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Chapter 1.
Identification and selection rules of the spin-wave eigen-modes in

a normally magnetized nano-pillar

We report on a spectroscopic study of the spin-wave eigen-modes inside an individual
normally magnetized two layers circular nano-pillar (Permalloy|Copper|Permalloy) by means
of a Magnetic Resonance Force Microscope (MRFM). We demonstrate that the observed
spin-wave spectrum critically depends on the method of excitation. While the spatially
uniform radio-frequency (RF) magnetic field excites only the axially symmetric modes having
azimuthal index ¢ = 0, the RF current flowing through the nano-pillar, creating a circular
RF Oersted field, excites only the modes having azimuthal index / = +1. Breaking the axial
symmetry of the nano-pillar, either by tilting the bias magnetic field or by making the pillar
shape elliptical, mixes different /-index symmetries, which can be excited simultaneously by
the RF current. Experimental spectra are compared to theoretical prediction using both
analytical and numerical calculations. An analysis of the influence of the static and dynamic

dipolar coupling between the nano-pillar magnetic layers on the mode spectrum is performed.

I. INTRODUCTION

Technological progress in the fabrication of hybrid nanostructures using magnetic metals
has allowed the emergence of a new science aimed at utilizing spin dependent effects in
the electronic transport properties [1]. An elementary device of spintronics consists of two
magnetic layers separated by a normal layer. It exhibits the well-known giant magneto-
resistance (GMR) effect [2, 3], that is, its resistance depends on the relative angle between
the magnetic layers. Nowadays, this useful property is extensively used in magnetic sensors
[4, 5]. The converse effect is that a direct current can transfer spin angular momentum
between two magnetic layers separated by either a normal metal or a thin insulating layer
[6, 7]. As a result, a spin polarized current leads to a very efficient destabilization of the
orientation of a magnetic moment [8]. Practical applications are the possibility to control
the digital information in magnetic random access memories (MRAMs) [9, 10] or to produce
high frequency signals in spin transfer nano-oscillators (STNOs) [11, 12].

From an experimental point of view, the precise identification of the spin-wave (SW)
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eigen-modes in hybrid magnetic nanostructures remains to be done [13-18]. Of particular
interest is the exact nature of the modes excited by a current perpendicular-to-plane in
STNOs. Here, the identification of the associated symmetry behind each mode is essential.
It gives a fundamental insight about their selection rules and about the mutual coupling
mechanisms that might exist intra or inter STNOs. It also determines the optimum strategy
to couple to the auto-oscillating mode observed when the spin transfer torque compensates
the damping, a vital knowledge to achieve phase synchronization in arrays of nano-pillars
[19]. These SW modes also have a fundamental influence on the high frequency properties

of these devices and in particular on the noise of magneto-resistive sensors [20, 21].

A natural mean to probe SW modes in hybrid nanostructures is to use their magneto-
resistance properties. For instance, thermal SW can be directly detected in the noise spec-
trum of tunneling magneto-resistance (TMR) devices owing to their large TMR ratio [22, 23].
It is also possible to use spin torque driven ferromagnetic resonance (ST-FMR) [24-30]. In
this approach, an RF current flowing through the magneto-resistive device is used to excite
the precession of magnetization and to detect it through a rectification effect. Direct excita-
tion of SW modes by the RF field generated by micro-antennas and their detection through
dc rectification [31] or high-frequency GMR measurements [32] has also been reported in
spin-valve sensors. In all these experiments, the static magnetizations in the spin-valve
have to be misaligned in order for the magnetization precession to produce a finite voltage.
Because highly symmetric magnetization trajectories do not produce any variation of resis-
tance with time in some cases, a third magnetic layer playing the role of an analyzer can
be introduced [33]. In ST-FMR, the non-collinearity of the magnetizations is also required
for the RF spin transfer excitation not to vanish [25, 26]. Moreover, the latter was never di-
rectly compared to standard FMR, where a uniform RF magnetic field is used to excite SW
modes. Thus, although the voltage detection of SW eigen-modes in hybrid nanostructures
is elegant, one should keep in mind that some of them might be hidden due to symmetry
reasons.

Here, we propose an independent method of detecting the magnetic resonance inside a
spin-valve nanostructure. We shall use a Magnetic Resonance Force Microscope (MRFM)
[34-38]. A first decisive advantage of the MRFM technique is that the detection scheme
does not rely on the SW spatial symmetry because it measures the change in the longitudi-

nal component of the magnetization. Like a bolometric detection, mechanical based FMR
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detects all the excited SW modes, independently of their phase [39, 40]. A second decisive
advantage is that MRFM is a very sensitive technique that can measure the magnetization
dynamics in nanostructures buried under metallic electrodes [41-43|. Indeed, the probe is
a magnetic particle attached at the end of a soft cantilever and is coupled to the sample

through the dipolar interaction.

In our roadmap to characterize the nature of the auto-oscillation modes in STNOs, we re-
port in this chapter on a comprehensive identification of the SW eigen-modes in the simplest
possible geometry: the normally magnetized circular spin-valve nano-pillar. This configu-
ration is obtained by saturating the device with a large external magnetic field oriented
perpendicular to the layers. Thanks to the preserved axial symmetry, a simplified spectro-
scopic signature of the different SW eigen-modes is expected. This identification is achieved
experimentally from a comparative spectroscopic study of the SW eigen-modes excited ei-
ther by an RF current flowing perpendicularly through the nano-pillar, as used in ST-FMR,
or by a homogeneous RF in-plane magnetic field, as used in conventional FMR. It shall
be developed as follows. In section II, we present the MRFM setup and the experimental
protocol used to perform SW spectroscopy in a spin-valve. We show that the SW spectrum
excited by a homogeneous RF magnetic field is distinct from the SW spectrum excited by an
RF current flowing through the nano-pillar. In section III, we perform unambiguous assign-
ment of the resonance peaks to the different layers by experimental means. We determine
which layer contributes mostly to the observed resonant signals by adding a direct current
through the nano-pillar, that produces opposite spin transfer torques on each magnetic layer.
In section IV, we analyze the spectra by theoretical means using both a two-dimensional
analytical formalism and a three-dimensional micromagnetic simulation package, SpinFlow
3D. By careful comparison of the measured spectra to the calculations, the nature of the
SW dynamics in the system is identified and the selection rules for SW spectroscopy in per-
pendicularly magnetized spin-valve nanostructures are established. This result is completed
in section V by a study of the influence of symmetry breaking on the selection rules. This
is obtained experimentally by introducing a tilt angle of the applied magnetic field, and in
simulations by changing the shape of the nano-pillar. In the conclusion, we emphasize the
importance of this work for phase synchronization of STNOs. The chapter is arranged in
such a fashion so as to present the main results in the body of the text. A comprehensive

appendix has been put at the end of the chapter, where the details of the introduced material
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FIG. 1. Schematic representation of the experimental setup used for this comparative spin-wave
spectroscopic study. The magnetic sample is a circular nano-pillar comprising a thin Py, and a
thick Py, magnetic layers separated by a Cu spacer. It is saturated by a large magnetic field Heyt
applied along its normal axis. A cantilever with a magnetic sphere attached at its tip monitors
the magnetization dynamics inside the buried structure. The inset is a microscopy image (top
view) of the two independent excitation circuits: in red the circuit allowing the injection of an RF
current perpendicular-to-plane through the nano-pillar (i,¢, red arrow); in blue the circuit allowing
the generation of an RF in-plane magnetic field (h,s, blue arrow). The nano-pillar is at the center

of the yellow cross-hair. The main figure is a section along the A — A direction.

are developed.

II. FERROMAGNETIC RESONANCE FORCE SPECTROSCOPY

This section starts with a description of the nano-pillar sample, followed by a descrip-
tion of the MRFM instrument used for this spectroscopic study. Then, we compare the
experimental SW spectra excited by an RF current flowing perpendicularly through the
nano-pillar, as used in ST-FMR, and by a uniform RF magnetic field applied parallel to the
layers, as used in standard FMR.

A. The lithographically patterned nanostructure

The spin-valve structure used in this study is a standard Permalloy (NigoFeyo=Py) bi-
layer structure sandwiching a 10 nm copper (Cu) spacer: the thicknesses of the thin Py,

and the thick Py, layers are respectively ¢, = 4 nm and ¢, = 15 nm. Special care has been



put in the design of the microwave circuit around the nano-pillar. The inset of FIG. 1
shows a scanning electron microscopy top view of this circuit. The nano-pillar is located
at the center of the cross-hair, in the middle of a highly symmetric pattern designed to
minimize cross-talk effects between both RF circuits shown in blue and red, which provide

two independent excitation means.

The nano-pillar is patterned by standard e-beam lithography and ion-milling techniques
from the extended film, (Cu60 | Py,15 | CulO | Py,4 | Au25) with thicknesses expressed
in nm, to a nano-pillar of nominal radius 100 nm. A precise control allows to stop the
etching process exactly at the bottom Cu layer, which is subsequently used as the bottom
contact electrode. A planarization process of a polymerized resist by reactive ion etching
enables to uncover the top of the nano-pillar and to establish the top contact electrode.
The top and bottom contact electrodes are shown in red tone in FIG. 1. These pads are
impedance matched to allow for high frequency characterization by injecting an RF current
iy through the device. The bottom Cu electrode is grounded and the top Au electrode
is wire bounded to the central pin of a microwave cable. Hereafter, spectra associated to
SW excitations by this part of the microwave circuit will be displayed in red tone. The
nano-pillar is also connected through a bias-T to a dc current source and to a voltmeter
through the same contact electrodes, which can be used for standard current perpendicular
to the plane (CPP-GMR) transport measurements [44]. In our circuit, a positive current
corresponds to a flow of electrons from the Py, thick layer to the Py, thin layer and stabilizes
the parallel configuration due to the spin transfer effect [6, 7]. The studies presented below
will be limited to a dc current up to the threshold current for auto-oscillations in the thin

layer.

The originality of our design is the addition of an independent top microwave antenna,
whose purpose is to produce an in-plane RF magnetic field h,; at the nano-pillar location.
In FIG. 1 this part of the microwave circuit is shown in blue tone. The broadband strip-
line antenna consists of a 300 nm thick Au layer evaporated on top of a polymer layer
that provides electrical isolation from the rest of the structure. The width of the antenna
constriction situated above the nano-pillar is 10 um. Injecting a microwave current from
a synthesizer inside the top antenna produces a homogeneous in-plane linearly polarized
microwave magnetic field, oriented perpendicular to the stripe direction. Hereafter, spectra

associated to SW excitations by this part of the microwave circuit will be displayed in blue



tone.

B. Mechanical-FMR

The nano-fabricated sample is then mounted inside a Magnetic Resonance Force Mi-
croscope (MRFM), hereafter named mechanical-FMR [38]. The whole apparatus is placed
inside a vacuum chamber (107% mbar) operated at room temperature. The external mag-
netic field produced by an electromagnet is oriented out-of-plane, i.e., along the nano-pillar
axis 2. The mechanical-FMR setup allows for a precise control, within 0.2°, of the polar
angle between the applied field and 2. In our study, the strength of the applied magnetic
field shall exceed the saturation field (~ 8 kOe), so that the nano-pillar is studied in the
saturated regime.

The mechanical detector is an ultra-soft cantilever, an Olympus Bio-Lever having a spring
constant k ~ 5 mN/m, with a 800 nm diameter sphere of soft amorphous Fe (with 3%
Si) glued to its apex. Standard piezo displacement techniques allow for positioning the
magnetic spherical probe precisely above the center of the nano-pillar, so as to retain the
axial symmetry. This is obtained when the dipolar interaction between the sample and the
probe is maximal, by minimizing the cantilever resonance frequency, which is continuously
monitored [41].

The mechanical sensor is insensitive to the rapid oscillations of the transverse component
in the sample, which occur at the Larmor precession frequency, i.e., several orders of mag-
nitude faster than its mechanical resonances. The dipolar force on the cantilever probe is
thus proportional to the static component of the magnetization inside the sample. For our
normally magnetized sample, this longitudinal component reduces to M,. We emphasize
that for a bi-layer system, the force signal integrates the contribution of both layers. More-
over, the local M. (r) in the two magnetic layers is weighted by the distance dependence of
the dipolar coupling to the center of the sphere. In our case though, where the separation
between the sphere and the sample is much larger than the sample dimensions, one can

neglect this weighting and the measured quantity simplifies to the spatial average:

1
M) = — [ M.(r)dPr | |
(M)= 3 | M(r)d'r (1)
where the chevron brackets stand for the spatial average over the volume of the magnetic
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body.

The mechanical-FMR spectroscopy presented below consists in recording by optical means
the vibration amplitude of the cantilever either as a function of the out-of-plane magnetic
field Hey at a fixed microwave excitation frequency fgy, or as a function of the excitation
frequency f at a fixed magnetic field Hg,. This type of spectroscopy is called cw, for
continuous wave, as it is monitoring the magnetization dynamics in the sample under a
forced regime. A source modulation is applied on the cw excitation. It consists in a cyclic
absorption sequence, where the microwave power is switched on and off at the cantilever
resonance frequency, f. ~ 11.85 kHz. The signal is thus proportional to (AM,), where
A represents the difference from the thermal equilibrium state. The source modulation
enhances the signal, recorded by a lock-in detection, by the quality factor () ~ 2000 of the
mechanical oscillator. The force sensitivity of our mechanical-FMR setup is better than
1 fN, corresponding to less than 103 Bohr magnetons in a bandwidth of one second [38].
We note that this modulation technique does not affect the line shape in the linear regime,
because the period of modulation 1/f, is very large compared to the relaxation times of the
studied ferromagnetic system [45, 46]. Moreover, we emphasize that since the mechanical-
FMR signal originates from the cyclic diminution of the spatially averaged magnetization
inside the whole nano-pillar synchronous with the absorption of the microwave power, it

detects all possible SW modes without discrimination [39, 40].

Finally, we mention that the stray field produced by the magnetic sphere attached on
the cantilever does affect the detected SW spectra. In our setup, the separation between
the center of the spherical probe and the nano-pillar is set to 1.3 um (see FIG. 1), which is
a large distance considering the lateral size of the sample. At such distance, the coupling
between the sample and the probe is weak [38] as it does not affect the profiles of the intrinsic
SW modes in the sample. This is in contrast with the strong coupling regime, where the
stray field of the magnetic probe can be used to localize SW modes below the MRFM tip
[47]. For our mechanical SW spectrometer, the perturbation of the magnetic sphere reduces
to a uniform translation of all the peak positions [48] by —190 Oe (see section IIIB). In
the following, all the SW spectra are recorded with the magnetic sphere at the same exact

position above the nano-pillar.



FIG. 2. Comparative spectroscopic study performed by mechanical-FMR at fgy = 8.1 GHz, demon-
strating that distinct SW spectra are excited by a uniform in-plane RF magnetic field (a) and by an
RF current flowing perpendicularly through the layers (b). The positions of the peaks are reported
in Table II.

C. RF magnetic field vs. RF current excitations

The comparative spectroscopic study performed by mechanical-FMR at f5, = 8.1 GHz on
the normally magnetized spin-valve nano-pillar is presented in FIG. 2. In these experiments,
there is no dc current flowing through the device, and the spectra are obtained in the small
excitation regime (precession angles less than 5°, see Sec. VIITA). The upper panel (a)
shows the SW spectrum excited by a uniform RF magnetic field applied in the plane of the
layers, while the lower panel (b) displays the SW spectrum excited by an RF current flowing
perpendicularly through the magnetic layers. The striking result is that these two spectra
are different: none of the SW modes excited by the homogeneous RF field is present in the
spectrum excited by the RF current flowing through the nano-pillar, and vice versa.

Let us first focus on FIG. 2a, where the obtained absorption spectrum corresponds to
the so-called standard FMR spectrum. Here, the output power of the microwave synthesizer

at 8.1 GHz is set to +3 dBm, which corresponds to an amplitude of the uniform linearly



polarized RF magnetic field A~ 2.1 Oe produced by the antenna (see Sec. VIITA). In this
standard FMR spectrum, only SW modes with non-vanishing spatial average can couple
to the homogeneous RF field excitation. In field-sweep spectroscopy, the lowest energy
mode occurs at the largest magnetic field. So, the highest field peak at He = 10.69 kOe
should be ascribed to the uniform mode. Since this peak is also the largest of the spectrum,
it corresponds to the precession of a large volume in the nano-pillar, i.e., the thick layer
must dominate in the dynamics. In mechanical-FMR, a quantitative measurement of the
longitudinal magnetization is obtained [39, 49| (see Sec. VIITA). The amplitude of the peak
at Hg corresponds to 4m(AM.) ~ 14 G, which represents a precession angle (f) ~ 3.1°. This
sharp peak is followed by a broader peak with at least two maxima at Hg = 9.65 kOe and
Hg = 9.51 kOe, and at lower field, by a smaller resonance around He = 8.64 kOe. Among
these other peaks, there is the uniform mode dominated by the thin layer, which has to be

identified and distinguished from higher radial index SW modes.

