the 
biological cilium. Note that the robotic cilium motion in air is being evaluated when it is made 
to reproduce the fluid-loaded cilium. The beat period of the robotic cilium is immaterial and is 
lower by a factor of 10 to remove inertia effects. The units in the biological cilium are: length 
(urn), velocity (um/s), acceleration (um/s2), curvature (rad/um), and torsion (rad/um). The units 
in the robotic cilium are length (m), velocity (m/s), acceleration (m/s ), curvature (rad/m), and 
torsion (rad/m). 

3.3.1 Comparison of Position 

In figure 13a, side and top views ({x(t),y(t)} and {x(t), z{t)} distributions, respectively) of 
cilium position during the beat cycle are compared for the biological cilium and the robotic 
cilium. The green arrow indicates the power stroke, and the red arrow indicates the return 
stroke. The patterns in the biological cilium and robotic cilium are similar. 

Figure 13a. Comparison of the Biological Cilium (left column) and Robotic 
Cilium (right column) Positions—Side View: (x(t), y(t)), and Top View: (x(t), z(t)) 
(x-axis is in the horizontal direction; green arrow is the power stroke; red arrow 

is the return stroke. Color code: Different time steps. Biological cilium is the 
UBC version of Teunis and Machemer (1994) data.) 
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Figures 13b and 13c compare the biological and robotic cilium rotational tracks; in figure 
13b, 20 positions along the length of the cilium are shown; in figure 13c, 3 locations are shown. 
The topology in figure 13b has a variable precession rate, and the coupling between the cilium 
beating and the precession rate (Bouzarth et al., 2007) that the fluid particles experience has a 
cyclic variation. The topology resembles a bent horn, but is not easily describable by a complex 
Fibonacci function although a start from negative integers gives the bending. 

3D Path fits with respect to time 
Normalized bio and mechanical cilia - 14-Dec-2011 

-0.2 
y (vertical) x (propulsion) 

Figure 13b. Comparison of Tracks in the Biological Cilium (blue) and Robotic Cilium (red) 

3D Path fits with respect to time 
Normalized bio and mechanical cilia - 14-Dec-2011 

y (vertical) 
-0.2 

x (propulsion) 

Figure 13c. Comparison at Cilia Axial Distances ofS/L = 0.33, 0.66, and 1.0 
(The base (S/L = 0) is indicated by the dot; blue: biological cilium; red: robotic cilium.) 
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Figure 14 shows the projection of the cilium on the propulsion plane. (In a redesigned 
version of the cilium, the bending amplitude has been increased, which would allow better 
agreement with the biological cilium in figure 14.) The cilium is precipitously losing its 
hardness at TS >13. It is suspected that in the biological cilium, the material property is 
changing abruptly at TS >13, over the beat cycle. The torsional pendulum and the autonomic 
modeling given earlier imply that the cilium is acting like a spring, storing and releasing energy 
during the return and power strokes, respectively. This view will be synthesized later. 
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(b) Biological Cilium (Revisited TM Data) 

Figure 14. Comparison of the Robotic and Biological Cilium Positions at 
Each Time Step on the Longitudinal Plane 

(The red dot shows the base location; the base cilium is shifted horizontally to avoid clutter.) 

3.3.2 Comparison of Curvature and Torsion 

Define r (s, t) as the position vector of a point on the surface of the cilium, with primes 
denoting the derivatives with respect to /, and x denoting the cross product; 11 as magnitude, 
sign is retained. The following equations were used to calculate curvature and torsion for the 
biological cilium and the robotic cilium data (Zwillinger, 1996). Curvature is defined as 

K =• 
\r'X r'\ 

(3) 

Torsion is defined as 

r =• 
r'{r"Xr'") 

vrxr 
(4) 
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Curvature measures the deviance of a curve from being a straight line relative to the 
osculating plane. In the elementary differential geometry of curves in three dimensions, the 
torsion of a curve measures how sharply it is twisting. If the torsion is zero, the curve lies 
completely in the same osculating plane (there is only one osculating plane). Note that the 
curvature and the torsion of a helix are constant; when they are not constant, the geometry is not 
helical. 

Curvature K and torsion T in the robotic and biological cilium are compared in figures 15 
and 16. The biological cilium's curvature and torsion shown are from the revisited TM data. 
The white lines in figures 15 and 16 indicate the boundaries of the power and return strokes; the 
return stroke lies between the white lines. These results are different from those of Teunis and 
Machemer (1994). In our definition, the power and return strokes are of equal extent—not 1/7 to 
2/7 for power, as given by Teunis and Machemer. In figures 15 and 16, TS 1 and 42 are 
assigned phase of 0 and 2K, that is, the phase at the nth time step is </> = Inn IN, where N (= 41) 
is the total number of time steps. 

In figures 15 and 16, for the robotic cilium data after lowpass filtering, 0 < K (rad/m) < 
10.8117, -1.78 < T (rad/m) < 35.87. For the biological cilium data after lowpass filtering, 0 < K 
(rad/um) < 0.2178, -0.0729 < T(rad/um) < 0.4834. The minimum values are in blue and the 
maximum values are in red. The biological cilium and the robotic cilium have approximately 
similar curvature and torsion distributions. 

The calculation of curvature is consistent with the conclusion of Teunis and Machemer in 
that there is little curvature during the power stroke. This finding can be further verified by 
looking at the position data in figure 14. The torsion calculation also matches the conclusions 
above. In the biological cilium, curvature is high near the base after the return stroke has started. 
Torsion reaches a peak approximately halfway along the length when the power stroke ends 
(marked as point P in figure 16b). 

Curvature and torsion limits widen if the cilium length is reduced from 50 to 17 urn. Teunis 
and Machemer (1994) state that curvature and torsion are small during the power stroke (that is 
the cilium is stiff). They state that, "Both curvature and torsion return to minimal values by the 
beginning of the power stroke" (see figures 15 and 16). 
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Figure 15. Comparison of the Curvature of the Robotic Cilium (a) and the 
Biological Cilium (b) Using the Revisited TM Data 

(See text for color code.) 
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Torsion 
Mechanical Cilia -0.21 m length - 08-Dec-2011 

Phase 

(a) 

(b) 

Torsion 
Biological Cilia -17 urn length - 08-Dec-2011 

Length (urn) 

Phase 

Figure 16. Comparison of Torsion in the Robotic (ilium (a) 
and the Biological Cilium (b) 

(See text for color code; P is a point of inflection 
on the biological cilium (see figure 17).) 
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4. SYNTHESIS OF RESULTS 

4.1 MODELING THE INCREASE AND DECREASE OF THE BIOLOGICAL 
CILIUM'S HARDNESS 

The curvature and torsion results are synthesized in figure 17 to understand the behavior at the 
transition from the power to the return stroke when the hardness of the cilium changes precipitously. 

The model schematic in figure 17 shows projections of the cilium onto the propulsion plane 
at TS 9, 14, and 16. These are copies from figure 14b. Between TS 13 and 14, the time 
derivative of the angle subtended by the cilium at the base changes sign (the cilium positions 
converge in figure 14b. This is depicted in figure 17 by the change in the sign of the moments 
applied at the base m. The directions of velocities V of the cilium and of the drags D acting on it 
are shown. At TS 14, while the lower part of the cilium turns anti-clockwise, the distal part turns 
in the opposite direction. As a result, a point of inflection is produced in between (marked as P) 
where the finite radius of curvature r changes sign. The cilium precipitously droops after TS 14, 
which indicates a decrease in hardness. The cilium is straight during the power stroke. 
Therefore, the question is: How does the hardness drop and recover in every beat cycle? This 
process is modeled in the insets P. PI. and P2 in figure 17a and in figure 16b by applying 
fracture mechanics. 

Figure 16b shows that at point P curvature is not large, but torsion reaches a peak because the 
cilium is being twisted in the transverse plane. This is shown in the insets in figure 17a. Inset P 
shows that at P, the neutral plane of stress undergoes a reversal in compressive C and tensile T 
stresses. The two ends of P also experience a reversal in the sign of the applied torque r between 
the cilium base and the distal point. Inset PI shows that, as a result, two otherwise parallel circular 
cross-sections shear and open ajar due to the switching of the regions labeled C and T. 

