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ABSTRACT 
The Absolute Nodal Coordinate Formulation (ANCF) has 

been widely used to carry out the dynamics analysis of flexible 

bodies that undergo large rotation and large deformation. This 

formulation is consistent with the nonlinear theory of 

continuum mechanics and is computationally more efficient 

compared to other nonlinear finite element formulations. 

Kinematic constraints that represent mechanical joints and 

specified motion trajectories can be introduced to make 

complex flexible mechanisms. As the complexity of a 

mechanism increases, the system of differential algebraic 

equations becomes very large and results in a computational 

bottleneck. This contribution helps alleviate this bottleneck 

using three tools: (1) an implicit time-stepping algorithm, (2) 

fine-grained parallel processing on the Graphics Processing 

Unit (GPU), and (3) enabling parallelism through a novel 

Constraint-Based Mesh (CBM) approach. The combination of 

these tools results in a fast solution process that scales linearly 

for large numbers of elements, allowing meaningful 

engineering problems to be solved. 
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THEORETICAL BACKGROUND 
 
The Absolute Nodal Coordinate Formulation (ANCF) 

For almost a decade the Absolute Nodal Coordinate 
formulation (ANCF) has been widely used to carry out the 
dynamics analysis of flexible bodies that undergo large rotation 
and large deformation. This formulation is consistent with the 
nonlinear theory of continuum mechanics and is easy to 
implement. Also, it leads to a constant mass matrix which 
makes it computationally more efficient compared to other 
nonlinear finite element formulations.  

The fully parameterized ANCF beam element was 
originally introduced in  [1]. The locking problems of Fully 
Parameterized ANCF finite elements based on the continuum 
mechanics approach have been addressed in the literature [2, 3].  
These locking problems significantly deteriorate the 
performance of ANCF finite elements especially for thin and 
stiff structures. To avoid these issues, the gradient deficient 
ANCF 3D beam elements, also referred as low order cable 
elements in [3, 4], are used to model the slender beams. These 
are two node beam elements where one position vector and 
only one gradient vector are used as nodal coordinates 

[  ]T T T
i xe r r . Thus each node has 6 coordinates: three 

components of global position vector of the node and three 
components of position vector gradient at the node. It should be 
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noted that the gradient deficient ANCF beam element does not 
describe a rotation of beam about its own axis so the torsional 
effects cannot be modeled [3]. However, this formulation 
shows no shear locking problems for thin and stiff beams and it 
is computationally efficient compared to the original ANCF due 
to reduced nodal coordinates.  

The global position vector of an arbitrary point on the 
beam centerline is given by 

 ( , ) ( ) ( )t tr S ex x , (1) 

where 12
1 2 

T
T T  

 
e e e is the vector of element nodal 

coordinates. The shape function matrix for this element is 
defined as 3 12

1 2 3 4[     ]S S S S  S I I I I  where I  is the 3x3 
identity matrix and the shape functions , 1,...,4jS j   are 
defined as [4] 

 
2 3 2 3

1 2
2 3 2 3
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1 3 2 ,   ( 2 )

3 2 ,   ( )

s s l

s s l

    

   

     

    
 (2) 

       

where / ,  x l  and l  is the element length. Using the 
principle of virtual work for the continuum, the element 
equation of motion is obtained as: 

 s e Me Q Q  (3) 

where sQ  is the vector of generalized element elastic forces, 

eQ  is the vector of generalized element external forces, and M  
is the symmetric consistent element mass matrix defined as 

 
0

l

TA dx M S S  (4) 

Here   and A  are the element mass density and cross 
sectional area, respectively. The expression for the mass matrix 
given in (4) is derived using the virtual work of the inertia 
forces. Note that the element mass matrix is not a function of 
the time-dependent nodal coordinates. 

The generalized element external force vector ( 12
eQ ) 

due to gravity can be obtained as 

 
0

l

T
e gA dx Q S f  (5)  

where [0, ,0]Tg g f  is the gravity force vector considering 
Y as the vertical axis. If a concentrated/point force is applied to 
an element at some point, the generalized element external 
force vector ( 12

e Q ) in this case is obtained using the 
principle of virtual work as 

 T
e Q S f  (6) 

where f  is an external point force and S  is the shape function 
matrix defined at the point of application of the force.  

