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1. Introduction 

A challenge in analyzing terrorist threats is separating the relevant information that is often 
buried within a massive amount of other data.  This relevant (or supervised) data must usually be 
further reduced, especially when humans are involved in an interpretation.  Even identifying 
simple relationships from a text extraction of data can be a challenge and is usually easier and 
more quickly comprehended when presented graphically.  Therefore, transformation of all that is 
known about the data to a reduced set is welcomed.  Then, allowing for exploration (navigation 
and interaction) in two-dimensional/three-dimensional (2-D/3-D) data prior to an arbitrary 
projection may result in information discovery.   

The U.S. Army Research Laboratory (ARL) is addressing this complex topic by developing 
software that includes dimensionality reduction (DR) for data analytics (DA) and subsequent 
application of visual analytics (VA) technology to take advantage of the broad eye/brain 
pathway.  This human combination is amazingly efficient at analyzing and interpreting massive 
amounts of data when presented in an effective visual format—more of the brain is devoted to 
visual processing than to any other sense.  Lee and Verleysen (1) state that humans try to 
understand high-dimensional structures in the same way as 2-D/3-D objects.  When the 
dimensionality is more than three (e.g., 16 features to be represented by a single pixel), it is 
difficult and often confusing to try to perceive similarities/dissimilarities in the data.  The 
following application feature extraction is done using a “think globally, fit locally” approach as 
opposed to a simple selection of features in the data.  It is a nonlinear DR (NLDR) 
approximation that preserves topology when projecting from high-dimensional data (HDD) 
space to a 2-D latent space.   

The next section discusses an algorithm being considered for NLDR—a parametric Student’s t-
distributed stochastic neighbor embedding (t-SNE) (2) for a rapid mapping of feature data from 
HDD space (d) to latent space (X).  The t-SNE preserves the topology (3) of the data after an 
extraction, which may be important since dependencies could exist between nodes.  This 
intrinsic property is not altered when projecting from d to X; deformation, twisting, and/or 
stretching (intrusions) are allowed but no tearing (extrusion).  For example, in 2-D Euclidean 
space, a circle is topologically equivalent to an ellipse, but when you tear (or cut) it, you lose the 
topological structure, and one now has a random line segment.   

Section 3 describes the VA capability for interaction with data.  A scene is described using the 
Extensible 3-D (X3D)† application programming interface for the data.  The X3D is an 

                                                 
In topology, the concern is not the representation of an object or structure in space but connectivity. 
†Note that the functionality of an X3D node and its attributes are described at http://www.web3d.org/x3d/content 

/x3dTooltips. 
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International Standards Organization (ISO) specification that allows for real-time, interactive 
manipulation of data in a scene possibly distributed across the Web.  In late 2010, X3D nodes 
were tightly coupled within the hyper-text markup language (HTML) document object model 
tree of Web browsers, such as Internet Explorer.  A European Computer Manufacturers 
Association Scripting (ECMAScript)-language access to scene content for interaction is done 
through an X3D <Script> node. 

An example is given throughout the report for navigation within a visualization of a network of 
nodes.  The parametric t-SNE (4) is programmed in MATLAB (5).  The VA capability was done 
for the Xj3D standalone browser Xj3D 2_M1_DEV_2008-05-08† developed at Yumetech, Inc.  
The VA program is written for stereo viewing in an immersive profile.   

This initial research has not yet been finalized.  The VA work has been finalized, as 
demonstrated for navigation within a visualization of a network of nodes.  Although the 
parametric t-SNE has been successfully used with the MNIST database of handwritten digits (6), 
it has yet to be used with terrorist data. 

2. Dimensionality Reduction:  The Data Analytics for Visual Analytics  

Visualization of any underlying structure that may exist for real-world HDD involves a 
projection to a plane in 2-D space.  DR aims at an extraction of features (as opposed to simple 
feature selection) by eliminating any redundancy that may exist.  However, preserving structure 
or dependencies within the data is important so that there is no loss of information when re-
embedding the “true” manifold from d to one in this lower dimension, or the projected manifold 
must remain representative of the actual data and topological properties not altered. 

