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ABSTRACT 

Pulse Detonation Engines (PDE) operate in a cyclic manner resulting in large changes in 

the combustion chamber pressure.  The widely varying pressure ratio between the 

chamber and nozzle exit makes it difficult to efficiently produce thrust since a fixed area 

ratio exhaust nozzle would operate off design nearly the entire cycle.  Therefore, a nozzle 

with the capability to create the necessary area ratio throughout the cycle is required to 

produce an effective and efficient thrust profile.  A dynamically varying nozzle was 

evaluated which investigated the possibility of using air injection into the diverging 

portion of the nozzle in order to effectively adjust the nozzle's exit area and provide the 

primary engine combustion products the most efficient area ratio throughout the 

combustion cycle.  A two-dimensional nozzle and combustion section was created and 

simulated using computational fluid dynamics software to analyze the flow for various air 

injection pressures and velocities.  A test section was designed and assembled for actual 

testing of the nozzle with the air injection ports and used a shadowgraph technique to 

observe the time-varying gas dynamics in the nozzle.  The results of each were compared 

and analyzed to determine the validity of the CFD analysis.  Subsequent computational 

analysis was conducted to find the most optimal injection conditions to achieve the most 

effective variable nozzle design for maximizing the impulse per cycle.   
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I. INTRODUCTION 

Engine designs have been developed over many years to encompass a large range 

of operational speeds, but often with associated increases in technical complexity and 

cost.  The result is a range of propulsion technologies that can deliver a desired 

performance in terms of specific impulse over a range of flight Mach numbers. 

 

 
Figure 1.    Comparison of Propulsion Technologies. (From [1]) 

Figure 1 illustrates the range of current technologies as flight Mach number 

versus specific impulse.  The introduction of high-speed, efficient engines started with 

the turbojet and turbofan.  These engines have the advantage of operating efficiently 

between static conditions and up to low Mach numbers.  The disadvantage is seen when 

these systems reach the higher flight Mach numbers as efficiency drops off dramatically 

and eventually can result in insufficient thrust.  This is largely due to the turbine 

temperature limitations.  Additionally, the high number of moving parts, when compared 

to the other systems, also increases the complexity and cost. 
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At flight Mach numbers above two, the ramjet and ducted rockets become the 

desired engine platforms.  Utilizing an optimal intake to decelerate and compress the high 

speed inlet air to subsonic speeds before the combustion section, it contains fewer 

moving parts, does not have the combustor temperature limitations, and is capable of 

operating at much higher velocities.  However, this system is incapable of operating as a 

stand-alone engine at lower Mach numbers due to the inlet compression requirements.  

Ultimately, the ramjet reaches an operating limit near Mach 4–5 due to the high 

stagnation temperatures from the compression event.  At these speeds, the scramjet 

becomes the more optimal selection since it maintains a supersonic flow through the 

combustor and therefore minimizes the static temperature rise before the combustion 

event.  However, like the ramjet, the scramjet cannot operate at low Mach numbers and 

must be boosted to its operational speeds. 

It can be seen in Figure 1 that there exists a region between high subsonic and mid 

supersonic velocities where an efficient technology is needed.  This is where the Pulse 

Detonation Engine could be an effective alternative to conventional systems.  Its high 

thermodynamic efficiency, little to no moving parts, and relative simplicity make it a 

very viable option for propulsion requirements.  Although many of the challenges 

associated with these systems have been overcome, the optimization of the exhaust 

nozzle remains a concern for the efficient and practical application of a PDE for 

propulsive purposes. 
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Figure 2.   Variable Exhaust Nozzle of an F/A-18 Hornet 

As seen on most tactical fighter aircraft around the world, a Variable Exhaust 

Nozzle (VEN) is utilized in order to maximize the thrust for varying nozzle entrance and 

exit pressures.  Figure 2 shows the VEN for an F/A-18C Hornet.  PDE systems also 

operate at varying chamber pressures and are similarly plagued with lost efficiency and 

thrust if a conventionally fixed converging-diverging nozzle is used.  The primary 

difference between the two is the rate at which the pressure change occurs.  Where 

tactical fighter aircraft vary combustion conditions on a per second rate, the PDE pressure 

changes occur on a scale of tens of microseconds.  This rapid change removes any 

possibility of utilizing a mechanical nozzle due to practical response times and induced 

fatigue.  Therefore, this research investigates the possible usage of a fluidic nozzle by 

injecting a secondary mass flow into the exhaust section to effectively change the exhaust 

area “seen” by the engine combustor gases.   
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II BACKGROUND 

A. PDE OPERATION 

A pulse detonation engine (PDE) is an engine concept that possesses and 

inherently high thermal efficiency and relative simplicity by design.  It generates high 

pressure and high temperature combustion products associated with a detonation and 

converts the high enthalpy products to have a high exhaust velocity through a 

converging-diverging nozzle to produce thrust.  The PDE has four distinct portions of a 

complete combustion cycle: the fill, the detonation, the blow-down, and the purge. This 

cycle is repeated at frequencies in the 40 to 100 hertz range and can be illustrated (Figure 

3). 

 
Figure 3.   Operational Cycle of a Pulse Detonation Engine. (From [2]) 
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The fill cycle, illustrated as steps 1 and 2 in Figure 3, begins the process by filling 

or charging the combustor with an appropriate fuel/air mixture. This mixture is then 

ignited, producing a flame that is initially a deflagration wave.  A deflagration wave is a 

gaseous front that travels at a subsonic speed and has a lower pressure and density than 

the initial reaction flame, but an increase in temperature ([8], p. 252). As the deflagration 

wave continues through the combustor, it will accelerate to a finite speed unless sufficient 

turbulence exists to allow a substantially larger energy release rate.  This process is often 

referred to as the deflagration-to-detonation transition (DDT) process and additional 

details can be found in Reference 8.  Once this occurs, the wave will quickly accelerate to 

a supersonic velocity and transition to a detonation wave, shown as step 3 in Figure 3 

([8], pp. 15–16).   The detonation wave then continues down the combustor and out the 

exit of the tube. The blow-down cycle, illustrated as steps 4 and 5 in Figure 3, then 

occurs, which reduces the chamber pressure and temperature before the next fill sequence 

can begin.   

Although the detonation wave has exited, high temperature combustion products 

still exist in the combustor.  In order to prevent an auto ignition of the new fuel/air 

mixture, the PDE must utilize a “buffer” of cooler air in order to clear these reactants.  

This is known as the purge phase since the products are “purged” from the combustion 

section shown as steps 6 and 7 in Figure 3.  Once this has been completed, the cycle 

begins again at the fill phase and the process repeats itself.  

B. NOZZLES 

The use of nozzles on propulsion systems of nearly every kind serves a valuable 

purpose. Nozzles are responsible for taking the high pressure and temperature combustor 

products which have a large associated total enthalpy and converting the total enthalpy 

into high velocity flow with lower pressures and temperatures. The higher the velocity, 

the more kinetic energy.  Preferably, that flow must also be in the axial direction normal 

to the engine or some of the axial momentum will not be utilized for a thrust force ([4],  

p. 244).  
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1. Operation 

An exhaust nozzle serves two purposes.  The first is to provide a back pressure to 

the combustor so that the combustion chamber will have sufficient pressure at high 

altitudes. The second is to inherently choke the flow in the throat of the nozzle.  Choked 

flow is critical for the proper functionality any supersonic nozzle.  Once the flow through 

the nozzle is choked, it reaches sonic velocity and then is accelerated in the diverging 

section of the nozzle.  This divergence produces a low pressure, high speed flow that 

exits into the atmosphere with high kinetic energy producing thrust.  However, the issues 

with proper nozzle design and selection are the design, shape, and most importantly area 

ratio between the exit plane and the throat to achieve efficient expansion and thrust.   

The appropriate throat area must first be determined from the desired engine flow 

rates and chamber pressure.  This can be accomplished by using Equation 1.  Knowing 

that the Mach number at the throat must be 1.0, imposing a desired chamber Mach 

number of 0.3, and measuring the area of the existing combustion chamber, the necessary 

throat area can be calculated. 

 

Equation 1: 
( )

1
2 121 2 11

* 1 2
A

A M M
γ
γγ

γ

+
−    −  = +     +       

 

 

Solving for the appropriate exit area can be more challenging as it varies 

according to chamber pressure and ambient pressure. Time-varying conditions are 

prevalent in the PDE as the chamber pressure varies frequently based on engine cycles 

and the ambient pressure varies as the engine climbs and descends in altitude.  Equation 2 

and Figure 4 illustrate how both of these pressures contribute to creating an effective 

nozzle.  Figure 4 also illustrates the negative effect if an inefficient nozzle is used.  

 

Equation 2: 3( )e e eF v m p p A= + −  
 

The trust of an engine system can be found by using Equation 2.  It illustrates that 

the trust is made up of two parts.  The first part is the product of the mass flow rate and 



 8 

the axial exit velocity, called the momentum thrust.  The second is the pressure term, 

called the pressure thrust, which takes the produce of the exit area and the pressure 

difference.  When the nozzle exit pressure, pe, and the ambient pressure, p3, are not equal, 

the axial momentum thrust is reduced.  Therefore, when pe=p3, the thrust is maximized 

and called optimally expanded. ([6], pp. 27"29, 58) 

 

 
 

Figure 4.   Pressure Ratio vs Distance. (From [7]) 

Equation 3 [7]:    

( )
1 1

2 1 2

1
2 1 2

0 0

2 1
1 2

*
e

e e

A
A

p p
p p

γ
γ

γ
γ γ

γ
γ

+
−

+

  − 
  +   =

 
    +    
       

 

There are typically four exit flow conditions that a nozzle can operate under based 

on the above equation: subsonic, underexpanded, full, and overexpanded. If Equation 3 is 

satisfied, and the pressure ratio does not change, then the flow will be considered full and 

the maximum nozzle performance will be realized, shown as the line between Section 3 

and 4.  If the throat section is not sized correctly and a Mach number of 1.0 at the throat 

is not achieved, then the exhaust will be subsonic, shown as Section 1 in Figure 4.  

Throat Exit 

p/
p 0

 

p*/p
 

 
pe/p0 
 

A* Ae 
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However, in the case of the PDE, the pressure ratio changes rapidly throughout the 

engine cycle as the chamber pressure changes throughout the cycle shown in Figure 5.  

As can be seen in Figure 6, as the chamber pressure increases, so does the necessary area 

ratio for ideal expansion of the combustion products.   

 

 
Figure 5.   PDE Chamber Pressure versus Time for Hydrogen/Air Reaction  

at 60 Hz. (From [2]) 
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Figure 6.   Area Ratio vs. Chamber Pressure 

a. Underexpanded Nozzle Condition 

If the nozzle were fixed and designed to flow full during the purge cycle, 

then an area ratio for a three atmosphere purge pressure would be around 1.09.  During 

the combustion event, the chamber pressure would rise dramatically and the nozzle 

would become underexpanded at the exit plane.  Figure 7 illustrates this effect.  Since a 

full flow condition would exist during the refresh condition, the chamber pressure rise 

during the combustion event would cause the exit pressure to climb as well leading to an 

increasingly underexpanded condition since additional expansion would have resulted in 

increased thrust and more appropriate pressure matching.  In addition, if the ambient 

pressure were also less than the exit pressure then the overexpansion would be magnified 

further.  This is illustrated as Section 4 in Figure 4. 
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Figure 7.   Underexpanded Nozzle. (From [6]) 

b. Overexpanded Nozzle Condition 

If the nozzle area ratio was fixed and designed to flow full during the high 

pressure conditions immediately after the detonation event, then the flow during the 

purge and fill phase would be overexpanded.  Figure 8 illustrates this effect.  With the 

nozzle flowing full at the end of the combustion portion of the cycle, the chamber 

pressure would drop causing the exit pressure to lower as well and lead to lower thrust 

levels, illustrated by Section 3 in Figure 4.  If the overexpansion were to continue further, 

a flow separation would occur inside the nozzle shown as Section 2 in Figure 4.  This 

separation creates a very undesirable condition not only due to the severe loss in thrust 

and efficiency but also due to additionally imposed strains on the nozzle structure.   



 12 

 
 

Figure 8.   Overexpanded Nozzle. (From [6]) 

In both cases of a fixed converging-diverging nozzle, the inherent changes 

in chamber pressure for a PDE results in a varying exit pressure.  Therefore, no fixed 

nozzle will ever produce consistently efficient thrust for a PDE since it would rarely be 

“on-design” throughout the cycle.  Figure 9 illustrates the changing coefficient of thrust 

based on varying area and pressure ratios.  For a given pressure ratio, there exists a 

maximum coefficient of thrust and therefore, a desired area ratio [2].  However, in the 

case of a PDE where a constant pressure ratio is not achieved, there exists a constantly 

varying  area ratio required for a maximum thrust term. The red line shown depicts the 

range for a fixed nozzle with varying pressure ratios if designed for the condition 

immediately following the detonation event.  The top of the line represents the pressure 

ratio associated with the condition immediately following the detonation event, which 

intersects the maximum thrust coefficient arc .  The bottom of the red line illustrates the 

result in a lower pressure ratio at the same area ratio found during the purge phase of the  
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cycle.  Most importantly, it illustrates that for a fixed nozzle designed to operate at the 

blow down phase, the flow will separate within the nozzle and produce a very 

undesirable condition.   