The strain energy expression for the gradient deficient 
ANCF beam element is  

 2 2
11

0 0

1 1( )  + ( )
2 2

l l

U EA dx EI dx     (7) 

where  11
1 1
2

T
x x  r r  is the axial strain and the magnitude 

of curvature vector  is given as [4] 

 3
x xx

x





r r

r
 (8) 

The vector of the element elastic forces ( 12
s Q ) is 

determined from the strain energy expression as 

 11
11

0 0
( )  + ( )

l lT T

s EA dx EI dx
 

 
    

    
    

 Q
e e  (9) 

For the gradient deficient ANCF beam element, the equation of 
motion and the expressions for element mass matrix and 
element external force are the same as in case of a fully 
parameterized ANCF beam element. Computing the element 
elastic force is much easier in this case. Since only one spatial 
coordinate ( ) is used in the shape functions, the numerical 
integration is carried out using the Gauss-quadrature formula in 
one dimension only.   

    
Flexible Mechanical Systems with Constraints 

The kinematic constraints impose restrictions on the 
relative motion of the bodies in a mechanical system. These 
constraints are the algebraic equations of the form 

 1( , ) [ ( , )... ( , )] 0T

mt t t   q q q  (10) 
where m  is the total number of independent constraint 
equations that must be satisfied by the generalized coordinates 

1 ... ]T T T p

n q = [q q . Here n  is the total number of bodies and 
p  is the total number of coordinates present in the system. If 

each body in the system is assumed to be the beam then the 
generalized coordinates of each body (beam) are defined as 

1

12
1[ ... ] ;  ,..., T T T

b ele ele q = e e e e where ele  is number of ANCF 

beam elements used in beam b . Several types of mechanical 
joints can be easily modeled in ANCF. Some of these joints and 
their associated constraints are as follows: The spherical joint 
between two nodes of any two bodies will require the position 
vector of each node to be identical. The revolute joint will have 
additional two constraints to the spherical joint constraints. In 
this case, the gradient vectors of the two nodes will remain in a 
plane perpendicular to the axis of revolute joint. There are also 
additional constraints due to the element connectivity in each 
beam. The element connectivity can be modeled as a fixed joint 
between the nodes. Here the common node between two 
elements is treated as two different nodes attached to each other 
through the fixed joint. This fixed joint requires all the nodal 
coordinates of the two nodes be identical.   

The generalized coordinates of the system change in time 
under the effect of applied forces such that these constraint 
equations are satisfied at all times. The time evolution of the 
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system is governed by the Lagrange multiplier form of the 
constrained equations of motion 

 int ext( , ) ( ) ( , , )T t t qMq q Q q Q q q   (11) 

where p pM  is the generalized mass, a constraint Jacobian 

matrix is , i

jq

 
  

  
q for 1 ,1i m j p     and 

ext ( , , ) pt Q q q  is the applied force on the generalized 
coordinates pq  and int ( , , ) pt Q q q  is the vector of 
generalized elastic forces. The solution of these equations ( )tq
must also satisfy the constraint equations (e.g. Eq. (10)). These 
constraint equations lead in Eq. (11) to the presence of the 
reaction force ( , ) ,  where T mt q q  

 
is the Lagrange 

multiplier associated with the kinematic constraints. 
The Constraint-Based Mesh approach uses bilateral 

constraints to enforce the equilibrium conditions across the 
boundaries of elements. This method contrasts the traditional 
finite element method, where elements share nodes. Consider a 
beam that is built up of two elements, such as in Figure 1. 
Although each ANCF beam element is defined by two end 
nodes, the traditional method would only have three global 
nodes because there is one shared node at the element 
connection. The Constraint-Based Mesh approach has a global 
total of four nodes, two of which are constrained in 
equilibrium. Despite requiring more data space for the same 
number of element connections, the lack of dependence on 
other elements makes the Constraint-Based Mesh approach 
ideally suited for parallel algorithms and hardware. 