Let us now turn to FIG. 2b, corresponding to the spectroscopic response to an RF current
of same frequency 8.1 GHz flowing perpendicularly through the nano-pillar. Here, the output
power of the microwave synthesizer is —22 dBm, which corresponds to an rms amplitude of
the RF current i,y ~ 170 A (see Sec. VIIIB). The SW spectrum is acquired under the ezact
same conditions as for standard FMR, i.e., the spherical magnetic probe of the mechanical-
FMR detection is kept at the same location above the sample. The striking result is that
the position of the peaks in FIGS. 2a and 2b do not coincide. More precisely there seems
to be a translational correspondence between the two spectra, which are shifted in field by
about 0.5 kOe from each other. The lowest energy mode in the RF current spectrum occurs
at He = 10.22 kOe. This is again the most intense peak, suggesting that the thick layer
contributes to it, and 4m(AM.) ~ 26 G, which represents a precession angle (0) ~ 4.2°. This
main resonance line is also split in two peaks, with a smaller resonance in the low field
wing of the main peak, about 100 Oe away. At lower field, two distinct peaks appear at
Heg =9.17 kOe and He =9.07 kOe and another peak is visible at Hg = 8.22 kOe.

The fact that the two spectra of FIGS. 2a and 2b are distinct implies that they have
a different origin. It will be shown in the theoretical section IV A 3 that the RF field and
the RF current excitations probe two different azimuthal symmetries /. Namely, only ¢ =0

modes are excited by the uniform RF magnetic field, whereas only ¢ = +1 modes are excited

by the orthoradial RF Oersted field associated to the RF current [50]. The mutually exclusive
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nature of the responses to the uniform and orthoradial symmetry excitations is a property of
the preserved axial symmetry, where the azimuthal index ¢ is a good quantum number, i.e.,

different /-index modes are not mixed and can be excited separately (see section IV A 2).

III. EXPERIMENTAL ANALYSIS

In this section, we first look at the effect of a continuous current flowing through the
nano-pillar on the SW spectra in order to determine which layer contributes mostly to the
resonant signals observed in FIG. 2. Due to the asymmetry of the spin transfer torque in
each magnetic layer, the different SW modes are influenced differently depending on the
layer in which the precession is the largest. Then, we briefly mention experiments, where
spectroscopy is performed by monitoring the dc voltage produced by the magnetization
precession in the hybrid nanostructure, and compared to mechanical-FMR. Finally, the
analysis of the frequency-field dispersion relation and of the linewidth of the resonance
peaks enables to extract the gyromagnetic ratio and the damping parameters in the thick

and thin layers.

A. Direct bias current

To gain further insight about the peak indexation, we have measured the spectral evolu-
tion produced on the SW spectra of FIG. 2 when a finite dc current I4. # 0 is injected in the
nano-pillar. We recall that for our sign convention, a positive dc current stabilizes the thin
layer and destabilizes the thick one due to the spin transfer torque, and vice versa [6, 7].
The results obtained by mechanical-FMR are reported in FIG. 3.

Let us first concentrate on FIG. 3a, in which the excitation that probes the different SW
modes is the same as in FIG. 2a, 7.e., a uniform RF magnetic field. Two main features
can be observed in the evolution of the SW spectra as Iy is varied. First, the amplitude of
the peak at Hg smoothly increases with the positive current and smoothly decreases with
the negative current. At the same time, the peak at Hg, which is about five times smaller
than the peak at Hy when Iy = 0 mA, almost disappears for positive current and strongly
increases at negative current, until it becomes larger than the other peaks when 4. = -4 mA.

These two features are consistent with the effect of spin transfer if we ascribe the peak at
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FIG. 3. Evolution of the SW spectra measured at fg, = 8.1 GHz by mechanical-FMR for different
values of the continuous current Iy, flowing through the nano-pillar. The panel (a) corresponds
to excitation by a uniform RF magnetic field and the panel (b) to excitation by an RF current

through the sample.

Ha to the uniform mode of mostly the thick layer and the peak at Hg to the one of mostly
the thin layer. More precisely, it is expected that in the sub-critical regime (|I4.| < I, where
Iy, is the threshold current for auto-oscillations, I, < 0 for the thin layer and Iy, > 0 for the
thick layer), the damping scales as a(1 - Iy./ ) [25, 26] (see Sec. VIIA), where « is the
Gilbert damping parameter. It means that the linewidth of a resonance peak that is favored
by spin transfer should decrease as the current gets closer to I, and that its amplitude,
which scales as the inverse linewidth, should increase.

Although the effect on the peak amplitude noted above is clear in FIG. 3a, it is not on the
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linewidth. The reason is that in this experiment, the strength of the driving RF magnetic
field is kept constant to h,s = 2.1 Oe. As a result, the shape of the growing peaks in FIG. 3a
becomes more asymmetric, which is a signature that the precession amplitude driven by
the RF field is strong enough to change the internal field by an amount of the order of the
linewidth. This leads to some foldover of the resonance line [51, 52], a non-linear effect for
which details are given in the Sec. VIIT A. In other words, the distortion of the line shape as
the peak amplitude increases prevents to see the diminution of its linewidth [53]. It would
be necessary to decrease the excitation amplitude as the threshold current is approached
[26] so as to maintain the peak amplitude in the linear regime in order to reveal it.

The opposite signs of the spin transfer torques which influence the dynamics in the thin
and thick layers are thus clearly seen in FIG. 3a. Their relative strengths can also be
determined, as the amplitude of the peak at Hg grows much faster with negative current
than the one of the peak at Hs with positive current. This is because the efficiency of the
spin transfer torque is inversely proportional to the thickness of the layer [6, 7]. Whereas
the precession angle in the thick layer does not vary much with 74 (from »~ 2.5° at -4 mA
to ~ 3.5° at +4 mA), the precession angle that can be deduced from (AN, ) in the thin layer
grows from almost zero at Iy. = +4 mA to more than 6° at I4. = -4 mA. Moreover, the peak
position Hg shifts clearly towards lower field as the negative current is increased. This is
due to the onset of spin transfer driven auto-oscillations in the thin layer, which occurs at
a threshold current Iy, $ -4 mA and produces this non-linear shift [19]. We note, that such
a value for the threshold current in the thin layer can be found from Slonczewski’s model
(see Sec. VITA).

Let us now briefly discuss FIG. 3b, which shows the dependence on /4. of the mechanical-
FMR spectra excited by an RF current excitation. A similar dependence on I4. of the
resonance peaks in translational correspondence with FIG. 3a is observed. Again, a clear
asymmetry is revealed depending on the polarity of I, and on the SW modes. The double
peak at Hg is favored by positive currents, hence it should be ascribed to mostly the thick
layer precessing, while the double peak at Hg is strongly favored by negative currents, hence
it should be ascribed to mostly the thin layer precessing. Moreover, a careful inspection
shows that the peak He, which looks single at I3, = 0 mA, is actually at least double. We
will explain this splitting of higher harmonics modes in section V B.

To summarize, the passage of a dc current through the nano-pillar enables to determine
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which layer mostly contributes to the observed SW modes, owing to the asymmetry of the

spin transfer effect.

B. Voltage-FMR

Our experimental setup also allows to monitor the dc voltage produced across the nano-
pillar by the precession of the magnetization in the bi-layer structure. A lock-in detection is
used to measure the difference of voltage across the nano-pillar when the RF is on and off:
Viae = Von = Vog. This can be done simultaneously to the acquisition of the mechanical-FMR
signal, in the exact same conditions (see FIG. 1). Since the presentation of the experimental
results requires a specific discussion, the details as well as the graphs will be published
elsewhere. Here, we shall only reveal the three main features that can be noticed in the
voltage-FMR spectra.

First, even at I4. = 0, dc voltage peaks are produced across the nano-pillar at the same
positions as the mechanical-FMR peaks observed in FIG. 2, with a difference of potential
that lies in the 10 nV range for the precession angles excited here. It is ascribed to spin
pumping and accumulation in the spin-valve hybrid structure [54, 55]. Second, these voltage
resonance peaks are signed, namely, the SW modes favored at I4. < 0 in FIG. 3a (for which
the thin layer is dominating) produce a positive voltage peak, whereas those favored at
I4c > 0 (thick layer dominating) produce a negative voltage peak. This difference between
the thick and thin layer contributions is ascribed to the asymmetry of the spin accumulation
in the multi-layer stack [56]. Third, the relative amplitudes of the voltage-FMR peaks are
different from the mechanical-FMR ones. For instance, the voltage-FMR peak of the thin
layer at Hg is slightly larger than the peak at Hg of the thick layer (and it has an opposite
sign). This illustrates an important difference between the two detection schemes. While
mechanical-FMR measures a quantity proportional to the precessing volume, (AM.,), the
voltage-FMR measures an interfacial effect. Therefore, when the same precession angle is
excited in both layers, the voltage-FMR signal associated to each layer is approximately the
same, whereas the mechanical-FMR signal from the thin layer is roughly four times smaller
than the one from the thick layer, due to their relative thicknesses.

Finally, we mention that voltage-FMR spectroscopy can also record the intrinsic FMR

spectrum of the nano-pillar, i.e., in the absence of the spherical MRFM probe above it.
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This enables to check that the only effect introduced by the probe in mechanical-FMR is
an overall shift of the SW modes spectra to lower field without any other distortion, and to

quantify this shift, found to be =190 Oe [57].

C. Gyromagnetic ratio

A precise orientation of the applied magnetic field H,,; along the normal Z of the sample
(polar angle 0y = (2, Hey) = 0) enables a direct determination of the modulus v of the
gyromagnetic ratio [38]. By following the frequency-field dispersion relation of the resonance
peaks at Hg and at Hg (from 4.5 GHz to 8.1 GHz and from 6.2 GHz to 11 GHz, respectively)
in our nano-pillar, it is found that v = 1.87x 107 rad.s~!.G~! is identical in the thick and thin
layers. Moreover, the value of v measured in the nano-pillar is the same as in the extended
reference film (see Sec. VIIIC and Table I), confirming that the applied field is sufficient to
saturate the two magnetic layers and is precisely oriented along z.

The same result is obtained by following the evolution of the frequency-field dispersion
relation presented in FIG. 4. Here, we take advantage of the broadband design of the elec-
trodes which connect the nano-pillar to measure the FMR spectrum at fixed bias magnetic
field, Hg, = 10 kOe, by sweeping the frequency of the RF current through it. The data
are plotted according to the frequency scale above FIG. 4a. At constant magnetic configu-
ration (above the saturation field, i.e., > 8 kOe), this frequency scale is in correspondence
with field-sweep experiments performed at fixed RF frequency fgix = 8.1 GHz through the
affine transformation Hex — Hix = 27(f — fix)/7, as seen from the field scale below FIG. 4b.
This is a direct experimental check of the equivalence between frequency and field sweep

experiments in the normally saturated state.

D. Damping parameters

From the FMR data presented above, we can also directly extract the damping parameters
in each Permalloy layer. Indeed, in field-sweep spectroscopy in the normal orientation (6 =
0), the full width at half-maximum (FWHM) AH of a resonance line is proportional to the
excitation frequency w/(27) through the Gilbert constant a: AH = 2a(w/7v) (see Sec. VITA).

The linewidth of the peak at Hg associated to mainly the thick layer in FIG. 2a is equal to

15



FIG. 4. Frequency-field dispersion relation: the top spectrum (a) is measured at fixed bias field
Hg, = 10 kOe by sweeping the frequency of the RF current i,¢ through the nano-pillar. The bottom
spectrum (b) is the same as in FIG. 2b, and is obtained by sweeping the magnetic field at fixed
frequency frx = 8.1 GHz of 7,t. The top and bottom scales are in correspondence through the affine

transformation Hex, — Hay = 27(f — fax)/7-

AHg =48 Oe, which corresponds to a damping ag = 0.88x 1072, From the same mechanical-
FMR spectrum, the linewidth of the peak at Hg), associated to mainly the thin layer, cannot
be easily extracted due to the proximity of the peak at Hg. Owing to the interfacial origin
of the voltage-FMR signal, the peak at Hg is more distinguishable in the spectrum of the
voltage-FMR (not shown), and its linewidth, AHg = 70 Oe, can be fitted. It corresponds to
a damping ag = 1.29 x 1072,

The linewidths of the modes at Heg and He can also be fitted and give similar results for
the damping associated to each layer. In the case of the RF current excitation, a frequency-
sweep spectrum can be acquired at a fixed bias magnetic field Hg, (see FIG. 4). In that
case, the damping constant is simply obtained by a = Af/(2f), where Af is the width of
the line centered at f. At Hgy = 10 kOe, fo = 7.37 GHz and A fg = 0.12 GHz, which yield
g =0.81 x 1072, and fe = 10.92 GHz and A fe = 0.33 GHz, which yield cg = 1.5 x 1072,
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TABLE I. Magnetic parameters of the thin Py, and thick Py, layers measured by cavity-FMR on

the reference film (top row) and by mechanical-FMR in the nano-pillar (bottom row).

AT M, (G) Qg A My, (G) ap v (rad - st - G
8.2x 103 1.5x1072 9.6 x 103 0.9x 1072 1.87 x 107
8.0 x 103 1.4x1072 9.6 x 103 0.85 x 1072 1.87 x 107

In summary, we retain the following values for the damping parameters in respectively
the thin and the thick layers: a, = (1.4 +0.2) x 1072 and a3 = (0.85£0.1) x 1072, We have
reported them, together with ~, in Table I.

These two values are in line with the ones obtained on the reference film, which have
also been reported in Table I. Still, we observe that the linewidths in the nanostructure
are systematically lower than the ones measured on the reference film. This is a constant
characteristic that we associate to the confined geometry, which lifts most of the degener-
acy (well separated SW modes) and thus strongly reduces the inhomogeneous part of the
linewidth observed in the infinite layer [15, 26]. Rather, the inhomogeneities associated to
the magnetic layers [15] or to the confinement geometry will lead to some mode splitting in
the nanostructure (see section VB). We have checked that the inhomogeneous contribution
to the linewidth in the nano-pillar is weak, by following the dependence of the measured
AH as a function of frequency. In fact, the increase of AHg from 70 Oe at 8.1 GHz to
105 Oe at 11 GHz is purely homogeneous.

Finally, the finding that the damping is larger in the thin layer than in the thick layer
is ascribed to the adjacent metallic layers [58]. In fact, non-local effects such as the spin
pumping effect [54, 59] and the spin diffusion in the adjacent normal layers by the conduction
electrons yield an interfacial increase of the magnetic damping [60], stronger in the case of

thin layers.
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IV. THEORETICAL ANALYSIS

In this section, we first review a general formalism allowing the calculation of the discrete
spectrum associated with SW propagation inside a confined body of arbitrary magnetic con-
figuration. It is shown that in the two-dimensional (2D) axially symmetric case, different
(-index modes can be excited separately, as found experimentally in section IIC. The classi-
fication of the SW modes in this case is also used to extract the parameters of each magnetic
layer from the experimental FMR spectra. In a second part, we discuss the influence of the
dynamic coupling between the magnetic disks, where the collective dynamics splits into
binding and anti-binding modes. It is shown that in our experimental case, the dynamic
dipolar coupling introduces a weak spectral shift, although its influence on the character of
the SW modes is real. In the last part, a comparison to full three-dimensional (3D) micro-
magnetic simulations is performed in order to study in details the collective dynamics in the

nano-pillar.

A. Analytical model
1.  General theory

Below, we briefly review the general theory of linear SW excitations (see Sec. VIT A for
more details). We consider an arbitrary equilibrium magnetic configuration, where the local
magnetization writes M u, with M, the saturation magnetization and @ the unit vector
along the local equilibrium direction (implicitly dependent on the spatial coordinates). The
linearization of the local equation of motion is obtained by decomposing the instantaneous
magnetization vector M (t) into a static and dynamic component [61] (see FIG. 5). We shall
use the following ansatz:

]‘ﬁj) _a+m(t)+ O(m?), (2)

where the transverse component m(t) is the small dimensionless deviation (Jm|< 1) of the
magnetization from the equilibrium direction. In ferromagnets, |M| = M, is a constant of
the motion, so that the local orthogonality condition = -m = 0 is required.