The literature suggests that in the 9+2 axoneme the central microtubule pair is responsible 
for hardness control. It can also be surmised that motor protein molecules climb up the 
microtubule, find attachment spots, and lock (Cordova et al., 1992). This process is modeled in 
figure 17b and inset P2 in figure 17a. The circular part of inset P2 shows the central microtubule 
pair (CMa\4 and CMbu) and the cross-bridge link (CBPI4). The presence of many such cross- 
bridge links along the central microtubule pair increases the moment of inertia /, increasing the 
property GL which is responsible for resistance to torsion, where G is the modulus of torsional 
rigidity of the material. (The cross-bridges are similar to cross-links in polymers where they are 
closer when unstressed, and the polymer chain is straightened when the links are pulled apart by 
the application of stress.) 

It is modeled that, when torsion at P reaches the maximum value, the cross-bridge 
attachment cracks; this is shown in the boxed part of inset P2. The cross-bridge at location P at 
TS 14 is the proverbial "last straw"—when the cross-bridge breaks, there is no hardness left for 
the power stroke to continue. Inset P2 shows how a crack develops (the sphere is the foot of the 
cross-bridge) at the sites where there the cross-bridge is attached. The cross-bridge motor 
protein and the host microtubule site are of dissimilar materials conformationally held in place. 
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Figure 17a. Schematic of Compression-Tension Neutral-Plane Flipping at Point P 
on the Cilium at the Beat Phase of Neutral Equilibrium (See Inset P) 

(Symbols: 9,14 and 16 are time steps; m and -m are moments in the x-y plane at the base; D, 
V, and r are drag, velocity, and the radius of curvature; the prime sign (') denotes values near 
the base; C and T are compressive and tensile stresses; and N = neutral plane. The cilium is 

shifted along X with time step to avoid clutter. Left inset: CMau is the central microtubule a at 
TS14; CMbN is the other central microtubule of the pair at TS 14; CBp/4 is the cross-bridge at 

the point of inflection P at TS 14.  The cross-bridge link can be expected to fail first at the 
point marked by the red dot in inset P.) 

~T r~D 

Figure 17b. Modeling of Cross-Bridge Link Between the Pair 
of Central Microtubules (the 2 of the 9 + 2) 

(Only the cross-bridge at point P is shown; this is the only one that cracks because torsion 
reaches high values at this point; other cross-bridges add to the hardness, but they do not 

crack because the torsion is not high (the region near the cilium tip is ignored). Broken lines 
represent later times. Curvature is small near point P at TS 14; therefore, planar vibrations 

have a negligible effect on cracking.) 
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One expects cracks to develop where the cross-bridge is attached to the microtubule and not at its 
apex because the microtubule attachment site has to be vacated fully for the new beat cycle to resume 
accepting a new cross-bridge attachment. Our modeling considers the cross-bridge cracking at the 
attachment site at TS 14 at point P. The model includes cross-bridges all along the length of the 
microtubules. but only the one at the point P at TS 14 cracks at the contact site and needs replacing. 

4.2 MODELING OF THE CROSS-BRIDGE DETACHMENT/SOFTENING 

As per Karp (2005), one end of the protein attaches to one microtubule and the other end to 
another microtubule, creating a cross-bridge structure. Cordova et al. (1992) give an electrostatic 
model of the cross-bridge attachment and detachment although not in the context of the 
paramecium's cilium beating. Here, fracture mechanics are applied to model the detachment. 
The cross-bridge-microtubule contact is modeled to be brittle (like glass), rather than plastic (like 
metal); in other words, Griffith's law (1920) applies and Irwin's (1948) does not. Griffith's law 
states that the product of fracture stress and the square root of the crack length remains constant 
as the crack progresses until the difference between the surface and elastic energy reaches the 
peak value, at which point failure occurs. 

Griffith's relationship may be applied as follows: 

C 
o", =-/=. (5) 

where cr^is the stress at fracture, a is the crack length, C is a constant, E is Young's modulus of 
elasticity (= 2 GPa for polyethylene; = (10 to 30) x 109 N/m  for myosin (Adamovic et al., 
2008)), and y is the surface energy density (= 0.72 J/m for water, 1.0 J/m for glass, and >2 
J/m for polymers; bulk cilium is modeled as a water-like polymer). Other parameters are: 
equilibrium spacing of the cross-bridge = 10 nm, and the radius of the actin filament = 5.5 nm 
(Cordova et al., 1992). Assume the value of a to be (5.5;r) nm (hemispherical arc length), E (= 
0.50 GPa) of human tendon (Lauder et al., 2011) to be applicable, {A, the hemispherical area 
2TT(5.5 nm)2; and note that 1 J = 1 Nm; 1 Pa = 1 N/m2; G = 109; 1 n = 10"9; 1 p = 10"12; y = 10"24, 
then fracture stress (aj) would be 

2(0.5 xlO9) 
O, =,—:  

;r25.5xl0"9 

= V/2xlO"' 

= 1.36 x 108N/m2. 

The force F required to fracture one of the foot anchors of the cross-bridge = 2.6 x 10"8 N = 26 
nN = 26x 103pN. 
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Earth's gravity exerts a force of 10 - 100 pN on cells in bio-physical systems. In their 
artificial gravity experiments with paramecia, Guevorkian and Vales (2006) show that they 
respond to gravity and regulate swim speed primarily due to the buoyancy of the cell. In their 
thermal cum electrostatic modeling of the motion of a single motor protein (myosin) molecule, 
Cordova et al. (1992) assume a maximum cross-bridge force of 5 pN. So, a cross-bridge 
detachment force of 26 x 103 pN is too high, and 5 pN is more reasonable. 

On the other hand, Cordova et al. (1992) state that (1) the attachment and detachment sites 
of the cross-bridge differ by the presence of ATP when detached; and that (2) the "binding of 
ATP weakens the attachment of the cross-bridge to the fiber." (ATP (adenosine-tri-phosphate) 
transports chemical energy within cells for metabolism; it is recycled; it is also a messenger 
molecule; it is sometimes called "the molecular unit of currency.") 

In linear elastic fracture mechanics, Griffith's theory (equations (5) and (6)) states that free 
energy is given by the difference between the surface energy and the elastic energy, and 
increases with the crack length. Failure occurs when the free energy attains a maximum value at 
a critical crack length beyond which the free energy decreases by increasing the crack length. 
The free energy in Griffith's theory may be corrected due to the hydrolysis of ATP at the 
detachment site when the chemical energy is released. One can back-calculate what this should 
be as follows: 

The force Fthat leads the cross-bridge to detach = [A, the hemispherical attachment area x aj\ 
= 2TT(5.5 x 10"9)2 a, (N) = 190 x 10~'V(N). For this force F to be 5 pN, a,= 5 x 10l2/(1.876 
x 10"l5) = 2.665x 103N/m2 = 2.665 kPa. Assuming as before £ = 0.5 x 109 N/m2, the surface 
energy density y would have to be (1 J = 1 Nm) 3.856 x 10"'° J/m2= 38.56 nJ/m2. 

The ATP hydrolysis has to convert the chemical energy at the detachment site to make the 
surface energy density to be 38.56 nJ/m for the force F required (produced practically at a point) 
to detach the cross-bridge to be 5 pN. The total energy (= surface energy - strain energy = 

2yaL -<jf 7ia2L/(2E) - yah, where L is the third dimension of crack, and strain energy is the 

elastic energy released in the fracture area due to the fracture; the strain energy comes from the 
torsion) spent per detachment is 75 x 10"24 J = 75 yJ (yocto joules). 

Attributing the total energy to the chemical energy, the chemical energy spent is estimated 
as follows: 

One mol has 6.02 x 10   molecules; the energy released per ATP mol is 45.6 U. Therefore, 
the energy released per molecule of ATP is 76 x 103 yJ, which can power 1000 cross-bridge 
detachments. For 3000 cilia in one paramecium, 3 ATP molecules are needed per beat 
cycle to detach one cross-bridge in each cilium; so, at 14 Hz, 42 ATP molecules are needed 
per second (fewer are needed if the absolute viscosity drops). 