 

 
Figure 9.   Coefficient of Thrust vs. Area Ratio for a Fixed Exhaust Area.  

(From [6]) 

2. Variable Nozzles 

A variable nozzle can be found on some upper-stage rocket engines and on almost 

every fighter aircraft around the world.  As a fighter aircraft operates on widely varying 

operating conditions for tactical maneuvers, a fixed nozzle would produce losses due to 

reasons described earlier.  Therefore, engineers have long utilized a mechanical nozzle 

that expands and contracts seeking the optimal area ratio based on chamber pressure and 

ambient pressure.  Figure 10 illustrates the same thrust coefficient versus area ratio graph.  

Here, the red line depicts the capability of a variable nozzle to alter the exit area, thus 

vary the area ratio in order to maintain on or near the maximum thrust coefficient curve.  

As the pressure ratio across the nozzle decreases, the exhaust area also decreases 

Post-Combustion 

Purge/Refresh 



 14 

maintaining the desired efficient area ratio.  Likewise, as the pressure climbs, the exhaust 

area climbs and again maintains the desired efficient area ratio.  

 

 
Figure 10.   Coefficient of Thrust vs. Area Ratio for a Variable Exhaust Area. 

(From [6]) 

Therefore, for a PDE, this illustrates the necessity for a variable nozzle.  

However, for an engine that operates up to 100 hertz and with extremely rapid pressure 

changes, a mechanical system is not feasible primarily due to fatigue and mechanical 

requirements.  Therefore, this research was dedicated to developing a fluidic nozzle to 

function as a variable area ratio nozzle in order to achieve the most advantageous thrust 

characteristics for a pulse detonation engine. 
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III. EXPERIMENTAL SETUP 

A. EXPERIMENTAL ASSEMBLY 

This research was performed at the Naval Postgraduate School utilizing Test Cell 

3 located at the Rocket Propulsion Laboratory.  The test setup can be broken up into four 

categories: the initiation section, the detonation channel, the optical section, and the 

exhaust section.  The test utilized hydrogen (H2), oxygen (O2)  and compressed air (O2 + 

3.76N2) for the reactants, mixing them at the head of the combustion section.  A 

hydrogen and oxygen torch was used as the ignition source.  

1. Initiation Section 

The initiation section of the test rig is comprised of the air delivery system, fuel 

delivery system, and ignition system.  The section is a 36-inch (914.4 mm) long 

machined flange of three-inch (76.2 mm) schedule 80 stainless steel tubing.  Five boss 

connectors are welded to this three-inch (76.2 mm) diameter tube that serve as the 

attachment points for the fuel and igniter.  Air is delivered to the initiation section 

through a two-inch (50.8 mm) diameter supply line as seen in Figure 11.  

 

 
Figure 11.   SolidWorks Model of Test Section 

a. Air Delivery System 

The propulsion lab has an air supply system with a capacity to store  

65,000 SCF of air at 2500 psi.  The high pressure air is regulated and supplied to every 

test cell throughout the lab and locally metered by an instrumented choked orifice. Once 

Initiation Section Detonation Channel Optical Section 
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the mass flow rate is known, air is then fed directly to the test rig through the two-inch 

stainless steel union and into the initiation section. 

b. Fuel Delivery System 

The hydrogen (H2) fuel is delivered to the test cell through ½-inch (12.7 

mm) diameter supply lines.  A series of control valves and mounted solenoid valve 

eventually deliver the gas to the combustor.  Choked flow and check valves are used to 

prevent back flow.  The supply lines are split into three separate flows for the hydrogen, 

and one for the oxygen.  Hydrogen is injected into the combustor through two Swagelock 

pressure fittings shown in Figure 12.  The oxygen and remaining hydrogen line are 

connected to a Multiple Spark Discharge (MSD) system and attached to the combustor to 

serve as the ignition source. 

 

 
Figure 12.   Air and Fuel Delivery System 
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c. Ignition System 

A Multiple Spark Discharge (MSD) system shown in Figure 13 was used 

to ignite the fuel/air mixture in the initiation section.  Oxygen and hydrogen supply lines 

were connected to a mixing chamber with a standard spark plug attached to the top.  The 

hydrogen and oxygen were mixed in the chamber and lit, causing a high temperature 

torch to be injected into the fuel/air mixture in the combustor, initiating the detonation.  

 

 
Figure 13.   Ignition System 

2. Detonation Channel 

The detonation channel was a rectangular, stainless steel channel running 48 

inches (1,219.2 mm) in length.  Stiffener brackets were placed roughly every four inches 

(101.6 mm) for support. Within the channel, two “skies” were placed in order to achieve 

a gradual ramp up to the test section to control the cross sectional area and to ensure a 

detonation occurred.  These skies are illustrated in Appendix A. Two Kistler pressure 

transducers were placed at the bottom of the detonation channel and exposed to the flow. 

The primary purpose of the detonation channel was to carry the detonation wave 

produced in the combustion section to the test section and nozzle.  The detonation 

channel can be seen in Figure 14. 
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Figure 14.   Detonation Channel 

3. Optical Section 

An optical test section from previous research was utilized, but modified and 

adapted for this research.  It consisted of a solid stainless steel bottom section and two 

stainless steel side plates which allowed for glass inserts.  The top plate was a stainless 

steel plate with a large rectangle cut out of the center section for the injector air supply to 

be connected to the mounting block.  The nozzle was then attached to the mounting 

block.  On the bottom of the optics section was an attached aluminum plate with a 12 x 

0.125 inch (304.78 x 3.175 mm) slit.  This floor section allowed for laser sheet lighting to 

be passed into the section for future research.  The optical section can be broken up into 

these four major sections: the nozzle, the mounting block, the injector air assembly, and 

the floor section. A photograph of the optical test section is shown in Figure 15. 

Detonation Channel 
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Figure 15.   Optical Test Section 

a. Nozzle 

Three identical nozzles were originally designed, each with a different 

injector angle [2].  A nozzle that produced a 45 degree air injection angle was utilized 

throughout this effort based on previous research recommendations.  Each nozzle 

contained three rows of 21 holes, each .125 inches (3.175 mm) in diameter.  The back 

side of each row of holes ended in an opening that runs the entire span of the row.  This 

opening, once married to the mounting block, created an air tight fitting for the injector 

air pressure to be inserted into the nozzle. The top of the nozzle also had 6 tapped holes 

to allow for 3/8 inch (9.52 mm) bolts to attach it to the mounting block. Once installed, 

the subsonic area ratio within the test section was 2.1.  The nozzle is shown in Figure 16. 

Injector Air Assembly 

Mounting Block 

Nozzle Floor Section 
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Figure 16.   Nozzle with Injectors at 45°. (From [2]) 

b. Nozzle Mounting Block 

The nozzle mounting block was similar to the one previously used but had 

to be redesigned to conform to the new optical section, as well as improve upon 

discovered imperfections in the previous design.  The mounting block was designed to fit 

precisely within the optical section so to prevent any flow that may pass between the test 

section walls and the block.  It was fitted with nine tapped holes running through the 

block where the desired secondary air could pass through to the diverging portion of the 

nozzle.  These nine holes married up with the openings on the top of the nozzle, 

distributing the secondary air from three of the injector air ports into each of the three 

rows on the nozzle.  Details of the nozzle mounting block can be seen in Appendix A. 

c. Injector Air Assembly 

The injector air assembly utilized a separate regulated high pressure air 

line and a number of splitter joints to divide the single air supply port into the required 

nine ports that connect to the mounting block and lead into the nozzle injector rows. The 

injector air was taken through a splitter and then a choke for each of the three separate 

rows as shown in Figure 17.  This delivery approach allowed for flexibility and control 

over each row of injector rows independently.  It also allowed for better mass flow rate 

control into the nozzle.  Swagelock fittings connected the injector air assembly into the 

mounting block which delivered the air to the nozzle. 
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Figure 17.   Injector Air Assembly 

d. Test Section Floor 

The floor of the optical section was an aluminum block that fitted snuggly 

in the test section and attached to the stainless steel base plate with four 3/8 inch (9.52 

mm) bolts.  The floor section was roughly 1.25 inches (31.75 mm) high in order to set the 

desired nozzle area ratio.  The floor section was also adapted to have a 1/8 inch (3.175 

mm) slit cut in the middle running the length of the plate.  This allowed a gap for a future 

laser sheet lighting.  Drawings for the Floor Section can be found in Appendix A. 

4. Exhaust Section 

The exhaust section was completed but utilizing a 1/4 inch (6.35 mm) aluminum 

box beam with a 6 x 6 inch (152.4 x 152.4 mm) internal cross section.  This tube was 

welded to a one-inch (25.4 mm) thick flange plate that was mounted on the end of the test 

section.  It allowed the exhaust products to vent into a large exhaust flute that vented 

away from the lab.  The exhaust section can be seen in Figure 18. 
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Figure 18.   Exhaust Section 

B. INSTRUMENTATION 

1. Kistler Probes 

Placed in the bottom of the detonation channel were two Kistler 603B1 

piezoelectric pressure transducers to capture shock passage and time-varying pressure at 

the nozzle entrance.  The transducers were connected and monitored by the same data 

acquisition system as the combustor section fuel/air lines and control valves.  They were 

connected to the camera and data acquisition system so that the Kistler transducers would 

activate and begin data collection at the same moment as the fuel/air mixture ignited.  

The primary Kistler transducers were used to ensure a detonation wave was formed prior 

to the nozzle and test section and to record the time-varying pressure ratios during the 

combustion event and blow-down process. 

2. Laser 

A Lexel Model 95 Argon Ion Laser was used as the light source.  The Model 95 is 

a water cooled argon laser operated at a 514 nm wavelength.  This produces a 

horizontally polarized beam diameter ≤ 1.5mm and a beam divergence of ≤ 0.6 mrad.  

This particular laser was utilized due to the ability to spectrally separate the shadowgraph 
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image from broadband luminosity generated by the combustor products.  The laser was 

fixed to the optical table through a shop-built aluminum mount that raised the laser to 

match the centerline of the test section and was directed at the first of five mirrors. 

3. Mirrors 

Five mirrors and a spatial filter were utilized in this research.  The setup can be 

seen in Figure 19 and 20.  The first mirror was a small two-inch (50.8 mm) diameter 

mirror used to reflect the initial laser beam through the 7 µm spatial filter and eventually 

to a second mirror.  The spatial filter created a more effective point source for the second 

mirror which was an eight-inch (203.2 mm) diameter spherical mirror.  This mirror 

reflected and collimated the laser light back toward a flat eight-inch (203.2 mm) diameter 

flat mirror next to the test section.  This mirror sent the laser energy through the test 

section another flat eight-inch (203.2 mm) diameter mirror on the other side.  The light 

was then reflected toward a second eight-inch (203.2 mm) diameter spherical mirror.  

This mirror collected the transmitted image and projected it onto a screen which was then 

recorded by a high speed camera.   

 

 
Figure 19.   Shadowgraph Mirror Arrangement 
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4. Camera 

The camera used was a Photron Fastcam SA5 high speed camera.  The Photron’s 

SA5 camera is capable of taking images at a rate up to 1.4 million frames per second on a 

reduced resolution setting.  For mega pixel resolution, the rate is roughly 7,500 frames 

per second.  The high frame rate of the Photron Fastcam SA5 made this camera the 

perfect fit for the high speed fluidic transitions occurring in the nozzle during a full 

detonation and blowdown event.  The camera could be located at various distances from 

the screen to collect the projected image.     

C. SHADOWGRAPH 

A technique frequently used to visualize the time-varying gas dynamic processes 

in a compressible fluid is known as Shadowgraph.  The shadowgraph is a method for 

which the density gradients caused by varying temperatures and pressures of transparent 

fluids, like air, can be seen.  The shadowgraph was exceptionally useful for this research 

due to its simplicity and the 2-D nature of the test section.  Within the nozzle test section, 

variations in temperature and pressure were present due to combustion section gases 

mixing with the injected medium and the presence of shock waves.  Operating a 

shadowgraph system allows a picture to be taken that clearly illustrates the separation 

between these regions and how the nozzle shock structure is distributed.  This provides a 

very clear means of comparison between the computer-aided models and the actual test 

section for analysis.   The shadowgraph setup used for this analysis can be seen in Figure 

20 and additional details on shadowgraph techniques can be found in Reference 10. 
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Figure 20.   Shadowgraph Setup 

D. LABVIEW SOFTWARE 

The testing sequence was controlled via a remotely situated control room inside 

the propulsion laboratory employing LabVIEW Professional Development System 

Version 10.  In conjunction with LabVIEW, a graphical Virtual Interface was uniquely 

designed specifically for this research to control air/fuel injections, ignition, injector air 

flow, camera activation, and data collection.  It was also designed with an abort 

mechanism in case fluid pressures went outside of the expected envelope. 
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IV. EXPERIMENTAL RESULTS 

A. PURPOSE  

The experimental testing was performed to image the actual flow field conditions 

in the diverging section of the nozzle under various secondary air injections settings. 

These shadowgraph images helped to validate the computer simulations by directly 

comparing the observed images with the simulation results. 

