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Fourth quartely report for the Grant No
FA8655-09-1-3068, entitled Stability and

Tolerance to Optical Feedback of Quantum
Dot Lasers

PI: Thomas Erneux

The following new publications acknowledge the support from this grant:

1. T. Piwonski, J. Pulka, G. Huyet, J. Houlihan, E. A. Viktorov, and T.
Erneux, Mixed state effects in waveguide electro-absorbers based on quantum
dots, Appl. Phys. Letters 99, 171103 (2011)

2. Christian Otto, Kathy Lüdge, Evgeniy Viktorov and Thomas Erneux,
Quantum dot laser tolerance to optical feedback, In “Nonlinear Laser Dy-
namics”, K. Lüdge (Ed), Wiley-VCH Weinheim, Germany (2012)

In (1), multi-pulse heterodyne pump-probe measurements are used to in-
vestigate the reverse bias dynamics of InAs/GaAs quantum dots in a waveguide
structure. It is the last publication of a series of pump-probe experiments
done in collaboration with the group of G. Huyet at Cork [1]-[4].

Publication (2) is a chapter of a book collecting different contributions
on Laser Dynamics. It considers the stability condition derived by Mork et
al. [5] given by

k < kc ≡
ΓQW

√
1 + α2

(1)

where α is the linewidth enhancement factor and ΓQW is defined as the damp-
ing rate of the relaxation oscillations multiplied by the diode cavity round-
trip time. Eq. (1) was previously suggested by Helms and Petermann [6]
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as a simple analytical criteria for tolerance with respect to optical feedback.
Helms and Petermann [6] also proposed the empirical law given by

kc = Γ
QW

√
1 + α2

α2
. (2)

Both Eqs. (1) and (2) are used in current experimental studies of quantum
dot (QD) lasers subject to optical feedback. This has motivated the analysis
of two different rate equation models for QD lasers. In both cases, we derive
an expression that has the same format as 1 but with a expression for the
damping rate ΓQD > ΓQW .

A combined experimental-theoretical paper describing the response of QD
lasers in turn-on experiments has been submitted. Another paper on optical
feedback is in preparation.
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Third quartely report for the Grant No
FA8655-09-1-3068, entitled Stability and

Tolerance to Optical Feedback of Quantum
Dot Lasers

PI: Thomas Erneux

The following papers acknowledges the support from this grant:

1. Optically injected quantum dot lasers, T. Erneux, E.A. Viktorov, B.
Kelleher, D. Goulding, S.P. Hegarty, and G. Huyet, Optics Letters 35, 937-
939 (2010)

2. Analytical approach to modulation properties of quantum dot lasers,
K. Lüdge, E. Schöll, E. Viktorov, and T. Erneux, J. Appl. Physics, 109,
103112 (2011)

3. Dimensional signature on noise-induced excitable statistics in an op-
tically injected semiconductor laser, B. Kelleher, D. Goulding„ G. Huyet, E.
A. Viktorov, T. Erneux, and S. P. Hegarty, Phys. Rev. E84, 026208 (2011)

Paper (1) reports on an experimental and theoretical study of a single
mode quantum dot (QD) laser subject to injection. The stability diagram
considerably differs from the one known for the quantum well (QW) semi-
conductor. Experimentally, two features stand out; the first is an absence of
instabilities resulting from relaxation oscillations, and the second is the ob-
servation of a region of bistability between two locked solutions. Using rate
equations appropriate for quantum-dot lasers, we analytically determine the
stability diagram in terms of the injection rate and frequency detuning.

At the TU-Berlin, a microscopically based rate equation model for QD
lasers is studied mainly numerically. The model separately treats the dy-
namics of electrons and holes, and the carrier-carrier scattering rates depend

1

Distribution A:  Approved for public release; distribution is unlimited.



nonlinearly on the wetting layer carrier densities. Paper (2) summarizes more
than two year efforts to simplify the five rate equations in a form for which
analytical expressions can be obtained for the relaxation oscillation frequency
and damping rate. .

Paper (3) describes new experimental observations of noise-induced ex-
citable pulses for an injected QD laser. The authors use a third order phase
equation instead of Adler equation for the interpretation of their results.
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Second quartely report for the Grant No
FA8655-09-1-3068, entitled Stability and
Tolerance to Optical Feedback of Quantum

Dot Lasers
PI: Thomas Erneux

Experiments on a quantum dot (QD) DFB laser subject to optical injec-
tion have been realized. The stability diagram has been determined in terms
of the slave-master frequency detuning and the optical injection rate. The
domains of stability strongly differ from the same domains observed for the
conventional quantum well laser. We have considered a three-variable model
for the QD laser [1] in the case where it admits a strong damping of the
relaxation oscillations. We explain numerically and analytically the unusual
stability properties observed experimentally. A publication with the group
of G. Huyet (Cork) in Optics Letters summarizes the results and acknowl-
edge the support of the AF [2]. Another manuscript has been submitted for
publication.