A full modeling of the ATP hydrolysis process is needed to quantitatively complete the 
evaluation of the mechanism. The hardness control model should include the mechanisms of 
softening at the detachment point due to the presence of ATP, subsequent enhanced bonding due 
to ATP hydrolysis, the effect of torsion, and sliding between the microtubules. 
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5. DISCUSSION 

5.1 DEVELOPMENT OF THREE-DIMENSIONAL DEFORMATION IN CILIUM 
AND THE ROLE OF CRITICAL HARDNESS 

The role of the modulus of torsional rigidity in the generation of torsion (= three- 
dimensionality) in the cilium was investigated experimentally and is presented in section A.5 of 
the appendix. Three-dimensionality can lead to stability of cruising and facilitation of food 
gathering. The paramecium cruises in a stable corkscrew path about an imaginary axis while 
rotating about its own body's axis. Compared to two-dimensional motion, the three-dimensional 
motion of the cilium imparts more momentum to the water and allows the thrust vector to be 
slanted to the plane of the power stroke (figure 7). In three-dimensional motion, all phases of the 
motion contribute to the production of an inward acceleration of the tiny tornadoes. These 
tornadoes (or their agglomerations) could allow the food elements to be drawn in as well. 

Section A.5 of the appendix shows the curvature and torsion in several models of long cilia 
made of materials of different hardness but operated by the same type of actuator, consisting of 
three doublets (pairs of push-pull strings) spaced 120° apart. The hardness varied from near zero 
to a Shore hardness of A53-63. When hardness was very low, a helix was produced (a helix has 
a constant curvature and torsion). In contrast, in the high-hardness samples, only planar 
curvature was produced and torsion was zero (there was no off-plane curvature). The conclusion 
was that Shore hardness should be below a certain critical value for torsion to be manifested. At 
the critical value of hardness, the cilium would he sensitive to any attempt at reduction or 
increase in hardness. The detachment of only one cross-bridge in the biological cilium right 
after TS 14 at a strategic location on the cilium (location P), and the attachment of a new one at 
the same location P in the following phases would seem to allow control of the hardness at a 
critical level for low cost (a behavior akin to a high quality factor in resonant systems). 

5.2 BIO-PHYSICAL SELF-REGULATION OF CILIUM HARDNESS 

The dynamic systems analysis, the modeling of hardness control, and the preceding 
discussion on the value of designing a cilium of critical hardness point to the existence of the 
phase of neutral equilibrium and minimal energy expenditure. The authors deem this to be self- 
regulation. 

It is known that when a paramecium hits an obstacle, it backs away at an angle and proceeds 
in a new direction (dePeyer and Machemer, 1978). The collision with the obstacle can be 
modeled via the amplitude and duration of the extra-cellular impulse term Iex, in equation (1). 
The cilium motion follows a limit cycle. The return path to the limit cycle is unique for a given 
value of Iex, and the phase of the system when Iexl is applied. 
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The 3000 cilia in a paramecium are each a nonlinear oscillator. The self-referential phase 
reset (SPR) property of equation (1) allows for synchronization between actuators that receive 
the extracellular impulse (Kazantsev et al., 2003 and 2004; and Bandyopadhyay et al., 2008). So 
far, the evidence for this process is conflicting. 

Yeh et al. (1990) have observed spectral peaks at 370 kHz (attributed to the myosin thick 
filament) and a relaxation time of 5 us (attributed to cross-bridge motion). To straighten the 
cilium during the return stroke, the paramecium fuel cell needs to provide energy. The power 
stroke makes use of this energy. At the resonant frequency, maximum current flows through R 
in an RLC circuit. If C is 10 nF and L is 10 nH, the resonance frequency (f0 = (l/(2;r)) * 
[\N(LQ]) is 16 MHz. This is x 106 of 14 Hz, the beat frequency of the cilium in water at 20° C. 
If more cross-bridges link the microtubule pair increasing C and L to 10 uF, and 10 uH, 
respectively, the resonant frequency would be 16 kHz, which is x 103 of 14 Hz—a value much 
closer to that observed by Yeh et al. Parametric oscillators with second-order nonlinear 
interactions can produce lower frequencies from two higher frequencies by differencing their 
frequencies; however, there is no known evidence that this is happening. 

If <j> is torsional angle, the equation of torsional motion, as per a spring-mass-damper model 
is 

I<f> + 2<Za)J + (rk)0 = O, 

1    Fk where f0 - —J— is the natural frequency of torsional oscillation of the system (con = 2nfo), 
2n V / 
Tc 

and C, = —, is the damping ratio, Tc is the torsional damping (apart from viscous damping, 
2j(Tk)I 

there may be structural damping also, which is hysteretic), ' k is the torsional spring constant, 
(applied torque (r k</>) + damping torque (rc^) is the total torque), and / is the moment of inertia. 

The description of a novel hemispherical motor ("frictionless") cilium actuator is given in 
section A.4 of the appendix. The present authors have successfully operated the IOOMs of the 
robotic cilium with the real-time analog solution of equation (1), as described in Bandyopadhyay 
et al. (2008). This integrated operation of the controller and the actuator is discussed in section 
A.6 of the appendix. These two developments take us one step closer to fuller robotic simulation 
of cilium motion. 
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5.3 RELATIONSHIP WITH LARGER SCALE NATURAL SWIMMING: A 
SYNTHETIC VIEW 

As per Llinas (2001), Llinas and Yarom (1981), and Llinas et al. (2004): 

1. Motion control neurons follow self-regulating, dynamic systems principles. 

2. The neurons can be clustered together on demand (self-referential phase reset (SPR) 
property (Kazantsev et al., 2004). 

3. Neuronal development in animals parallels that of biomechanics. the former being mature 
in motion control over many species and remaining unchanged. 

Extending these principles further, if sensors, actuators, and their control follow the same 
dynamic systems principles to remain in persistent synchrony with the environment, then they 
home faster on moving targets if they are assumed to have a 10-15% stereoscopic bias in sensing 
and actuation (Bandyopadhyay, 2012a). 

A flapping fin is lift based and it flaps cross stream to the thrust. On the other hand, a cilium 
is drag based and it flaps both in the plane of thrust and in the transverse plane. How does the 
transition from small to large and from drag-based to lift-based propulsion take place? 

Ellington (1999) has considered the wing flapping in insects to be a resonant oscillation that 
has low friction and high amplitude. Triantafyllou and Triantafyllou (1995) have shown that 
varieties offish flap their caudal fins in a range of preferred frequency called the Strouhal 
number (0.2 to 0.4). Note that the length scale in Strouhal number is given by the amplitude of 
oscillation, which can be expected to reach a large value in resonant oscillation. In recent work, 
the present authors have been able to operate penguin-wing-like flapping fins in large scale for 
ocean engineering purposes while flapping at the above range of Strouhal number 
(Bandyopadhyay et al., 2011). 

Paramecia have pressure-sensitive mechanoreceptors (dePeyer and Machemer, 1978 and 
1983), sliding microtubules that produce curvature in cilia, phased beating of cilia along their 
body surface that produce the animal's tumbling motion in a corkscrew path, and a 9+2 
axenome architecture. Fish have pressure-sensitive lateral lines, hemitrich bone pairs in their 
pectoral fins for producing curved shapes (Lauder et al., 2011), central pattern generators for 
producing tail beat, and 11 hemitrich bones on their pectoral fin spaced with a common origin 
(Lauder and Drucker, 2004). These similarities were assumed to owe their origin to co-evolution 
of sensors, actuators, and control, and a common oscillatory framework of a dynamic system. In 
section A.7 of the appendix (see Bandyopadhyay, 2009), the outline of a notional synthetic 
description vividly shows the common lineage of large and small swimming animals. 

Each of the tiny individual cilium propulsors appears to have the intrinsic, dormant 
kinematic and structural building blocks required to optimize at both low and high Reynolds 
numbers. The tentative conclusion is that the integrated autonomous sensory, actuating, and 
controlling architecture of the paramecium is invariant of Reynolds number. 
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6. CONCLUSIONS 

Modeling and analysis of the motion of the paramecium's cilium have been carried out, with 
a focus on the motion's oscillatory nature. Theoretical modeling included considerations of a 
torsional pendulum, dynamic systems, and fracture mechanics. A revised analysis of Teunis and 
Machemer's (1994) photo-microscopy of biological cilium has been compared with a robotic 
simulation of the biological cilium. The role of torsional rigidity in three-dimensional 
deformation has been examined. The aspects of integrating sensors, controller, and actuators that 
remain invariant with Reynolds number have been robotically simulated and discussed. 

The following conclusions can be drawn: 

1. The variation of the cilium beat frequency with fluid viscosity can be modeled by 
describing the beat frequency as the natural frequency of a torsional pendulum. 

2. The cilium track is a limit cycle describable by dynamic systems theory. There exists a 
phase of neutral equilibrium lying at the boundary where the power stroke changes to the return 
stroke and the cilium velocity is zero. 