The experimental evaluations were broken into two efforts.  The first series of 

tests did not introduce a detonation in the combustor in order to visualize the refresh 

condition.  The baseline case was for only the combustor mass flow rate proceeding 

through the nozzle.  Secondary injector air was then introduced in varying amounts to 

image the effect of different mass flow ratios through the injectors on the nozzle exit 

area.  The second test series evaluated performance for an actual detonation in the engine.  

The detonation was imaged in order to determine if the “pillow” would rebuild in a 

timely manner.   

The experiments were conducted using the previously fabricated nozzle with the 

injectors at a 45° angle [2], which determined the computer simulation geometry 

requirements discussed later in Chapter IV.   

B. PROCEDURE 

The first step in the operating procedure was to introduce the main air flow into 

the engine as well as the secondary injector air into the nozzle.  Once the main air and 

secondary injector air was stabilized, fuel was introduced upstream of the igniter. 

Approximately 0.5 seconds later, the ignition system was filled with the needed 

fuel/oxygen mixture and the torch was sparked.  When the fuel/main air mixture 

interacted with the torch, ignition occurs and a detonation wave was eventually produced 

that progressed through the detonation channel and into the optical test section.  The 

detonation product gases were then sent through the exhaust tube and out of the test cell 

completing the cycle.  The high speed camera was triggered at the same time as the 

ignition system and captured the shadowgraph images from across the optical section.  
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All pressure data was sent into the control room via a National Instruments Graphical 

User Interface except for the camera where the images were self-contained. 

C. REFRESH EXPERIMENT 

The first test conducted was a non-detonation case, simulating the refresh segment 

of the PDE cycle, in order to visualize the subsonic “pillow” development.  As discussed 

earlier, the lower combustor pressures typically found during the refresh or fill cycle 

forced the nozzle to an overexpanded flow condition.  It is during this overexpansion that 

the “pillow” builds to form a larger subsonic zone and maintain a near-ideal flow for the 

core flow gases.  The refresh condition tests began by filling the combustor with 

sufficient mass flow to create a chamber pressure of three atmospheres.  After the flow 

was steady and chocked flow achieved, the secondary injectors were activated and the 

desired secondary mass flow rate sent through the injectors.  After the core combustor 

flow and secondary injectors were stabilized, the SA5 high speed camera was operated at 

6000 frames per second to capture the shadowgraph image.  Since no detonations were 

used, there was little difference in temperature between the main air feeding the 

combustor and the secondary air supply.  The result was a poor shadowgraph image.  

Therefore, each non-detonation test used ethylene (C2H4) in the secondary injectors as a 

simulation for the air so to better separate the core combustor flow from the injector flow. 

1. Baseline Flow, No Injector Pressure 

The baseline flow condition was performed to visualize the flow through the 

diverging section of the nozzle without any secondary injector mass flow.  This was 

necessary to not only compare later test results to but also to understand how the flow 

reacts in the fixed, non-augmented nozzle. The supersonic area ratio for the test section 

fixed nozzle was 2.14.  The settings for this test are found in Table 1.   
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 Node 1 Node 3 Node 4 

Gas Controlled Air Ethylene Secondary Air 

Back Pressure 4 238 179 Pa 0 N/A 

Choke Size 18.39 mm 1.69 mm  1.69 mm 

Mass Flow Rate 1.14 kg/sec 0 N/A 

Table 1.   Settings for Baseline Test, No Secondary Injector Flow 

Once the desired combustor pressure of three atmospheres was achieved, the flow 

within the nozzle became highly overexpanded and the core flow separated from the 

nozzle wall.  The flow separation line can be seen in Figure 21.  As the flow separation 

line continues aft toward the nozzle exit plane, the ambient pressure outside the nozzle 

exerts a pressure force within the recirculation zone and pushes the interface between the 

core flow and the secondary flow upward.   

Although the secondary injectors are turned off, the residual pressure in the lines 

was effectively evacuated by the lower pressure of the supersonic core flow as it passed 

through the diverging section of the nozzle.  The trace amounts of ethylene can be seen in 

the baseline shadowgraph image, but they had little to no effect on the flow formation or 

separation.   
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Figure 21.   Baseline Flow, No Secondary Injector Mass Flow 

2. One Percent Total Core Mass Flow Rate Per Injector 

After achieving a baseline flow image, the ethylene was brought up to the 

necessary pressure in order to deliver one percent of the total combustor mass flow rate 

into each secondary injector.  These settings can be found in Table 2.   

 

 Node 1 Node 3 Node 4 

Gas Controlled Air Ethylene Secondary Air 

Back Pressure 4 238 179 Pa 3 893 442 Pa N/A 

Choke Size 18.39 mm 1.69 mm  1.69 mm 

Mass Flow Rate 1.14 kg/sec 0.0342 kg/sec N/A 

Table 2.   Settings for 1% Total Combustor Mass Flow Rate per Injector 
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Injector 2 

Injector 3 

Flow Separation Line 
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With one percent of the total combustor mass flow rate introduced per injector 

into the diverging section of the nozzle, the interface between the two flow regimes 

moves upward and the core flow effectively senses a smaller nozzle as seen in Figure 22.  

The ethylene can also be seen as it exits the injector ports.  The stream from the injector 

ports redirects the core flow, forming a slipline between the injector mass flow and the 

core mass flow.  As each injector stream impacts the core flow, a small deflection is 

produced creating a weak oblique shock rising from the slipline back into the combustor 

core flow.  The pressure differential between the injector mass flow and the core mass 

flow is such that the core mass flow is lifted and the separation seen in the baseline test 

above is removed.  Following the slipline down toward the nozzle exit, the effective 

height of the core flow was measured.  The effective nozzle area ratio due to injecting 

one percent total core mass flow rate per injector was 1.9, substantially lower than the 

physical 2.14:1 nozzle.   

 

 
Figure 22.   One Percent Total Combustor Mass Flow Rate per  

Secondary Injector (3% Total Injected)  
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Injector 2 

Injector 1 

        Slipline 
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3. One-Point-Four Percent Total Core Mass Flow Rate Per Injector 

As previously discussed, the desired area ratio for the given test pressure ratio is 

estimated to be 1.3.  Therefore, the total mass flow rate percentage was increased in order 

to amplify the “pillow” seen with only one percent total mass flow rate.  The settings for 

1.4 percent total combustor mass flow rate per injector can be seen in Table 3. 

 

 Node 1 Node 3 Node 4 

Gas Controlled Air Ethylene Secondary Air 

Back Pressure 4 238 179 Pa 4 927 655 Pa N/A 

Choke Size 18.39 mm 1.69 mm  1.69 mm 

Mass Flow Rate 1.14 kg/sec 0.0479 kg/sec N/A 

Table 3.   Settings for 1.4% Total Combustor Mass Flow Rate per Injector 

With the increased secondary injector mass flow, the effects within the diverging 

portion of the nozzle can be more clearly imaged as seen in Figure 23.  Similar to the test 

with only one percent per injector, the injector stream lifts the core flow and reduces the 

effective nozzle exit area.  The estimated effective nozzle area ratio for injector pressures 

of 1.4 percent total combustor mass flow rate is 1.5.  This shows that with a minor 

increase in injector pressure, the nozzle can be more efficient and the core flow can be 

nearly ideally expanded for the refresh portion of the PDE cycle. 
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Figure 23.   1.4% Total Combustor Mass Flow Rate per Secondary Injector (4.2% Total 

Injected)  

D. DETONATION EXPERIMENT 

The second experimental test run was the detonation case in order to determine if 

the “pillow” rebuilds efficiently after the high pressures of the detonation and blow down 

have occurred.  As discussed earlier, the high pressures of the detonation and the blow 

down portion of the PDE cycle will fill the diverging section of the nozzle completely 

and seek near-ideally expanded flow if the nozzle were designed for this condition.  For 

this section of the experimental test, the combustor section was filled to the three 

atmosphere operating condition.  Once the flow was steady, the secondary injector air 

was injected, the fuel (H2) was then introduced for 0.5 seconds, and the ignition sequence 

was activated as described in Chapter III.  In order to assist in the development of the 

detonation, a shchelkin spiral was inserted into the initiation section and the area ratio 

was increased to 2.89.  The LabView software activated the SA5 high speed camera 

when the ignition source was triggered and the shadowgraph image was captured at a rate 

of 15000 frames per second.  Ethylene was no longer used in order to prevent combustion 

in the nozzle due to the high temperatures associated with the detonation.  The initial 

conditions for the detonation test can be seen in Table 4. 

Injector 3 

Injector 2 

Injector 1 
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 Node 1 Node 2 Node 4 

Gas Controlled Air Hydrogen Secondary Air 

Back Pressure 2 275 270 Pa 4 171 328 Pa 3 447 379 Pa 

Choke Size 18.39 mm 0.190 mm  1.69 mm 

Mass Flow Rate 1.09 kg/sec 0.048 kg/sec 0.112 kg/sec 

Table 4.   Settings for 3% Total Combustor Mass Flow Rate per Injector  
with Detonation 

The detonation case began as the steady state condition similar to that shown 

previously.  Figure 24 shows how the “pillow” is formed and flow is pressed upward 

toward a near-ideally expanded condition. For comparison purposes, the CFD++ 

simulation in Chapter V is shown beneath the image.  As previously mentioned, the 

secondary injectors are filled with air; therefore, they are not as noticeable as heretofore 

shown.  Based on Table 4, the secondary injector mass flow rate is roughly ten percent of 

the total combustor mass flow rate.  This allows for a direct comparison the simulations 

found later in Chapter V.   
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Figure 24.   Pre-detonation Flow with Simulation for Comparison,  

10% Total Combustor Mass Flow Rate 

Once the flow was stabilized, the detonation sequence was started and the 

initiation section was filled with fuel.  The fuel/air mixture was ignited and the 

combustion wave ultimately transitioned into a detonation after the initiation section.  

The combustion products eventually travelled through the combustion channel and 

nozzle.  Figure 25 captured the flow soon after the leading shock wave passed through 

the diverging section of the nozzle.  As can be seen, the “pillow” has begun to be 

suppressed and the combustor flow began to fill the nozzle.  
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Figure 25.   Initial Detonation Wave Enters the Diverging Section of the Nozzle 

Due to the large vibrations and shock waves associated with a detonation, the 

shadowgraph mirrors and laser began to vibrate during the test which eventually caused 

the picture quality to degrade as the vibrations from the detonation travel throughout the 

test section.  This can be seen in Figure 26 were the combustor flow can be seen fully 

encompassing the nozzle.  The secondary injectors have been completely suppressed. 

Also seen in the image is a gasket that has been blown out due to the pressures and 

temperatures associated with the detonation.   Although more images were taken, again 

due to the dynamic situation found during the detonation, very few clear images were 

actually captured during the detonation passage and initial blowdown.  

 

Leading Shock Wave 
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Figure 26.   Detonation Products Completely Filling the Nozzle 

As the blow down phase travels through the combustion channel, the chamber 

pressure begins to reduce.  As this occurs, the secondary injectors are reestablished and 

begin to build pressure in the diverging section of the nozzle.  Figure 27 illustrates the 

rebuild of the “pillow” seen in Figure 24.  As can be seen, the slipline begins to reform 

and an oblique shock from the top of the test section can be seen developing midway 

down the nozzle as seen prior to the detonation. 

Gasket 
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Figure 27.   Secondary Injectors Rebuilding the “Pillow” 

Finally, as the pressures in the combustor began to stabilize and return to the 

initial conditions, set for refresh pressures, the secondary injectors are fully formed and 

have completely rebuilt the “pillow”  This can be seen in Figure 28.  Again, although the 

dynamic nature of the test altered the image, the slipline and oblique shocks can be seen 

in the core flow.  
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Figure 28.   Fully Rebuilt “Pillow” 

After the test was concluded and the images analyzed, it became clear after 

viewing many frames that the secondary injectors were successful.  They were able to set 

the desired effective exit area for the core flow as well as rebuild the “pillow” after a 

detonation wave and blow down passed through the nozzle. 

        Slipline 

Oblique Shock 



 40 

THIS PAGE INTENTIONALLY LEFT BLANK 



 41 

V. COMPUTER SIMULATIONS 

A number of computer software packages were utilized to generate models of the 

experimental set-up and simulate the complete combustion cycle for the experiment.  The 

purpose of the experimental effort was to validate the use and fidelity of the  computer 

simulations in order to explore a wider design space and minimize manufacturing costs 

and time.  By confirming an accurate comparison between actual test results and 

computer simulations, a multitude of varying injector nozzle numbers, angles, and mass 

flow rates can be tested without the cost of manufacturing and testing each configuration.   

The detonation simulations were run with a stoichiometric hydrogen and air 

mixture while the steady state was simple flow simulation without combustor chemistry.  

The steady state simulations described how the nozzle would operate at the refresh 

condition where a nearly constant pressure differential across the nozzle would be 

present.  Once the proper refresh conditions were generated, a detonation was simulated 

and ran through the combustor and nozzle until the refresh condition was again realized.  

Since the actual test section was square and a Shadowgraph technique used, the 

simulations needed to be two-dimensional.  Therefore, the three-dimensional model was 

reduced to a two-dimensional frame before fluid dynamics analysis could be run. 

