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Abstract

We organized a challenge in “Unsupervised and Transfer Learning”: the UTL challenge (http:
//clopinet.com/ul). We made available large datasets from various application domains:
handwriting recognition, image recognition, video processing, text processing, and ecology. The
goal was to learn data representations that capture regularities of an input space for re-use across
tasks. The representations were evaluated on supervised learning “target tasks” unknown to the
participants. The first phase of the challenge was dedicated to “unsupervised transfer learning”
(the competitors were given only unlabeled data). The second phase was dedicated to “cross-
task transfer learning” (the competitors were provided with a limited amount of labeled data from
“source tasks”, distinct from the “target tasks”). The analysis indicates that learned data represen-
tations yield significantly better results than those obtained with original data or data preprocessed
with standard normalizations and functional transforms.
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1. Introduction

Classical machine learning techniques, including artificial neural networks,
work well if data are independently and identically distributed and if there there
are sufficient numbers of labeled training data. Unfortunately, in many real world
applications, these assumptions are violated: (1) Data available for training are
not always similar to data the system will be exposed to when it is deployed. (2)
Few labeled training data may be available due to the cost or burden of manually
annotating data. Transfer learning addresses both of these shortcomings by pro-
viding tools to learn a new task for which labeled data are scarce from a related
task for which data are abundant, labeled or not (Figure 1).
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Figure 1: The Transfer Learning question: Can learning about house cats help us learn about
tigers?

2. Definition of Unsupervised and Transfer Learning

In this paper, we call “domain” the input space (e.g., a feature vector space)
and we call “task” the output space (represented by labels for classification prob-
lems). We use the adjective “source” for an auxiliary problem, for which we have
an abundance of data (e.g., classifying house cats), and “target” for the problem
of interest (e.g., classifying tigers). A transfer learning system recognizes and
applies knowledge and skills learned on a “source” problem to a novel “target”
problem. Within this framework, there several settings, depending on whether
labels are available for the source task and/or the target task, and whether
domains and tasks are the same or different for the source and the target
problem [1]. Some familiar settings include:

Inductive Transfer Learning: Labeled data are available for the target tasks
to perform supervised learning, but not in abundance. A typical setting is that
of a large multi-class problem, in which some classes are a lot more depleted
than others (e.g., in image classification or text classification). The most abundant
classes serve as “source tasks” for the least abundant ones, representing the “target
tasks”. If all source data are labeled, one talks of multi-task learning. When
unlabeled source data are available, the term self-taught learning [2] is used.

Domain Adaptation: Labeled data are available for both the source and the
target tasks, but the input distribution (domain) is changing. For instance a speech
recognition system would be trained with native speakers and be used by a non-
native speaker willing to partially re-train it.

Semi-supervised and Transductive Learning: There is no change in either
domain or task and labeled training data are available. In addition, either unla-
beled training data are available (semi-supervised learning) or the unlabeled test
data may be used for learning (transductive learning). An example of semi-
supervised learning would be classifying images of skin lesions into cancer and
non-cancer from a database of example including few confirmed cases.
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Unsupervised Learning and Cross-task Transfer Learning: When no la-
beled data are available at all (in the source or target domain), unsupervised
learning techniques (clustering, vector quantization, factor analysis, manifold
learning, etc.) may be applied in an effort to represent data in a simpler and/or
better way, either for visualization, or as data preprocessing, for future use in su-
pervised learning tasks. When a limited amount of labeled data is available only
in the source domain, we talk about cross-task transfer learning.

3. Setting and tasks of the challenge

The case examined in this challenge was that of Unsupervised and Cross-
Task Transfer Learning. Labels were available for target tasks to the challenge
organizers only, to evaluate data representations provided by the participants. This
setting may seem artificial because there are ultimately labels available for some
target tasks, so why not make same available to the participants? Our goal was
to decouple problems and see how far one could get by working only on learning
data representations. This exercise has turned out to be extremely fruitful.

The datasets of the challenge (Table 1) were split into a large development
set1, a validation set and a final evaluation set. The goal of the challenge was
to produce good data representations on the final evaluation set. The vali-
dation set is similar to the final evaluation set; it was provided for practice. The
assessment of the data representations was carried out on target tasks (that are su-
pervised learning classification tasks), using labels known only to the competition
organizers. The target tasks for the validation set and the final evaluation set are
different but related. The intention is to determine the extent to which the abstract
features are useful for classifying a family of related tasks. During the develop-
ment period, online feedback was provided only on the validation set. The results
on the final evaluation set were revealed only at the end of the challenge.

The challenge proceeded in two phases. The first phase focused on unsuper-
vised learning.2 During that phase, no labels were provided to the participants
in either the source or the target domain. It was then followed by a second phase

1We use the nomenclature “development set” rather than “training set” to stress that the actual
(supervised) training is performed with labeled target domain data by the organizers only. The
development set is not the training set for the target tasks.

2From the point of view of the overall problem, including the evaluation on supervised target
tasks performed by the organizers, this setting is similar to self-taught learning [2] because of the
availability of unlabeled data in a source domain distinct from the target domain.
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on cross-task transfer learning for which some labels for source tasks, distinct
from the target tasks, were provided for a subset of the development data.