3. Several long, mechanical cilia have been fabricated, and it was found that their hardness 
has to be below a certain level for torsion to be manifested. 

4. The three-dimensional motion of each cilium produces a tiny tornado of fluid having an 
inward acceleration. The inward acceleration is produced during both the power and return 
strokes. 

5. The local angle that the cilium orbital velocity and the cilium position makes with the 
propulsion axis remain nearly constant, along the length of the cilium during the power stroke, 
but it varies widely during the return stroke. 

6. The average radial length of the cilium in the transverse plane remains large during the 
first two-thirds of the power stroke, dropping precipitously during the remaining one-third. The 
average cilium radial length increases during the return stroke. This variation of the average 
radial length should help increase thrust during the power stroke and lower drag during the return 
stroke. 

7. The zero crossings of the product of the average radial length of the cilium in the 
transverse plane and of the cilium velocity are used to define the extents of the power and return 
strokes. The power stroke is 0.50 of the beat period, which is larger than the 0.14 to 0.28 range 
given by Teunis and Machemer (1994). 

8. Using four independent orthogonal oscillatory motor drives, a robotic cilium has been 
constructed whose curvature and torsion distributions are in fair agreement with those of the 
biological cilium. The robotic cilium has also been controlled by analog olivo-cerebellar 
dynamics. 
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9. A bio-physical model of self-regulation of cilium hardness is given where cross-bridge 
links between the microtubule pairs, ATP molecules, and torsion play a key role in hardness 
control. Fracture mechanics has been applied to the cross-bridge detachment at the phase of 
neutral equilibrium at the cilium location where a point of inflection is created. Synthesis of the 
results suggests that the cilium is torsionally wound (like a spring) during the return stroke and 
the energy is expended during the power stroke. 

10. The similarities in the sensory, actuating, and control architecture of paramecia and fish 
are noted. 
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7. FUTURE WORK 

Future work should be carried out in the following areas: 

1. Polymer Nano-Micrometer Scale Mechanical Cilium: Such a cilium can be fabricated 
as follows. It is known that when solvated polymer is ejected through a positively charged 
conducting syringe by a pump, the laminar jet flow, when allowed to dry, forms a cylindrical 
fiber. The instability of such jets is considered by Rallison et al. (1995), Hohman et al. (2001), 
and Shin et al. (2001). From a wide range of polymeric materials, such an electrospinning 
technique can be used to make cylindrical nanofibers of length 17 urn with a diameter of less 
than 1 urn (see Lu et al. (2009), Burger et al. (2006), Shin et al. (2001), Reneker and Chun 
(1996). Reneker et al. (2007), Ramaswamy et al. (2011), Ojha et al. (2008), and McCullen et al. 
(2007)). Such cilia would have the Reynolds number of the biological cilium. The mechanical 
rendition consists of a pair of such electrospun polymer fibers, closely spaced but attached at the 
distal point. The base of the assembly is mounted on a pair of stacked MEMS (micro-electro- 
mechanical systems) tables. The table assembly is oscillated orthogonally as in figure 11. The 
pair of nanofibers is given a push-pull oscillation to generate bending. Using another MEMS 
table underneath the stacked pair, the entire assembly described above is given a twisting 
oscillation as in figure 11 (Bandyopadhyay, 20012b). 

2. "Frictionless Actuation" with a Hemispherical Motor Drive: Using programmable 
logic circuits and the 0.21-m-long robotic cilium (or the polymer nano-cilium) base torque 
actuation with the hemispherical motor drive can be explored. Such a gearless, noncontact drive 
can be expected to be nearly frictionless. This would simulate the condition of resonant 
oscillation. 

3. Disturbance Rejection Verification: Further verification of the limit cycle nature of the 
cilium trajectory can be made using the hemispherical motor. Disturbances can be applied to the 
cilium to see the trajectory it takes to return to the LCO. The return paths can be compared with 
the theoretical trajectories. This experiment would verify the autonomic nature of cilium 
swimming. 

4. Three-Dimensional Hydrodynamic Modeling: Such modeling would bring us one step 
closer to exploring three-dimensional metachronism. 

5. Origin of Metachronism: Application of dynamic systems theory is a new approach to 
the understanding of cilium autonomy. A parallel exploration of metachronism due to 
hydrodynamic coupling of neighboring cilia and that due to term Iex, in equation (1) could be 
carried out. 

6. Modeling Torsional Effects: The effect of torsion on the cross-bridge linking between 
microtubules could be theoretically modeled to understand how hardness can be varied to store 
and release mechanical energy in a torsional oscillatory system with minimal energy 
expenditure. 
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APPENDIX—SUPPLEMENTARY INFORMATION 

A.1 TWO-DIMENSIONAL HYDRODYNAMIC MODELING 

Note: This section is due to Norman Toplosky (Code 1532). 

As a first step in modeling the dynamics of cilium motion, a two-dimensional dynamic 
model was constructed to develop familiarity with the solution technique. Following the 
biorobotic approach mentioned earlier, the authors made no direct effort at modeling the actual 
physiology of the cilium, but instead concentrated on driving the base of a mechanically- 
equivalent cilium with the same motion as observed in the data of Teunis and Machemer (1994), 
and then attempted to adjust the rigidity and drag parameters so as to reproduce the motion of the 
entire cilium. The two-dimensional model was considered to be an important first step and 
building block toward the eventual development of a full three-dimensional model. The latter 
model would be different from the former in two important ways; first, a third dimension would 
allow out-of-plane bending and torsion, and second, the three-dimensional model would possibly 
allow inclusion of torsional rigidity and a driving torque at the cilium base. 

In the initial two-dimensional model, the cilium is modeled as N rigid links connected by 
nodal ball joints in which the cilium bending rigidity is lumped. The bending rigidity lumped at 
the nodes can vary both with time (depending on where one is in the power-recovery stroke 
cycle) and with length along the cilium. Fluid drag loads—due both to the mean advance of the 
cilium (velocities U, V) and to the rotational motion of the cilium about its base—act on each 
link and depend on both the orientation of the link (x, y, and z coordinates of the bracketing 
nodes) and the in-water velocity of the link (w, v, and M' velocity components of the bracketing 
nodes). The bending moment in the nodal ball joints is proportional to the local curvature, 
estimated by the change in orientation of the two links joined at that node. Internal forces also 
act at each node. Figure A-l shows this setup. Note that in the biological cilium and the robotic 
cilium, y represents the vertical direction and z represents the spanwise direction; but in the two- 
dimensional hydrodynamic simulation, z represents vertical direction. 

The polar angle of the first link (the angle between the link and the vertical z-axis) and its 
rate (öand dOldt) are taken as kinematic boundary conditions at the base. Zero force and 
moment conditions are applied at the distal node of the last link. 

The physics-based two-dimensional model using N links is well-posed: Not counting the 
origin (cilium base is node 0), there are TV nodes and at each of these there are two position 
coordinates, two velocity components, and two force components, for a preliminary total of 6N 
unknowns (see table A-l). On each of the N links there are two force balances (in the JC- and z- 
directions), one moment balance (in the v-direction), one geometric constraint ensuring that the 
link's bracketing nodal positions are a link length apart, and two kinematic relations relating the 
distal node's velocity components to the time derivatives of the position coordinates, for a 
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Figure A-l. Rigid Link Model of Cilium 

preliminary total of 6N equations. However, this preliminary set oi6N equations in 6N 
unknowns is slightly modified by the additional constraints and unknowns at the base and distal 
node. 

The resulting equations (see table A-l) were programmed in MATLAB. The base link was 
driven by a harmonic motion (the polar angle was sinusoidal). Cilium stiffness was increased 
during the power stroke and relaxed during the recovery stroke, and a mean speed-of-advance (as 
a fraction of the cilium tip speed midway through the power stroke) was added to the base 
motion. The profiles in figure A-2 were computed. 

The development of the three-dimensional cilium model is still in progress. As mentioned 
earlier, there are two major changes when going from two dimensions to three. The first change 
is that all vectors have three components instead of two, and because bending is no longer 
confined to the ^-direction, the cilium develops torsion as the bending direction (the unit 

bi-normal vector b ) changes direction. The second change is that one can include a driving base 
torque and resulting twist, if one wishes. 