Substituting Eq. (2) in the lossless Landau-Lifshitz equation Eq. (21) (see Sec. VII A)

and keeping only the terms linear in m, one obtains the following dynamical equation for
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FIG. 5. Schematic representation of the magnetization dynamics under continuous RF excitation.
In the steady state, the torque exerted by the RF perturbation field hy (orange arrow) compen-
sates the torque exerted by the damping (green), and the local magnetization vector M(t) (purple)
precesses at the Larmor frequency on a circular orbit around the local equilibrium direction (unit
vector @). M(t) is the vector sum of a small oscillating component Mym and a large static com-
ponent Mg (1 ~ |m/? /2), respectively transverse and parallel to w. The inset shows the simulated
spatial distribution of @ inside the nano-pillar at Heyy = 10 kOe (see section IV C). In the white
regions, the magnetization is aligned along the normal 2 within 0.05°. In the colored regions, 4 is
flaring (< 5°) in the radial direction (the hue indicates the direction of @ — 2 according to the color

code defined in FIG. 6).

om ~
—=uxQ*m 3

ot o )
where here and henceforth, tensor operators are indicated by wide hat, the cross product is
denoted by x and the convolution product is denoted by *. The self-adjoint tensor operator

Q represents the Larmor frequency:
Q=~HT + 47y M, G, (4)

where ~ is the modulus of the gyromagnetic ratio, H is the scalar effective magnetic field,
T is the identity matrix, and G is the linear tensor operator describing the magnetic self-
interactions. The later is the addition of several contributions G(® + G(©) + ..., respectively

the magneto-dipolar interactions, the inhomogeneous exchange, etc... (see Sec. VIIB). The
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effective magnetic field H is a vector aligned along w, whose norm is
H=4-Hy-4rMa-G +u, (5)

the sum of the w—component of Hy, the total applied magnetic field including the stray
field of any nearby magnetic object (in our case, the adjacent magnetic layer in the nano-
pillar and the spherical probe), reduced by the static self-interactions, which include the

depolarization magnetic field along 4 created by the static component of the magnetization.

SW modes m,, are by definition eigen-solutions of Eq. (3):
—iw,m, =uxQ*xm, . (6)

Here w, is the SW eigen-frequency and v is a set of indices to enumerate the different modes.
The main properties of SW excitations follow from the eigen problem Eq. (6) and the
fact that the operator € is self-adjoint and real. One can show that the eigen solutions obey

the closure relation

i, (6 x M) = Nydy (7)

where ¢ is the Kronecker delta function and m stands for the complex conjugate of m.
Here we have used the chevron bracket notation introduced in Eq. (1) to denote the spatial
average. The quantities N, are real normalization constants, which depend on the choice of
eigen-functions m,,. If the equilibrium magnetization @ corresponds to a (local) minimum
of the energy, then the operator  is positive-definite. It follows that the “physical” modes
with w, > 0 have positive norm N, > 0. In this formalism, the eigen-frequencies w, can be

calculated as
(my Qo my)

N, : (8)

Wy =

The importance of this relation is that the frequencies w, calculated using Eq. (8) are
variationally stable with respect to perturbations of the mode profile m,. Thus, injecting
some trial vectors inside Eq. (8) allows one to get approximate values of w, with high
accuracy [62]. The trial vectors should obey some simple properties: i) they should form
a complete basis in the space of vector functions m, ii) be locally orthogonal to w and iii)

satisfy appropriate boundary conditions at the edges of the magnetic body [63].
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2. Normally magnetized disks

In this part, we shall establish a SW modes basis m,, for a normally magnetized disk. A
specific feature of the considered geometry is its azimuthal symmetry. Mathematically, this
means that the operator @x ) commutes with the operator R, that describes an infinitesimal
rotation about the 2z axis, assuming that the boundary conditions are invariant under such
a rotation.

This particular configuration allows us to classify the SW modes according to their behav-
ior under the rotations in the (z,y) plane. Namely, SW eigen-modes are also eigen-functions
of the operator Ez corresponding to a certain integer azimuthal number /:

om ‘
a—qﬁ—zxm=—z(€—1)m. 9)

Here, ¢ is the azimuthal angle of the polar coordinate system.

As one can see, Eq. (9) determines the vector structure of SW modes and their dependence

on the angle ¢. Namely, Eq. (9) for a fixed ¢ has two classes of solutions:

1,
mg!) = 5 (@ +ig)e v (). (10a)

and

my” = 5 (@~ ig)e 0 (). (10b)

where the functions zbém) (p) describe the dependence of the SW mode on the radial coordi-
nate p and have to be determined from the dynamical equations of motion. So, the azimuthal
symmetry allows one to reduce the 2D (p and ¢) vector equations to a one-dimensional (p)
scalar problem.

Generally speaking, SW eigen-modes are certain linear combinations of both possible /-
forms Egs. (10). The coupling of these two forms is due solely to the inhomogeneous dipolar
interaction. In our experimental case (lowest energy modes of a relatively thin disk) one can
completely neglect this coupling [64] and consider only the right-polarized form Eq. (10a).
In the following we will drop the superscript (1) in mél) and @1).

We shall now find an appropriate set of radial functions 1y(p) to calculate the SW spec-
trum using Eq. (8). Here, we can take advantage of the variational stability of Eq. (8) and,
instead of the exact radial profiles 1,(p) (to find them one has to solve integro-differential

equations), use some reasonable set of functions. Namely, it is known that the dipolar in-

teraction in thin disks or prisms does not change qualitatively the profile of SW modes,
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FIG. 6. Color representation of the Bessel spatial patterns for different values of the azimuthal
mode index ¢ (by row) and radial mode index n (by column). The arrows are a snapshot of the
transverse magnetization m,, labeled by the index v = ¢, n. All arrows are rotating synchronously
in-plane at the SW eigen-frequency. In our coding scheme, the hue indicates the phase ¢ = arg(m,,)
(or direction) of m,, and the brightness the amplitude of |m,[>. The nodal positions (jm,| = 0)

are marked in white.

but introduces effective pinning at the lateral boundaries [63]|. Therefore, we will use radial
profiles of the form ,(p) = Ji(ksnp), where Jy(x) is the Bessel function and k;, are SW
wave-numbers determined from the pinning conditions at the disk boundary p = R. For
our experimental conditions (t,,%, < R), the pinning is almost complete, and we shall use
kon = Ken/R, where kg, is the n-th root of the Bessel function of the ¢-th order.

FIG. 6 shows a color representation of the Bessel spatial patterns for different values of
the index v = £,n. We restrict the number of panels to two values of the azimuthal mode
index, ¢ = 0,+1, with the radial index varying between n = 0,1,2. In our color code, the
hue indicates the phase (or direction) of the transverse component m,,, while the brightness
indicates the amplitude of |m,|>. The nodal positions are marked in white. A node is a
location where the transverse component vanishes, i.e., the magnetization vector is aligned
along the equilibrium axis. This coding scheme provides a distinct visualization of the phase
and amplitude of the precession profiles. The black arrows are a snapshot of the m,, vectors

in the disk and are all rotating synchronously in-plane at the SW eigen-frequency.

The top left panel shows the v =0,0 (¢ =0, n = 0) mode, also called the uniform mode.
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FIG. 7. Analytically calculated spectra at Hpx = 10 kOe using the set of Bessel functions (see
FIG. 6) as the trial eigen-vectors. The panel (a) shows the linear response to a uniform excitation
field by = & and the panel (b) to an orthoradial excitation field hi = —sin¢@ + cos oy. A light

(dark) color is used to indicate the energy stored Eq. (12) in the thin Py, and thick Py, layers.

It usually corresponds to the lowest energy mode since all the vectors are pointing in the
same direction at all time. Below is the ¢ =+1, n = 0 mode. It corresponds to SWs that are
rotating around the disk in the same direction as the Larmor precession. The corresponding
phase is in quadrature between two orthogonal positions and this mode has a node at the
center of the disk. The variation upon the n = 0,1, 2 index (¢ being fixed) shows higher order
modes with an increasing number of nodal rings. Each ring separates regions of opposite
phase along the radial direction. All these spatial patterns preserve the rotation invariance

symmetry.

3. Selection rules

Using the complete set of Bessel functions in Eq. (8), one can obtain analytically the

discrete spectrum of eigen-values for both the thin and thick layers. The details of the
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numerical application can be found in Sec. VIIB. The spectral values are displayed in
FIG. 7 using vertical ticks labeled v = jg,,, where j = a,b indicates the precessing layer,
and ¢, n the azimuthal and radial mode indices. They are calculated at fixed applied field
Hg, = 10 kOe and placed on the graphs according to the frequency scale below FIG. 7b,
which is in correspondence with the field scale above FIG. 7a (see II1 C for the equivalence

between field- and frequency-sweep experiments).

The comparison with the experimental data in FIGS. 2a and 2b shows that the coupling to
an external coherent source depends primarily on the /-index. Indeed, this index carries the
discriminating symmetry in SW spectroscopy [65]. This is because the excitation efficiency
is proportional to the overlap integral

_ (m,, ’ h1>
h, = el (1)

where hi(r) is the spatial profile of the external excitation field. It can be easily shown
that a uniform RF magnetic field, h; = h,sx, can only excite £ = 0 SW modes. We have
shown in FIG. 7a the predicted position of these modes with blue tone ticks. Obviously the
largest overlap is obtained with the so-called uniform mode (n = 0). Higher radial index
modes (n # 0) still couple to the uniform excitation but with a strength that decreases
as n increases [37, 66]. The ¢ # 0 normal modes, however, are hidden because they have
strictly no overlap with the excitation. The comparison with the experimental spectrum
in FIG. 2a confirms that conventional FMR [67] probes only partially the possible SW
eigen-modes, along the ¢ = 0-index value. In contrast, the RF current-created Oersted field,
hi = hoe(p)(—sin ¢ & + cospy) has an orthoradial symmetry and can only excite ¢ = +1
SW modes. We have shown in FIG. 7b the predicted position of these modes with red
tone ticks. They are in good agreement with the resonance positions observed in FIG. 2b.
We also note that the ¢ = 0 and ¢ = +1 spectra calculated analytically bear similar a/b
and n index series as a function of energy. This explains why the two spectra in FIGS. 2a
and 2b look in translational correspondence with each other. We emphasize that the same
translational correspondence would have been observed for any higher azimuthal order /> 1

index spectra.

From the coupling to the excitation field expressed by Eq. (11), one can also calculate

the mechanical-FMR signal o (AM,), proportional to the energy stored in the magnetic
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system [39, 45|. For an arbitrary pulsation frequency w,
2

) 2 hy
4 (AM -u) ~ 471’]\[32 m/\[y, (12>

where the SW damping rate ', is given by Eq. (28) in Sec. VITA. Eq. (12) is derived
under the approximation that the only relevant coeflicients in the damping matrix are the
diagonal terms. It has been used to compute the relative peak amplitudes in the analytically

calculated spectra of FIG. 7.

4. Comparison with experiments

The analytical model outlined in sections IVA 1 and IV A2 can be used to analyze the
experimental spectra of FIG. 2, and to extract some useful parameters of the nano-pillar.
More details can be found in the Sec. VII B along with an approximate expression for the
SW frequencies in the form of Kittel’s traditional formula (with renormalized values of the
effective self-demagnetization fields). This Kittel’s formula, derived for the ¢ = 0 spectrum,
should be used to analyze the SW spectrum excited by a uniform RF field to yield the
correct values of the magnetization in our nano-pillar. Identifying the experimental peaks
at Hg and Hg as the lowest energy modes of the thin Py, and thick Py, layers yields their
respective magnetizations 47 M, = 8.0 x 103 G and 47 M, = 9.6 x 103 G, see Eq. (52). These
values have been reported in Table I, together with those measured in the reference film
(see Sec. VIIIC). The magnetizations extracted in the nano-pillar are the same as in the
extended film. The only small difference concerns the magnetization of the thin layer, which
is 200 G lower in the nanostructure than in the reference film (where 47M, = 8.2 x 103 G).
We attribute this to some interdiffusion between Py and Cu or Au at the interfaces of the
thin layer, which can happen during the etching process of the nano-pillar.

Second, the separation between SW modes crucially depends on the lateral confinement in
the nano-pillar and thus on the precise value of its radius. Experimentally, the measured field
separation between the two first peaks in FIG. 2a (FIG. 2b), which differ by an additional
node in the radial direction, is Hy— Hg = 1.04 kOe (He — Hg = 1.05 kOe). Using the nominal
radius 100 nm in the analytical model predicts that consecutive n-index mode (n = 0 and
n = 1 modes) should be separated by 1.33 kOe, which is larger than the observed value. This

separation drops to 1.05 kOe for a larger disk radius R = 125 nm, which we thus refer to
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FIG. 8. Schematic representation of the coupled dynamics between two different magnetic disks.
Here, wy, the eigen-frequency of the lowest energy precession mode in the thick layer (the thin
layer being fixed at equilibrium) is smaller than w,, the one in the thin layer (the thick layer
being fixed at equilibrium). When the two disks are dynamically coupled through the dipolar
interaction, the binding state B corresponds to the two layers oscillating in anti-phase at wp, with
the precession occurring mostly in the thick layer, whereas the anti-binding state A corresponds to
the layers oscillating in phase at w4, with the precession mostly in the thin layer. This is shown
by displaying the dipolar charges and the precession profile m(p) in each layer using a light (dark)

color to represent the contribution of the thin (thick) layer.

as the radius of our nano-pillar. This value of R also allows to estimate the shift between
the /=0 and ¢ = +1 spectra, found to be 530 Oe, in good agreement with the experimental
value Hy — Heg = 470 Oe observed in FIG. 2.

B. Influence of dipolar coupling between different layers

In the treatment above we have neglected the dynamic coupling between the two mag-
netic disks in dipolar interaction. In general, the interaction between two identical magnetic
layers will lead to the hybridization of the same v-index mode of each layer into two collective
modes: the acoustic mode, where the layers are precessing in phase, and the optical mode,
where they are precessing in anti-phase. This has been observed in interlayer-exchange-
coupled thin films [68] and in trilayered wires where the two magnetic stripes are dipolarly

coupled [69]. In the case where the two magnetic layers are not identical (different ge-
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ometry or magnetic parameters), this general picture continues to subsist. Although both
isolated layers have eigen-modes with different eigen-frequencies, the collective magnetiza-
tion dynamics still splits in a binding and anti-binding state. But here, the precession of
magnetization can be more intense in one of the two layers and the spectral shift of the
coupled SW modes with respect to the isolated SW modes is reduced, as it was observed in
both the dipolarly-[69] and exchange-coupled cases [70].

Here, we assume that the dominant coupling mechanism between the Py layers is the
magnetic dipolar interaction. We neglect any exchange coupling between the magnetic
layers mediated through the normal spacer or any coupling associated to pure spin currents
[14] in our all-metallic spin-valve structure. To analyze the influence of the dipolar coupling
between the two magnetic layers, one can complement the perturbation theory derived in
the previous section IV A and in the Sec. VIIA. Denoting ¢;, the SW amplitudes in j-th
disk , one can get from Eq. (26):

de, . .

d—ct = —1WeCq + 17 ha pCh (13a)
d

% = —iwpCp + 17Ny Ca (13b)

where w; is the frequency of the j-th disk (j = a,b) with account of only the static field of
the j/-th disk (j" = b,a) (i.e., with M fixed at equilibrium, see FIG. 8). The cross term h; ;.

is given by

4m M;
N;

Here, G(9) represents the magneto-dipolar interaction, M;: is the saturation magnetization

hj g =- (m;- G «my) (14)

J

of the j’-th disk and the averaging goes over the volume of j-th disk. Thus, A, is the
average over the j-th mode of the magnetic field created by the magnetization of the j’-th
disk. It can be shown that the overlap defined in Eq. (14) is maximum between mode pairs
bearing similar wave-numbers in each layer (i.e., the same set of indices v) [69]. This is the
reason why dropping the index v in Eqgs. (13) and (14) is a reasonable approximation.

The anti-binding (A) and binding (B) eigen-frequencies of Egs. (13) have the form

— 2
wA7B=wa;Wb:|:\/(wa2(A)b) +Qg, (15)

where

QQ = ’YQha,bhb,a . (16)
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In the case when the dipolar coupling is small (Q < |w, — wy|), the eigen-frequencies can

be written as (we assume w, > wp)

02
Wp =Wg + R (17)
Wa — Wh
0?2
wp =Wy — . (18)
Wq — Wp

These equations can be used for quantitative purposes when Q/|w, — wp| < 0.3 in which
case they describe frequency shift with accuracy better than 10%. Thus, the larger of the

frequencies (w,) shifts up by
2
Aw = {2 (19)

Y
W — Wy

while the smaller one (wy) shifts down by the same amount. This effect is summarized in
FIG. 8.