Parallel to the collaboration with Cork, work has been initiated with the
group of E. Schöll (TU Berlin) in order to simplify a five variable model used
by the group [3]. Our objective is to determine if there exist similar features
between this model and the three variable model used in Cork. A manuscript
summarizing the asymptotic analysis is in preparation.

By the end of 2009, the group in Brussels became partner of the French
ANR project called TELDOT devoted to the development of quantum dot
lasers for Telecom applications. To this end, work has been started with
the group of P. Besnard (Lannion). This group is now performing injection
experiments using a quantum dash DFB laser fabricated by Alcatel. This
study could be particularly relevant for the AF which has recently supported
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experiments using a quantum dash laser in a Fabry-Perot cavity [4].
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First quartely report for the Grant No
FA8655-09-1-3068, entitled Stability and
Tolerance to Optical Feedback of Quantum

Dot Lasers
PI: Thomas Erneux

Abstract

Recent experiments have explored the response of a single mode
optically injected QD laser. The experiments identify a domain of
bistability between two steady states at negative detuning and a Hopf
bifurcation close to the locking threshold at positive detuning. More-
over, the laser is stable for all injection levels at zero detuning. These
observations lead to a stability diagram injection amplitude versus de-
tuning that contrasts to the diagram of a quantum well semiconductor
laser. The bifurcations responsible for the QD laser stability diagram
are explained analytically by using a model appropriate for QD lasers.

1 Introduction

Semiconductor lasers (SLs) have become the optical source of choice in many
applications due to their high efficiency, simplicity of modulation, and small
size. However, in some applications where low-intensity noise level are re-
quired, they suffer from wide-bandwidth intensity fluctuations that are en-
hanced by their inherent relaxation oscillations (ROs). The phenomenon of
ROs is familiar in the laser physics community. When a laser is perturbed
from its steady state operation, it does not immediately return to its original
position. Either the laser quickly approaches equilibrium or it slowly decays
to its stable steady state like a damped oscillator. These lasers are labelled as

1
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Class A and Class B, respectively [1]. Class A lasers include the Ar, He-Ne,
and dye lasers while Class B lasers include most of the lasers used today such
as CO2, solid-state, and semiconductor lasers. Subject to optical injection
Class A and Class B lasers exhibit quite different stability properties. Class
B lasers admit a rich number of sustained pulsating intensity regimes which
have been studied systematically during the last decade for semiconductor
and solid state lasers (see [2] for a recent review). Class A lasers free of ROs
are much more stable [3]. Recent efforts have concentrated on increasing
the photon lifetime above the carrier lifetime to suppress ROs in SLs. This
can be achieved by either increasing the cavity length or the cavity finesse.
The first technique has been successfully applied with a several-meter-long
cavity in semiconductor laser [4]. The second alternative is technically easier
and has been explored using half of a vertical cavity surface emitting laser
(1
2
−VCSEL) in a short external cavity [5, 6].
We consider optical injection of a single mode distributed feedback (DFB)

quantum dot laser (QDL). These lasers have become increasingly pervasive
in recent years and studies have already revealed some dynamical properties
which demonstrate their superiority for applications [7]. A particular feature
of these devices is an unusually high damping of the relaxation oscillations
(ROs) [8] in comparison to their bulk and quantum well (QW) counterparts.
Analytical studies have shown that the damping rate and the RO frequency
can have the same timescale and may even be overdamped [9]. This high
damping has been cited as the principal reason for the increased stability
of such devices subject to optical feedback [10], optical injection [11], and
mutual coupling [12] configurations. We determine an experimental stability
diagram and note that it is considerably different to that of a conventional
quantum well laser showing strong similarities to the stability diagram of
a Class A laser. In particular, the injected QDL exhibits stability for ar-
bitrary value of the injection rate provided the detuning is sufficiently low
and bistabiliy between two coexisting steady states at negative detuning.
These observations are substantiated analytically by studying rate equations
appropriate for a QD laser.