Table A-1 provides background information regarding the two-dimensional hydrodynamic 
modeling. This section also lists the Frenet equations, which describe the geometry of a curve in 

space; here, k is curvature, r is torsion, t and n are unit tangent and normal vectors, b is the 
unit bi-normal vector, and s is the axial length. 
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2-D solution: cilia shapes during one cycle 
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Figure A-2.  Two-Dimensional Cilium Profiles (nu: normalized unit) 

The integral of the base force over a beat cycle is the net impulse from that cycle. The 
asymmetric beating pattern and mean advance of the base allows for a non-zero thrust, even in 
two dimensions, as shown in figure A-3. 

2-D solution: base thrust during one cycle 
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Figure A-3. Two-Dimensional Base Thrust (nu: normalized unit) 
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Table A-l. Hydrodynamic Modeling Background Information 

Unknowns Equations 

Node 0 (base) Fx 
Fz 
My 

Nodel X 

z 
u 
V 

Fx 
Fz 

x = Ls\n6 
z=LcosO 
u = L(d0/dt)cosO 
v = -L(d0/dt)sm8 

Nodes 2...N- 1 X 

z 
u 
V 

Fx 
Fz 

U=dxldt 
V=dyldt 

Node N (distal node) X 

z 
u 
V 

U=dxldt 
V=dyldt 

Link 1 Fx force balance 
Fy force balance 
My moment balance 

Link 2...TV Fx force balance 
Fy force balance 
My moment balance 
Link-length constraint 

Total: 67V+1 67V+1 

Frenet Equations: 

di 
ds 

dh 
~ds 

db_ 
ds 

+Kn 

= -Kt+rb 

•- -TYl 
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A.2 VALIDATION OF DIGITIZATION OF PUBLISHED BIOLOGICAL 
CILIUM DATA 

A.2.1 Parametric Fits 

The digitized biological cilium in pixels in the longitudinal plane is shown in figure A-4. 
The steps for obtaining the three-dimensional parametric fits and associated lengths are as 
follows: 

1. Find the base of the top and side views and adjust the pixel values for a base of (0, 0). 

2. Obtain the length in the orthogonal axis (from the alternate view) for the top and side 
projections (the v-value in the top view is z (width) and the v-value in the side view is y (height)): 

a. for the side view, this is the top view vertical axis. 
b. for the top view, this is the side view vertical axis. 

3. Interpolate the orthogonal lengths (from above) to match the number of points from the 
alternate view. This is required since the top view and side view of a particular time step have a 
different number of points. 

4. Calculate the lengths for each view by V(AJC
2
+ Ay2+ Az ), where x and y are from the top 

and side planar views and z is the orthogonal axis differences from step 3. Note that inconsistent 
data between the two views result in the lengths for each view being different. 

5. Obtain two-dimensional parametric fits for the top and side views using the lengths 
calculated above, with the length as the independent variable. 

6. Choose the x,y, z values (to use in the three-dimensional parametric fit later) as follows: 
a. x = top view x (could also choose side view x values). 
b. y - side view y. 
c. z = top view y. 

7. Calculate the lengths as the cumulative sum of V(Ax2+ Av2+ Az2) for each time step. See 
figure 3a in the main text. 

8. Use the parametric equations for both views to calculate an arbitrary, user-selected 
number of orbits for analysis. 

9. Fit a three-dimensional parametric equation to the data for each orbit using the x, y, z 
values, with the step number as the independent variable. 

10. Calculate the lengths as the cumulative sum of V(Ax2+ Ay2+ Az2) for each time step, 
through each orbit. See figure 3c. 
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Figure A-4. Graph of Digitized Cilium Prior to Parametric Processing and Smoothing 
(Each color is a different time step; length units are in pixels.) 

A.2.2 Notes on Data Smoothing and Definitions 

1. A length of 156 is the original pixel data (digitized biological data); a length of 17 urn is 
for the adjusted biological cilium; and a length of 0.21 m is for the robotic cilium. 

2. The polynomial used along the length of the cilium is fourth order, although it is used 
only to calculate an equal number of points for each time step. 

3. The polynomial for each orbit (concentric path) is 15l order. 

4. Parametric equations are independent for x, v, z and are based only on length and 
themselves, i.e., x =f(x,f), y =fiy,t), z =flzj), where / is the length of the cilium (/ = s). 
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5. Smoothing is done with a five-point moving average to obtain the average cilium radius 
(curved length projected on the transverse plane y-z) at a given time instant: 

*<,,(') = VW)}2/2, 

where i   (/) is the curved length of the entire cilium in the y-z plane (transverse plane) (sum of 

the>>- and z-components of each length segment of the cilium) at a given time instant; to clarify, 
R^g is not a radial distance from the origin to the point on the cilium where Ravg lies. 

6. The accuracy of the Teunis-Machemer data digitization and length calculation is as given 
in tables A-2 through A-4. The cilium length is divided into 20 segments and the lengths are 
measured from the base. 

A.2.3 Accuracy of Parametric Fits and Smoothing 

The accuracy of the parametric fits and smoothing is shown in tables A-2 through A-4. 
These tables show how the mean and rms distances (urn) of 20 points on the cilium counting 
vary. Table A-2 is for the entire beat cycle; tables A-3 and A-4 are for the power and return 
strokes, respectively. (In the column headings of these tables, "top", "mid", and "bot" refer to 
the top (a), middle (b), and bottom (c) frames in figure 3 in the main text.) Although the cilium 
is curved during the return stroke, the cilium lengths are close (within 4%) to those during the 
power stoke when the cilium is fairly straight. The data processing, therefore, is accurate. 
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Table A-2.  Variation of RMS in Length Estimation in the Revisited TM Data (Entire Beat Cycle) 

Mean and RMS Cilium Lengths (All Positions) (um) 

Mean (top) Mean (mid) Mean (bot) RMS (top) RMS (mid) RMS (bot) 

0.1128 0.0875 0 0.1271 0.0940 0 

1.0402 1.0026 0.9157 1.0465 1.0073 0.9193 

1.9508 1.9021 1.8157 1.9573 1.9071 1.8199 

2.8514 2.7915 2.7053 2.8572 2.7958 2.7091 

3.7456 3.6739 3.5878 3.7504 3.6774 3.5909 

4.6355 4.5513 4.4651 4.6395 4.5541 4.4676 

5.5220 5.4249 5.3386 5.5257 5.4273 5.3408 

6.4064 6.2962 6.2097 6.4098 6.2982 6.2116 

7.2900 7.1665 7.0799 7.2932 7.1685 7.0818 

8.1746 8.0379 7.9511 8.1777 8.0397 7.9529 

9.0621 8.9121 8.8253 9.0653 8.9139 8.8271 

9.9546 9.7910 9.7041 9.9578 9.7928 9.7060 

10.8531 10.6755 10.5887 10.8565 10.6774 10.5908 

11.7578 11.5658 11.4792 11.7616 11.5680 11.4815 

12.6675 12.4608 12.3744 12.6718 12.4633 12.3772 

13.5795 13.3578 13.2717 13.5846 13.3609 13.2751 

14.4896 14.2529 14.1672 14.4955 14.2566 14.1712 

15.3925 15.1409 15.0555 15.3991 15.1452 15.0602 

16.2822 16.0154 15.9305 16.2893 16.0202 15.9357 

17.1533 16.8702 16.7857 17.1605 16.8752 16.7911 
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Table A-3.  Variation of RMS in Length Estimation in the Revisited TM Data (Power Stroke) 

Mean and RMS Cilium Lengths (Power Stroke: TS 38-14) (um) 

Mean (top) Mean (mid) Mean (bot) RMS (top) RMS (mid) RMS (bot) 

0.1253 0.1062 0 0.1420 0.1106 0 

1.0862 1.0541 0.9496 1.0915 1.0572 0.9529 

2.0113 1.9682 1.8649 2.0168 1.9723 1.8691 

2.9130 2.8590 2.7564 2.9180 2.8630 2.7605 

3.8002 3.7344 3.6320 3.8045 3.7380 3.6357 

4.6788 4.6000 4.4975 4.6826 4.6031 4.5008 

5.5525 5.4595 5.3568 5.5559 5.4622 5.3597 

6.4235 6.3154 6.2124 6.4267 6.3178 6.2150 

7.2929 7.1692 7.0660 7.2961 7.1715 7.0684 

8.1615 8.0222 7.9187 8.1647 8.0243 7.9210 

9.0299 8.8749 8.7714 9.0330 8.8769 8.7736 

9.8983 9.7279 9.6246 9.9015 9.7298 9.6267 

10.7672 10.5816 10.4787 10.7703 10.5834 10.4807 

11.6366 11.4361 11.3337 11.6397 11.4377 11.3356 

12.5064 12.2909 12.1893 12.5094 12.2925 12.1911 

13.3759 13.1454 13.0447 13.3789 13.1469 13.0464 

14.2442 13.9984 13.8987 14.2472 13.9998 13.9003 

15.1099 14.8480 14.7494 15.1127 14.8493 14.7509 

15.9711 15.6918 15.5943 15.9739 15.6931 15.5957 

16.8264 16.5271 16.4306 16.8292 16.5283 16.4320 
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Table A-4.  Variation of RMS in Length Estimation in the Revisited TM Data (Return Stroke) 