Table 1: UTL challenge datasets
Devel = number of examples in development data. Transf = number of source task labels released
in the second phase. The validation and final evaluation sets consist of 4096 examples each.

Dataset Domain Features Sparsity Devel. Transf.
AVICENNA Handwriting 120 0% 150205 50000
HARRY Video 5000 98.1% 69652 20000
RITA Images 7200 1.1% 111808 24000
SYLVESTER Ecology 100 0% 572820 100000
TERRY Text 47236 99.8% 217034 40000

We selected five different application domains that are illustrative of fields in
which transfer learning is applicable:3

AVICENNA: Professor Mohamed Chériet, École de Technologie Supérieure,
University of Quebec, Montréal, Canada, and his students prepared a large corpus
of historical Arabic documents [3]. Transfer learning methods could accelerate
the application of handwriting recognizers to historical manuscript by reducing
the need for using human experts to labels and index them.

HARRY: The identification and recognition of gestures, postures and human
behaviors has gained importance in applications such as video surveillance, gam-
ing, marketing, computer interfaces and interpretation of sign languages for the
deaf. The HARRY dataset was constructed from the KTH human action recog-
nition dataset of Ivan Laptev and Barbara Caputo4 and the Hollywood 2 dataset
of human actions and scenes of Marcin Marszalek, Ivan Laptev, and Cordelia
Schmid5.

RITA: Object recognition in images is a classical pattern recognition task
gaining importance for retrieval applications, including for Internet search. The
RITA dataset was constructed from the CIFAR dataset of Alex Krizhevsky, Vinod
Nair, and Geoffrey Hinton6, a subset of the 80 million Tiny images dataset of

3A detailed technical report on the datasets was made available after the challenge ended:
http://www.causality.inf.ethz.ch/ul_data/DatasetsUTLChallenge.pdf

4http://www.nada.kth.se/cvap/actions/
5http://www.irisa.fr/vista/Equipe/People/Laptev/download.html
6http://www.cs.toronto.edu/˜kriz/cifar.html
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Antonio Torralba, Rob Fergus, and William T. Freeman7.
SYLVESTER: Massive datasets need to be processed automatically to assist

experts in ecology, geography, geology, climatology, archaeology, and seismol-
ogy. We used data from the US Forest service to illustrate such tasks.8

TERRY: Internet search engines process billions of queries daily to rank web
pages. Very few labeled data are available, but millions of documents must be in-
dexed. We used a subset of the RCV1-v2 Text Categorization Test Collection de-
rived from Reuter’s news articles formatted and made publicly available by David
Lewis [4].

These are all multi-class problems. We selected a subset of the classes as target
tasks and used the remainder as source tasks. The tasks in the source and target
domains are very distinct, for instance, the source domain may include pictures
of cars, houses, trees, and the target domain would include horses, chairs, and
computers. The datasets varied in difficulty, as illustrated by the histograms of
performances of the participants (Figure 2). AVICENNA is very hard, HARRY
and TERRY are the easiest tasks (but there is a very wide range of results) and
RITA and SYLVESTER are of medium difficulty.

4. Protocol and evaluation

The challenge protocol was inspired by previous competitions we organized [5]
and was designed to ensure fairness of the evaluation and stimulate participation.
We provided guidance to the participants with detailed answers to Frequently
Asked Questions (FAQ)9 and we posted a short video tutorial on transfer learn-
ing.10 The rules can be found on the website of the challenge.11

The data representations were assessed automatically on the website of the
challenge. The evaluation software and sample code were provided to the par-
ticipants. The organizers defined several binary classification tasks unknown to
the participants and placed them in either the validation set or the final evaluation
set. The platform used the data representations provided by the participants to
train a linear classifier to solve these tasks. So in all cases, the data representa-

7http://groups.csail.mit.edu/vision/TinyImages/
8http://archive.ics.uci.edu/ml/datasets/Covertype
9http://www.causality.inf.ethz.ch/unsupervised-learning.php?

page=FAQ
10http://www.youtube.com/watch?v=9ChVn3xVNDI
11http://clopinet.com/ul
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Figure 2: Histogram of participant results for the first phase of the challenge. The y axis is the
number of entries in each bin. Similar histograms were obtained in the second phase (not shown)

tions were assessed with supervised learning tasks. We chose a simple Hebbian
learning rule.12 The Hebbian algorithm has a kernelized version. Thus, we let the
participants submit either a data representation or a semi-definite positive matrix
(interpreted as a matrix of similarity between pairs of examples), which was used
as a kernel. See [6] for details.

To compute the ranking score, a form of cross-validation was performed by
partitioning randomly the evaluation data (validation set or final evaluation set)
multiple times into a training and a test set, and averaging performances. The
number of training examples m was varied from 1 to 26 and the area under the
ROC curve13 (AUC) was plotted against m in a log2 scale to emphasize the results
on small m. The area under the learning curve (ALC) was used as a scoring metric
to assess the results. The ALC criterion is a good way to aggregate the values of

12Experiments conducted after the challenge using the submissions of the top ranking partici-
pants revealed that other linear classifiers, not making an independence assumption between ex-
amples, do not yield performance improvements. This can be explained by the fact that it is
possible to orthogonalize the examples with e.g., PCA, making Hebbian learning quasi-optimal.
Additionally, for small training sets, Hebbian learning is robust against overfitting.