2 Experiments

The slave DFB QDL used was a five layer structure grown by solid source
MBE. It consisted of 2.4 InAs monolayers topped with 5 nm GaInAs, stacked

2
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in a 400 nm thick optical cavity. A 35nm GaAs spacer is used between
the QD layers. Optical confinement was achieved using AlGaAs cladding
layers. The experimental setup is similar to the one described in [13]. Of
particular interest is the large area of stable locked operation. Regions of
bistability between locked and periodic operation exist for both negative and
positive detunings while for negative detuning, there is a domain of bistable
operation in which two locked steady states coexist and the laser displays
a noise induced switching. The transition between the two steady states is
sharp and the relaxation dynamics includes only one spiking oscillation. It
suggests that the decay of the relaxation dynamics occurs at the same time
scale as that of the RO frequency which is typically the case for a Class A
laser.

There are a number of fundamental differences between our stability di-
agram and the diagram reported in [14] for the conventional DFB QW laser
(reviewed in detail in [2]). In the injected QW laser, there is only one Hopf
bifurcation line that crosses twice the zero detuning line. Here we found two
Hopf bifucation lines that never cross the sero detuning line. Moreover, the
coexistence of two stable locking states for our QW laser is not possible for
a QW laser except close to the laser threshold. These differences suggest a
significant impact from the nonlinear capture dynamics in QDLs provided by
the Pauli blocking factor which do not exist in the conventional formulation
of a class B QW laser. Instead, we note a similarity between our stability
diagram and the one for a class A laser [3]. It suggests that QDLs may
exhibit both class A and class B dynamics depending on the carrier capture
parameters as shown in [9] by exploring different asymptotic limits of a three
variable rate equation model.

3 Theory

Our rate equations for a QD laser subject to an injected signal consist of
three equations for the complex electric field E, the occupation probability
in a dot ρ, and the carrier density n in the wetting layers, scaled to the QD
density. They are given by [11]

E ′ =
1

2
(1 + iα) [−1 + g(2ρ− 1)]E + Γ exp(i∆t), (1)

ρ′ = η
[
Bρ(1− ρ)− ρ− (2ρ− 1)|E|2

]
, (2)
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n′ = η [J − n− 2Bn(1− ρ)] . (3)

Prime means differentiation with respect to t ≡ t′/τph where τ ph is the photon
lifetime. The factor 1 − ρ is the Pauli blocking factor. The factor 2 in Eq.
(3) accounts for the spin degeneracy in the quantum dot energy levels. J is
the pump current per dot and α is the linewidth enhancement factor. The
control parameters are the frequency detuning ∆ defined as the frequency of
the master laser minus that of the slave laser and the injection rate Γ. The
fixed parameters B and η are ratio of basic time scales and are defined as
B ≡ ττ−1cap and η ≡ τphτ

−1 where τ and τ cap denote the carrier recombination
and capture times, respectively. Typical values are τ = 1 ns, τ ph = 2 ps, and
τ cap = 10 ps which imply B = 10

2 and η = 2× 10−3.
As suggested by Goulding et al [11], we shall consider the value g = 1.01

for which a good agreement between theory and experiments is observed.
In the case of the solitary laser, the product B(g − 1) appears in both the
steady state expressions and in the characteristic equation [9]. Therefore, we
need to take into account the relative values of B and g − 1. Specifically, we
propose an asymptotic analysis of Eqs. (1)-(3) valid in the limit ε ≡ g − 1
small keeping Bε as an O(1) quantity. After introducing g = 1 + ε into Eq.
(1), the expression in brackets becomes [−2 + 2ρ+ ε(2ρ− 1)] and suggests
to introduce ρ = 1 + εu in order to balance all terms. The expression in
brackets then is proportional to ε which motivates introducing the slow time
scale s ≡ εt. From Eqs. (1)-(3), we obtain the following equations for E, u,
and n

E′ =
1

2
(1 + iα) [1 + 2u(1 + ε)]E + γ exp(iδs), (4)

u′ = ε−2η
[
−Bεnu− 1− εu− (1 + 2uε)|E|2

]
, (5)

n′ = ε−1η [J − n− 2Bεnu] (6)

where prime now means differentiation with respect to s. The control pa-
rameters are γ ≡ ε−1Γ and δ ≡ ε−1∆. Since ε−2 ≫ ε−1 as ε → 0, u is
faster than n and we eliminate u adiabatically from Eq.(5). Specifically,
we find u = −(1 + E2)/(Bεn) as ε → 0. Introducing the decomposition
E = R exp(iδs+ iφ), Eqs. (4)-(6) reduce to the following equations for R, φ,
and n

R′ =
1

2

[

1−
2(1 +R2)

Bεn

]