Mean and RMS Cilium Lengths (Return Stroke: TS 15-37) (urn) 

Mean (top) Mean (mid) Mean (bot) RMS (top) RMS (mid) RMS (bot) 

0.1025 0.0721 0 0.1133 0.0777 0 

1.0021 0.9600 0.8877 1.0078 0.9640 0.8905 

1.9008 1.8475 1.7750 1.9068 1.8515 1.7782 

2.8005 2.7357 2.6631 2.8059 2.7391 2.6658 

3.7006 3.6239 3.5513 3.7052 3.6266 3.5534 

4.5997 4.5110 4.4383 4.6037 4.5132 4.4400 

5.4969 5.3964 5.3236 5.5005 5.3982 5.3251 

6.3924 6.2803 6.2075 6.3958 6.2820 6.2089 

7.2876 7.1643 7.0914 7.2909 7.1659 7.0928 

8.1853 8.0509 7.9779 8.1885 8.0525 7.9792 

9.0888 8.9429 8.8698 9.0919 8.9444 8.8711 

10.0010 9.8430 9.7698 10.0041 9.8445 9.7711 

10.9240 10.7530 10.6796 10.9272 10.7544 10.6809 

11.8579 11.6730 11.5994 11.8613 11.6744 11.6008 

12.8006 12.6011 12.5273 12.8045 12.6027 12.5288 

13.7477 13.5333 13.4592 13.7521 13.5351 13.4610 

14.6923 14.4632 14.3890 14.6974 14.4653 14.3911 

15.6260 15.3828 15.3084 15.6317 15.3853 15.3110 

16.5392 16.2828 16.2083 16.5453 16.2856 16.2112 

17.4234 17.1536 17.0791 17.4294 17.1565 17.0821 
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A.2.4 Definitions 

In figure 5, the angles off the x-axis are defined as: 

position angle = acos(x_length/total_length) * 180/;r, 

and 

velocity angle = acos(x_velocity/total_velocity) * 180/7T. 

A.2.5 Waveforms Used for Robotic Control 

In the early phase of the work, the data in figure A-4 were compared with a sine wave, 
applying a phase difference to determine if the biological cilium motion could be reproduced by 
sine waveform in the robotic cilium. Comparison of the angles with sine waves was made by 
adding a phase shift of 90° or 120°, and the result is shown in figure A-5. A sine wave is a good 
approximation of the biological cilium position and the 120° phase difference has a better fit to 
the biological cilium than the 90° phase difference does. Both the Cartesian and the polar 
coordinates can be used for robotic control. 

The fit of the sine wave suggests that the moment applied at the base and the motion of the 
biological cilium are related, although the cilium is alternately taut and slack during the power 
and return strokes, respectively. 
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Figure AS. Biological ('ilium Waveform from the Revisited TM Data (Termed "real" in Figure 
Legend) at the Distal Point Compared with Sine Waveforms in Cartesian and Polar Coordinates 
(The sine waveforms (termed "abstracted") are also compared with sine waves at phase lead/lag 

differences of 120° (upper set of plots) and 90° (lower set of plots). Left Column: Cartesian; 
middle column: polar (real: biological cilium; dark symbols); right column: polar (abstracted: 

sine wave; light symbols).) 
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A.3 ROBOTIC CILIUM 

A.3.1 Early Work on CAD Simulation with D-Cam Guide and Fabrication of a 
D-Cam Pendulum 

A.3.1.1 CAD Simulation. Computer-aided design (CAD) is an accurately dimensioned, three- 
dimensional geometric relationship between objects that is also precisely defined at all instants 
of time when relative motion between the components exists. Hydrodynamic simulations of 
living animals frequently lack fluid-structure interactions because the structural properties are 
unknown. Therefore, at an early stage, it was thought to be prudent to carry out a CAD 
simulation to understand the IOOMs that are involved in the cilium motion (see figure 1 la in the 
main text). 

It is hypothesized that a D-cam would force the cilium to generate the observed motion 
verifiable in orthogonal planes. Figure A-6 shows successive frames from the CAD simulation. 
The cilium was given planar bending only; hence, it will not produce torsion and the question 
arises: What is the origin of torsion? (see section A.4 of this appendix). In view of the 
similarities of the robotic motion to the biological cilium, it is concluded that the points at any 
fixed distance from the base circumscribe the shape given by the letter D in planform—see 
figure 13a (left column). The power stroke roughly extends over the straight part of the D, and 
the return stroke traces the curved part. This exercise helped build the cilium actuation apparatus 
shown in figures A-7 and A-8. 

A.3.1.2 Fabrication of a D-Cam Pendulum. Section A.3.1.1 suggests that the cilium could be 
modeled as a compound pendulum. Figure A-7 shows a schematic and a photograph of the drive 
and guide of such a pendulum (the cilium is not shown). The positive and negative cams d+ and 
d- act as the guide of cilium track. The pendulum base is located at X. The cilium would be 
attached to the end of C. 

In figure A-7, T, M, and B are three stacked discs; disc B has a cutout of shape D labeled 
"d-"; there is a D-shaped cam (d+) between discs M and T; a bar (L-C) runs from d+ to d- at the 
bottom of which the cilium hangs; there is a universal support bearing X where this bar meets 
disc M; there is a paper clip L that is used by a lever above the disc T (hidden under the hand in 
the photograph) to turn the C-bar along the path shown by the broken line at the top of the 
schematic whereby the C-bar runs while hugging the two D-cams along the arrows shown or in 
the reverse direction. 

Note the similarity between figures A-6 and A-7—the CAD and the hardware renditions. 
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D-cam 

(c) (d) 

Figure A-6. Successive Frames (Time Increases from a to d)from 
CAD Simulation of D-Cam-Guided Three-Link Robotic Cilium 
(The robotic cilium is straight in the flat portion of the D-cam, 

and it droops while in the round part of the cilium.) 

Note: See the operation of the D-cam in the CAD video file titled 
"flagellumdual.mov" in shared folder D:\Documents and 
Settings\promode.bandyopadhyay\My Documents\Cilium (also 
available from the lead author). 
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(a) (b) 

Figure A-7. Pendulum Apparatus for Understanding Cilium Motion: 
(a) Schematic, (b) Photograph of the Apparatus 

A.3.2 Early Version of Robotic Cilium Apparatus 

Figure A-8 provides a schematic and photograph of the early version of the robotic cilium, 
and figure A-9 shows how planar bending is produced in the robotic cilium using a pair of 
antagonistic sliders. 

In figure A-8, the symbols are as follows: U: universal joint, R: cilium bending mechanism 
(see figure A-9), 1-1 and 2-2 make one pair of bucket handles, and 3-3 and 4-4 make another pair 
(the bucket handles allow the base of the cilium (U) to remain at the same location while the 
IOOM motors impart motion to the cilium); and Mx, Mz, and Mb are x, z, and bending motors. 
Note that in this apparatus, the twist motor (My) is absent, the need for which became clear later. 
This apparatus worked, but it was desirable to replace the bucket handle design to reduce 
friction. 

Note: See the video "FlagModel" (9,855-kb Windows Media; 
available from the lead author) to observe the operation of the 
dual-strip cilium model in figure A-9, and of the dual bucket 
handle mechanism shown in figure A-8. 
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Figure A-8. Schematic and Photograph of Early Version of the Biorobotic Cilium Apparatus 
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Robotic Paramecium 
How it bends in 2d 

When slider moves, it pulls on strip that is glued 
to the slider & end, curving the assembly 

G=E 
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Slider 
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^m The other strip is glued at the end and slider c—1_ r^\ \ \ \ i n 
rrt  t t   t t 

^^ One carbon fiber strip is glued at each ring and bas 

r^ End view of 
end ring 

Figure A-9. Schematic of Mechanism Showing How Planar Bending Is Produced 
in the Robotic Cilium by Sliding the Top Strip Relative to the Bottom Strip 

(Both sketches are side views.) 