A numerical estimate of the coupling strengths h,; and h;, between the lowest energy
SW modes in each disk can be found in Sec. VIIB. The obtained result is very close to
the approximate estimation used in Ref.[71], where the spatial structure of the interacting
SW modes is ignored to calculate the dipolar coupling between uniformly precessing disks.
For the experimental parameters, /2w ~ 0.5 GHz. This coupling is almost an order of
magnitude smaller than the frequency splitting w, — ws, caused, mainly, by the difference of
effective magnetizations of two disks: v4w (M, — M,) ~ 27 -4.5 GHz. As a result, the shift of
the resonance frequencies due to the dipolar coupling is negligible, Aw/27 ~ 0.06 GHz.

Using Egs. (13), one can also estimate the level of mode hybridization due to the dipolar
coupling. For instance, at the frequency w4 ~ w,, the ratio between the precession amplitudes
in the two layers is given by

Q

Wa — Wp

v/ Cal,,,, = Aw/(Yhap) = (20)

For the experimental parameters, /(w, — wp) ~ 0.1, i.e., the precession amplitude in the
disk b is about 10 % of that in the disk a. Thus, although the dipolar coupling induces a
small spectral shift (second order in the coupling parameter, Eq. (19)), its influence in the
relative precession amplitude is significant (first order in the coupling parameter, Eq. (20)).
Finally, we point that here the dipolar coupling is anti-ferromagnetic, and that the binding
(lower energy) mode B always corresponds to the thick layer mainly precessing, with the
thin layer vibrating in anti-phase, and vice-versa for the anti-binding (in-phase) mode A

(see dipolar charges in FIG. 8).
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FIG. 9. Panel (a) is the numerically calculated spectral response to a uniform excitation field
hi < &, from a 3D micromagnetic simulation performed at Hgx = 10 kOe. The peaks are labeled
according to their precession profiles shown in FIG. 11. A light (dark) color is used to indicate
the energy stored in the thin (thick) layer. Panel (b) recalls the experimental spectrum measured
by mechanical-FMR when exciting the nano-pillar by a homogeneous RF magnetic field at fgy =

8.1 GHz.

C. Micromagnetic simulations

In the analytical formalism presented above, several approximations have been made.
For instance, we have assumed total pinning at the disks boundary for the SW modes and
no variation of the precession profile along the disks thicknesses (2D model), and we have
neglected the dependence on v of the dynamic dipolar coupling. Still, it allows to extract
important parameters in our nano-pillar, such as its radius and the magnetization in both
layers. It also describes the influence of the dynamic dipolar coupling on the position and

collective character of the SW modes.

Instead of developing a more complex analytical formalism, we have performed innovative

3D micromagnetic simulations in order to go beyond the approximations mentioned above,
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FIG. 10. Panel (a) is the simulated spectral response to an orthoradial excitation field h; oc
—-sing@ + cos py. Panel (b) recalls the experimental spectrum measured by mechanical-FMR for

an RF current excitation.

and to unambiguously identify the SW modes observed in our nano-pillar sample. For that
purpose, we have used a combination of micromagnetic simulation solvers available as part
of SpinFlow 3D, a finite element based simulation platform for spintronics developed by In
Silicio [72]. The steady state micromagnetic solver used to obtain numerical approximations
of micromagnetic equilibrium states is based on a weak formulation and Galerkin type finite
element implementation of the very efficient projection scheme introduced in Ref.[73]. A
second numerical solver, a micromagnetic Eigen solver, has been used for fast calculations of
lossless 3D SW eigen-modes. It is based on a finite element discretization of the generalized
eigen-value problem defined by the linearized lossless magnetization dynamics in the vicin-
ity of an arbitrary pre-computed equilibrium state, following an approach very similar to
the one introduced in Ref.[74]. The discrete generalized eigen-value problem is solved with
an iterative Arnoldi method using the ARPACK library [75]. In this calculation the full
complexity of the 3D micromagnetic dynamics of the presently considered bilayer system

is preserved. The solver outputs both the eigen-values by increasing energy order and the
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associated eigen-vectors. Several tens of SW eigen-modes can be accurately computed in
a matter of few minutes of CPU time with a standard desktop PC, for magnetic thin film
nano-structures with typical lateral sizes in the 100 nm range. This is two to three orders of
magnitude faster compared to the required computation time when using more traditional
approaches for micromagnetic computation of SW eigen-modes, which are typically based on
the Fourier component analysis of time series generated by the solution of the full non-linear
Landau-Lifshitz-Gilbert equation [76]. Finally, a quite generic linear response solver, imple-
menting among other things the spectral decomposition of the MRFM signal as expressed
in Egs. (11), (12) and (28), has been used to compute the MRFM spectra shown here.

To proceed, the nano-pillar is first discretized using unstructured meshing algorithms
resulting in an average mesh size of 3.5 nm. This corresponds to a total number of vertices
in the vicinity of 5 x 104, The magnetization vector is interpolated linearly inside each
cell (tetrahedra) — a valid approximation taking into account that the cell sizes are smaller
than the exchange length Ao ~5 nm in Permalloy. The magnetic parameters introduced in
the code are the ones reported in Table I, and the simulation incorporates the perturbing
presence of the magnetic sphere attached on the cantilever. Moreover, the 10 nm thick
Cu spacer is replaced by vacuum, so that the layers are only coupled through the dipolar
interaction (spin diffusion effects are absent).

The next step is to calculate the equilibrium configuration in the nano-pillar at H.y =
Hg, = 10 kOe. The external magnetic field is applied exactly along Zz and the spherical
probe with a magnetic moment m = 2 x 1071° emu is placed on the axial symmetry axis at
a distance s = 1.3 um above the upper surface of the nano-pillar. The convergence criterion
introduced in the code is |dM,/M;| < 21079 between iterations. The result shown in the
inset of FIG. 5 reveals that the equilibrium configuration is almost uniformly saturated along
z. Still, a small tilt (< 5°) of the magnetization, away from 2z and along the radial direction,
is observed at the periphery of the thick and thin layers.

The micromagnetic eigen solver is then used to compute the lowest eigen-values of the
problem as well as the associated eigen-vectors. The discrete list of eigen-values under
18 GHz is shown as black vertical ticks at the bottom of FIGS. 9a and 10a. The precession
patterns of the six eigen-vectors corresponding to the six lowest eigen-frequencies are shown
in FIG. 11. The middle and right columns show the dynamics m in the thin Py, and thick

Py, layers, while the precession profiles along the median direction are shown on the left
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TABLE II. Comparative table of the resonance values for the SW modes, arranged in order of
increasing energy. On the left are the consecutive peak locations measured experimentally. Ex-
periments are performed at fsy = 8.1 GHz (FIG. 2) or Hgx = 10 kOe (FIG. 4a). On the right are

the simulated eigen-frequencies f at Hgyx = 10 kOe. The conversion to field value Hey is obtained

through Hext — Hax = 27(f — fax)/7-

Exp. f (GHz) Heyt (kOe) Simu. f (GHz) Heyt (kOe)
O] 10.69 Boo 6.08 10.68
(1) 7.37 10.22 Bio 7.44 10.22
@ 9.65 Bo1 8.95 9.71
® 9.51 Ago 9.82 9.42
(2] 10.48 9.17 B 10.47 9.20
(3] 10.92 9.07 Aqp 10.85 9.08
@ 8.64 Aoy 11.98 8.69
(4] 13.41 8.22 A 13.19 8.29

in light and dark colors, respectively. The resonance peaks are labeled according to the
SW modes precession profiles and the eigen-values of the simulated peaks are reported in
Table II.

From the eigen-vectors spatial patterns, one can compute their coupling (Eq. (11)) to a
uniform RF field hy = hs@ and, with Eq. (12), the mechanical-FMR spectrum (FIG. 9a).
The same procedure is repeated for the RF current-induced Oersted field hq o< i¢(—sin ¢ & +
cos ¢ ) excitation (FIG. 10a). Since the code gives access to the contribution of each layer,
a light (dark) tone is used to indicate the vibration amplitude in the thin (thick) layer in
the two figures. For comparison, the mechanical-FMR spectra of FIGS. 2a and 4a have been
reported in FIGS. 9b and 10b, respectively. We have applied the same conversion between
the frequency (top) and field (bottom) scales as discussed in section IITC.

In FIG. 9a, the largest peak in the simulation occurs at the same field as the experimental
peak at He. This lowest energy mode corresponds to the most uniform mode with the largest
wave-vector and no node along the radial direction, thus it has the index n = 0. It has uniform
phase along the azimuthal direction, which is the character of the / = 0 index. For this mode,

the thick layer is mainly precessing, with the thin layer oscillating in anti-phase (binding
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FIG. 11. Simulated precession patterns of the eigen-vectors. Column (a) shows the precession
profiles across the thin (light color) and thick (dark color) layers. Columns (b) and (c) show the

dynamics in the thin Py, and thick Py, layers, respectively, with the color code defined in FIG. 6.

index B), as can be seen from its spatial profile in FIG. 11. The same analysis can be made
for the second peak, labeled By, which occurs close to the peak at Hg. It also corresponds
to a resonance mainly of the thick layer, and its color representation shows that this is the
first radial harmonic (n = 1), with one line of nodes in the radial direction. Again, the thin
layer is oscillating in anti-phase, with the same radial index n = 1, as clearly shown by the
mode profile along the median direction. The third peak is labeled Agy and is located close
to the experimental peak at Hg. It corresponds this time to a uniform (n = 0) precession
mainly located in the thin layer, in agreement with the experimental analysis presented in
section IITA. In this mode, the thick layer is also vibrating in phase with the thin layer
(anti-binding index A).
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We can also look at the relative amplitudes of precession in the two disks to quantify
the dynamic coupling between the disks. From the profiles shown in FIG. 11, one can infer
that for the fundamental mode By, the amplitude of precession is distributed with a ratio
of about 3:1 between the thick (75%) and the thin layer (25%). For the mode Ao, the ratio
is 8:1 in favor of the thin layer, which contributes to 89% of the precession amplitude (11%
for the thick layer). These relative precession amplitudes were expected from the relative
weight of the thick and thin layers and from the approximate analytical model presented
in section IV B. The simulated field separation between the two coupled uniform modes
(WBy — WAy ) /Y = 1.28 kOe compares also well with the 1.30 kOe estimate from the 2D
model, with the dynamic dipolar coupling taken into account. Finally, one can check from
the simulations the independence of the precession profiles on the thickness. This confirms

the validity of the 2D approximation and explains the performances of the analytical model.

We now briefly comment on the simulated spectrum of FIG. 10, which enables to identify
the SW modes excited by the orthoradial Oersted field produced by the RF current flowing
through the nano-pillar. From FIGS. 10 and 11, it is clear that the modes which couple
to this excitation symmetry have a rotating phase in the azimuthal direction, characteristic
of the ¢ = +1 modes [77]. We find that the SW modes of FIG. 10 show the same series
of A/B and n indices as those in FIG. 9 (but their (-index is different). This sustains the
translational correspondence between the SW spectra of FIGS. 2a and 2b. Finally, we point
out that, for all the modes displayed in FIG. 11, the pinning conditions at the boundaries
of each disk are not trivial, which we attribute to the collective nature of the motion driven
by the dipolar coupling [78]. The general trend observed here is that the thin layer is less

pinned than the thick layer for in-phase modes, and vice versa.

To summarize, the 3D micromagnetic simulations enable the identification (with three
indices, A/B, ¢ and n) of the SW modes probed experimentally by both a uniform RF
magnetic field and an RF current flowing through the nano-pillar, i.e., of their respective
selection rules. They confirm the experimental analysis performed in section III and give
a deeper insight on the collective nature of the magnetization dynamics in the nano-pillar

discussed in section IV B.
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V. SYMMETRY BREAKING

In the following, we review some characteristic spectral features associated with the break-
ing of the axial symmetry in our experiment. First, we experimentally report on the ap-
pearance of ¢ =0 modes in the SW spectrum excited by an RF current flowing through the
nano-pillar, when a small tilt angle is introduced between the applied field and the normal
of the layers. This bridges the gap between our mechanical-FMR experiments and usual
ST-FMR measurements [25, 26]. Second, we have simulated the spectral distortions intro-
duced by breaking the cylindrical symmetry of the SW confinement potential. This enables
to explain the lift of degeneracy in the SW spectrum, which leads to the splitting of modes.

A. Polar angle dependence

The dependence on the polar angle 0y = (2, Hey ) of the mechanical-FMR spectra excited
by a uniform RF magnetic field and by an RF current flowing through the nano-pillar is
presented in FIG. 12. Let us first focus on the conventional FMR spectra shown in FIG. 12a,
acquired at three different polar angles from the exact perpendicularity, increasing by steps
of 1°. The main effect here is the shift of the /=0 SW modes spectrum towards lower field
as Oy increases, which has been explained in details in Ref.[38] for a single magnetic disk.
It is due to the decrease of the demagnetizing field produced by the tilt of the equilibrium
magnetization away from the normal. In fact, in each magnetic layer j = a, b, the uniform
magnetization creates a non-uniform dipolar field 47 M;G(%) % 4;, which is maximum in
the exact normal configuration. The equilibrium direction 4, is in the plane (2, Hey) and
makes a polar angle 0; > 0y with the normal determined by Eq. (54). It can be estimated
that when Hey » 10 kOe and 0 increases from 0° to 2°, the equilibrium angles 6, and 6, of
the static magnetization in the thin and thick layers linearly increases from 0° to ~ 9° and
from 0° to ~ 13°, respectively. This leads to a shift to lower field of the FMR spectrum by
about 420 Oe (see Sec. VIIB), in agreement with the data. We also emphasize that, in fact,
the profiles of the SW eigen-modes are affected by the breaking of axial symmetry, and that
the pure ¢ = 0 eigen-modes when 6y = 0 become mixed with ¢ # 0 modes [38] when 0y + 0.

We now turn to the influence of the polar angle 65 on the FMR spectra excited by an

RF current (i,y = 170 pA). The same global shift towards lower field as discussed above is
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FIG. 12. Dependence of the mechanical-FMR spectra excited by a uniform RF magnetic field
(a) and by an RF current flowing through the nano-pillar (b) on the polar angle 8 between the
applied field and the normal to the layers. Superposed (in purple) is the behavior of the high field

tail at larger power.

observed in FIG. 12b by looking at the red spectra acquired with an increasing 0. But there
is an important additional effect here. Whereas only ¢ = +1 SW modes are excited by the
RF current flowing through the nano-pillar in the exact perpendicular geometry, resonance
peaks can also be detected at the positions of / = 0 SW modes when 0y # 0. Although
the amplitudes of the ¢ = 0 modes are not large in FIG. 12b, it is quite clear that they all
grow as Oy increases. In order to reveal this effect better, we have reported in purple on

the same figure the resonance peak of the mode By, excited with a +12 dB larger power
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(irf ~ 680 pA), as a function of #y. Despite the large RF current excitation, its amplitude
almost vanishes at 0y = 0. Then, it increases linearly with 6, until it becomes almost as
large as when it is excited by the uniform RF field h, ~ 2.1 Oe used in FIG. 12a.

The experimental data and their analysis presented in the previous sections II to IV
demonstrate that in the exact perpendicular configuration, only ¢ = +1 modes are excited
by the RF current flowing through the nano-pillar, due to the orthoradial symmetry of the
induced RF Oersted field, Eq. (34). Because there is no overlap between this particular
excitation symmetry and the uniform azimuthal symmetry of the ¢ = 0 modes, the latter
do not couple to the RF current excitation. The fact that these hidden modes in the
exact perpendicular configuration can be excited by introducing a small misalignment angle
between the applied field and the normal to the nano-pillar 2 is a striking result. It means
that the selection rules associated to the RF current excitation change if the applied field is
tilted away from 2z, what we shall now explain.

Due to the smaller demagnetizing field in the thin magnetic disk than in the thick one
(due to M, < M,), the equilibrium angle of the thin layer is smaller than in the thick layer,
0, < 0y, as obtained from Eq. (54). For the parameters of our nano-pillar, 5 = 0, — 0, ~ 20y,
at He ~ 10 kOe and for a small angle 0. It means that if 5 # 0, the magnetization vectors
in both layers are misaligned from each other by an angle 5 = (M,, M), so that the cross
product w, x w, is finite and lies in the plane parallel to the layers, say along . Thus, the
spin transfer excitation (27)\)~lisin & associated to the RF current flowing through the
spin-valve nano-pillar [25, 26|, which is vanishing in the exact perpendicular configuration
where (3 = 0, becomes finite if there is a small misalignment angle 6y # 0 (see Egs. (35) and
(36) in Sec. VII A, (2r\)~! is the spin transfer efficiency). Because this so-called ST-FMR
excitation has the same symmetry as an in-plane uniform RF magnetic field, it is expected
to excite SW modes having the ¢ = 0-index symmetry. Still, this excitation has to compete
with the RF Oersted field excitation, which is independent of #5 and is much larger in our
configuration due to the small value of 5 (< 5°). Therefore the amplitudes of the ¢ = +1
modes are much larger than those of the /=0 modes in FIG. 12b.