A computational mesh was created from solid model geometries for each two-

dimensional nozzle of just under one million elements.  Simulated flight condition 

models for the nozzles were closer to 1.2 million elements.  After the models and fluid 

dynamics software was configured, the simulation was sent to a cluster of 64 processors 

for analysis.  Computational times were normally two days for a steady state simulation 

and six days for a detonation simulation. 

A. MODELING SOFTWARE 

SolidWorks 2010 was used to create the geometry for each simulated nozzle and 

flight condition.  The model was created as a three-dimensional model that was then 

reduced to a two-dimensional model before being meshed.  The model was then saved as 

a parasolid so it would be compatible with subsequent software packages.  Mime 4.1 was 
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used to mesh the geometric models and then the result was imported into CFD++.  

CFD++ was used to solve the fluid dynamics simulation for both the steady state and the 

detonation cases.  Before a detonation case could be run, the chemistry had to be 

determined and set into the CFD++ conditions.  This was accomplished by using the 

NASA CEA website.  After the CFD++ analysis was completed, the data was transferred 

to Tecplot 360 2010 for visual analysis and data interpretation.   

1. SolidWorks 2010 

SolidWorks 2010 is a CAD modeling software package that is with the other 

utilized software.  SolidWorks was used in two phases of this research.  The first was to 

create the actual test section pieces needed to complete the research.  These pieces can be 

found in Appendix A and discussed in Chapter III.  Secondly, SolidWorks was used to 

create the CFD++ two-dimensional models.   

As previously discussed, the initial geometries were created as three-dimensional 

models.  However, after completion, the ‘Surface’ and ‘Body Delete’ functions were used 

to reduce the model into a two-dimensional model.  This was necessary to precisely 

mimic the two-dimensional photos being taken through the Shadowgraph technique.  It 

was also important that the ‘Surface’ function be taken on the Z=0 axis.   For a two-

dimensional model, if any value in the Z axis was present, the CFD++ model would not 

process. 

One specific model was created that was an exact simulation replica of the nozzle 

to be tested.  Using this model, variations in injector mass flow, pressure, and velocities 

were analyzed to determine the optimal condition. 

a. Three Secondary Injectors/All Models 

This model was an accurate representation of the actual test section run at 

the Rocket Lab and discussed in Chapter IV.  The initial SolidWorks model was taken 

from previous work (See [2]) and then altered to support this research.  Most of the 

changes occurred in the area ratio by altering the distance between the top symmetry wall 
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and the nozzle throat.  Figure 29 shows the final model with a plane taken and the body 

removed so that it could be compatible with CFD++ and Mime 4.1.    
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Injector 1 
Injector 2 

Injector 3 

Inlet Outlet 

 
 
 

Figure 29.   SolidWorks Model of 3 Injectors at a 45° Angle, Quiescent  
Boundary Condition (No Free Stream) 
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b. Two Secondary Injectors Operating at a Flight Condition 

After the initial simulations were analyzed, a new SolidWorks model was 

created to determine the effect that a free stream velocity, simulating flight conditions, 

would have on the nozzle performance.  In order to minimize future fabrication time, the 

injectors were also changed to a more fabrication friendly design to determine if a better 

injector approach could be used.  Figure 30 shows the SolidWorks design of this model.  

It was started by modifying the model in Figure 29 and then altered.  The free stream 

boundary, still called Injector 3, was started at the exit plane of the nozzle and the 

parameters were set to a flight condition found in Appendix C.   

 

 
Figure 30.   SolidWorks Model of 2 Injectors at a 0° and 90°, With a Free Stream 

Boundary Condition 

2. Mime 4.1 

Mime 4.1 is a mesh generation software created by Metacomp Technologies, Inc.  

Although the current version does not have a direct interface with SolidWorks, it is 

compatible if the model created is saved as a parasolid.   The software was used to 

produce a computational model that was easily integrated into CFD++.  The mesh created 

for each model was roughly 1 million elements, although the software was capable of 

creating much finer meshes.  This value was set in order to minimize the computational 

time requirements without sacrificing the result quality.  The model was broken up into 

eight different zones/interfaces: face, inlet, outlet, injector1, injector2, injector3, 

Injector 1 

Injector 2 

Free Stream 
(Injector 3) 

Inlet 

Outlet 
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symmetry, and walls.  These eight regions were used with every model so that new 

models could utilize the same initial and boundary conditions saving set-up time when 

using the CFD++ program. 

3. NASA CEA 

The NASA CEA (Chemical Equilibrium with Applications) software is a 

computer program that calculates chemical equilibrium between given chemical mixtures 

and produces the thermodynamic and transport properties for the reaction of those 

mixtures [11].  For this research, it was applicable to use this program for the detonation 

case in order to determine the pressure, temperature, and other combustion properties at 

the Chapman-Jouguet detonation condition for the hydrogen/air mixture used.  These 

values were directly inserted into the CFD++ detonation simulation as input parameters, 

but the pressure was magnified by three times in order to ensure a comparable pressure 

rise was simulated.  The NASA CEA output used for the model shown above in Figure 

29 can be found in Appendix B.   

4. CFD++ 

CFD++ created by Metacomp Technologies, Inc was used on a Linux operating 

system to perform the fluid dynamic simulations for every run and condition.  By 

importing the Mime 4.1 meshed SolidWorks model into the program, the boundary 

conditions and chemical reaction rate set-up was designed for two conditions.  First was 

the steady state condition that was to represent the refresh condition of the PDE cycle.  

The second was the detonation condition which took the final steady state condition 

output file and set it as the starting point for the detonation simulation.   

a. Three Secondary Injectors/All Models 

The first step in setting up the CFD++ models was to calculate the 

properties for each section of the engine.  In this case, to closely simulate the actual test 

conditions, the refresh pressure used in the combustion section was three atmospheres 

and a temperature of 450 K. Using the known geometry within the combustion section, 

nozzle throat, and nozzle exit plane, the mass flow rate in the combustion section was 
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calculated to be 1.94 kg/sec.  This value was the foundation of the varying conditions set 

in the injectors for this research.  The initial approach was to utilize a standard bleed 

percentage of combustor mass flow rate to feed the injectors.  

The next step was to set-up the three secondary injector model seen in 

Figure 29.  The CFD++ software allowed for the creation of boxes to set initial 

conditions.  These boxes were created around the families produced in the meshing 

process.  From Figure 31, Box 1 was created around the inlet and set for the expected 

refresh condition of three atmospheres for the steady state simulation.  Box 2 was set 

around the remaining portion of the combustion section before the nozzle.  This value 

was also set to the refresh condition.  Box 3 was formed around all three injectors.  Since 

the initial condition in CFD++ was only a starting point, it was acceptable to set all three 

injectors as the same since the individual boundary conditions would ultimately define 

the actual simulation.  Box 4 was set at the beginning of the nozzle’s converging section 

and a lower refresh pressure and higher velocity was utilized.  Box 5 was the final portion 

of the nozzle’s converging section and applied a slightly lower pressure.  And finally, 

Box 6 housed the exhaust and was set for ambient conditions of one atmosphere. 

 

 
Figure 31.   CFD++ Image of Initial Condition Boxes on Model of 3 Injectors  

at a 45° Angle, Without a Free Stream Boundary Condition 

The final step was to produce the boundary conditions for both the refresh 

and the detonation cases.  These can be found below in Appendix C and Tables 5 and 6.  

These boundary conditions varied based on the simulation performed.  The first 
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simulation continued from previous work [2] and utilized the existing nozzle with three 

injectors at a 45 degree angle.  A number of simulations were then performed varying the 

mass flow rate from three percent to ten percent of the total combustion section mass 

flow across all three injectors.  Those same mass flow rates were also simulated under 

two separate pressure conditions, thus separate velocities, to produce the same mass flow 

rate.   

 

Name Boundary Condition 

Inlet Multi-species Pressure/Velocity Based 

Inflow/Outflow 

Outlet Simple Back Pressure 

Injector 1, Injector 2, and Injector 3 Pressure, Temperature, and Normal 

Velocity Inflow 

Symmetry and Walls Multi-species Adiabatic Wall 

Table 5.   CFD++ Boundary Condition Boundary Settings for each Zone,  
Steady State Simulation 

The detonation simulation was produced by taking the final output file 

from the steady state simulation and placing it as the starting input file in the detonation 

condition.  However, the initial conditions for Box 1 were overridden from this steady 

state output file using the post detonation products found from the NASA CEA code.  

The introduction of the detonation pressure, temperature, combustion species, and CJ 

parameters, created the simulated detonation that was able to travel down the model and 

set up the flow conditions across the nozzle. As can be seen in Table 6, in order to closely 

simulate the actual test and the normal operation of a PDE, the Inlet was set to a multi-

species adiabatic wall.  
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Name Boundary Condition 

Inlet Multi-species Adiabatic Wall 

Outlet Simple Back Pressure 

Injector 1, Injector 2, and Injector 3 Pressure, Temperature, and Normal 

Velocity Inflow 

Symmetry and Walls Multi-species Adiabatic Wall 

Table 6.   CFD++ Boundary Condition Boundary Settings for each Zone,  
Detonation Simulation 

b. Two Secondary Injectors Operating at a Flight Condition 

The second nozzle simulation was to create a nozzle geometry with easily 

machineable injectors and produce a boundary condition that would represent a free 

stream representative of a true flight condition.  This free stream was simulated to be at 

10000 meters and Mach 3.  Figure 32 illustrates the changes in the box parameters as 

well as the “Injector 3” family.  The same boundary conditions as per Table 5 were used 

in this simulation and the values can be found in Appendix C.  Two separate simulations 

were run with roughly five percent total mass flow rate through the two Injectors.  The 

first utilized similar pressure and velocities across both Injectors 1 and 2.  The second  

 

simulation increased these parameters in Injector 1 and decreased them in Injector 2 but 

maintained a total five percent mass flow rate.  Time constraints limited the number of 

simulations performed for this case.  
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Figure 32.    CFD++ Snapshot of Initial Condition Boxes on Model of 2 Injectors at a 

0° and 90°, With a Free Stream Boundary Condition 

5. Tecplot 360 2010 

Tecplot 360 2010 is post processing software program designed by Tecplot, Inc.  

This software was preferred over the CFD++ post processing package due to its ability to 

represent the results conveniently for comparison to the shadowgraph results.  Tecplot 

360 also produced a better, more user friendly method of collecting flow data and 

visualizing the streamlines.  This allowed for a much easier method of comparing the 

actual test with the computer simulations. 

B. SIMULATION RESULTS 

1 Steady State/Refresh Condition 

a. Three Secondary Injectors/All Models  

The steady state, or refresh, simulations utilized the parameters found in 

Table 7.  The initial runs were initiated based on previous work, Case 1 (see [2]), and 

were based off of a constant mass flow rate in the combustion section of 1.94 kg/sec.  

Then, the injector parameters were varied until a suitable result was realized.  Other cases 

were preliminarily analyzed but did not produce positive results.  These included cases 

that set Injector 1 at 45°, Injector 2 at 52.5°, and Injector 3 at 60°, the reverse of those 

angles, and a single Injector at a 0° angle (purely vertical).   
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Simulation Injector Pressure 

(Pa) 
Injector Velocity 

(m/s) 
Percent Total Mass 

Flow Rate (per 
Injector) 

Case 1:  Run 1 
              Run 2 

151987 
151987 

33.75 
37.50 

1.00 
1.50 

Case 2:   Increasing 121590 (Injector 1) 
136789 (Injector 2) 
151987 (Injector 3) 

30.00 
33.75 
37.50 

0.50 
1.00 
1.50 

Case 3:   Decreasing 151987 (Injector 1) 
136789 (Injector 2) 
121590 (Injector 3) 

37.50 
33.75 
30.00 

1.50 
1.00 
0.50 

Case 4:   Run 1 
               Run 2 

131722 
131722 

34.90 
69.20 

1.00 
2.00 

Case 5:   Run 1 111457 61.89 1.50 

Table 7.   CFD++ Injector Boundary Conditions, Initial Conditions   
(3 Injectors at a 45° Angle, Without an External Free Stream) 

Case 2 varied the injector flow rate  to begin at a lower setting for Injector 

1 (0.50% total mass flow) and increase up to Injector 3 (1.50% total mass flow).  Case 3 

reversed these parameters, beginning with a higher flow rate in Injector 1 (1.50% total 

mass flow) and decrease to Injector 3 (0.50% total mass flow).  Case 4 maintained a one 

percent and two percent mass flow rate per Injector, but decreased the pressure resulting 

in an increased velocity.  Case 4, Run 2 showed an improvement to previous cases and 

illustrated the importance of velocity (momentum) for the injector parameters.  

Therefore, Case 5 was run with an even lower pressure, 1.1 atmospheres, and a resulting 

increase in velocity.  Figures 34-40 illustrate the various conditions of these runs as well 

as the subsonic “pillow” that is formed.  Figure 33 is a CFD++ analysis with no pressure 

as a baseline for comparison.   Each figure was taken at a time step of 700 microseconds.  