A.3.3 Experimental Simulation of Cilium Reynolds Number 

Using catheter tubing of 1 mm diameter for a flow velocity U scale of 1 mm/s, and water at 
5°C, the kinematic viscosity is 1.5 x 10"6 m2/s, giving a Reynolds number Re of 0.66 «which is < 
1.0 for the same drag-versus-/?e relationship to apply. Therefore, using a magneto-rheological 
fluid, it may be possible to simulate the property of variable hardness in a realistic Re number 
and perhaps neutral buoyancy. An even lower Reynolds number is desirable and this is 
achievable for U= 0.1 mm/s, which gives an Re = 0.066 (which is < 0.1). 
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A.4 "FRICTIONLESS" CILIUM ACTUATION USING A HEMISPHERICAL 
MOTOR DRIVE 

In a pendulum design, it is important to lower friction. Figure A-10 shows photographs of a 
hemispherical motor, and figure A-l 1 is a schematic of the magnets and air gaps. This motor 
should be an extremely low friction pendulum, which is an alternative to the Maxon motor drives 
used in figures 11 and A-8. 

(c) (d) 

Figure A-10. Photographs of the Rotor (b) and Stator (d) of a 
Hemispherical Motor (a, c) Assembly 
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Figure A-ll. Schematic of Electromagnets and Gaps in the Hemispherical Motor 

The hemispherical motor has 35 electromagnets. The power supply to these motors is to be 
programmed to drive the rotor. The program should ensure that the required IOOMs are 
imparted on the cilium. Figure A-10a is view of the assembly; A-10b shows the underside of the 
top plate of the pendulum drive and the gimbal; A-10c shows a side view of the assembly; and 
A-lOd shows the 35-electromagnet assembly exposed; the pendulum ball in figure A-10b skirts 
the hemispherical surface resulting from the assembly shown in A-lOd with a small clearance. 

Figure A-ll is a schematic of the electromagnets and of the air and steel gaps. This 
schematic was used to model the force produced by each electromagnet. The following 
formulation is due to J. Dana Hrubes (NUWC Code 8233), who had used this relationship and 
measurements with a moment arm to estimate the viability of the hemispherical motor shown in 
figures A-10 and A-ll. The magneto-motive force Fis given by 

F = 
gap 

(A-l) 
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where n = the number of turns in the coil in each electromagnet, i = the current through the coil, 
ju0 = the magnetic permeability in a vacuum, A = area, and £     = the air gap between the 

magnet and steel in the direction of the magnetic flux. Compared to//0, the magnetic 

permeability of cold rolled steel is 2000 times larger. For a gap £     of 3 to 4 mm at i = 1.5 A, 

both equation (A-l) and measurement of maximum force lead to a force of 0.74 N. The tentative 
conclusion is that the design in figure A-10 would produce the required cilium motion. 

A.5 ROLE OF TORSIONAL RIGIDITY IN THE MANIFESTATION OF TORSION 

The objective is to understand the role of material properties (such as torsional elasticity and 
moment of inertia) in the manifestation of torsion (production of off-plane curvature) in a surface 
under fluid loading. Several three-doublet-long robotic cilia have been fabricated. As figure 
A-12 shows, the three doublets consist of three pairs of fixed-length, inextendable tension wires 
positioned diametrically across within the pair, and 120° apart between pairs; within a pair, the 
tension wire is continuous and is given two windings over the pulley. There is also a spring- 
loaded central tension wire. The tension wires pass through the cilium, which is made of 
segments of Plexiglas rods. There is a gap of about 1 mm between these rod segments; a small 
ball, which acts as a pivot, is positioned at the center between adjacent rod segments. A real 
cilium has 9+2 doublet ("axenome") construction (Dute and Kung, 1978). Like the biological 
doublets, the robotic doublets also produce relative motion (sliding) between a pair of axial bars. 
Three-dimensionality develops in the abstracted robotic cilium in figure A-12 as follows: 

When neutrally buoyant, the geometric deformation (k, r) in the robotic cilium is given by 

(k,T)=fn(G,E,I,CjJ), 

where G and E are the moduli of torsion and elasticity, respectively, I is the moment of inertia, 
Cd is the coefficient of drag, and 7" is the applied distortion torque. 

In the particular example in figure A-l 3, when a torque is applied to one of the levers, a 
helical spiral is produced (curvature K and torsion r are both constant) and the deflection is not 
planar. This finding came as a surprise, because a planar distortion (as shown in figure A-12) 
was expected. The levers were found to be coupled (if one is rotated, the others also rotate). So, 
the question was: What is the mechanism of the three-dimensional distortion produced? 

As figure A-14 shows, when sheathing is tightly slipped over the three-doublet cilium, 
planar deflection is produced; that is, a helical spiral is not produced. (The robotic cilium in 
figure A-14 is shorter than that shown in figure A-l 3.) The torsion does not manifest itself this 
time. This behavior can be understood by recognizing the role of the modulus of torsional 
rigidity. Note that (as figure A-12 shows) the robotic cilium has air gaps between the segments, 
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Robotic flagellum: 
How it bends in 3d 

3 thumb wheels 

Tension 

2 windings of tension 
wire on pulley 

Ball with hole 

In opposite pairs 

Tension Spring 

Figure A-l 2. Schematic of Mechanism for Actuating a Long Robotic Cilium 

Figure A-l3. Development of Torsion in a Low-Hardness "Rod" 
(In (a) and (b), the lower thumbwheel is being turned in the clockwise 

direction. Broken lines: Lever and baseline robotic cilium axes. 
Deformation is propagated from the distal point to the base.) 
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(d) (e) (f) 

Figure A-14. Effects of Clockwise and Anti-Clockwise Turning of a Doublet of a Two-Doublet 
Sheathed Cilium Oriented Orthogonally: (a) and (c) - Doublet 1; (d) and (e) - Doublet 2 

(Broken lines: Lever and baseline robotic cilium axes.) 
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which makes the torsional rigidity of the cilium extremely low (close to zero). On the other 
hand, when tight sheathing is slipped over it, the cilium becomes hard. Therefore, high hardness- 
resists the manifestation of torsion, but low hardness does not. Importantly, a critical hardness 
should exist at the boundary of the two hardnesses in the hardness versus torsion relationship, 
where a slight increase, or decrease in hardness, would produce substantial change in the 
manifestation of torsion. 

Let if/ be the angular distortion/axial length. Then, 

GI = 7>. 

If ifj remains the same in samples 1 and 2, 

T2 l{GI)2 = 7j l{GI\ . 

For the given angular deflection, when GI is low, less torque would be required to shear to the 
same angle over the same axial distance. (When G is reduced from a high value, the levers in 
figure A-13 are easier to turn.) Therefore, GI should be as low as possible so that the work 
required to deform is reduced. 

The sensitivity of resulting torsion and applied torque to hardness was further verified in the 
following manner. Two robotic rubber cilia (figure A-15) of two different hardnesses were 
fabricated (the segment gaps shown in figure A-12 were absent); the properties of these robotic 
cilia are listed in table A-5. The doublet driving mechanism shown in figure A-12 was used. In 
figure A-l 5a, the lower level is being turned, and in figure A-l 5b, the upper lever is being 
turned. In both cases, the cilium is bending in the plane normal to the level axis, and there is no 
torsion. 

Table A-6 summarizes the in-plane and off-plane curvature tendencies and torque required. 
In summary, the sheathing and hardness of A53-63 and A20-30 prevent manifestation of the 
torsion; the radius of the curling is lower in A20-30 because the curvature k is higher (radius of 
curvature o* = 1/&), less torque is needed to turn the lever the same angle; and torsion is 
manifested only in the case when torsional rigidity is nearly zero. The hardness needs to be 
below A20-30 for the torsion to be manifested. 
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Figure A-15. Cilia Constructed of Continuous Rubber 
(see Table A-5) (Hardness A53-A63) 

(Broken lines: Lever and baseline robotic cilium axes.) 

Table A-5. Physical Properties of Two Low-Viscosity Two-Component Urethane 
Casting Elastomers Used for the Robotic Cilia Shown in Figure A-14 
(Source: H. B. Fuller Company, PO Box 64683, St. Paul, MN 55164) 

Property Ultralite FH-3140 Ultralite FH-3138 
These elastomers are designed to 
make flexible molds for use with 
thermosetting resins; they pour 
and cure at room temperature. 