R+ γ cos(φ), (7)
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R′ = −δ +
1

2

[

1−
2(1 +R2)

Bεn

]

α−
γ

R
sin(φ), (8)

n′ = ε−1η
[
J − n− 2(1 +R2)

]
. (9)

If γ = 0, we find that the laser threshold of the solitary laser appears at
J = Jth where

Jth ≡ 2 + 2/(Bε). (10)

We next assume that J > Jth. From the steady state equations, we determine
R2 = R2(γ) as (in implicit form)

γ2 = R2
[
F 2 + (−δ + αF )2

]
(11)

where

F ≡
1

2

(

1−
2(1 +R2)

Bε (J − 2(1 +R2))

)

. (12)

From the linearized equations, we then obtain the characteristic equation
for the growth rate λ. It is given by

λ3 + a1λ
2 + a2λ+ a3 = 0, (13)

where

a1 = −G− F + ε−1η, (14)

a2 = GF + (F −G)α(δ − αF ) + (δ − αF )2

−ε−1η(G+ F ) + ε−1η(F −G)(1− 2F ), (15)

εη−1a3 = GF + (F −G)α(δ − αF ) + (δ − αF )2

+(F −G)(1− 2F ) (α(δ − αF )− F ) (16)

and

G =
1

2

(

1−
2(1 + 3R2)

Bε (J − 2(1 +R2)

)

. (17)

The Routh-Hurtwitz stability conditions are a1a2 − a3 > 0, a1 > 0, and
a3 > 0. The saddle-node bifurcation point satisfies the condition a3 = 0. The
Hopf bifurcation point satisfies the condition a1a2− a3 = 0. Both conditions
are quadratic equations in (δ−αF ).We first determine δ−αF as a function
of R2 and then δ as a function of γ, using (11). The stability diagram is
shown in Fig. 1. Only the Hopf bifurcation points from a stable steady state
are shown (a1a2 − a3 = 0, a1 > 0, and a3 > 0).

5
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Figure 1: Stability diagram. SN and H denote the saddle-node and Hopf
bifurcation points, respectively. The shaded region corresponds to the do-
main of steady state bistability. The values of the parameters are g = 1.01,
B = 102, η = 2×10−3, α = 1.2, and J = 1.2Jth = 4.8 (Jth = 4). The dots are
Fold-Hopf points where Hopf and SN bifurcation lines merge. Inset: stability
diagram for a injected Class A laser (Eq. (1) in [3] with Γκ−1 = 1.2, α = 1.2,
β = 1, Γ→ σSκ−1, ∆→ −∆Ωκ−1, and t→ κt).
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Figure 2: Bifurcation diagrams of the stable steady and time-periodic solu-
tions. The extrema of R are shown as functions of the detuning ∆. The
complete S-shaped branch of steady states is shown by a broken line. Same
values of the parameters as in the previous figure. (a) partial bistability for
Γ = 0.0012 and (b) full bistability for Γ = 0.002. The figures have ben
obtained by scanning the detuning back and forth.
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The stability diagram in Fig. 1 is qualitatively similar to the experi-
mental mapping. Both the experimental and analytical stability diagrams
predict stable locking for arbitrary values of the injection rate provided the
detuning is sufficiently small. The domain of multiple steady state dominates
for negative detunings (bounded by the lines SN1 and SN1 in Figure 1). At
positive detuning, a single Hopf bifurcation (H2 in Fig. 1) emerges from a
single steady state. The absence of Hopf bifurcations at low injection levels
has previously been noted allowing the observation of excitable pulses for
both negative and positive detunings [13]. [A domain of bistability between
locked states and periodic solutions for lower injections is predicted]. At
negative detuning and for relatively high injection rates, there is a domain of
bistability between two locked states. This phenomenon is not possible for
QW SLs except if the pump current is very close to its threshold value[15].
The bistability phenomenon is here possible because of a Hopf bifurcation
that stabilizes the lower intensity branch (H1 in Fig. 1). Two bifurcation
diagrams of the stable steady and periodic regimes are shown in Figure 2 il-
lustrating the case of partial and full bistability. They have been determined
numerically from Eqs. (7)-(9).

The Hopf bifurcation curves do not cross the zero detuning line as for QW
SLs. Consequently, our QD SL exhibits higher stability properties which are
important for some practical applications. We should however emphasize
that our QD laser is equivalent to a Class A laser because it verifies the
scaling law (g− 1)B = O(1). Other scalings are possible because of the large
diversity of QD structures that are currently designed possibly leading to
different conclusions concerning the RO damping and the effects of injections.
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