It was determined that at this time step, the flow simulation was fully developed and 

steady. 
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Figure 33.   Steady State Simulation, 3 Injector Nozzle at 45° Angle,  

No Injector Flow, Baseline  

 
Figure 34.   Steady State Simulation, 3 Injector Nozzle at 45° Angle,  

Case 1, Run 1  

 
Figure 35.   Steady State Simulation, 3 Injector Nozzle at 45° Angle,  

Case 1, Run2  
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Figure 36.   Steady State Simulation, 3 Injector Nozzle at 45° Angle,  

Case 2  

 
Figure 37.   Steady State Simulation, 3 Injector Nozzle at 45° Angle,  

Case 3  

 
Figure 38.   Steady State Simulation, 3 Injector Nozzle at 45° Angle,  

Case 4, Run 1 
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Figure 39.   Steady State Simulation, 3 Injector Nozzle at 45° Angle,  

Case 4, Run 2  

 
 

Figure 40.   Steady State Simulation, 3 Injector Nozzle at 45° Angle,  
Case 5, Run 1 

Case 5 showed the best “pillow” and results of all the analysis completed.  

Therefore, further CFD++ analysis was conducted using this pressure and varied mass 

flow rate through changes in velocity at the initial input.  Table 8 shows the varying 

parameters and Figures 41–45 illustrate the results. 

 

 

 

 

Subsonic “Pillow” 
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Simulation Injector Pressure 

(Pa) 
Injector Velocity 

(m/s) 
Percent Mass Flow 
Rate (per Injector) 

Case 6:   Run 1 
               Run 2 

111457 
111457 

61.89 
68.08 

1.50 
1.65 

Case 7:   Max 111457 137.5 3.30 
Case 8:   Dual 111457 103.1 2.50 
Case 9:   Single 111457 206.3 5.00 

Table 8.   CFD++ Injector Boundary Conditions, Same Pressure, Varying Mass  
Flow Rate (3 Injectors at a 45° Angle, Without an External Free Stream)  

 
Figure 41.   Steady State Simulation, 3 Injector Nozzle at 45° Angle,  

Case 6, Run 1  

 
Figure 42.   Steady State Simulation, 3 Injector Nozzle at 45° Angle,  

Case 6, Run 2  
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Figure 43.   Steady State Simulation, 3 Injector Nozzle at 45° Angle,  

Case 7, Max   

 
Figure 44.   Steady State Simulation, 3 Injector Nozzle at 45° Angle,  

Case 8, 2 Injectors Used  
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Figure 45.   Steady State Simulation, 3 Injector Nozzle at 45° Angle,  

Case 9, Single Injector Used  

Initial analysis indicates that utilizing all three injectors produced more 

favorable flow field and thrust characteristics over the dual or single injector.  Therefore, 

a thrust analysis was  conducted to compare the results from the cases that were 3.0, 4.5, 

5.0, 6.0, and 10 percent total mass flow rate through the three injectors.  Tecplot was used 

to extract pressure and momentum data at the exit plane for each of these runs.  This data 

was used to calculate the thrust at the exit plane based on Equation 2 and then plotted.  

This plot can be seen in Figure 46. 

 

Equation 2 [6]: 3( )e e eF v m p p A= + −  
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Figure 46.   Thrust vs. Secondary Injector Total Combustor Mass Flow Rate  

Percentage (3 Injectors at a 45° Angle, Without an External Free Stream) 

Figure 46 shows that as the total combustion section mass flow rate 

percentage through the injectors was increased, there existed a maximum value of thrust 

improvement.  It also shows that when plotted against a fixed nozzle, there is also a point 

of mass flow rate percentage where the thrust is actual decreased.  This is cause by the 

back flow from the low atmospheric pressure outside the nozzle flowing into the nozzle, 

thereby contributing a negative momentum component to the thrust equation.  This is 

most clearly illustrated in Figure 43, maximum mass flow rate.  The large “pillow” at the 

bottom plane of the nozzle up to the exit plane is fully developed using flow from the 

ambient pressure outside the nozzle.  While this flow is present in all the runs, the amount 

of back flow eventually overcomes the increase in the expansion efficiency and thrust 

produced from the combustion products.  Additional simulations between three percent 
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and five percent total combustion mass flow rate could possibly produce further 

improvement into the observed thrust value. 

The result of the CFD++ analysis for the three injectors at a 45° angle is 

that a total mass flow rate of 4.5% of the combustion section produced the greatest 

increase in thrust for the steady state condition.  Therefore, the detonation simulation was 

conducted utilizing this mass flow rate to visualize the nozzles response to detonation-

driven flow across the Injectors. 

b. Two Secondary Injectors Operating at a Flight Condition  

Although the three injector models produced better results, two CFD++ 

simulation were run for a two injector case with a supersonic free stream external to the 

nozzle.  Since the two injector run, shown in Figure 44, indicated the expected “pillow” 

was produced, the flight simulation run used two injectors at simple 0° and 90° angles.  

In the place of Injector 3, a free flow boundary condition was created at the exit plane.   

This plane was set at the flight condition of 10000 meters and Mach 3.0 for Case 10 and 

11 and set at sea level, Mach 3.0 for Case 12.  These conditions can be found in 

Appendix C.  Table 9  shows the base initial conditions for the two runs. 

 
Simulation Injector Pressure 

(Pa) 
Injector Velocity 

(m/s) 
Percent Mass Flow 
Rate (per Injector) 

Case 10:  Same Flow   111457 103.2 2.50 
Case 11:  Mixed Flow 
     10000m, M=3 

131722 (Injector 1) 
131722 (Injector 2) 

103.2 (Injector 1) 
69.20 (Injector 2) 

3.00 
2.00 

Case 12:  Mixed Flow 
     Sea Level, M=3 

131722 (Injector 1) 
131722 (Injector 2) 

103.2 (Injector 1) 
69.20 (Injector 2) 

3.00 
2.00 

Table 9.   CFD++ Injector Boundary Conditions, Initial Research (2 Injectors at 0°  
and 90°, With an External Free Stream Flight Condition) 
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Figure 47.   Steady State Simulation, 2 Injectors , M=3.0 Free Stream  

at 10,000 meters, Case 10  

 
 

Figure 48.   Steady State Simulation, 2 Injectors , M=3.0 Free Stream  
at 10,000 meters, Case 11 

M=3.0 

M=3.0 
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Figure 49.   Steady State Simulation, 2 Injectors, Free Stream at  

Sea Level, Case 12 

Although more time was needed to explore this free stream condition, the 

beginning of the development of a subsonic”pillow” can be seen near the throat in 

Figures 47 through 49.  This shows the first injector redirected the combustor flow as 

desired.  However, the second injector does not appear to directly continue the 

development, but does contribute to the mass flow constrained near the nozzle wall.  This 

was less prevalent in Case 12 using a free stream at sea level.  The higher pressures 

limited the effect of the second injector.  However, the nozzle being simulated was 

designed for operation at sea level so a better “pillow” was expected.  Figure 49 shows 

that a “pillow” can be formed but the angles may not be optimal.  Additional time to 

explore this trend could have determined an effective mass flow rate, or perhaps a better 

injector angle set-up to pursue.  Most importantly, it shows that a “pillow” can be 

developed with two injectors at standard angles, easily constructed for a 3-dimensional 

nozzle. 

M=3.0 
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2 Detonation Case  

Based on the results found above for the simulated test condition of three injectors 

at a 45° angle and 4.5% mass flow rate, a full detonation case event condition was 

simulated.  The CFD++ parameters can be found in Appendix C and Table 6.   The 

output file for the best case run, Case 6 from Table 8, was placed as the starting 

parameters for the simulation.  The initial detonation flow is illustrated in Figures 50"53. 

 
Figure 50.   Detonation Simulation, 3 Injector Nozzle at 45° Angle,  

tign + 30 microseconds 

 

 
Figure 51.   Detonation Simulation, 3 Injector Nozzle at 45° Angle,  

tign + 50 microseconds 
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Figure 52.   Detonation Simulation, 3 Injector Nozzle at 45° Angle, 

 tign + 80 microseconds 

 
Figure 53.   Detonation Simulation, 3 Injector Nozzle at 45° Angle,  

tign + 130 microseconds 

After the initial detonation wave travels through the nozzle, the nozzle injectors 

begin to rebuild the “pillow” by 130 microseconds after ignition.  Following this initial 

rebuild, one of many shock reflections off the back wall of the combustion section, or 

ringdown, travels through the nozzle.  These ringdowns can occur up to three times 

before a new refresh condition is achieved.  One such case of ringdown and nozzle 

recovery is shown in Figure s54 and 55. 
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Figure 54.   Detonation Simulation, 3 Injector Nozzle at 45° Angle, 

 tign + 190 microseconds 

 
Figure 55.   Detonation Simulation, 3 Injector Nozzle at 45° Angle,  

tign + 300 microseconds 

After a few combustor oscillations, the nozzle “pillow” is rebuilt and returned to a 

refresh condition awaiting the next detonation in the PDE cycle.  Figures 56 through 58 

show this rebuild. 
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Figure 56.   Detonation Simulation, 3 Injector Nozzle at 45° Angle,  
tign + 500 microseconds 

 

Figure 57.   Detonation Simulation, 3 Injector Nozzle at 45° Angle,  
tign + 700 microseconds 

 

Figure 58.   Detonation Simulation, 3 Injector Nozzle at 45° Angle,  
tign + 1 millisecond 
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Data was taken from the output files for the detonation simulation every 10 

microseconds using Tecplot.  Tecplot allowed the height of the “pillow” to be determined 

based on the streamlines within the combustor flow.  From here, an effective nozzle exit 

area could be calculated and compared throughout the entire detonation cycle.  This 

produced a time varying effective nozzle area ratio, ε.   The average pressure inside the 

combustor, p1, just prior to the nozzle’s converging section was recorded for each time 

step.  Using the known ambient pressure, p3, a pressure ratio was determined.  Utilizing 

these two ratios, data points were placed on the Thrust Coefficient versus Area Ratio 

curve.  This data was then fitted with a best-fit curve to represent the expected nozzle 

efficiency curve.  Figure 59 illustrates these data points and curve.  

 

 

Figure 59.   Detonation Results Overlaid on Coefficient of Thrust versus  
Area Ratio Curve (From [6]) 
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Although the curve does not exactly track on the line of maximum thrust 

coefficient, it does show the nozzle exit area under the detonation simulation change.  

The resulting plot illustrates that the nozzle does produce a fluidically augmented nozzle 

while not allowing the refresh condition to drop into the flow separation region.   
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VI. CONCLUSION AND FUTURE WORK 

A. CONCLUSION 

This research investigated the use of a fluidically augmented nozzle to effectively 

adjust the nozzle area ratio in order to produce near-ideal expanded flow conditions for 

each segment of a PDE cycle.  An experimental combustor with optical access was 

created using a previously designed nozzle.   The test section was evaluated under both 

non-detonation and detonation conditions and a shadowgraph imaging technique was 

used to capture the flow field features.  Computer aided modeling was used in 

conjunction with CFD++ to computationally determine the fluid mechanics of the nozzle 

under various conditions. The results for similar conditions for both the experimental 

evaluation and the simulations were compared to determine the simulation accuracy.  The 

results indicate that the CFD++ models appear to have accurately captured the governing 

flow features and, if properly initiated with appropriate initial conditions, can be used for 

further evaluations without the need for experimental testing. 

B. FUTURE WORK 

This research has found the most efficient mass flow rate percentage needed for a 

very specific model.  It, however, does not broaden the scope to apply the results to any 

given nozzle shape.  Therefore, more research in both a 3-dimensional nozzle test set up 

as well as a multiple cycle PDE could possibly produce more appropriate results for real 

world systems and a broader range of applications.  Future research could also possible 

create a mathematical model that can simply calculate the needed secondary injector 

pressure based on the given parameters of combustor pressure and area ratio.  Finally, an 

accurate thrust measurement evaluation could conclude more precisely the benefit of a 

fluidically augmented nozzle. 
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APPENDIX A: MANUFACTURED DRAWINGS 

A. TEST SECTION OVERVIEW 
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B. NOZZLE WITH BLOCK AND TOP PLATE 
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C. RAMP BLOCK 
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D. TOP PLATE 
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E. SPACER  
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APPENDIX B: NASA CEA GUI  

NASA-GLENN CHEMICAL EQUILIBRIUM PROGRAM CEA2, FEBRUARY 5, 2004 
                   BY  BONNIE MCBRIDE AND SANFORD GORDON 
      REFS: NASA RP-1311, PART I, 1994 AND NASA RP-1311, PART II, 1996 
 
 ******************************************************************************* 
 
 output massf 
 prob case=22225560 det 
 phi 1 
 t,k=  450 
   
 p(atm)=3 
 output trace=1e-5 
 reac 
 oxid  Air  wt%=  100. 
 fuel  H2  wt%=  100. 
 end 
 
 OPTIONS: TP=F  HP=F  SP=F  TV=F  UV=F  SV=F  DETN=T  SHOCK=F  REFL=F  INCD=F 
 RKT=F  FROZ=F  EQL=F  IONS=F  SIUNIT=T  DEBUGF=F  SHKDBG=F  DETDBG=F  TRNSPT=F 
 