It is also clear that the amplitude of the mode Byy excited by the RF current (purple
peaks in FIG. 12b) grows linearly with 0y, as expected from the above discussion. We
emphasize that a quantitative understanding of the amplitude of the peaks excited by ST-

FMR would require to consider the collective nature of the dynamics in the nano-pillar and
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the asymmetry of spin transfer in the thick and thin magnetic layers. Finally, we note that
the small signal observed at fy = 0 should in principle vanish with the ST-FMR excitation.
This reminiscent signal can be ascribed to a small misalignment of the applied field with
respect to the normal to the nano-pillar (the precision on the orientation is 0.2°) or to a
slight asymmetry of the RF current lines through the nano-pillar, which would induce a small
asymmetry of the RF Oersted field, thereof adding a small in-plane uniform component to
the orthoradial magnetic field.

To summarize, this study enables to derive the selection rules of the RF current excitation.
In the exact perpendicular configuration, the magnetizations of both layers are aligned, and
only ¢ = +1 modes can be excited due to the orthoradial symmetry of the current-created
Oersted field (¢ = 0 modes are hidden). But when a finite angle is introduced between the
magnetizations in each layer by slightly tilting the applied field away from the normal, ¢/ =0
modes can be excited by ST-FMR, which has the same symmetry as a uniform RF field

excitation polarized in-plane.

B. Confinement asymmetries

As seen in section IV C, the 3D micromagnetic simulations enable to identify the SW
modes observed in the experimental spectra. Still, the latter are more rich than the simulated
power spectra, due to the splitting of some resonance peaks, which was noted in sections I1 C
and IIT A. In particular, the experimental peak at He, identified as the mode B, is clearly
split in two, with a smaller resonance about 100 Oe away in the low field wing of the main
peak, which is not the case in the simulation (see FIG. 10). The peaks at He (identified as
Bi1) and at He (Ajo) are also split, contrary to the simulations, where all these peaks are
single. In contrast to these observations, the peak at Hgy, which is the uniform mode By,
is single both in the experimental and simulated spectra.

So, it seems that experimentally, the occurrence of the mode splitting depends on the
mode index, whereas in 3D simulations, in which the nano-pillar has a perfect cylindrical
shape, none of the resonance peaks is split. This suggests that the observed splittings are
related to asymmetries in the confinement of the disks, and that the various SW modes are
affected differently because they probe different regions. The fact that the double peak at

He depends on the tilt angle (see FIG. 12b) and is more or less pronounced depending on
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FIG. 13. Simulated SW spectra for a nano-pillar with an elliptical section (see text). Linear
response to a homogeneous RF magnetic field excitation (a) and to an orthoradial RF Oersted

field excitation (b). The precession patterns of the lowest energy modes are shown in the insets.

the direction in which the applied field is tilted from the normal (not shown) is another
strong indication that some symmetry breaking in the lateral confinement is at the origin of

this effect [79].

To support this idea, we have carried out new 3D micromagnetic simulations with the
SpinFlow 3D package on a structure that break the perfect cylindrical symmetry of the
nano-pillar. We have kept a perfectly flat structure, but we have used an elliptical cross-
section. The long axis of the ellipse is 250 nm, while the short axis is 200 nm. The influence
of this breaking of symmetry on respectively the ¢ = 0 spectrum (RF field excitation) and

the ¢ = +1 spectrum (RF current excitation) is presented in FIG. 13.

Concentrating first on the standard FMR SW spectrum of FIG. 13a, one can see that
the lowest energy mode By, remains a single peak. This illustrates the intuitive idea that
the uniform SW mode, where the oscillation power is mostly concentrated at the center,
is rather not sensitive to change of the confinement at the periphery. The same behavior

applies for the lowest energy mode of the thin layer, Agp.
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The simulated SW spectrum of FIG. 13b shows a different sensitivity to the shape asym-
metry. It is observed that the lowest energy mode with the / = +1-index splits in two peaks,
in contrast with the lowest energy ¢/ = 0 mode which remains a single peak. We also note
that the satellite peak, induced by the elliptical confinement, is located in the low field wing
of the main resonance, as in the experiments of FIG. 2b. The precession patterns shown
in the two insets FIG. 13b reveal that the elliptical shape introduces some mixing between
the £ = +1 and ¢ = -1 SW modes (the ¢ = -1 mode corresponds to SWs that are rotating
around the disk in the opposite direction as the Larmor precession). In a circular disk, these
two modes are degenerate, and only the ¢ = +1 mode couple to the orthoradial Oersted field
excitation. But in the ellipse, the two eigen-modes split and become mixed, as shown by
the two eigen-vectors displayed in FIG. 13b, which correspond to the linear combinations
Ji(p)+J-1(p) and J1(p) = J_1(p). The simulated spectrum of FIG. 13b reproduces well the
main features of the mechanical-FMR spectrum of FIG. 2b, including the splittings observed
for the ¢ = +1 SW modes (revealed even better by injecting a dc current through the nano-
pillar, see FIG. 3b). Thus, a small elliptical shape produced during the nanostructuration
of the nano-pillar is most likely responsible for the double peak observed at He in FIG. 2b.

To summarize, the comparison between 3D simulations and experiments demonstrate that
the observed mode splittings originates from a small asymmetry in the lateral confinement

of the nano-pillar.

VI. CONCLUSION

In summary, we used the MRFM technique [38] to study the SW eigen-modes in the
prototype of a STNO - a normally magnetized nano-pillar composed of two magnetic layers
coupled by dipolar interaction.

In contrast to transport spectroscopy techniques [22, 25|, MRFM is sensitive to all SW
modes excited in the sample [39] and is completely independent of the transport properties
of the studied spin-valve sample. Therefore, MRFM provides an alternative and comple-
mentary view on the magnetization dynamics in hybrid magnetic nano-structures. The
additional advantages of the MRFM technique are its high sensitivity (in this study, it was
able to detect angles of precession as low as 1° in the thin magnetic layer) and its ability to

operate on standard STNO devices buried under contact electrodes without a specific probe
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access to the studied sample [43].

Using MRFM, we were able to compare the SW spectra of a passive perpendicularly
magnetized STNO-like sample excited by a uniform in-plane RF magnetic field and by an
RF current flowing perpendicularly through the layers. We found that distinctly different
SW modes (having azimuthal indices ¢ = 0 and ¢ = +1, respectively) are excited by the
two above mentioned excitation methods. By studying the influence of a spin polarized dc
current on the observed SW spectra we were able to determine which of the magnetic layers
of the studied nanopillar plays the dominant role in the magnetization dynamics resulting
in the appearance of each particular SW mode.

We also developed a simple analytic theory allowing to perform a comprehensive labeling
of all the SW eigen-modes of a magnetic nanopillar in the studied axially symmetric case.
This labeling requires three independent indices: the usual azimuthal and radial indices ¢
and n used for the SW modes of a single magnetic disk and an additional index referring
to the binding or anti-binding (B or A) coupling between the two magnetic disks forming
a nanopillar. The obtained experimental and analytic results were also compared to the
results of 3D micromagnetic simulations obtained with the SpinFlow 3D package [72], which
confirmed the mode labeling obtained from the analytic theory.

Thus, we learned that in the axially symmetric case of a perpendicularly magnetized
nano-pillar, the excitations by the RF field the RF current lead to two mutually orthogonal
(and mutually exclusive) sets of excited SW modes: only the ¢ = 0 modes are excited
by the uniform RF magnetic field, while only the ¢/ = +1 modes are excited by the RF
current. Therefore, the /-index, related to the azimuthal symmetry of the SW modes, is the
discriminating parameter for the selection rules of the SW mode excitation.

Moreover, we have demonstrated experimentally and numerically that the mode selection
rules are affected by the breaking of the axial symmetry of the studied nano-pillar, either by
tilting the bias magnetic field or by making the sample cross-section elliptical. In particular,
if the axial symmetry is broken by tilting the bias magnetic field, the ¢ = 0 modes can
also be excited by an RF current. This excitation is caused by the ST-FMR mechanism
working when the magnetization vectors in the two magnetic layers of the nano-pillar are
not collinear. Also, the importance of the dynamic dipolar interaction between the magnetic
layers of the nano-pillar have been clearly demonstrated by our results.

We believe that our results are important for the optimization of the characteristics of
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nano-spintronic devices, and in particular STNOs, and for the experimental determination
of the STNO parameters.

First of all, an accurate identification of the SW modes that can be excited in an STNO
nano-pillar is necessary to understand the details of the high frequency STNO dynamics.
The proposed identification of the nano-pillar SW modes can be used for the experimental
determination of the nano-pillar characteristics, such as radius, static magnetization, gyro-
magnetic ratio, and dissipation. We note that in traditional STNO experiments, where the
magnetization dynamics in a magnetic nano-pillar is excited by a spin-polarized bias current
creating a significant Oersted magnetic field with the ¢/ = +1 symmetry, it is easy to mix-up
the / =0 and the £ = +1 SW eigen-modes. The spectra of these modes are in almost transla-
tional correspondence, and the experimentally observed dependence of the mode frequencies
on the bias magnetic field can be well described by the traditional Kittel expression (see
e.g. [11]). Thus, the possibly excited ¢ = +1 mode can be easily interpreted as a ¢ = 0 mode,
which will lead to the apparent reduction of the “free” layer static magnetization necessary
to fit the Kittel expression for the mode frequency. For instance, mislabeling the lowest
energy mode of the £ = +1 SW spectrum as the uniform mode (¢,n = 0,0) combined with a
small misalignment of the applied field would lead to a discrepancy as large as 1 kG in our
case.

Second, the fact that in most cases both magnetic layers of a nano-pillar take part in
current-induced magnetization dynamics is very important for the correct identification of
the excited SW modes. The collective (coupled) character of the SW modes in a nano-pillar
can directly influence the magnitude of the spin transfer torque, which is dependent on the
relative orientation of the magnetization vectors in the two magnetic layers. One might
expect, that the efficiency of the spin transfer torque for a particular SW mode depends not
only on which layer (“free” or “fixed”) is dominating the mode dynamics, but also on the
coupling (in phase or anti-phase) between the magnetization precession in two layers. In
our experimental case, the interlayer coupling is in-phase for the SW modes dominated by
the dynamics in a “free” (thin) layer. To obtain an interlayer coupling which is anti-phase
for the SW modes dominated by the dynamics of the thin layer would require for example
to increase its magnetization compared to the “fixed” layer one.

Finally, it is important to note that the MRFM technique has allowed us to study spin

transfer effects in the axially symmetric configuration of a perpendicularly magnetized nano-
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pillar, where the excitation of magnetization dynamics by ST-FMR vanishes due to the sym-
metry reasons. This geometry is rather important for applications as the excited SW modes
have the maximum non-linear frequency shift coefficient [19]. This creates the maximum
agility of the mode frequency with the bias current and, therefore, the maximum width of
the synchronization band to the external periodic signal and to the large arrays of other
STNOs [19]. Phase synchronization has been identified as a possible mean to dramatically
increase the generated microwave power of these nano-oscillators and, at the same time,

reduce their linewidth [80-87].

VII. APPENDIX A: THEORETICAL MATERIAL
A. Equation of motion

In this appendix, we detail the derivation of the equations which govern the dynamics of
a ferromagnetic layer in the presence of an external periodic excitation and of spin transfer,
following the general formalism introduced in section IVA 1. For an isolated layer, the
local dynamics (within the exchange length) of the magnetization vector is described by the

Landau-Lifshitz (LL) equation:

LM M+ h(t)x M, (21)
v Ot

with v being the modulus of the gyromagnetic ratio. The LL equation is written here in its
perturbative form, where the second term on the right-hand-side of Eq. (21) represents the

perturbation term. The field H is the effective magnetic field:
H=H,-47G + M . (22)

Here, Hy is the total static external magnetic field (possibly spatially-dependent) and the
linear tensor self-adjoint operator G describes the magnetic self-interactions.
Considering only the linear processes, we can represent the time dependent (out-of-

equilibrium) part of the magnetization as a series over the SW eigen-modes:

M(t,r) - M,u(r) ~m(t,r) (23)

» Y e (t)m,(r) +c.c.,
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where M, is the saturation magnetization of the layer. Here, c.c. stands for the complex-
conjugated part. The coefficients ¢, (t) are time-dependent SW amplitudes.

The second term on the left-hand-side of Eq. (21) represents the perturbations from the
equilibrium state, including the non-adiabatic contributions. The non-conservative pertur-
bation magnetic field h(t) may depend on time and be a function of the magnetization

distribution M (t). It can be approximately represented as:
h(t) = hy(t) + Ly » m(t), (24)

where hi(t) is the external perturbation field and L, is a certain linear operator, allowing
h(t) to depend on the magnetization distribution. The latter case may describe the influence

of the Gilbert damping —(a/yM;)OM [0t through:
Liem=i=Y w, (e, (t)ym,(r) -cc.), (25)
T

where « is the Gilbert damping constant.
Substituting the series representation Eq. (23) and the representation of the perturbation
field Eq. (24) into Eq. (21) and using orthogonality relations Eq. (7), one can obtain the

following equations for the SW amplitudes c,:

de,

E = - ‘WVCV + Z’)/ Z (SVJ/CV/ + Sl,,ﬁgy’) + Z’Yhu ) (26>
where
(m, Ly » my) - ((@-hy) (M, -m,))
v,V NV ?
(27a)
(m, L my) - ((4-hi)(m, -m,))
Sl/ v’ )
) ./\/'V
(27b)
h, = (mj\/lyhﬂ (27¢)

In many cases the perturbed equations (26) can be further simplified by retaining only the
diagonal term S, = iaw, (M, -m,) /(yN,) (assuming that there are no degenerate modes).
The SW damping rate is then given by

<mu ) mu)

N,

[, =aw, (28)
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The damping rate I', is responsible for the finite linewidth of the resonance peaks, AH
(FWHM). If the sample is homogeneously magnetized and the precession is circular, the
simple relation aAH = w, /v holds.

From the equations above, one recovers for the coeflicient ¢, the equation of motion of a

damped harmonic oscillator:

de,
dt

= —iw,c, - Tye, +ivh, . (29)

If a second magnetic layer ;' is electrically connected to layer 7 and spin transfer is allowed
between them, the equation of motion must be modified. When a charge current I is flowing
through the layers, the additional Slonczewski-Berger term [6, 7| adds to the operator L,
of Eq. (24). Tt is possible to define an effective damping in layer j, which depends on the
spin polarized current and on the relative angle between the magnetization in layer j and

the direction of the spin polarization @, [19]:

<mV'mV>+ Ie ((m, -m,)(u; u;))

I'* = aw, , 30
v SO TN 2N, N, (30)
where
MV
N, =—-2 (31)
~vh

is the dimensionless total number of magnons that can be excited inside the volume V; of
layer 7. Here, A is the reduced Planck constant, e the modulus of the electron charge and ¢ the
spin polarization efficiency of the current. The threshold current for auto-oscillations in layer
j corresponds to I'; =0, i.e., if @; || 4%, I, = —2aw, Ne/e. Using ¢ = 0.3 and the parameters
of our thin layer, one can estimate I, ~ —4.8 mA for the uniform SW mode at 8.1 GHz,
in agreement with the experimental data [88]. This result is also in quantitative agreement
with calculations performed for our nano-pillar device with no adjusting parameters in the
framework of continuous random matrix theory (CRMT) described in Ref.[89].

We now turn to the periodic external excitation hi(t) = hy exp™!, whose amplitude h; is

composed of three different contributions,
h1 = hu + hOe + hST , (32)

that we shall detail below.
The first type of excitation corresponds to a uniform RF magnetic field applied per-

pendicularly to the effective field H. This configuration corresponds to conventional FMR

45



spectroscopy. Assuming that the sample is uniformly magnetized along the nano-pillar sym-

metry axis 2, it reduces to:

h, = hs, (33)

where @ is a unit vector in the in-plane direction and h,; the linearly polarized amplitude.