Used to make tough, yet flexible 
molds; not moisture sensitive 

Soft and flexible, yet tough 
compound can reproduce finest 
detail and will flex to release 
from undercuts without tearing 

Shore A Hardness 53-63 20-30 

Specific Gravity 1.03 0.992 
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Table A-6. Types of Distortion Observed in a Long Robotic Cilium 
When a Torque Is Applied at the Base 

Sample 
No. Hardness Length 

Observation of Distortion 
When Moment Is Applied at 

the Base 

Torque Required 
to Shear 1° per 

1 cm of Axial 
Length; Scale: 0 
(low), 10 (high) 

(not yet measured) 

1 
Little resistance to torque/deg 
due to the presence of gaps 
between segments 

Full 
Perfect helical spiral of 
uniform diameter and pitch 
(figure A-13) 

1 -3 

2 
Little resistance to torque/deg 
due to the presence of gaps 
between segments 

Half Spiral 2 

2 Sheathed sample 2 resulting in 
high hardness 

Half Planar bending only; no 
spiraling (figure A-14) 

9- 10 

3 A20-30 Half 
Planar bending only; no 
spiraling 4-5 

4 A53-63 Half 
Planar bending only; no 
spiraling (figure A-14) 

9-10 

A.6 PROGRESS TOWARD ROBOTIC EMULATION OF NATURAL SWIMMING 

Dynamic systems modeling (see figure 2 in the main text) has shown that the biological 
cilium track is a limit cycle. In this section, the effects of parameters on the quality of agreement 
of the model to the measurements of the biological cilium are considered, along with the 
progress made in the robotic emulation of natural swimming. 

A.6.1 Effects of Equation Parameters on the Dynamic Systems Modeling Results 

The exact form of the limit cycle in equation (1) depends on the values of the main 
parameter a (see Bandyopadhyay et al., 2008). The effects of a on the comparison between the 
Lienard equation model (equation (1)) and measurements is shown in figure A-16. The units 
shown are arbitrary; the modeling results are in arbitrary units of volts; and the units (urn) of the 
biological cilium tracks have been removed to scale them to the model (the v results are not 
shown). 
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Figure A-16. Effects of the Parameter a on Olivo-Cerebellar Modeling ofCilium Motion 
(Model: blue; cilium distal point: red. Left column: position. Right column: velocity. 

Values of a are: (a) 0.021, (b) 0.022, and (c) 0.030.) 
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A.6.2 Electronic Analog Dynamic Systems Actuation of Robotic (ilium 

To provide theoretical support to the patent applications on the nonlinear transduction 
described in Bandyopadhyay (2011 and 2012b), this section describes how the robotic cilium can 
be actuated using the dynamic systems model in equation (1). Figure A-17 shows the apparatus 
for future use in documenting the perturbation sensitivity of a cilium (disturbance rejection) to 
which torque is applied and which takes a limit cycle track (see figure 2). (Also see 
Bandyopadhyay et al., 2008.) 

Ethrrntt 
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Indicates   Moton 

Cilium 

Figure A-l 7. Apparatus for Driving the Robotic Cilium Using the 
Electronic Rendition of Dynamic Systems Equation (1) 

The schematic on the right in figure A-17 describes the relationship of the components in the 
upper left and lower left photographs. The lower left photograph is from figure 11 in the main 
text and shows the robotic cilium and the four-motor IOOM drive. The upper left photograph 
shows the analog circuit (labeled IO for inferior-olive motion control neuron (Llinas et al., 
2004)) for generating the solution to equation (1), the digital controller, and the digital data 
acquisition circuit (DAQ: digital to analog and analog to digital) for relating the analog 
component to the digital IOOMs. The wiring is shown in the schematic on the right. (A video 
showing the operation of the robotic cilium using the analog (IO) device is available from the 
lead author.) 
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A.7 SYNTHETIC MODELING OF THE TRANSFORMATION FROM SMALL TO 
LARGE VIA OPTIMIZATION MECHANISMS OF METACHRONISM 
AND SELF-REGULATION 

A meta analysis by Bandyopadhyay (2011) shows that the propulsion density (kW/m ) of 
small and large swimming animals (considering their red muscles only for cruising) remains 
invariant of whether they are large or small. (In fact, this relationship extends to engineering 
underwater swimming vehicles, irrespective of the propulsion mechanism.) 

Is there any relationship between the microscopic cilium propulsors of the paramecium 
(Reynolds number Re ~ 0.1) and the larger propulsors offish (Re ~ 1 to 10 to 100's) (which have 
flexible pectoral flapping fins) and even larger animals such as penguins, dolphins, and whales 
(which have larger, stiffer fins) (Re > 1000)? 

Information on how the oceans changed over time is contained to some extent in the 
boundary conditions and optimization rules followed by swimming animals. To aid the 
hydrodynamic study of such synthetic evolution, the relationship of cilium actuator to eel and 
fish fins was notionally explored and is given in Bandyopadhyay (2009). 

Consider the following two steps showing how one could conceivably go from small (S) to 
medium (M) and from small to large (L), as shown schematically in figures A-18 through A-21: 

1. Metachronism as the Mechanism of Optimization for Transformation from S to M. 
Apply metachronism as the dominant mechanism to optimize from S to M, the Reynolds number 
range being smaller than that in S to L. Assume that S to M is a "bifurcation" whereby higher 
orders of freedom are introduced while retaining the intrinsic dynamic system (equation (1)). 
The metachronic coupling of the downstream cilia may now be added to generate the sinuous 
motion of the dorsal fin. Metachronism is a two-dimensional mechanism and is applied to the 
motion of a two-dimensional array of cilia, shown in figure A-19. The cilium motion is three- 
dimensional, and the array is wrapped longitudinally with a membrane, whereby spanwise eel 
motion can be produced. Time increases from (a) to (d); the bunching of the cilia denotes a 
switch-over from the power stroke to the return stroke. The inset in figure A-19 is a top view 
showing the D-tracks of the cilia and how they alternate in the transverse plane with the fin 
wave. Qualitatively, the synthetic trans-species evolution result is a morphological motion of the 
eel dorsal fin from the cilium motion. This hypothesis requires verification. 

2. Self-Regulation as the Mechanism of Optimization for Transformation from S to L. 
Assume that self-regulation continues as Re is increased from S to L and that equation (1) 
applies. The re-mix of the following variables is considered in this rule: material (G, E) and 
conformational properties (I), Re range, lowering of the natural frequency with the increase in Re 
and forcing at this frequency, and the parameter a in equation (1). 

Consider the progression from S to L directly. The cilium has nine pairs of push-pull 
microtubules spread over a circular rim and two microtubules at the center for actuation (figure 
A-20a). To generate L, imagine that the cilia are unwrapped, as shown in figures A-20b and 
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Figure A-18. Thrust Actuators from S to M to L Considered in Bandyopadhyay (2009) 

Dorsal fin 
(Membran« over cilia array) 

Figure A-19. Schematic of How a Metachronic Wave Produced with a Densely Packed 
and Membrane-Wrapped Two-Dimensional Array of Cilia Can Emulate an Eel 

(Time increases from a to d.) 
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Figure A-20. Schematic of Progressive Unwrapping of 
the Cilium to Produce a Fish's Pectoral Fin 

A-20c. Assume that as in the cilium (Dute and Kung, 1978), the fin in L also has a virtual origin, 
and the push-pull microtubules are spread out from their virtual origin as a fan and are shortened 
in the sequence shown in figure A-20d. The end result is a fish's pectoral fin (see Lauder and 
Drucker, 2004). Each push-pull pair continues to be welded at the tip (hemitrich), whereby a 
sliding motion at the base would bend the fin bone as shown. To generate larger forces at higher 
Re, the fins are sheathed as in the eel optimization above. Oscillatory parameters are determined 
by minimization of drag. 

The fin sequence in figure A-21 a is from Drucker and Lauder (2004), with a virtual origin 
added. Figure A-21d shows the fin undergoing a beat cycle similar to the motion of a fish's 
pectoral fin, as in the video of Lauder (2009). 
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Virtual Origin 

(a) 

Figure A-21. Sequence Rationalizing the S to L Progression 
(Arrows indicate the direction of fin motion. Oscillation of the fin assembly 
about the virtual origin qualitatively reproduces the motion of the sunfish 

pectoral fin as in Lauder (2009).) 
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