 T,K =   450.0000 
 
 TRACE= 1.00E-05  S/R= 0.000000E+00  H/R= 0.000000E+00  U/R= 0.000000E+00 
 
 P,BAR =     3.039750 
 
    REACTANT          WT.FRAC   (ENERGY/R),K   TEMP,K  DENSITY 
        EXPLODED FORMULA 
 O: Air              1.000000   0.000000E+00     0.00  0.0000 
          N  1.56168  O  0.41959  AR 0.00937  C  0.00032 
 F: H2               1.000000   0.000000E+00     0.00  0.0000 
          H  2.00000 
 
  SPECIES BEING CONSIDERED IN THIS SYSTEM 
 (CONDENSED PHASE MAY HAVE NAME LISTED SEVERAL TIMES) 
  LAST thermo.inp UPDATE:    9/09/04 
 
  g 3/98  *Ar              g 7/97  *C               tpis79  *CH             
  g 4/02  CH2              g 4/02  CH3              g11/00  CH2OH           
  g 7/00  CH3O             g 8/99  CH4              g 7/00  CH3OH           
  srd 01  CH3OOH           g 8/99  *CN              g12/99  CNN             
  tpis79  *CO              g 9/99  *CO2             tpis91  COOH            
  tpis91  *C2              g 6/01  C2H              g 1/91  C2H2,acetylene  
  g 5/01  C2H2,vinylidene  g 4/02  CH2CO,ketene     g 3/02  O(CH)2O         
  srd 01  HO(CO)2OH        g 7/01  C2H3,vinyl       g 9/00  CH3CN           
  g 6/96  CH3CO,acetyl     g 1/00  C2H4             g 8/88  C2H4O,ethylen-o 
  g 8/88  CH3CHO,ethanal   g 6/00  CH3COOH          srd 01  OHCH2COOH       
  g 7/00  C2H5             g 7/00  C2H6             g 8/88  CH3N2CH3        
  g 8/88  C2H5OH           g 7/00  CH3OCH3          srd 01  CH3O2CH3        
  g 7/00  CCN              tpis91  CNC              srd 01  OCCN            
  tpis79  C2N2             g 8/00  C2O              tpis79  *C3             
  n 4/98  C3H3,1-propynl   n 4/98  C3H3,2-propynl   g 2/00  C3H4,allene     
  g 1/00  C3H4,propyne     g 5/90  C3H4,cyclo-      g 3/01  C3H5,allyl      
  g 2/00  C3H6,propylene   g 1/00  C3H6,cyclo-      g 6/01  C3H6O,propylox  
  g 6/97  C3H6O,acetone    g 1/02  C3H6O,propanal   g 7/01  C3H7,n-propyl   
  g 9/85  C3H7,i-propyl    g 2/00  C3H8             g 2/00  C3H8O,1propanol 
  g 2/00  C3H8O,2propanol  srd 01  CNCOCN           g 7/88  C3O2            
  g tpis  *C4              g 7/01  C4H2,butadiyne   g 8/00  C4H4,1,3-cyclo- 
  n10/92  C4H6,butadiene   n10/93  C4H6,1butyne     n10/93  C4H6,2butyne    
  g 8/00  C4H6,cyclo-      n 4/88  C4H8,1-butene    n 4/88  C4H8,cis2-buten 
  n 4/88  C4H8,tr2-butene  n 4/88  C4H8,isobutene   g 8/00  C4H8,cyclo-     
  g10/00  (CH3COOH)2       n10/84  C4H9,n-butyl     n10/84  C4H9,i-butyl    
  g 1/93  C4H9,s-butyl     g 1/93  C4H9,t-butyl     g12/00  C4H10,n-butane  
  g 8/00  C4H10,isobutane  g 6/01  C4N2             g 8/00  *C5             
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  g 5/90  C5H6,1,3cyclo-   g 1/93  C5H8,cyclo-      n 4/87  C5H10,1-pentene 
  g 2/01  C5H10,cyclo-     n10/84  C5H11,pentyl     g 1/93  C5H11,t-pentyl  
  n10/85  C5H12,n-pentane  n10/85  C5H12,i-pentane  n10/85  CH3C(CH3)2CH3   
  g 2/93  C6H2             g11/00  C6H5,phenyl      g 8/00  C6H5O,phenoxy   
  g 8/00  C6H6             g 8/00  C6H5OH,phenol    g 1/93  C6H10,cyclo-    
  n 4/87  C6H12,1-hexene   g 6/90  C6H12,cyclo-     n10/83  C6H13,n-hexyl   
  g 6/01  C6H14,n-hexane   g 7/01  C7H7,benzyl      g 1/93  C7H8            
  g12/00  C7H8O,cresol-mx  n 4/87  C7H14,1-heptene  n10/83  C7H15,n-heptyl  
  n10/85  C7H16,n-heptane  n10/85  C7H16,2-methylh  n 4/89  C8H8,styrene    
  n10/86  C8H10,ethylbenz  n 4/87  C8H16,1-octene   n10/83  C8H17,n-octyl   
  n 4/85  C8H18,n-octane   n 4/85  C8H18,isooctane  n10/83  C9H19,n-nonyl   
  g 3/01  C10H8,naphthale  n10/83  C10H21,n-decyl   g 8/00  C12H9,o-bipheny 
  g 8/00  C12H10,biphenyl  g 6/97  *H               g 6/01  HCN             
  g 1/01  HCO              tpis89  HCCN             g 6/01  HCCO            
  g 6/01  HNC              g 7/00  HNCO             g10/01  HNO             
  tpis89  HNO2             g 5/99  HNO3             g 4/02  HO2             
  tpis78  *H2              g 5/01  HCHO,formaldehy  g 6/01  HCOOH           
  g 8/89  H2O              g 6/99  H2O2             g 6/01  (HCOOH)2        
  g 5/97  *N               g 6/01  NCO              g 4/99  *NH             
  g 3/01  NH2              tpis89  NH3              tpis89  NH2OH           
  tpis89  *NO              g 4/99  NO2              j12/64  NO3             
  tpis78  *N2              J12/64  N2O              g 6/01  NCN             
  g 5/99  N2H2             tpis89  NH2NO2           g 4/99  N2H4            
  g 4/99  N2O              g 4/99  N2O3             tpis89  N2O4            
  g 4/99  N2O5             tpis89  N3               g 4/99  N3H             
  g 5/97  *O               g 4/02  *OH              tpis89  *O2             
  g 8/01  O3               g 12/0  THDCPD,endo      g 12/0  THDCPD,exo      
  g11/99  N2H4(L)          n 4/83  C(gr)            n 4/83  C(gr)           
  n 4/83  C(gr)            n12/84  CH3OH(L)         n12/84  C2H5OH(L)       
  n 4/85  C6H14(L),n-hexa  n12/88  C6H5NH2(L)       n10/86  C6H6(L)         
  g11/99  H2O(cr)          g 8/01  H2O(L)           g 8/01  H2O(L)          
 
 O/F =  34.296226 
 
                       EFFECTIVE FUEL     EFFECTIVE OXIDANT        MIXTURE 
 ENTHALPY                  h(2)/R              h(1)/R               h0/R 
 (KG-MOL)(K)/KG        0.00000000E+00      0.00000000E+00      0.00000000E+00 
 
 KG-FORM.WT./KG             bi(2)               bi(1)               b0i 
  *N                   0.00000000E+00      0.53915890E-01      0.52388364E-01 
  *O                   0.00000000E+00      0.14486046E-01      0.14075632E-01 
  *Ar                  0.00000000E+00      0.32331996E-03      0.31415977E-03 
  *C                   0.00000000E+00      0.11013248E-04      0.10701224E-04 
  *H                   0.99212255E+00      0.00000000E+00      0.28108460E-01 
 
 POINT ITN      T            N           O           AR          C  
                    H  
 
 POINT ITN      T            N           O           AR          C  
                    H  
 
 POINT ITN      T            N           O           AR          C  
                    H  
 
 POINT ITN      T            N           O           AR          C  
                    H  
 
                     DETONATION PROPERTIES OF AN IDEAL REACTING GAS 
 CASE = 22225560        
 
             REACTANT                    WT FRACTION      ENERGY      TEMP 
                                          (SEE NOTE)     KJ/KG-MOL      K   
 OXIDANT     Air                          1.0000000         0.000      0.000 
 FUEL        H2                           1.0000000         0.000      0.000 
 
 O/F=   34.29623  %FUEL=  2.833164  R,EQ.RATIO= 1.000000  PHI,EQ.RATIO= 1.000000 
 
 UNBURNED GAS 
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 P1, BAR           3.0397 
 T1, K             450.00 
 H1, KJ/KG         207.12 
 M1, (1/n)         21.008 
 GAMMA1            1.3931 
 SON VEL1,M/SEC     498.1 
 
 BURNED GAS 
 
 P, BAR            32.019 
 T, K             3049.22 
 RHO, KG/CU M    3.0308 0 
 H, KJ/KG         1534.12 
 U, KJ/KG          477.68 
 G, KJ/KG        -30209.3 
 S, KJ/(KG)(K)    10.4103 
 
 M, (1/n)          23.998 
 (dLV/dLP)t      -1.00960 
 (dLV/dLT)p        1.2011 
 Cp, KJ/(KG)(K)    3.2775 
 GAMMAs            1.1667 
 SON VEL,M/SEC     1110.2 
 
 DETONATION PARAMETERS 
 
 P/P1              10.533 
 T/T1               6.776 
 M/M1              1.1423 
 RHO/RHO1          1.7757 
 DET MACH NUMBER   3.9579 
 DET VEL,M/SEC     1971.5 
 
 MASS FRACTIONS 
 
 *Ar             1.2550-2 
 *CO             1.3488-4 
 *CO2            2.5903-4 
 *H              2.4332-4 
 HO2             2.1331-5 
 *H2             2.6804-3 
 H2O             2.1962-1 
 *NO             1.0496-2 
 *N2             7.2887-1 
 *O              1.3433-3 
 *OH             1.4039-2 
 *O2             9.7109-3 
 
  * THERMODYNAMIC PROPERTIES FITTED TO 20000.K 
 
    PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MASS FRACTIONS 
    WERE LESS THAN 1.000000E-05 FOR ALL ASSIGNED CONDITIONS 
 
 *C              *CH             CH2             CH3             CH2OH           
 CH3O            CH4             CH3OH           CH3OOH          *CN             
 CNN             COOH            *C2             C2H             C2H2,acetylene  
 C2H2,vinylidene CH2CO,ketene    O(CH)2O         HO(CO)2OH       C2H3,vinyl      
 CH3CN           CH3CO,acetyl    C2H4            C2H4O,ethylen-o CH3CHO,ethanal  
 CH3COOH         OHCH2COOH       C2H5            C2H6            CH3N2CH3        
 C2H5OH          CH3OCH3         CH3O2CH3        CCN             CNC             
 OCCN            C2N2            C2O             *C3             C3H3,1-propynl  
 C3H3,2-propynl  C3H4,allene     C3H4,propyne    C3H4,cyclo-     C3H5,allyl      
 C3H6,propylene  C3H6,cyclo-     C3H6O,propylox  C3H6O,acetone   C3H6O,propanal  
 C3H7,n-propyl   C3H7,i-propyl   C3H8            C3H8O,1propanol C3H8O,2propanol 
 CNCOCN          C3O2            *C4             C4H2,butadiyne  C4H4,1,3-cyclo- 
 C4H6,butadiene  C4H6,1butyne    C4H6,2butyne    C4H6,cyclo-     C4H8,1-butene   
 C4H8,cis2-buten C4H8,tr2-butene C4H8,isobutene  C4H8,cyclo-     (CH3COOH)2      
 C4H9,n-butyl    C4H9,i-butyl    C4H9,s-butyl    C4H9,t-butyl    C4H10,n-butane  
 C4H10,isobutane C4N2            *C5             C5H6,1,3cyclo-  C5H8,cyclo-     
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 C5H10,1-pentene C5H10,cyclo-    C5H11,pentyl    C5H11,t-pentyl  C5H12,n-pentane 
 C5H12,i-pentane CH3C(CH3)2CH3   C6H2            C6H5,phenyl     C6H5O,phenoxy   
 C6H6            C6H5OH,phenol   C6H10,cyclo-    C6H12,1-hexene  C6H12,cyclo-    
 C6H13,n-hexyl   C6H14,n-hexane  C7H7,benzyl     C7H8            C7H8O,cresol-mx 
 C7H14,1-heptene C7H15,n-heptyl  C7H16,n-heptane C7H16,2-methylh C8H8,styrene    
 C8H10,ethylbenz C8H16,1-octene  C8H17,n-octyl   C8H18,n-octane  C8H18,isooctane 
 C9H19,n-nonyl   C10H8,naphthale C10H21,n-decyl  C12H9,o-bipheny C12H10,biphenyl 
 HCN             HCO             HCCN            HCCO            HNC             
 HNCO            HNO             HNO2            HNO3            HCHO,formaldehy 
 HCOOH           H2O2            (HCOOH)2        *N              NCO             
 *NH             NH2             NH3             NH2OH           NO2             
 NO3             N2O             NCN             N2H2            NH2NO2          
 N2H4            N2O             N2O3            N2O4            N2O5            
 N3              N3H             O3              THDCPD,endo     THDCPD,exo      
 N2H4(L)         C(gr)           CH3OH(L)        C2H5OH(L)       C6H14(L),n-hexa 
 C6H5NH2(L)      C6H6(L)         H2O(cr)         H2O(L)          
 
 NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS 
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APPENDIX C:  CFD++ DATA FILES 

1. Steady State (Refresh) Simulation for 3 Injectors at 45° Angle 
 

45 Degree Injection Angle, 1.5% Injector Mass Flow Rate 

Mesh Size 968401 

Boundary Conditions 

Inlet Multi-species PV Based Inflow/Outflow 

Pressure 303975 Pa 

Temperature 450 K 

x-velocity 98.2 m/s 

y-velocity 0.0 m/s 

z-velocity 0.0 m/s 

q 1.224745 m/s 

L .0006482519 m 

H2 0.02833164 Mass Fraction 

H 0.0 

O 0.0 

O2 0.2265 

H2O 0.0 

H2O2 0.0 

HO2 0.0 

OH 0.0 

Outlet Simple Back Pressure 
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Pressure 101325 Pa 

Injector 1,      

Injector 2, and 

Injector 3 

Pressure Temperature and Normal Velocity Inflow 

Pressure 111457 Pa 

Temperature 450 K 

Normal Velocity 61.89 m/s 

q 0.7579946 m/s 

L 0.0212248 M 

H2 0.0 Mass Fraction 

H 0.0 

O 0.0 

O2 0.2265 

H2O 0.0 

H2O2 0.0 

HO2 0.0 

OH 0.0 

Symmetry Multi-species Adiabatic Wall 

Walls Multi-species Adiabatic Wall 

Initial Conditions 

Box 1 xmin -0.00005 m 

xmax 0.0125 m 

ymin -0.002 m 

ymax 0.0875 m 

zmin 0.0 m 



 91 

zmax 0.0 m 

Pressure 303975 Pa 

Temperature 450 K 

x-velocity 98.2 m/s 

y-velocity 0.0 m/s 

z-velocity 0.0 m/s 

q 1.224745 m/s 

L 0.006482519 m 

H2 0.02833164 Mass Fraction 

H 0.0 

O 0.0 

O2 0.2265 

H2O 0.0 

H2O2 0.0 

HO2 0.0 

OH 0.0 

Box 2 xmin 0.0125 m 

xmax 0.61 m 

ymin -0.002 m 

ymax 0.0875 m 

zmin 0.0 m 

zmax 0.0 m 

Pressure 303975 Pa 
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Temperature 450 K 

x-velocity 100 m/s 

y-velocity 0.0 m/s 

z-velocity 0.0 m/s 

q 1.224745 m/s 

L 0.004785153 m 

H2 0.0 Mass Fraction 

H 0.0 

O 0.0 

O2 0.2265 

H2O 0.0 

H2O2 0.0 

HO2 0.0 

OH 0.0 

Box 3 xmin 0.6815 m 

xmax 0.755 m 

ymin -0.015 m 

ymax 0.012 m 

zmin 0.0 m 

zmax 0.0 m 

Pressure 167558 Pa 

Temperature 450 K 

x-velocity 37.5 m/s 
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y-velocity 0.0 m/s 

z-velocity 0.0 m/s 

q 0.4592793 m/s 

L 0.02314926 m 

H2 0.0 Mass Fraction 

H 0.0 

O 0.0 

O2 0.2265 

H2O 0.0 

H2O2 0.0 

HO2 0.0 

OH 0.0 

Box 4 xmin 0.61 m 

xmax 0.6815 m 

ymin -0.002 m 

ymax 0.0875 m 

zmin 0.0 m 

zmax 0.0 m 

Pressure 303975 Pa 

Temperature 450 K 

x-velocity 100 m/s 

y-velocity 0.0 m/s 

z-velocity 0.0 m/s 
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q 1.224745 m/s 

L 0.004785153 m 

H2 0.0 Mass Fraction 

H 0.0 

O 0.0 

O2 0.2265 

H2O 0.0 

H2O2 0.0 

HO2 0.0 

OH 0.0 

Box 5 xmin 0.6815 m 

xmax 0.755 m 

ymin 0.012 m 

ymax 0.0875 m 

zmin 0.0 m 

zmax 0.0 m 

Pressure 200000 Pa 

Temperature 400 K 

x-velocity 100 m/s 

y-velocity 0.0 m/s 

z-velocity 0.0 m/s 

q 1.224745 m/s 

L 0.005950135 m 
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H2 0.0 Mass Fraction 

H 0.0 

O 0.0 

O2 0.2265 

H2O 0.0 

H2O2 0.0 

HO2 0.0 

OH 0.0 

Box 6 xmin 0.755 m 

xmax 1.25 m 

ymin -0.12 m 

ymax 0.0875 m 

zmin 0.0 m 

zmax 0.0 m 

Pressure 101325 Pa 

Temperature 298 K 

x-velocity 0.0 m/s 

y-velocity 0.0 m/s 

z-velocity 0.0 m/s 

q 0.001224745 m/s 

L 7.036989 m 

H2 0.0 Mass Fraction 

H 0.0 
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O 0.0 

O2 0.2265 

H2O 0.0 

H2O2 0.0 

HO2 0.0 

OH 0.0 

Time Integration 

Is this a restart: No 

Simulation Strategy: Transient 

Integration Type: Implicit 

Number of global time steps for this run: 1000 

Max. cumulative # of global time steps: 0 

Turn on dual time-stepping: Yes 

Stop run at a given global time value: No 

Implicit scheme type: Point-Implicit 

Global time step based on Courant #: No 

Spatially varying local time step: Yes 

At restart, use Courant # for local time step 

from: 

Values Below 

Courant # for local time step ramped from: 1 to 100 

Local Courant # ramped from global step 

number: 

1 to 100 

Local Max. Courant # adjustment factor: 0.95 



 97 

Terminate run if adjusted local Courant # is 

<: 

1.00E-04 

Global time step size: 1.00E-05 s 

Max. # of internal (local) iter. per global 

step: 

50 

Global step internal iter. Termination 

criterion: 

0.1 

Order of global time stepping: 2nd 

Extrapolate using old dq/dt (1st iteration): No 

Local iteration convergence acceler.: Multigrid (old) 

Turn on temporal-smoothing: Yes 

Smoothing factor: 0.75 

Turn on time-step spatial-smoothing: Yes 

Number of smoothing passes: 4 

Maximum time-step growth factor: 1.5 
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2.  Detonation Simulation with 3 Injectors at a 45° Angle 
      

45 Degree Injection Angle, 1.5% Injector Mass Flow Rate 

Mesh Size 968401 

Boundary Conditions 

Inlet Multi-species Adiabatic Wall 

Outlet Simple Back Pressure 

Pressure 101325 Pa 

Injector 1,       

Injector 2, and 

Injector 3 

Pressure Temperature and Normal Velocity  

Pressure 111457 Pa 

Temperature 450 K 

Normal Velocity 61.89 m/s 

q 0.7579946 m/s 

L 0.0212248 M 

H2 0.0 Mass Fraction 

H 0.0 

O 0.0 

O2 0.2265 

H2O 0.0 

H2O2 0.0 

HO2 0.0 

OH 0.0 

Symmetry Multi-species Adiabatic Wall 

Walls Multi-species Adiabatic Wall 
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Initial Conditions 

Box 1 xmin -0.00005 m 

xmax 0.0125 m 

ymin -0.002 m 

ymax 0.0875 m 

zmin 0.0 m 

zmax 0.0 m 

Pressure 303975 Pa 

Temperature 450 K 

x-velocity 98.2 m/s 

y-velocity 0.0 m/s 

z-velocity 0.0 m/s 

q 1.224745 m/s 

L 0.006482519 m 

H2 0.02833164 Mass Fraction 

H 0.0 

O 0.0 

O2 0.2265 

H2O 0.0 

H2O2 0.0 

HO2 0.0 

OH 0.0 

Box 2 xmin 0.0125 m 
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xmax 0.61 m 

ymin -0.002 m 

ymax 0.0875 m 

zmin 0.0 m 

zmax 0.0 m 

Pressure 303975 Pa 

Temperature 450 K 

x-velocity 100 m/s 

y-velocity 0.0 m/s 

z-velocity 0.0 m/s 

q 1.224745 m/s 

L 0.004785153 m 

H2 0.0 Mass Fraction 

H 0.0 

O 0.0 

O2 0.2265 

H2O 0.0 

H2O2 0.0 

HO2 0.0 

OH 0.0 

Box 3 xmin 0.6815 m 

xmax 0.755 m 

ymin -0.015 m 
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ymax 0.012 m 

zmin 0.0 m 

zmax 0.0 m 

Pressure 167558 Pa 

Temperature 450 K 

x-velocity 37.5 m/s 

y-velocity 0.0 m/s 

z-velocity 0.0 m/s 

q 0.4592793 m/s 

L 0.02314926 m 

H2 0.0 Mass Fraction 

H 0.0 

O 0.0 

O2 0.2265 

H2O 0.0 

H2O2 0.0 

HO2 0.0 

OH 0.0 

Box 4 xmin 0.61 m 

xmax 0.7 m 

ymin -0.00005 m 

ymax 0.0875 m 

zmin 0.0 m 
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zmax 0.0 m 

Pressure 303975 Pa 

Temperature 450 K 

x-velocity 100 m/s 

y-velocity 0.0 m/s 

z-velocity 0.0 m/s 

q 1.224745 m/s 

L 0.004785153 m 

H2 0.0 Mass Fraction 

H 0.0 

O 0.0 

O2 0.2265 

H2O 0.0 

H2O2 0.0 

HO2 0.0 

OH 0.0 

Box 5 xmin 0.6815 m 

xmax 0.755 m 

ymin 0.012 m 

ymax 0.0875 m 

zmin 0.0 m 

zmax 0.0 m 

Pressure 200000 Pa 
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Temperature 400 K 

x-velocity 100 m/s 

y-velocity 0.0 m/s 

z-velocity 0.0 m/s 

q 1.224745 m/s 

L 0.005950135 m 

H2 0.0 Mass Fraction 

H 0.0 

O 0.0 

O2 0.2265 

H2O 0.0 

H2O2 0.0 

HO2 0.0 

OH 0.0 

Box 6 xmin 0.755 m 

xmax 1.25 m 

ymin -0.12 m 

ymax 0.0875 m 

zmin 0.0 m 

zmax 0.0 m 

Pressure 101325 Pa 

Temperature 298 K 

x-velocity 0.0 m/s 
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y-velocity 0.0 m/s 

z-velocity 0.0 m/s 

q 0.001224745 m/s 

L 7.036989 m 

H2 0.0 Mass Fraction 

H 0.0 

O 0.0 

O2 0.2265 

H2O 0.0 

H2O2 0.0 

HO2 0.0 

OH 0.0 

Time Integration 

Is this a restart: Yes 

Simulation Strategy: Transient 

Integration Type: Implicit 

Number of global time steps for this run: 6000 

Max. cumulative # of global time steps: 0 

Turn on dual time-stepping: Yes 

Stop run at a given global time value: No 

Implicit scheme type: Point-Implicit 

Global time step based on Courant #: No 

Spatially varying local time step: Yes 
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At restart, use Courant # for local time step 

from: 

Values Below 

Courant # for local time step ramped from: 1 to 100 

Local Courant # ramped from global step 

number: 

1 to 100 

Local Max. Courant # adjustment factor: 0.95 

Terminate run if adjusted local Courant # is 

<: 

1.00E-04 

Global time step size: 1.00E-05 s 

Max. # of internal (local) iter. per global 

step: 

50 

Global step internal iter. Termination 

criterion: 

0.1 

Order of global time stepping: 2nd 

Extrapolate using old dq/dt (1st iteration): No 

Local iteration convergence acceler.: Multigrid (old) 

Turn on temporal-smoothing: Yes 

Smoothing factor: 0.75 

Turn on time-step spatial-smoothing: Yes 

Solution File Modification By Box 

Copy cdepsout.bin to cdepsin.bin before 

tool runs: 

No 

Copy cdepsout.bin to cdepsin.bin after tool 

runs: 

No 
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xmin -0.00005 

xmax 0.0125 

ymin -0.02 

ymax 0.0875 

zmin 0.0 

zmax 0.0 

Number of variables for this box: 15 

Variable 1: 9727200 

Variable 2: 3050 

Variable 3: 100 

Variable 4: 0.0 

Variable 5: 0.0 

Variable 6: 1.224745 

Variable 7: 0.003815446 

Variable 8: 0.0026804 

Variable 9: 0.00024332 

Variable 10: 0.0013433 

Variable 11: 0.0097109 

Variable 12: 0.21962 

Variable 13: 0.0 

Variable 14: 0.000021331 

Variable 15: 0.014039 
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3. Steady State (Refresh) Simulation for 2 Injectors and Free Stream  
 

45 Degree Injection Angle, 1.5% Injector Mass Flow Rate 

Mesh Size 968401 

Boundary Conditions 

Inlet Multi-species PV Based Inflow/Outflow 

Pressure 303975 Pa 

Temperature 450 K 

x-velocity 98.2 m/s 

y-velocity 0.0 m/s 

z-velocity 0.0 m/s 

q 1.224745 m/s 

L .0006482519 m 

H2 0.02833164 Mass Fraction 

H 0.0 

O 0.0 

O2 0.2265 

H2O 0.0 

H2O2 0.0 

HO2 0.0 

OH 0.0 

Outlet Simple Back Pressure 

Pressure 101325 Pa 

Injector 1 Pressure Temperature and Normal Velocity Inflow 
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Pressure 131722 Pa 