SW spectroscopy can also be performed by injecting a uniform RF charge current i

through the nano-pillar (i.e., along 2). First, this produces an orthoradial RF Oersted field:

41 irf 1% . ” N
_ o 34
hOe [10]27TRR( Sln¢w+cos¢y) ) ( )

where R is the radius of the nano-pillar and (p, ¢) are the polar coordinates. In this formula,
the current should be expressed in A and the prefactor between the square brackets converts
A/cm into Oe (cgs units). The maximum amplitude of the RF Oersted field is reached at
the periphery of the nano-pillar, p = R, and equals 1.6 Oe for a peak amplitude i,y = 100 pgA

and the experimental parameters.

Second, the RF current produces a ST-FMR excitation:

ef 1o
hST = 27;)\ [uj X Uj/] . (35)

where we have rewritten the spin-transfer efficiency of the charge current in Eq. (30) as a

function of

2eN,

2rA =7 ,
€

(36)

which has the dimension of a distance (A ~ 200 nm for our thin layer). If the thin and
thick layers are misaligned by an angle § in the plane (y,z), Eq. (35) reduces to hgr =
irf/(2m\) sin f&, which demonstrates that the ST-FMR excitation is equivalent to a linearly
polarized RF magnetic field, Eq. (33). The ST-FMR excitation vanishes if the magnetic
layers are parallel. The amplitude ratio between the ST-FMR and the RF Oersted field
excitations, both produced by the RF current flowing through the nano-pillar, is hgt/hoe ~
(R/A\)sin 3. In our geometry, A ~» 2 R, but due to the small angle  between the layers, the
RF Oersted field contribution is much larger than the ST-FMR one. We note that even
if B ~ m/2, the contribution of the RF Oersted field cannot be disregarded in general in
ST-FMR experiments.
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B. Nwumerical application

In this section, we derive a practical guideline to calculate the eigen-frequencies w using
the analytical formalism developed in section IV A. Let m, be a certain orthogonal basis
in the space of the vector functions m satisfying both the local orthogonality to @ and the
total pinning condition at the boundary of the magnetic body. Spin-wave eigen modes can
thus be expressed as a series expansion on the m,, basis (cf. Eq. (23)). A general expression

for the eigen-frequencies can be found from the condition of vanishing determinant:

||Nyf,yw ~Nuo {9},

=0, (37)

where for the simplicity of the discussion, it is convenient to introduce a curly bracket
notation, to indicate that the enclosed quantity is spatially weighted by the spatial pattern

of the mode profile and averaged:

(myl . ﬁ * my>

{Q},,= N (38)

This echoes the chevron bracket notation introduced in Eq. (1) to indicate the homogeneous
spatial average over the volume of the magnetic body. Here A represents a renormalization
quantity, defined by

Ny =i(my, - (atxm,)) , (39)

which has in general off-diagonal elements.
In the case of perpendicularly magnetized disks, where the set of Bessel functions %(aﬁ +
ig)e ¥ Jy (ke np) diagonalizes the uncoupled Hamiltonian, the secular Eq. (37) becomes di-

agonal and we recover Eq. (8):
Wy, = {ﬁ}v,u (40)

We shall now perform the numerical application of the eigen-value of the lowest energy
mode (/,n = 0,0) using the parameters of our nano-pillar shown in Table I. We will drop
the subscript v to the curly brackets, understanding that the spatial average in Eq. (40) is
made over the uniform mode m,, = 5.Jo(kop)(Z +iy), where ko = 2.4048/R is its wave-vector.
In this case the value of the normalization constant is simply Ny = (J3) = J2(koR) = 0.2695.

The different contributions that enter inside the operator {ﬁ} are detailed in Eq. (4):

(Q} =~ {1} +47yM; {G} . (41)
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We start with the calculation of the amplitude of effective magnetic field, the first term on
the right hand side of Eq. (41). As shown by Eq. (5), the scalar value H along z decomposes

itself in two terms:

{H}={2-Ho}-ArM,{2-G =2 }. (42)

The term % - G * % represents the static magnetic self-interaction. In the case of homo-
geneously magnetized body, the inhomogeneous exchange contribution to the static self-
interaction is strictly null and the second term of Eq. (42) reduces to the magneto-dipolar

contribution G(9), which has the following form in the wave-vector representation:

G(d)(r)zfD(k:)kikexpik"”d?’k:, (43)

where D(k) is the Fourier transform of the body shape function [90] and the symbol ®
denotes direct product of vectors. For a disk of radius R and thickness ¢, an analytical
expression for the different position-dependent demagnetization tensor elements of a disk
Nuv(r(r) = 4(r) - G@ % valid in the whole space are available in Ref.[91]. For perpen-

dicularly magnetized disks where & = v = 2, the expression of the self-integral becomes

[N} = ) fdedz J2(kop) Nov (e 1 (p2) (44)

for both the thin (j = a) and thick (j = b) layers. Their numerical values are displayed in
Table. III.

The term {2 - Hy} of Eq. (42) is the projection on the precession axis of the total applied
magnetic field. It comprises the external magnetic field { Hey} = Hey, the stray field of the
mechanical-FMR probe {Hgp,} = 190 Oe and the cross-magneto-dipolar static interactions
between each layer. The latter can be estimated from the cross tensor elements of the static

magneto-dipolar field of the j’-th disk produced over the volume of the j-th disks:

{NEP} = o s T3 (ko) Nesgns (0. + ). (45)

where zj is the distance between the centers of the two axially aligned disks. The numerical
values of the cross tensor elements are reported in Table. III. Putting all the above elements

together, the total effective field simply writes:
{HY} = Hex, + {Hypn} = 4m { NG M, = am {NGDY . (46)
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We now turn our attention to the integration 4w M {G }, the second term on the right
hand side of Eq. (41). We recall that for Py the operator G = G + G is the sum of
the inhomogeneous exchange and magneto-dipolar interactions. In the wave-vector repre-
sentation, G = A2 k2T, where the exchange length A = \/m depends on the
exchange stiffness constant .J, expressed in erg/cm (= 107% in Py). It produces the exchange
field:

{Hex} = 4m MAZ kG (47)

which yields the value {Hq} =110 Oe.
The other contribution is the dynamic magneto-dipolar self-interaction, which represents
the depolarization field of the SW mode on itself. For the ¢ = 0 modes, an analytical

expression can be derived:

R aNxm ut (pyz)

)
(N} = o [z JoChap) [ LB g k). (48)

where the quantity in the second integral is the magnetic stray field produced at the spatial
position r by a cylindrical tube of width du, radius w, and thickness ¢;;, homogeneously
magnetized [92] along & by Jy(kou). We use the same expression above to write the self-
and cross-contribution, understanding implicitly that the spacer value zy should be added
in the later case, as shown in Eq. (45). The values of the self- and cross-tensor elements
are reported in the last line of Table. III. We mention, that an approximate expression of
the self-Eq. (48) has been derived by Kalinikos and Slavin [93] for the lowest SW branch of
platelet shape bodies with uniform magnetization across the film thickness. This expression
reduces to

(Nea = 5 (1-Gh) (49)

where the analytical expression of G, for Bessel functions is given by Eq. (26) in ref[38].
The cross elements are responsible for the dynamic dipolar coupling detailed in sec-
tion IV B.
hyge = 4m {NSG} Mg (50)

The value of the coupling frequency 2 for the lowest energy mode yields:

Q- 7\/ (NP} am M, (NG} e, (51)
which leads to /27 ~ 0.56 GHz.
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TABLE III. Values of the self- and cross- depolarization tensor elements weighted by the precession

profile of the uniform mode for the thin (j = a) and thick (j = b) disks.

(a,a) (a,b) (b,a) (b,b)
(NYI)y +0.979 ~0.068 ~0.017 +0.919
(NGI)y +0.016 +0.042 +0.011 +0.056

Neglecting the dynamical dipolar coupling (the generalization to Q # 0 is Eq. (15)), we

derive an expression for the eigen-value of index v = joo:
Wy

0= {1} 4 {NEDY M+ {He} | (52)

J = a,b being the layer index and {H} being defined in Eq. (46). Eq. (52) is a simplified
expression valid for circularly polarized modes (¢ = 0 index), where we have taken advantage
of the equality {N;}o = {Nyy}o in our circular disk. This expression can be extended to
higher order modes by using { N }¢n » {Nm}o\/m inside Eq. (52). This approxima-
tion is derived from the ellipticity of ¢ # 0 modes ({N,,} # {Ny,}). One needs thus two
separate equations (52) for the values of w for each cartesian axis [38]: one proportional to
m32[(mym,), the other to m2/(m,m,). The product of these two equations is independent
of the ellipticity, leading to the general expression for the eigen-value of arbitrary index

V=J0n
:—g = ({), + 4 {Ng;j)}y M; + {Hes}, ) %
({F}, +am {NGD} M+ {He, ) | (53)

which can be seen as a generalization of the Kittel formula for arbitrary shaped multi-body.
Equating H,,, = He and H,,, = He in Eq. (52), where H,, and H,, are the resonance
fields at fzx = 8.1 GHz of the uniform modes in the thin and thick disks, respectively, leads
to 4mM, =8.0x 103 G and 47 M, =9.6 x 103 G.
Finally, the above formalism also enables to determine the angle 0; = (2, u;) between the
equilibrium direction of the magnetization in layer j and the normal axis when the bias field
is applied at a polar angle 0y = (2, Hey ). From the equality @ x Hey = 47 M;w (@(dj) * '&),

one extracts the relationship:
: o _ , Gy _ g arUIINY o ,
Hexsin (0; - 0p) = 2 M ((sz ) = (Ngx )) sin 20; (54)
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The angle 6; is useful to estimate the shift to lower field of the FMR spectrum [38],
27er({N§§)} ~ (N1 (1 - cos 20;) » 420 Oe, when 6, = 13° in the thick layer.

VIII. APPENDIX B: METHODS AND CALIBRATION
A. Mechanical vibration amplitude

Here, we detail the experimental protocol used to calibrate the amplitudes of the uniform
RF magnetic field and of the mechanical-FMR signal. The procedure uses the non-linear
properties of the magnetization dynamics and consists in studying the power dependence of
the line shape. In the following, AH denotes the FWHM linewidth measured in the linear
regime.

We use the onset of foldover as a mean to calibrate the strength of the RF field produced
by the microwave antenna. This non-linear effect is responsible for the asymmetric shape of
the resonance peaks in FIGS. 2 and 3. In fact, it was pointed out by Anderson and Suhl [51]
that the resonance curve at high power should be skewed, due to the static change of the
magnetization M., which also shifts the resonance frequency. For a normally magnetized
sample, this non-linear frequency shift is positive (blue-shift), and the field-sweep line shapes
are distorted towards low field. There is a critical strength of the RF magnetic field A,
(linearly polarized amplitude) for which the slope of the resonance curve becomes infinite

on the low field side of the resonance [52]:

he =2AH 2801 (55)
3VB[{N..} - {Noo}| 47 M,

where {N,,} - {N,,} is the difference between the depolarization factors in the longitudinal
and transverse directions. Experimentally we find that for the peak at Hy, this onset is
reached when the output power of the synthesizer at 8.1 GHz is P, = +9 dBm. Using the
magnetic properties of the thick layer (Table I), we infer from Eq. (55) that at the critical
onset of foldover, the strength of the RF magnetic field is h. = 4.2 + 0.8 Oe. We note, that
this value is in agreement with the estimation made by directly evaluating the field produced
by the RF current flowing in the antenna at 8.1 GHz for this output power, h,s=5.5+1 Oe.

Furthermore, this procedure gives a calibration of the amplitude of the mechanical-FMR

signal (AM,). At the onset of foldover, the longitudinal change of the magnetization is
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indeed [51]

In(AML) = —— AT (56)

3v/3

A numerical application of Eq. (56) yields 4m(AM.) = 36 + 4 G, which corresponds to the
critical angle of precession (f.) = 5°. We have used this calibration of the cantilever vibration
amplitude to evaluate the change of the longitudinal magnetization at the maximum of the

peak at Hg in FIG. 2a.

B. Microwave setup

In this appendix, we give some details on the microwave circuit, which was carefully
design to minimize the cross-talk between the RF field and RF current excitation parts.

The calibration of the RF magnetic field produced by the microwave antenna has been
presented in the previous appendix. In order to calibrate the RF current flowing through the
nano-pillar with respect to the synthesizer output power injected into the contact electrodes,
we have first used a standard microwave setup. The nano-pillar electrodes are directly con-
nected to the microwave synthesizer through a picoprobe, a bias-T, and a semi-rigid coaxial
line, that allow to perform voltage-FMR spectroscopy. In this experiment, the amplitude of
iy¢ lowing through the nano-pillar can be accurately determined, owing to the determination
of losses and reflexions in the microwave circuit using a network analyzer. Then, the same
experiment is repeated inside the MRFM setup, in which the contact electrodes are wire
bounded to a microwave cable and the circuit contains more connections. The comparison
with the standard setup yields an estimation of the rms amplitude of the RF current in
the mechanical-FMR setup: i,; = 170 + 40 pA for an output power of —22 dBm injected at
8.1 GHz through the contact electrodes.

It is also possible to estimate experimentally the high frequency coupling between the
microwave antenna and the electrodes that contact the nano-pillar. For this, we exploit the
fact that in the exact perpendicular configuration, different SW modes are excited by the
uniform RF field (¢ = 0-index) and by the RF current (¢ = +1-index). If the RF magnetic field
used to excite the conventional FMR spectrum would induce any relevant RF eddy current
through the nano-pillar, ¢/ = +1 modes which are excited in the SW spectrum of FIG. 2b
should also be detected in the SW spectrum of FIG. 2a, which is not the case. We deduce

from this observation that for an output power of +3 dBm injected in the antenna, the
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induced eddy current through the nano-pillar is less than when injecting —38 dBm directly
through the contact electrodes, i.e., i, < 30 pA. So, at frx = 8.1 GHz, the isolation between
the two parts of the microwave circuit is better than 40 dB. However, we note that the latter
depends on the frequency, and that for some particular values, it can drop to only 20 dB.
Still, owing to the broadband design of the contact electrodes and to the low microwave
power required to excite SW modes with the RF current excitation part, it is possible to
acquire FMR spectra at a fixed bias magnetic field Hg, by sweeping the frequency of the
RF current. We mention that in the frequency-sweep experiments presented in FIG. 4a,
the output power of the synthesizer is kept at —22 dBm over the full frequency range (4
to 18 GHz), which results in an amplitude variation of 4., mainly associated to frequency
dependent losses in the circuit. We also note that the same frequency-sweep experiment
cannot be performed as cleanly with the RF field excitation due to the high power that has
to be injected in the microwave antenna and to the dependence of the isolation on frequency

mentioned above.

C. Cavity-FMR characterization of the extended film

Before the nano-fabrication of the nano-pillar devices, a reference film of Cu60 | Py,15
| CulO | Py,4 | Au25 (thicknesses in nm) is cut out from the Si wafer for characterization
purpose. The extraction of the material parameters is obtained independently on this ref-
erence film by a reflexion X-band spectrometer (9.6 GHz) operating at room temperature.
The experiment consists in measuring the resonance spectra of the multi-layer as a function
of the polar angle 0y between the applied field and the normal to the film. The resonance
field of the layer j = a,b as a function of 6y depends only on the gyromagnetic ratio v and
on the total perpendicular anisotropy field, which here reflects entirely the demagnetizing
field 47 M; of the layer [94]. The obtained values for the gyromagnetic ratio (identical for
both layers) and the magnetizations are collected in Table I. The magnetization of the thick
layer (9.6 kOe) corresponds to the expected value for bulk Py with composition NiggFeyq.
The magnetization of the thin layer is 1.4 kG smaller, which reflects the reduction of the
magnetization in the interfacial layer (of the order of 1 nm), due to the gradual composition
variation of the NiFe alloy from NiggFesq to the normal metal (Cu or Au) [58, 60].