DR tries to exploit the typically lower intrinsic dimension (P) of the real-world data, i.e., for P<d.  
P is the minimum number of parameters needed to account for observed properties of the data 
and reveals the presence of topological structure in the data.  Ideally, the reduced dimension (D) 
will correspond to P.  When P≤D where D is also the dimension of the embedding space, the data 
lie in a well-defined space.  The most common way to estimate P is by computing the number of 
latent variables.   

A leading researcher in data visualization, John A. Lee, describes a manifold as a topological 
space that is locally Euclidean but may be globally curved (7).  He also states in his book that a 
topological object is formally defined as a topological space.  For example, the Earth is spherical 
in shape but looks flat to the human eye.  Topology abstracts the intrinsic connectivity of an 

                                                 
Internet Explorer is a registered trademark of Microsoft Corporation. 
†The viewer can be found at http://www.xj3d.org/snapshots.html.  Java-language bindings are also defined for manipulating 

/viewing scene content but not used here. 
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object (or structure) but ignores the detailed form.  Each point in the original HDD is assumed to 
lie near or on a manifold and should remain close or on a manifold after re-embedding in RD, 
where R is real and D ≤ d; D is either a 2- or 3-D embedding space that is Euclidean.  The 
embedding space R2 is the latent space for reduced data.  Lee and Verleysen recently stated that 
DR is a “boiling hot research topic” (7).  For a linear DR (LDR) such as principal component 
analysis (PCA) or classical multidimensional scaling (MDS), the metric is based on Euclidean 
distance between two points and is called distance-preserving.  However, LDRs cannot handle 
complex, nonlinear cases typical of real-world data.  Thus, a NLDR approximation (or manifold 
learning) based on the geodesic distance along the manifold (linear or nonlinear) is used instead 
of a Euclidean distance for the metric; this approach is topology-preserving.  An example 
comparing the application of an LDR to NLDR for HDD is illustrated in figure 1; a projection 
from a 3-D embedding space Y = [y1 y2 y3] to a 2-D latent space X = [x1 x2] shows the concern.   

 

Figure 1.  Image showing (a) comparison of an NLDR vs. LDR for a 2-D manifold embedded in a 3-D space Y, (b) 
using a NLDR, and (c) using a LDR.  It should be noted that for a NLDR, the topology is preserved.  The 
figures are taken from Lee and Verleysen (1). 

There are many NLDR techniques.  Manifold learning has been successfully demonstrated for 
artificial datasets such as the Swiss roll, where points lie on a spiral-like 2-D manifold embedded 
in 3-D Euclidean space.  NLDRs find this embedding, whereas LDRs fail to do so.  NLDRs have 
been quite successful on artificial datasets but less convincing on natural datasets, where real-
world data are typically highly curved.  Now, recent research (8) suggests that DRs for learning 
manifolds differ from DRs for data visualization.  Both of these concerns (real-world data and 
data visualization) are being considered. 

Additionally, a near real-time capability may be imperative.  A parametric t-SNE meets this 
requirement once training for a HDD space to low-dimensional latent space is completed; in fact, 
the algorithm is faster than PCA, the quickest of all DR algorithms.    

In our application, the parametric t-SNE eliminates redundancy of some 16 features when 
computing latent variables.  Specifically, the features are tribal affiliation, probable origin, 
observer recognition ID, remote sensed facial imagery ID, remote sensed pulse rate, directly 
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measured pulse rate, directly sensed GSR, iris pattern ID, facial imagery ID, ID according to 
fingerprint, Taskera name congruent with claimed name, Taskera name congruent with true ID, 
probable origin, assumed age, probable ethnicity, and recorded sect.   

It should be noted that visualization of data resulting from application LDRs/NLDRs is done in a 
2-D latent space.  A latent variable is at the origin of observed values but cannot be measured 
directly.  Both LDRs and NLDRs find the number of latent variables, but determination of the 
actual latent variables themselves, known as latent variable separation (LVS), is beyond the 
scope of this work (LVS, including discussion of the two more popular approaches, blind source 
separation and independent component analysis, can be found in the book by Hyvarinen et 
al. [9]).  In general, however, it is difficult to tell the meaning of latent variables.   