Temperature 450 K 

Normal Velocity 103.155 m/s 

q 1.263386 m/s 

L 0.0127342 M 

H2 0.0 Mass Fraction 

H 0.0 

O 0.0 

O2 0.2265 

H2O 0.0 

H2O2 0.0 

HO2 0.0 

OH 0.0 

Injector 2 Pressure Temperature and Normal Velocity Inflow 

Pressure 131722 Pa 

Temperature 450 K 

Normal Velocity 69.2 m/s 

q 0.875235 m/s 

L 0.01595271 M 

H2 0.0 Mass Fraction 

H 0.0 

O 0.0 

O2 0.2265 
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H2O 0.0 

H2O2 0.0 

HO2 0.0 

OH 0.0 

Injector 3 

(Free Stream) 

Pressure Temperature and Normal Velocity Inflow 

Pressure 26497.5 Pa 

Temperature 223.25 K 

Normal Velocity 898.51 m/s 

q 11.00445 m/s 

L 0.00179092 M 

H2 0.0 Mass Fraction 

H 0.0 

O 0.0 

O2 0.2265 

H2O 0.0 

H2O2 0.0 

HO2 0.0 

OH 0.0 

  

Symmetry Multi-species Adiabatic Wall 

Walls Multi-species Adiabatic Wall 

Initial Conditions 

Box 1 xmin -0.00005 m 
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xmax 0.0125 m 

ymin -0.002 m 

ymax 0.0875 m 

zmin 0.0 m 

zmax 0.0 m 

Pressure 303975 Pa 

Temperature 450 K 

x-velocity 98.2 m/s 

y-velocity 0.0 m/s 

z-velocity 0.0 m/s 

q 1.224745 m/s 

L 0.006482519 m 

H2 0.02833164 Mass Fraction 

H 0.0 

O 0.0 

O2 0.2265 

H2O 0.0 

H2O2 0.0 

HO2 0.0 

OH 0.0 

Box 2 xmin 0.0125 m 

xmax 0.61 m 

ymin -0.002 m 
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ymax 0.0875 m 

zmin 0.0 m 

zmax 0.0 m 

Pressure 303975 Pa 

Temperature 450 K 

x-velocity 100 m/s 

y-velocity 0.0 m/s 

z-velocity 0.0 m/s 

q 1.224745 m/s 

L 0.004785153 m 

H2 0.0 Mass Fraction 

H 0.0 

O 0.0 

O2 0.2265 

H2O 0.0 

H2O2 0.0 

HO2 0.0 

OH 0.0 

Box 3 xmin 0.6815 m 

xmax 0.755 m 

ymin -0.015 m 

ymax 0.012 m 

zmin 0.0 m 
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zmax 0.0 m 

Pressure 167558 Pa 

Temperature 450 K 

x-velocity 37.5 m/s 

y-velocity 0.0 m/s 

z-velocity 0.0 m/s 

q 0.4592793 m/s 

L 0.02314926 m 

H2 0.0 Mass Fraction 

H 0.0 

O 0.0 

O2 0.2265 

H2O 0.0 

H2O2 0.0 

HO2 0.0 

OH 0.0 

Box 4 xmin 0.61 m 

xmax 0.6815 m 

ymin -0.002 m 

ymax 0.0875 m 

zmin 0.0 m 

zmax 0.0 m 

Pressure 303975 Pa 



 113 

Temperature 450 K 

x-velocity 100 m/s 

y-velocity 0.0 m/s 

z-velocity 0.0 m/s 

q 1.224745 m/s 

L 0.004785153 m 

H2 0.0 Mass Fraction 

H 0.0 

O 0.0 

O2 0.2265 

H2O 0.0 

H2O2 0.0 

HO2 0.0 

OH 0.0 

Box 5 xmin 0.6815 m 

xmax 0.755 m 

ymin 0.012 m 

ymax 0.0875 m 

zmin 0.0 m 

zmax 0.0 m 

Pressure 200000 Pa 

Temperature 400 K 

x-velocity 100 m/s 
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y-velocity 0.0 m/s 

z-velocity 0.0 m/s 

q 1.224745 m/s 

L 0.005950135 m 

H2 0.0 Mass Fraction 

H 0.0 

O 0.0 

O2 0.2265 

H2O 0.0 

H2O2 0.0 

HO2 0.0 

OH 0.0 

Box 6 xmin 0.755 m 

xmax 1.25 m 

ymin -0.12 m 

ymax 0.0875 m 

zmin 0.0 m 

zmax 0.0 m 

Pressure 101325 Pa 

Temperature 298 K 

x-velocity 0.0 m/s 

y-velocity 0.0 m/s 

z-velocity 0.0 m/s 



 115 

q 0.001224745 m/s 

L 7.036989 m 

H2 0.0 Mass Fraction 

H 0.0 

O 0.0 

O2 0.2265 

H2O 0.0 

H2O2 0.0 

HO2 0.0 

OH 0.0 

Time Integration 

Is this a restart: No 

Simulation Strategy: Transient 

Integration Type: Implicit 

Number of global time steps for this run: 1000 

Max. cumulative # of global time steps: 0 

Turn on dual time-stepping: Yes 

Stop run at a given global time value: No 

Implicit scheme type: Point-Implicit 

Global time step based on Courant #: No 

Spatially varying local time step: Yes 

At restart, use Courant # for local time step 

from: 

Values Below 
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Courant # for local time step ramped from: 1 to 100 

Local Courant # ramped from global step 

number: 

1 to 100 

Local Max. Courant # adjustment factor: 0.95 

Terminate run if adjusted local Courant # is 

<: 

1.00E-04 

Global time step size: 1.00E-05 s 

Max. # of internal (local) iter. per global 

step: 

50 

Global step internal iter. Termination 

criterion: 

0.1 

Order of global time stepping: 2nd 

Extrapolate using old dq/dt (1st iteration): No 

Local iteration convergence acceler.: Multigrid (old) 

Turn on temporal-smoothing: Yes 

Smoothing factor: 0.75 

Turn on time-step spatial-smoothing: Yes 

Number of smoothing passes: 4 

Maximum time-step growth factor: 1.5 

4. Steady State (Refresh) Simulation for 2 Injectors and Free Stream, Sea Level 
 

45 Degree Injection Angle 

Mesh Size 968401 

Boundary Conditions 

Inlet Multi-species PV Based Inflow/Outflow 
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Pressure 303975 Pa 

Temperature 450 K 

x-velocity 98.2 m/s 

y-velocity 0.0 m/s 

z-velocity 0.0 m/s 

q 1.224745 m/s 

L .0006482519 m 

H2 0.02833164 Mass Fraction 

H 0.0 

O 0.0 

O2 0.2265 

H2O 0.0 

H2O2 0.0 

HO2 0.0 

OH 0.0 

Outlet Simple Back Pressure 

Pressure 101325 Pa 

Injector 1 Pressure Temperature and Normal Velocity Inflow 

Pressure 131722 Pa 

Temperature 450 K 

Normal Velocity 103.155 m/s 

q 1.263386 m/s 

L 0.0127342 M 



 118 

H2 0.0 Mass Fraction 

H 0.0 

O 0.0 

O2 0.2265 

H2O 0.0 

H2O2 0.0 

HO2 0.0 

OH 0.0 

Injector 2 Pressure Temperature and Normal Velocity Inflow 

Pressure 131722 Pa 

Temperature 450 K 

Normal Velocity 69.2 m/s 

q 0.875235 m/s 

L 0.01595271 M 

H2 0.0 Mass Fraction 

H 0.0 

O 0.0 

O2 0.2265 

H2O 0.0 

H2O2 0.0 

HO2 0.0 

OH 0.0 

Injector 3 Pressure Temperature and Normal Velocity Inflow 
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(Free Stream) Pressure 101325 Pa 

Temperature 289.15 K 

Normal Velocity 1020.9 m/s 

q 12.50342 m/s 

L 0.0006916 M 

H2 0.0 Mass Fraction 

H 0.0 

O 0.0 

O2 0.2265 

H2O 0.0 

H2O2 0.0 

HO2 0.0 

OH 0.0 

  

Symmetry Multi-species Adiabatic Wall 

Walls Multi-species Adiabatic Wall 

Initial Conditions 

Box 1 xmin -0.00005 m 

xmax 0.0125 m 

ymin -0.002 m 

ymax 0.0875 m 

zmin 0.0 m 

zmax 0.0 m 
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Pressure 303975 Pa 

Temperature 450 K 

x-velocity 98.2 m/s 

y-velocity 0.0 m/s 

z-velocity 0.0 m/s 

q 1.224745 m/s 

L 0.006482519 m 

H2 0.02833164 Mass Fraction 

H 0.0 

O 0.0 

O2 0.2265 

H2O 0.0 

H2O2 0.0 

HO2 0.0 

OH 0.0 

Box 2 xmin 0.0125 m 

xmax 0.61 m 

ymin -0.002 m 

ymax 0.0875 m 

zmin 0.0 m 

zmax 0.0 m 

Pressure 303975 Pa 

Temperature 450 K 
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x-velocity 100 m/s 

y-velocity 0.0 m/s 

z-velocity 0.0 m/s 

q 1.224745 m/s 

L 0.004785153 m 

H2 0.0 Mass Fraction 

H 0.0 

O 0.0 

O2 0.2265 

H2O 0.0 

H2O2 0.0 

HO2 0.0 

OH 0.0 

Box 3 xmin 0.6815 m 

xmax 0.755 m 

ymin -0.015 m 

ymax 0.012 m 

zmin 0.0 m 

zmax 0.0 m 

Pressure 167558 Pa 

Temperature 450 K 

x-velocity 37.5 m/s 

y-velocity 0.0 m/s 



 122 

z-velocity 0.0 m/s 

q 0.4592793 m/s 

L 0.02314926 m 

H2 0.0 Mass Fraction 

H 0.0 

O 0.0 

O2 0.2265 

H2O 0.0 

H2O2 0.0 

HO2 0.0 

OH 0.0 

Box 4 xmin 0.61 m 

xmax 0.6815 m 

ymin -0.002 m 

ymax 0.0875 m 

zmin 0.0 m 

zmax 0.0 m 

Pressure 303975 Pa 

Temperature 450 K 

x-velocity 100 m/s 

y-velocity 0.0 m/s 

z-velocity 0.0 m/s 

q 1.224745 m/s 
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L 0.004785153 m 

H2 0.0 Mass Fraction 

H 0.0 

O 0.0 

O2 0.2265 

H2O 0.0 

H2O2 0.0 

HO2 0.0 

OH 0.0 

Box 5 xmin 0.6815 m 

xmax 0.755 m 

ymin 0.012 m 

ymax 0.0875 m 

zmin 0.0 m 

zmax 0.0 m 

Pressure 200000 Pa 

Temperature 400 K 

x-velocity 100 m/s 

y-velocity 0.0 m/s 

z-velocity 0.0 m/s 

q 1.224745 m/s 

L 0.005950135 m 

H2 0.0 Mass Fraction 
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H 0.0 

O 0.0 

O2 0.2265 

H2O 0.0 

H2O2 0.0 

HO2 0.0 

OH 0.0 

Box 6 xmin 0.755 m 

xmax 1.25 m 

ymin -0.12 m 

ymax 0.0875 m 

zmin 0.0 m 

zmax 0.0 m 

Pressure 101325 Pa 

Temperature 298 K 

x-velocity 0.0 m/s 

y-velocity 0.0 m/s 

z-velocity 0.0 m/s 

q 0.001224745 m/s 

L 7.036989 m 

H2 0.0 Mass Fraction 

H 0.0 

O 0.0 
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O2 0.2265 

H2O 0.0 

H2O2 0.0 

HO2 0.0 

OH 0.0 

Time Integration 

Is this a restart: No 

Simulation Strategy: Transient 

Integration Type: Implicit 

Number of global time steps for this run: 1000 

Max. cumulative # of global time steps: 0 

Turn on dual time-stepping: Yes 

Stop run at a given global time value: No 

Implicit scheme type: Point-Implicit 

Global time step based on Courant #: No 

Spatially varying local time step: Yes 

At restart, use Courant # for local time step 

from: 

Values Below 

Courant # for local time step ramped from: 1 to 100 

Local Courant # ramped from global step 

number: 

1 to 100 

Local Max. Courant # adjustment factor: 0.95 

Terminate run if adjusted local Courant # is 

<: 

1.00E-04 
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Global time step size: 1.00E-05 s 

Max. # of internal (local) iter. per global 

step: 

50 

Global step internal iter. Termination 

criterion: 

0.1 

Order of global time stepping: 2nd 

Extrapolate using old dq/dt (1st iteration): No 

Local iteration convergence acceler.: Multigrid (old) 

Turn on temporal-smoothing: Yes 

Smoothing factor: 0.75 

Turn on time-step spatial-smoothing: Yes 

Number of smoothing passes: 4 

Maximum time-step growth factor: 1.5 
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