 

 
 

Figure 1. Beams are typically constrained by sharing nodes. A 
new approach uses kinematic constraints to enhance 

parallelism. 
 
The Solution of Index-3 Differential Algebraic 
Equations (DAE) 

Eq. (10) and Eq. (11) together form a system of index-3 
DAE. Several low order numerical integration schemes have 
been effectively used to solve index-3 DAE [5]. Here we will 
consider the NEWMARK integration scheme. The 
NEWMARK method was originally used in the structural 
dynamics community for the numerical integration of a linear 
set of second order ODEs. In the NEWMARK formulation, the 
discretization of the multibody dynamics equation of motion 
yields  

 
1 11 int ext( ) ( ) 0

n n

T

n     qMq Q Q     (12) 

Given the acceleration 1nq  at the new time step 1nt , the new 
position and velocity are obtained as 

  
2

1 11 2 2
2n n nn n

h
h   

 
 

    q q q q q  (13) 

  1 11n nn nh   
 
 

   q q q q  (14) 

where h  is the integration step size and 
21 ( 1 2),  .

2 4


 


   

The discretization of the constraint equation (with integration 
step size h ) gives  

 1 1( , ) 0n nt  q  (15) 
It should be noted that in the NEWMARK method, q  and q  
are expressed as a function of q  using the integration formulas 
given by Eq. (13) and Eq. (14).  

A Newton’s method can be used to solve the system of 
nonlinear equations defined by Eq. (12) and Eq. (15) for the set 
of unknowns q  and  . The iterative algorithm of Newton’s 
method requires at each iteration (k), the solution of the linear 
system  

 
( )( )

1

2

ˆ -
-

kkT     
    

     

q

q

eqM
e0




 (16) 

Where ie  are the residuals in satisfying the set of the 
discretized equation of motion and constraint equations which 
are scaled such that 

 
 1 1 int 1 ext 11

2 1 12

( ) ( ) ( )

1 ( , )

T

n n nn

n nt
h

  

 

  



qe Mq Φ λ Q Q

e q




 (17) 

This scaling is done in order to improve the conditioning of 
the Jacobian Matrix for Newton’s method [5]. The matrix M̂ in 
Eq. (16) is defined as  

 2 int1ˆ ( )T ext exth h 
     

      
      

q q
Q Q QeM = M + Φ λ

q q q q
 (18) 

Here int



Q
q

 is the most compute-intensive term which 

represents the tangent stiffness matrix associated with nonlinear 
ANCF formulation.  

The tangent stiffness matrix for the ANCF beam element 
12 12( )s

K  is derived from the expression for the element 

elastic force as 




s
s

Q
K

e
 which becomes 

 

11 11 11
11

0 0

0 0

( )  +

      + ( ) + 

T Tl l

T Tl l

EA dx EA dx

EI dx EI dx

  


  


        
      

        

        
     

        

 

 

sK
e e e e

e e e e

 (19) 
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Here each integral can be evaluated using Gauss-quadrature 
formula. 
 
An Overview of the Graphical Processing Unit (GPU) 

Originally designed for handling the computations 
involved in real-time, high-definition 3D graphics, the Graphic 
Processor Unit, or GPU, is ideal for problems that can be 
represented as data-parallel computations. As long as the same 
sequence of operations is executed for each data element and 
branches are kept to a minimum, the GPU's memory latency 
can be hidden with arithmetic calculations. As shown in Figure 
2, more transistors are devoted on the GPU to data processing 
rather than data caching and control flow. To make use of this 
computational power, NVIDIA introduced a general purpose 
parallel computing architecture, called CUDA. The CUDA 
parallel programming model makes it easy to exploit the 
parallelism in a program by using C programming and drawing 
on a minimal set of language extensions. 
 

 
Figure 2. The GPU is specialized for compute-intensive, highly 
data parallel computation due to its graphics rendering origin. 
This is manifested in microprocessor designs that have a very 

large number of arithmetic logical units. 
 