3. The X3D Visual Analytic for Network Exploration   

A VA capability provides for interaction with data (10).  In our case, this is navigation within a 
visualization of nodes for gaining additional, timely insight to network topology or connectivity.  
For example, a rotation of the scene in figure 2 about the y-axis results in discovery of C3 hidden 
by C2 (see figure 3); this relationship would be difficult to identify in a text presentation.  Such 
affine transformation(s) of the data have been defined in Neiderer (11).  
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Figure 2.  An Xj3D view of a 53-node network.  The C2 tooltip is activated when the mouse pointer passes over 
that node.
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Figure 3.  An Xj3D view of a scene from figure 2 that has been rotated about the y-axis for display of C3, 
which was not visible in the previous figure. 

X3D uses an extensible markup language (XML) encoding of data.  It continues to expand and 
be embraced by 3-D computer graphics developers in many different fields.  Recently, X3D 
nodes were tightly coupled with the HTML document object model (DOM) tree of Web 
browsers (12).  The result is a seamless integration where X3D programs can be run without 
changing a single line within an application.  For now, however, X3D scenes are displayed in a 
browser from Yumetech, Inc.   

Specifically, X3D nodes, or objects, are viewed in the Xj3D-2_M1_DEV_2008-05-08 browser.  
Xj3D provides for both Java- and ECMAScript-language bindings to scene content.  It is an 
open-source, standalone browser that supports over 170 X3D primitives, including an unlimited 
number of prototype definitions.  X3D nodes are grouped into a component and components by 
profiles.  The immersive profile for a VA capability is used here.  A thorough discussion of these 
concepts and X3D in general can be found in the book by Brutzman and Daly (13). 

X3D nodes can be chained together by fields for animation.  This is how tooltips are defined in a 
scene.  The <ROUTE> mechanism allows for real-time, interactive manipulation communication 
with the displayed content.
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A detailed description of an entire scene for a network of nodes is given in Neiderer (11), as well 
as the event cascades for animation.  Although all details are not repeated here, the scene graph 
is described and discussed in the next section. 

X3D Scene Graph Description 

The scene graph (SG) representation for a network of 53 nodes is illustrated in figure 4.  The key 
at the upper left describes the content as follows:  an individual of remote inquiry (RI), 15 
criminals (C), 28 innocents (I), and 9 insurgents (Ins).  The console across the bottom is used for 
both static and dynamic display of node features—the 16 attributes of the RI are static and can be 
compared to any node in the scene by “touching.”  For example, in figure 4, attributes of C1 can 
be compared to the RI. 

Each network node has two branches, both directed acyclic graphs (DAG) of X3D objects—a 
geometry branch and a text branch.  In this way, we keep the geometry in a scene separate from 
text.  The branches are fully described in Neiderer (11), and only the figure is repeated here (see 
figure 5).   

That report also discusses the event chaining for fields of X3D nodes defined for tooltip and 
dynamic display of text.  Figure 2 displays the situation where the mouse pointer passes over C2 
(criminal 2); the result is a tooltip for quick identification of that node.  This can be done for any 
node in the scene.  A second event chain is defined for clicking (or “touching”) any node in a 
scene, and the appropriate text is routed to the console at the bottom of the display (see figure 4).  
It should be noted that both the key and console have been placed in a layer separate from scene 
content.  This allows for navigation within a scene and independent text display.  In this case, 
text is always displayed left to right in the same location.   
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Figure 4.  An Xj3D view of a 53-node network with a legend (at left) and a console (bottom).  Network node “C1” 
is touched, resulting in text animation for the node that can be compared to the “RI.” 
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Figure 5.  DAG of X3D scene graph objects for a network node. 

4. Conclusions and Future Work 

Dimensionality reduction for visual analytics is being developed at ARL for exploratory data 
analysis.  VA for a network structure has been completed using the X3D standard application 
programming interface.  Currently, the application of a parametric t-SNE algorithm, which 
reduces terrorist data to node position vectors of a potential terrorist network, is being 
considered.  This NLDR uses distances along the manifold in HDD space (i.e., geodesic 
distances) so that a re-embedded manifold is topologically preserved.  For VA, the 
dimensionality of the reduced data is for a 2-D/3-D latent space.  Examining the data in this 
context may result in identification of key relationships.  A parametric approach will allow for 
new data entry and fast evaluation once learned.  Future work will expand the number of DR 
techniques and utilize data extracted from simulated and real intelligence reports. 
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