An estimate of the damping parameter and the amount of inhomogeneous broadening
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can also be obtained from the angular dependence of the linewidth of the resonant mode
associated to each layer. The linewidth is in general the sum of two contributions: an
intrinsic relaxation of the magnetization vector (homogeneous width) and an inhomogeneous
broadening corresponding to a distribution of resonance fields (whose main sources have been
described for a Permalloy polycrystalline layer [94]). The intrinsic damping parameter is
deduced from the parallel geometry linewidth. In the Py, 15 nm thick layer, the linewidths
observed in the parallel and perpendicular geometries are respectively: AH, = 64 Oe and
AH,, =73 Oe. The higher value observed in the perpendicular geometry reveals a fair
amount of inhomogeneities [94]. The linewidth observed in the parallel geometry corresponds
to an intrinsic damping parameter a; = (0.9 £ 0.1) x 1072, For the thin Py, 4 nm layer,
AHj, = 83 Oe and AH,, = 171 Oe. From the parallel geometry linewidth, we deduce an
intrinsic damping parameter o, = (1.5 + 0.3) x 1072. This value is higher than for the thick
layer because of the larger effect of the diffusion of the microwave magnetization of the
conduction electrons in the adjacent normal metal layers [60], associated to the fact that
the thin layer thickness (4 nm) is less than the spin-diffusion length in Py. The much larger
value AH , is associated to a large contribution of the inhomogeneous broadening arising
from a substantial effect of interfacial roughness (and dispersion of heights of the crystallites

of the base) on the thin Py layer grown on top of a 85 nm thick metallic base.
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Chapter 2.
Noise properties of a resonance-type spin-torque microwave

detector

We analyze performance of a resonance-type spin-torque microwave detector (STMD)
in the presence of noise and reveal two distinct regimes of STMD operation. In the high-
frequency regime the minimum detectable microwave power P, is limited by the low-
frequency Johnson-Nyquist noise and the signal-to-noise ratio (SNR) of STMD is propor-
tional to the input microwave power Prp. In the low-frequency regime P,;, is limited by
the magnetic noise, and the SNR is proportional to v/Pgr. The developed formalism can be

used for the optimization of the practical noise-handling parameters of a STMD.

I. INTORDUCTION

It has been shown in [1, 2| that a magnetic tunnel junction (MTJ) subjected to the ex-
ternal microwave current Irp(t) = Igp cos(27ft) can perform as a resonance-type quadratic
detector of microwave radiation generating the DC voltage Upc proportional to the acting
microwave power Upc = e Prp (Prr ~ Iip). The detector operation is based on the spin-
torque effect [3, 4] and the detector sensitivity £ has a maximum value € = £, when the
frequency of the external microwave signal is close to the eigen-frequency fy of the MTJ
nanopillar, f = fo.

The resonance sensitivity €, of the spin-torque microwave detector (STMD) was calcu-

lated in [5]:
Upc

o Upc_ (om) P
S Prp \de ) M,VT

where v =~ 27 - 28 GHz/T is the modulus of the gyromagnetic ratio, & is the reduced Planck

Qo) (57)

constant, e is the modulus of the electron charge, P is the spin-polarization efficiency of the
MTJ, M, is the saturation magnetization of the free layer (FL) of MTJ, V' = mr?d is the
volume of the FL (r is its radius and d is its thickness), I' is the magnetization damping
rate in the MTJ FL proportional to the Gilbert damping constant «, and Q(fp) is the
geometrical factor that depends on the angle 0y between the directions of the equilibrium
magnetization in FL and pinned layer (PL) of the MTJ. For an in-plane magnetized MTJ,
Q(0) = sin? 0p/(1 + P%cos 0p)?.
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Estimations based on Eq. (57) [5] and recent experimental results [2, 6] have demon-
strated that the STMD sensitivity can exceed that of passive semiconductor Schottky-diode
microwave detectors (¢ ~ 1000V/W), which makes STMD very interesting for practical

applications in microwave measurement technology.

The operation and the minimum detectable power of all types of microwave detectors
are limited by noise (in particular, by the low-frequency Johnson-Nyquist (JN) noise in
the case of unbiased Schottky diodes [7]), and, therefore, it is important to understand the

noise-handling properties of the STMD based on MTJ.

II. INITIAL EQUATIONS

In this chapter we present theoretical analysis of the noise properties of a passive STMD
(no DC bias current) using the STMD model developed in [5] with additional terms describ-
ing influence of thermal fluctuations. In our analysis we took into account three sources of

noise:

(a) Low-frequency Johnson-Nyquist (JN) noise voltage Ux(t) associated with the MTJ
resistance Ry. This type of noise is additive and is independent of the magnetization dy-

namics.

(b) High-frequency JN noise current Iy(t) which transforms into a non-additive low-
frequency noise after mixing with the microwave oscillations caused by the input microwave

signal.

(¢) Magnetic noise (MN), which is caused by the thermal fluctuations of the magnetization
direction in the MTJ FL. This noise, modeled by a random magnetic field By(t), leads to
the fluctuations of the electrical resistance of the STMD and transforms to low frequencies

after mixing with the driving current Irp(f).

The other noise sources, such as shot noise and flicker noise, might be important for

STMDs biased by a DC current.

The dynamics of magnetization M in the MTJ FL under the action of a microwave

current containing both deterministic and noise components I(t) = Irg(t) + Ix(t) and noise
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magnetic field By(t) is described by the Landau-Lifshits-Gilbert-Slonczewski equation:

dM « dM
— = y[Beg(M) x M| + A [M X W} +
TN (M pl) 4 Bl0) % M] (58)

where Beg(M ) is the effective magnetic field, which includes the external bias magnetic field
By, and the demagnetization field, p is the unit vector in the direction of the magnetization
of the MTJ PL, o = (yh/2e)P/[(1 + P?cos0)M,V] is the current-torque proportionality
coefficient, and 6 is the angle between vectors M and p.

We performed analysis for a “planar” STMD, in which both FL and PL are magnetized

in-plane. In this case, the MTJ eigen-frequency is fo = (v/27)+/Bo(Bo + poM,) and the
damping rate has the form I' = avy(Bg + poMs/2), where pg is the vacuum susceptibility.
We assumed that f = fo > I'/(27). Using Eq. (58), we found the linear FL. magnetization
response to current /(t) and field By(t) in the frequency domain. The output STMD signal
was calculated as the low-frequency part of the voltage [R(0)I(t) + Ux(t)], where R(0) =
Ry /(1 + P?cos) is the MTJ magnetoresistance, R, = RA/(7r?) is the MTJ resistance in
the perpendicular magnetic state ( = 7/2), and RA is the resistance-area product of the
MTJ. We assumed that all noise sources are independent Gaussian processes with uniform
spectral densities S(Uy) = S(In)R% = 2kgTRy and S(By) = 2akgT/(yM,V), where kg
is the Boltzmann constant, T is the noise temperature, and Ry = R(6p) is the equilibrium
resistance of MTJ. The detailed derivation of the noise spectrum of STMD will be presented

elsewhere [8].

III. RESULTS AND DISCUSSION

We found that the noise of the output voltage Upc = e Prr has characteristic spectral
width of I' and, for typical frequency bandwidth of measurement Af < T'/(27), can be
considered as frequency-independent. The root mean square fluctuations AUpc can be

written in the simple form

AUpc = UJN\/l + =+ == (59)



where the three terms in the right-hand side part of the equation describe, respectively, the

influence of the three above mentioned noise sources and

Uy = V/AkpTRoAS (60a)
RO ’YFL BO
U = —2 =10 60
IM 4€res ; MN % P ( b)

Note, that both the high-frequency JN and magnetic noise give non-additive contributions
to the output low-frequency signal and, therefore, their influence increases with the input
power (or the output voltage Upc). Uy and Uy are the characteristic output voltages, at
which the influence of the corresponding noise source becomes comparable to the influence
of the additive low-frequency JN noise. Non-additive noises can be ignored for small output
signals Upc < Uy, Unin.

For typical parameters (see e.g. [5, 9]) of an MTJ nanopillar (r = 50nm, d = 1nm,
P = 0.7, 0y = 45 deg, Ry = 5009 (giving RA = 5.29Qum?), o = 0.01, poM, = 0.8 T,
By = 38mT (giving fo = 5GHz)) Eq. (57) gives the resonance STMD sensitivity in the
passive regime ¢, = 700 V/W, which is comparable to the sensitivity of Schottky diodes
[9]. At room temperature 7' = 300 K and for the measurement bandwidth of Af =1 MHz
Egs. (60) give the following estimations for the noise-induced voltages: Uy = 2.88 uV,
Un = 175.9mV, Uyn = 3.14 V.

It is clear that the characteristic voltage Upy of the non-additive high frequency JN noise
is much larger than the voltages created by the low frequency JN noise Ujy, magnetic noise
Unn, and the typical DC voltage output Upc of the STMD. This means that the influence
of the high-frequency JN noise in Eq. (59) can be completely ignored. Note, also, that, in
contrast with the other characteristic noise voltages, the voltage Uyn caused by the magnetic
noise is proportional to the bias magnetic field By, and, therefore, increases with the increase
of the frequency of the input microwave signal.

Now, introducing the microwave powers Prr = Upc/eres, PIN = Uin/Eress, Pun =
Unn/Eres and using Eq. (59), we can write a simple expression for the signal-to-noise ra-
tio (SNR) of the STMD in terms of these characteristic powers:

UDC PRF PMN

SNR = = .
AUpc Pix V Py~ + Prr

(61)

The simple analysis of Eq. (61) demonstrates that there are two distinct regimes of oper-

ation of the resonance STMD in the presence of thermal noise. We shall classify them by the
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FIG. 14. Dependence of the SNR of STMD on the input microwave power Prp calculated from
Eq. (61) for two different frequencies of the input microwave signal: f; = 1 GHz (dashed blue line)
and fo = 25 GHz (solid red line). All other parameters are the same as indicated below Egs. (60).
Prpin is the minimum detectable power of STMD (at SNR = 1) and Py is the frequency-dependent

characteristic power of magnetic noise.

type of noise that limits the minimum detectable power of STMD P,;, (power corresponding
to SNR = 1).

One regime corresponds to the case of relatively high frequencies of the input microwave
signal, when Pyn > Prp (for Prp ~ Puin). In this regime, similar to the conventional
semiconductor diodes, the minimum detectable power is limited by the low-frequency JN
noise, Puin = Pin, and the SNR of STMD is linearly proportional to the input microwave
power Prp (SNR ~ Prp/Pjx).

The second regime takes place in the opposite limiting case of relatively low input fre-
quencies, when Pyn < Prp. In this case the SNR of STMD increases with Prr much slower
than in conventional diodes, and is proportional to the square root of the input microwave
power: SNR ~ \/m. The minimum detectable power P, = P#;/Pun in this regime
is limited by the magnetic noise in the FL of the MTJ.

We note, that if at a fixed frequency of the input signal the SNR of an STMD is measured
in a wide range of input powers, covering both the above described limiting cases, it is
possible to find the characteristic power of the magnetic noise Py with a good accuracy,
and, using expression (60b) for Uy, to determine with the same accuracy the MTJ spin-

polarization efficiency P.
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FIG. 15. Characteristic power of magnetic noise Pyn (solid red line) and minimum detectable
power P, of STMD (dashed blue line) as functions of the input microwave frequency f. The
blue dashed area corresponds to undetectable signals Prr < Pnin and gray shaded area shows the
low-frequency STMD regime, where the magnetic noise is dominant in the whole practical region
Prr > Ppin. Inset: minimum detectible microwave power delivered to a 50-{) transmission line
Poin[50 Q] for f = 5 GHz as a function of the radius r of the MTJ nanopillar. STMD parameters

are indicated below Egs. (60).

The existence of two distinct regimes of STMD operation is illustrated in Fig. 14, where
two curves calculated from Eq. (61) show the STMD SNR as functions of the input power
for signal frequencies f; = 1 GHz (dashed blue line) and f, = 25 GHz (red solid curve).
It can be seen, that both curves (presented in logarithmic coordinates) demonstrate the
clear change of slope from 1 to 1/2 in the region, where the input power Prp is close to
the characteristic power of the magnetic noise Py (which increases with the increase of the
input signal frequency). The minimum detectable power Py, (corresponding to SNR = 1) in
the high-frequency case is smaller than Py and lies in the region of the linear dependence
of SNR on Pgrp (solid red line in Fig. 14). The situation is opposite in the low frequency
case (blue dashed curve in Fig. 14), when P, > Py~ and lies in the region, where the slope

of the SNR curve is equal to 1/2.

The evolution of the characteristic powers Pyn and Py, with the increase of frequency of
the input microwave signal is shown in Fig. 15. The curve Pyn(f) separates the plane into

the region, where magnetic noise is dominant (above the curve), and the region, where the
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STMD operation is limited by the JN noise (below the curve). It is, clear, that the smallest

detectable power is achieved near the border of these two regimes.

When an STMD based on an MTJ nanopillar is used as a sensor of microwave radiation,
it is typically connected to a standard transmission line with the impedance of Zt;, = 502.
The minimum detectable microwave power delivered to a 50-) transmission line can be
written as [10] Puin[50 Q] = (1/4)(Ro + Z11,)? Pmin/ Z11. Ro. Using this expression and taking
into account the size dependence of the STMD resistance (R, o< 1/7?), it is possible to show
that Ppin[50 2] has a clear minimum as a function of the nanopillar radius . For instance, the
optimum value of the nanopillar radius is rop, = 100 nm for the input frequency f = 5GHz

(see the inset in Fig. 15).

IV. CONCLUSIONS

In conclusion, we have demonstrated that STMD in the presence of noise can operate
in two distinct regimes, one of which is limited by magnetic noise and is different from the
regime of operation of traditional semiconductor detectors. We have, also, suggested that
the measurements of STMD SNR in a wide range of input powers can be used to determine
the spin-polarization efficiency P of MTJ nanopillars, and have shown that the developed

formalism can be used for the optimization of noise-handling parameters of a STMD.
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Chapter 3.
Spin-torque microwave detector with out-of-plane precessing

magnetic moment

Operation of a spin-torque microwave detector (STMD) in a weak perpendicular bias
magnetic field has been studied theoretically. It is shown that in this geometry a novel
dynamical regime of STMD operation, characterized by large-angle out-of-plane magnetiza-
tion precession, can be realized. The excitation of the large-angle precession has threshold
character and is possible only for input microwave currents exceeding a certain frequency-
dependent critical value. The output voltage of an STMD increases with the frequency of
the input signal, but is virtually independent of its power. An STMD operating in the out-
of-plane regime can be used as a non-resonant threshold detector of low frequency microwave

signals and for applications in microwave energy harvesting.

I. INTRODUCTION

The spin-transfer torque (STT) carried by a spin-polarized electric current [1, 2| can
give rise to several types of magnetization dynamics (magnetization auto-oscillations and
reversal) and, therefore, allows one to manipulate magnetization of a nano-scale magnetic
object [3-7]. One of possible applications of the STT is the spin-torque microwave detector
(STMD) based on the so-called spin-torque diode effect [8-11]. In an STMD, a microwave
current Igp(t) = Irp sin(wt) is supplied to a magnetic tunnel junction (MTJ) structure and
excites magnetization precession in the “free” magnetic layer (FL). The resistance oscilla-
tions R(t) resulting from this precession mix with the driving current Irp(t) to produce
the output DC voltage Upc = (Irp(t)R(t)) (here (...) denotes averaging over the period of
oscillations 27/w of the external microwave signal).

In the traditional regime of operation of an STMD [8-10] STT excites a small-angle in-
plane (IP) magnetization precession about the equilibrium direction of magnetization in the
FL of an MTJ (see the red dashed curve in Fig. 16). Below we shall refer to this regime of
STMD operation as the IP-regime.

In contrast to the well-known IP-regime of STMD operation, in this chapter we consider a

different regime of operation of an STMD, based on the excitation of large-angle out-of-plane
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Irr ()

FIG. 16. Model of the considered system: circular nano-pillar of radius r consists of the “free”
magnetic layer (FL) of thickness d and the “pinned” magnetic layer (PL). Under the action of
microwave current Irp(t) = Irp sin(wt) magnetization vector M (shown by a blue arrow) is pre-
cessing along large-angle out-of-plane (OOP) trajectory (shown by blue dashed curve) about the
direction of the bias magnetic field By = 2By (Bo < noMs), po is the vacuum permeability, M; is
the saturation magnetization of the FL, p = & is the unit vector in the direction of the magneti-
zation of the PL, & and 2z are the unit vectors of x- and z-axis, respectively. The red dashed curve
is the trajectory of small-angle in-plane (IP) magnetization precession about equilibrium direction
of magnetization in the FL (shown by a red dashed line), which exists in the traditional IP-regime

of STMD operation.

(OOP) magnetization precession under the action of an input microwave current Irp(t) (see
the blue dashed curve in Fig. 16). Using analytical and numerical calculations, we show
that all the major STMD characteristics in the OOP-regime qualitatively differ from the
ones in the traditional IP-regime. In particular, excitations in the OOP-regime do not have
a resonance character and exist in a wide range of driving frequencies. Also, the output
DC voltage of an STMD in the OOP regime is almost independent of the input microwave
power, provided it exceeds a certain threshold value. We believe that these properties of
an STMD in the OOP-regime will be useful for the development of nano-sized threshold
detectors with a large output DC voltage and also for the applications in microwave energy

harvesting in the low-frequency region of the microwave band.
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II. THEORY
A. Model

We consider a simple model of an STMD, formed by a circular MTJ nano-pillar (see
Fig. 16). The magnetization of the pinned layer (PL) of the MTJ is assumed to be completely
fixed and lie in the plane of the layer. The direction of the PL magnetization p = @
determines the spin-polarization axis. The radius r of the MTJ nano-pillar is assumed
to be sufficiently small, so that the magnetization of the free layer (FL) M = M (t) is
spatially-uniform and can be treated in the macrospin approximation.