IMPLEMENTATION 

The implementation of ANCF on parallel hardware can be 
divided into seven stages. The GPU allows for each of these 
stages to be performed with different execution configurations. 
For example, the internal force update is performed on an 
element-parallel level while the velocity update can be 
performed on a coordinate-parallel level. The seven stages are 
detailed below: 
 
Sequential Preprocessing Stage 

Allocate space for the position, velocity, acceleration 
vectors. Preprocess the collision object vector to indicate the 
position and elemental index of the object. Create external 
force vector and constant mass matrix. Transfer data to device. 
 

Update collision objects and perform collision 
detection 

The collision geometry of each beam is regarded as the 
union of a string of spheres that overlap each other. As 
explained in the theory portion of the paper, the global 
coordinate of any point on the beam can be determined by 
multiplying the shape function vector determined at a length l 
along the beam by the element nodal coordinates. 
 

Update contacts 
The contact force due to each collision is based on the 

collision normal and the contact depth. The contact force, 
represented in Cartesian coordinates, is then mapped onto the 
element that the sphere belongs to by multiplying the point 
force by the shape function associated with the element. Since 
multiple contacts can occur on the same element, the contacts 
must be computed individually and then reduced based on the 
elemental index. These contact forces are then added to the 
external force vector. 

 
Internal force computation 

Calculating the internal forces for the individual elements 
can be computed in parallel. The internal forces are based on 
the element’s corresponding absolute nodal coordinates. This 
stage also handles the construction of the stiffness matrix. 
 
Update acceleration vector 

The acceleration for the entire system is solved using the 
NEWMARK method. The acceleration is iteratively computed 
by solving a linear system using the Bi-Conjugate Stable 
Krylov method that is included in the sparse matrix library, 
CUSP.  
 
Position and velocity update computation 

The position and velocity update computations are 
composed of multiplying a scalar value (the step size) by a 
vector (the corresponding velocity/acceleration vectors). Each 
thread can handle one entry of the global position/velocity 
vector. This step also handles the resetting of the global contact 
force vector. 
 
Check for convergence 

Convergence is considered complete when the norms of 
the right-hand side vector and the acceleration increment have 
reached a tolerance. If convergence criterion is not met, the 
algorithm branches back to the collision detection stage for 
another iteration. 
 
NUMERICAL EXPERIMENTS AND RESULTS 

Several numerical experiments are carried out in order to 
a) Validate the Constraint-Based Mesh approach against the 
traditional shared-node approach; b) Compare the GPU parallel 
implementation of ANCF to the CPU serial version; c) Validate 
the GPU implementation against other nonlinear finite element 
tools.  
 
Validation of the Constraint-Based Mesh Approach 

The Constraint-Based Mesh approach uses bilateral 
constraints to enforce the equilibrium conditions across the 
boundaries of elements. The resulting set of differential 
algebraic equations that describes this system is solved using 
the NEWMARK implicit time stepping algorithm. In this 
numerical experiment, the generalized 3D motion of two ANCF 
beams is studied: one using the traditional, shared-node 
approach and one using the Constraint-Based Mesh Approach. 
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The beams have a circular cross section of radius equal to 0.01 
[m] and are comprised of eight elements that are each 1 [m] in 
length. The beams have a density of 7200 [kg/m3], a modulus 
of elasticity of 2.0e7 [Pa], and are under the effect of gravity. 
The beams are pinned at one end and initially held horizontally 
with respect to the gravitational field. Upon starting the 
simulation, the beams are released. The position of the beam 
tips over the course of 2 seconds can be seen in Figure 3. 
 

 
Figure 3. Position of the beam tip over time. Two beams were 

simulated: 1) using the traditional, shared-node approach and 2) 
using the Constraint-Based Mesh technique. 

 
It can be seen that the two different solution techniques 

match well with each other. These results show that the fixed 
constraint can be used to mimic the sharing of nodes. 

 
Comparison of the GPU Implementation of ANCF to 
the CPU Serial Version 

Being computationally intensive, the ANCF methodology 
stands to benefit from the use of parallel computation. The 
scaling analysis performed in Figure 4 shows the amount of 
time taken to simulate the dynamics of beams that are not in 
contact.  The scaling analysis demonstrates that the amount of 
time devoted to solving large mechanical systems of flexible 
bodies using a sequential approach is intolerable. 

 

 
Figure 4. Scaling analysis for a serial implementation of ANCF 

beams. 
In the simulation of complex mechanical systems with 

many flexible beams (e.g., hair or polymer simulation), the 
equations of motion of each beam can be solved in parallel. The 
computation of the nonlinear internal force and the external 
force can also be done in parallel at the element level. 

In an effort to compare the CPU and GPU 
implementations, a mechanical system containing hundreds of 
thousands of flexible beams pinned at one end is used. Each 
beam had a circular cross section of radius equal to 0.01 [m] 
and was 3 [m] in length. The beams had a density of 7200 
[kg/m3], a modulus of elasticity of 2.0e7 [Pa], and were under 
the effect of gravity. An integration step size of 1.0e-5 [s] was 
used. It is assumed that the beams do not come into contact 
with each other. Several instances of the CPU and GPU 
implementations were run on an Intel Nehalem Xeon E5520 
2.26GHz processor with an NVIDIA Tesla C2070 graphics card 
for varying numbers of beams. On average, a 250x speedup 
was observed from the GPU implementation over the CPU 
implementation, shown in Figure 5. 

 

 
 

Figure 5. Processing time for the CPU and GPU 
implementations for varying numbers of beams. Note that the 

GPU implementation is much faster than the CPU 
implementation. 
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Validation of the GPU Implementation against 
ABAQUS and FEAP 
In this set of numerical experiments, a generalized 3D motion 
of the ANCF beam with no contact is studied. A beam is used to 
study the 3D motion of a highly deformable pendulum (beam 
pinned at one end, parameters as in table below) under the 
effect of gravity and externally applied force. The pendulum is 
modeled using 10 ANCF beam elements, 100 BEAM33 
elements in ABAQUS, and 100 3D continuum elements in 
FEAP [16]. To generate a 3D motion, a constant force of 1N in 
the Z direction is applied at the end node for two seconds. 
Figure 6, Figure 7, and Figure 8 show the displacements of the 
pendulum-tip. The ANCF results match well the ABAQUS and 
FEAP results. The gradient deficient ANCF elements do not 
suffer from shear locking problems. These results show that a 
generalized 3D motion with no torsion along the beam axis can 
be modeled correctly using the ANCF approach.  
 

Parameters Value 
Contact type No Contact 
Length (m) 1 

Cross-section 
Area(m2) π x 0.012 

Material Density 
(kg/ m3) 7200 

Modulus of 
elasticity (Pa) 2.0E7 

Second moment of 
area (m4) 7.85E-10 

Tip Mass (kg) -- 

External Force 
Gravity 

(negative y-
direction) 

Integration  
Step-Size (s) 1.0E-4 

 

 
Figure 6. X-displacement of a pendulum-tip (ANCF, ABAQUS, 

and FEAP comparison). 
 

 
Figure 7. Y-displacement of a pendulum-tip (ANCF, ABAQUS, 

and FEAP comparison). 
 

 
Figure 8. Z-displacement of a pendulum-tip (ANCF, ABAQUS, 

and FEAP comparison). 
 

CONCLUSIONS 
This paper presents a methodology for combining the 

implicit NEWMARK time integration algorithm, fine-grained 
parallel processing on the Graphics Processing Unit, and the 
Constraint-Based Mesh approach to solve complex flexible 
multibody systems. The gradient deficient ANCF beam 
elements used in the dynamics analysis exhibit good 
convergence characteristics and do not suffer from shear 
locking problems. 

The Constraint-Based Mesh approach considers each 
element in the system as a separate body. Elements are 
connected together by kinematic constraints. Along with 
allowing complex structures to be created, the CBM approach 
lends itself to parallelization on the graphics processing unit. 
Each body can be operated on separately while updating the 
internal forces or constructing the stiffness matrices. 
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The scaling results for systems with hundreds of thousands 
of flexible bodies (e.g., hair or polymer simulation) show that 
the GPU simulation approach proposed has the potential to 
increase the relevance of flexible multibody dynamics in 
addressing challenging real-life design problems across a 
spectrum of engineering disciplines. 
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