In contrast with the traditional IP-regime we assume that the STMD is biased by the
perpendicular magnetic field By = 2By, which is smaller than the saturation magnetic field
of the FL | i.e., By < poM; (o is the vacuum permeability, M, = |M| is the saturation
magnetization of the FL). For simplicity, we neglect any in-plane anisotropy of the FL.

The dynamics of the unit magnetization vector m(t) = M (t)/M, in the FL under the
action of a microwave current Irp(t) = Igpsin(wt) is governed by the Landau-Lifshits-

Gilbert-Slonczewski (LLGS) equation:

dm

dm dm
dt

zy[Beﬂcxm]Jroz{me

+olrp(t) [m x [m x p]] , (62)
where v = 27 - 28 GHz/T is the modulus of the gyromagnetic ratio, Beg = (Bg — poM.)Z is
the effective magnetic field, M. is the z-component of vector M, « is the Gilbert damping
constant, 0 = o, /(1 + P?cosf3) is the current-torque proportionality coefficient, o, =
(vh/2e)P/(M,V'), h is the reduced Planck constant, e is the modulus of the electron charge,
P is the spin-polarization of current, (3 is the angle between the directions of magnetization
in the FL and the PL (cos 3 = m -p), V = mr?d is the volume of the FL (7 is its radius and
d is its thickness), and p = @ is the unit vector in the direction of magnetization of the PL.

The angular dependence of the MTJ magnetoresitance can be written as

Ry

RO = T prcesp -

(63)

where R, is the junction resistance in the perpendicular magnetic state (5 = 7/2). The

output DC voltage of the STMD is equal to
Upc = (Irr(t)R(B(1))) (64)
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where the angular brackets denote averaging over the period 27 /w of the microwave current.
Equations (62)-(64) will be used below in analytical and numerical calculations of the

STMD performance in the OOP-regime.

B. Analytical description of the OOP-regime

Using the spherical coordinate system for the magnetization vector m = & sin 6 cos ¢ +

y sin 0 sin ¢ + Z cos 6, one can obtain the equations for the polar # and azimuthal ¢ angles:

% = —awp sin ) — o Irp sin(wt) cos 6 cos ¢ | (65a)
2—? = wp + olrpsin(wt) cscOsin ¢ . (65Db)

Here wp = wp(f) = wy — wyrcosf is the frequency of magnetization precession in the
OOP-regime, wy = vBo, wy = yuoMs. For simplicity, we neglected in Egs. (65) second-
order non-conservative terms (o< a? and oc alrr), which have a negligible effect on the
magnetization dynamics.

In the OOP precessional regime, the magnetization precesses around 2z axis along ap-
proximately circular orbit, 8 ~ const, ¢ = wt + 1, where 1) is the phase shift between the
magnetization precession and the driving current. To analyze the conditions, under which
the OOP regime is possible, one can average Eqs. (65) over the period of precession 27 /w

and obtain the following equations for the slow variables 6 and :

I
<%> = —awpsinf + v(a) UL2RF cosfsin 1) | (66a)
dlb O_J_[RF 1
N — wp — — : 66
< o > wp —w + u(a) Y cos (66b)

Here a = P?sin 0 and

B 2 sin(wt) cos ¢
vla) = ~sine <1 + P2 sin@cosq§> (672)

L, (@ﬂ

V31— a? a

2 sin(wt) sin ¢
u(a) = cos Y < 1+ P?sin 6 cos qﬁ> (67b)

()]
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Note, that for typical spin-polarization values P < 0.7 both dimensionless functions u(a)
and v(a) are very close to 1 for all angles 6.

The OOP regime of magnetization precession corresponds to a stationary solution of
Egs. (66) 0 = 0, = const, ¢ = 1), = const. Solving Eqgs. (66) in this case one can find the
stationary value of the phase shift ,:

sin gy, = 22— tang, . (63a)
UV OLIRF
lw—

cos s = 2-L =P sino, . (68b)
U 01 IRF

Eliminating 1, from the above equations, one obtains characteristic equation for 6,:

2,2 2

CU 2 tan?0, = uzailfm . (69)

(w — wp)?sin? O, + =

This equation for 6, is a nonlinear equation, which, in a general case, can be only solved
numerically.

One can see that Eq. (69) has solutions only for RF currents Irp larger than a certain
critical current Iy,. At the threshold, wp(6,) =~ w, which allows one to obtain approximate
expression for the threshold precession angle

T WH—W
O = 5 —
2 Wnr

(70)

and determine the threshold microwave current Iy, (w) needed for the excitation of the OOP

precession:

(71)

In the last expression we used the approximation sin(fy,) = 1, which is valid for moderate
magnetic fields and frequencies wy, w < wyy.

In order to analyze the stability of the magnetization precession in the OOP-regime
we consider small deviations 00, 01 of variables 6, 1 near their stationary values 0, 1,
respectively. Specifically, one can substitute 0 = 0,406 and ¢ = 1,+0v in Egs. (66), expand
the equations in Taylor series and keep in the newly obtained equations only the terms that
are linearly dependent on 60, 1. Taking into account that (df,/dt) = (dis/dt) = 0, one can
obtain that the magnetization precession in the OOP-regime will be stable if the following

approximate conditions are fulfilled:

0 < cosfy < L (72a)
WM

w< Wy . (72b)
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The first condition given by Eq. (72a) means that the precession angle 6, must be sufficiently
large, because wy < wys (we consider the case of a weak DC magnetic field) and cos 0, < 1.
The condition Eq. (72b) restricts the region of existence of the OOP-regime to sufficiently
low driving frequencies, determined by the bias magnetic field B,.

The output STMD voltage in the OOP-regime can be found using Eqgs. (63) and (64) and
noting that cos(3(t)) = sin 6, cos ¢(t):

UDC == <[RFR<6) sin(wt)> == U)((I)[RFRJ_ sin ’lﬁs R (73)

where

1 sin(wt)
w(a) = sin <1 + P2 sin@cosq§> (74)

Using Eq. (68a) for sin 15 allows one to get the DC voltage as a function of 6, only:

Upc = 20— LR tand, . (75)
VO

This equation for Upc can be simplified further by using the approximation sinf, ~ 1,
cosfs = cos by, = (wy — w)/wyr, valid for not very large driving currents:
w Wpar w

UDC%QQ——RJ_ .
vV O | Wy — W

(76)

Comparing Eq. (76) with Eq. (71) for threshold current I;,(w), one can re-write the output
DC voltage of the STMD as the function of threshold current Iy, (w):

UDC =~ ’(U]th(u))RJ_ . (77)

It follows from Egs. (76), (77) that the output DC voltage of the STMD practically does
not depend on the amplitude of RF current, provided that it is larger than the threshold

current [y,.

III. PERFORMANCE OF A STMD IN OOP-REGIME
A. Typical parameters of a STMD

Below we shall analyze an analytical solution for the STMD in the OOP-regime of opera-
tion, compare this solution with the results of numerical calculations and then also compare

the performance of the STMD in IP- and OOP-regimes.
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We shall consider the case of the STMD with the following typical parameters (see
e.g. [9, 10]): radius of the STMD FL r = 50nm, thickness of the STMD FL d = 1nm,
spin-polarization efficiency of current P = 0.7, resistance of STMD in perpendicular mag-
netic state (8 = 7/2) R, = RA/(mr?) = 1kQ (giving resistance-area product of MTJ
RA = 7.854Q um?), Gilbert damping constant a = 0.01, saturation magnetization of the
FL poMs; = 800mT.

We choose the magnitude of the external out-of-plane DC magnetic field as By = 200 mT
for the STMD in OOP-regime, which corresponds to the maximum OOP frequency wy =
21 x 5.6 GHz.

In the IP-regime of operation, the STMD will be characterized by the equilibrium angle
Po = m/2 between the equilibrium magnetization of the FL and the magnetization of the
PL. Hence the equilibrium resistance of the STMD in the IP-regime is Ry = R; = 1k{2.
We choose the magnitude of the external DC in-plane magnetic field as By = 14.1mT
for the STMD in IP-regime, that in accordance with the expression for FMR frequency
fo = wo/2m = (v/27)\/Bo(Bo + poM,) gives fo = 3 GHz. The resonance STMD sensitivity

in the passive regime for such parameters is £,6s = 2700 V/W (see e.g.[9]), which is greater

or comparable to the sensitivity of a typical unbiased Schottky diode [10].

B. Precession angle and threshold current in the OOP-regime

Numerical solutions of Eq. (69) for the OOP precession angle 0, as a function of the
microwave current Irp for several driving frequencies f = w/27 are shown in Fig. 17. As
one can see, the stable OOP-precession mode exists only for trajectories of magnetization
motion with sufficiently large precession angles s (see Eq. (72a)). With the increase of
the driving current Irp the precession angle 6, monotonically increases up to the maximum
value 0 = /2.

Fig. 17 can also be used for the determination of the threshold current Iy, (w) needed
for excitation of the OOP-precession regime. One can see that with the increase of the
microwave frequency w the threshold current Iy, (w) also increases. Our calculations show
that the difference of I;,(w) calculated from Eq. (69) and from approximate Eq. (71) is about
several percent and, therefore, one can use analytical Eq. (71) for rather accurate estimation

of the threshold current.
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FIG. 17. The dependence of the OOP precession angle 8, on the magnitude of RF current Irp for
different frequencies of RF signal f = w/27 for an STMD with typical parameters (see Sec. IITA).
Solid lines correspond to the stable OOP-precession modes, while dashed lines correspond to the
unstable trajectories. The minimum value of Irp for any particular curve is the Iy, (w) of the

OOP-precession mode.
C. Performance of an STMD in the IP and OOP regimes

The precession motion of magnetization in the IP-regime determines the following typical
properties of a traditional STMD [8-10):

(a) The STMD operates as a frequency-selective microwave detector with a resonance
frequency that is close to the frequency of ferromagnetic resonance (FMR) wq of the FL;

(b) The frequency operation range of the detector has an order of the FMR linewidth T';

(¢) The output DC voltage Upc of the STMD is proportional to the input microwave
power Prp = I3pRo/2 (Ry is the equilibrium MTJ resistance), so the spin-torque diode

operates as a resonance-type quadratic microwave detector:

F2
Upc = €res P , 78
DC RF 2 T (w — w0)2 ( )

where £, is the resonance (at w = wy) diode volt-watt sensitivity (see [9]);

(d) the diode resonance sensitivity e, strongly depends on the angle 5 between mag-
netization directions of the FL and PL. The resonance sensitivity of traditional STMD
£res = Upc/ Prr is predicted to be about e, ~ 101 V/W (see [9]), while the best achieved
to date experimental result is .5 = 300 V/W [10].
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FIG. 18. The dependence of the output DC voltage Upc of a STMD on frequency of input RF signal
f = w/27 in OOP- (solid line and points) and IP-regime (dashed line), respectively. Blue solid
line is the analytical dependence given by Eq. (77), red dashed line is the analytical dependence
given by Eq. (78). Points are the results of numerical simulations. Black crosses and green circles
corresponded to the case when frequency is increased and decreased, respectively. Irp = 0.2 mA,

all other parameters are the same as indicated in Sec. IITA.

We shall use the Eq. (78) for the calculation of the output DC voltage of an STMD in
the IP-regime as a function of the input microwave current Irr and current frequency w.

These curves are indicated below in Figs. 19 and 18 by red dashed lines.

In order to verify the conclusions of the analytical theory of an STMD in the OOP-regime
we solved numerically the LLGS Eq. (62) and then numerically calculated the output DC
voltage of the detector as Upc = (Irr(t)R(S)). The results of our calculations are presented
in Figs. 18, 19. Here solid blue lines and red dashed lines present the analytical dependencies
of Upc in the OOP- and IP-regimes (see Eq. (77) and Eq. (78)), respectively. Dots are the
results of our numerical calculations. Black crosses and green circles correspond to the cases
of increasing and decreasing of the parameter (frequency w or magnitude Irg of the RF
current), respectively. As one can see, the results of analytical theory are in reasonable

agreement with the results of our numerical calculations.

As one can see from Fig. 18, in the OOP-regime the STMD works as a broadband
low-frequency non-resonant microwave detector in contrast to the traditional resonance IP-
regime. The response of the STMD to an input microwave current with magnitude Irp is

also substantially different in the cases of OOP- and IP-regimes of operation of an STMD
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FIG. 19. The dependence of the output DC voltage Upc of a STMD on input microwave current
Izr in OOP- (solid line and points) and IP-regime (dashed line), respectively. Blue solid line is
the analytical dependence given by Eq. (77), red dashed line is the analytical dependence given
by Eq. (78). Points are the results of numerical simulations. Black crosses and green circles
corresponded to the case when the current is increased and decreased, respectively. f = w/2m =

3 GHz, all other parameters are the same as indicated in Sec. IITA.

(see Fig. 19). In the IP-regime, the output DC voltage Upc of the detector is proportional
to the input microwave power Prp = (1/2)I3pRo (red dashed curve in Fig. 19, see also
Eq. (78)). In contrast, the output DC voltage Upc of the detector in the OOP-regime has
a step-like dependence (blue solid curve and points in Fig. 19): Upc =~ 0 for Irr < Iin(w)
and Upc =~ const for Igp > Iy(w). Thus, in the OOP-regime, the STMD operates as a
non-resonant broadband threshold microwave detector of low frequency RF signals.

It is important to note, that the results of our numerical simulations showed the existence
of a hysteresis in the curves Upc(f) and Upc(Irr) in the OOP-regime (see Figs. 18, 19). The
origin of this hysteresis lies in the “hard”, or subcritical, scenario of excitation of the OOP
precession: the precession angle 6y, that corresponds to the threshold current Iy, (see Fig. 17)
does not coincide with the equilibrium magnetization angle and, therefore, for currents close
to the threshold one the OOP regime may or may not be realized, depending on the history
of the system. In experiments, the hysteresis may be “blurred” or may not be visible at all

due to the influence of thermal fluctuations and other noises existing in real systems.

The results presented above correspond to the case of no DC bias current applied to the

MTJ (Ipc = 0). If this is not the case and Ipc # 0, this current will partly compensate
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the damping in the FL. MTJ, thus decreasing the threshold current Ii,(w). On the other
hand, the in-plane anisotropy and/or the in-plane bias field in the FL may create an energy
barrier between the regions of small-angle IP- and large-angle OOP-trajectories, which may
result in increase of Ixy.

We also suggest that the OOP-regime of operation of a STMD might be responsible for
an extremely large diode volt-watt sensitivity e ~ 10° V/W observed in recent experiments

with thermally-activated “non-adiabatic stochastic resonance” [11, 12].

D. Energy harvesting applications of an STMD in OOP-regime

The STMD in the OOP-regime could be used as a base element for new energy harvesting
devices, inasmuch as it has no resonance frequency, and, therefore, could accumulate energy
from all the low-frequency region (w < wg) of the microwave spectrum.

The energy conversion rate ¢ of an STMD in the OOP-regime may be estimated as

P 1 /1 2 2
- T Ll ()" -
Prr 2\ Irr Wo
where Ppc is the output DC power of an STMD under the action of input microwave
power Prp, wy = wo(as) = (1 —a?)~Y2, a, =~ P?. The maximum possible conversion rate

Cmax = 0.5w? /w2 ~ 3.5 % is reached in the case Irp = I (w). We believe that this ratio is

sufficiently large for practical applications in microwave energy harvesting.

IV. SUMMARY

In conclusion, it has been demonstrated that there is a novel regime of operation of an
STMD, based on the excitation of large-angle out-of-plane (OOP) magnetization precession.
In this regime STMD has the following features:

(a) it operates as a non-resonant broadband microwave detector for input RF currents Irg
larger than the critical current Ii,, Irrp > Ii. Thus, STMD operates as threshold detector
of RF signals;

(b) a stable OOP-regime exists for low frequency input signals with frequencies w < wg ;

(c) the output DC voltage Upc in the OOP-regime has a step-like form and weakly

depends on the magnitude of input RF current Irr for currents Irg > Iiy.
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We believe that the OOP regime of STMD operation can be used for the development of
novel types of threshold microwave detectors and might be responsible for extremely large
diode volt-watt sensitivity observed in recent experiments with “non-adiabatic stochastic
resonance” [11, 12]. This regime of operation of an STMD might also be useful for the
creation of energy harvesting devices based on STMD, which operate in the low-frequency

region of the microwave spectrum.
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