13This is the area under the curve plotting hit rate vs. false alarm rate.
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the AUC over all considered number of training examples. The participants were
ranked by ALC for each individual dataset. The participants having submitted
a complete experiment (i.e., reporting results on all 5 datasets of the challenge)
could enter the final ranking. The winner was determined by the best average
rank over all datasets for the results on a complete experiment or their choice.
See [6] for details.

5. Results

The challenge attracted 76 participants. There was more participation in the
first phase than in the second phase: In the first phase, 6933 jobs were submitted,
including 41 complete final entries, while, in the second phase, 1141 jobs were
submitted including 14 complete final entries. There were in the end 16 ranked
teams in the first phase and 8 ranked teams in the second phase. Not all teams
decided to enter the final ranking, despite the option to preserve their anonymity.

The results of the top ranking teams are shown in Table 2. The “normalized”
ALC refers to (ALC −Arand)/(Amax−Arand), where Amax is the ALC ob-
tained when perfect predictions are made and Arand is (in expectation) the ALC
obtained for random predictions. We show in boldface the best result for both
phases. The numbers in parentheses are the ranks for the individual datasets in
each phase. The complete result tables are available online14 and details are pro-
vided in [6]. In support of the significance of the results of the challenge, the top
ranking teams in both phases used consistently the same principled methods on
all datasets, and performed well on all of them.

It was important for us to assess whether unsupervised learning helps com-
pared to classical normalizations or no preprocessing at all. We ran a couple of
baseline algorithms for comparison. Using unsupervised learning, the participants
outperformed the organizers on 4/5 datasets (for HARRY, the normalized repre-
sentation achieved the best results in phase 1).

Finally, we examined the correlation between validation set and final evalua-
tion set performances (Figure 3). The graph reveals that on several datasets the
test set was easier that the validation set. We did this on purpose so the participants
would not be frustrated. After removing a few outliers (probably due to submis-
sion errors) we obtained a correlation coefficient of 0.88 in the first phase and 0.89
in the second phase. Most participants simply used the validation set performance

14Result tables: http://www.causality.inf.ethz.ch/
unsupervised-learning.php?page=results
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Table 2: Normalized ALC values of the top ranking participants.

Phase 1 - Unsupervised Learning
Rank Team Experiment Avicenna Harry Rita Sylvester Terry

1 AIO AIO 0.2183 (1) 0.7043 (6) 0.4951 (1) 0.4569 (6) 0.8465 (1)
2 1055A exp1 0.1906 (6) 0.7357 (3) 0.4782 (5) 0.5828 (1) 0.8437 (2)
3 Airbus A3XX 0.2174 (2) 0.7545 (2) 0.4724 (7) 0.4949 (4) 0.8390 (3)
4 LISA LISA 0.1960 (5) 0.8062 (1) 0.4731 (6) 0.4763 (5) 0.7959 (6)

Phase 2 - Transfer Learning
Rank Team Experiment Avicenna Harry Rita Sylvester Terry

1 LISA agartha 0.2273 (1) 0.8619 (1) 0.5029 (1) 0.5650 (3) 0.8160 (2)
2 tkgw crush 0.1973 (2) 0.7533 (2) 0.4095 (4) 0.5933 (1) 0.8118 (3)
3 1055A phase2exp1 0.1511 (4) 0.7381 (3) 0.4992 (2) 0.5873 (2) 0.8437 (1)
4 FAST teaf 0.1909 (3) 0.3580 (4) 0.4275 (3) 0.3379 (5) 0.6485 (4)

as a model selection criterion. Because of the high correlation between validation
performance and test performance, this turned out to be an effective strategy.

We surveyed the participants to determine what algorithms, software and hard-
ware was used and the best entrants were asked to produce a full length paper,
which will appear in JMLR W&CP [7]. We briefly summarize the methods and
findings.

In the first phase, the winner (team name: AIO) used an algorithm to train
kernels [8]. Using validation data, they incrementally improved their kernel, each
time checking the performance on the leaderboard. They developed a systematic
method of sequential kernel transformations and recorded which sequence ended
up giving the best performance on validation data. Then, they applied the same
sequence to the final evaluation data. The method can be interpreted as a greedy
search for hyperparameters of a compound kernel. The AIO team did not use
the development dataset for training at all: The cascade of steps selected with
the validation set was then applied to the final evaluation data to produce a new
kernel. Thus this method can be qualified of “transductive”.

The team LISA, ranking first in the second phase and fourth in the first phase,
based their solution on Deep Learning techniques, in particular for unsupervised
learning of representations [9]. Their methods follow the techniques described
in [10]. Those exploit as building blocks unsupervised learning of single-layer
models, such as Restricted Boltzmann Machines, to construct deeper models such
as Deep Belief Networks. Their last layer is a transductive PCA (PCA computed
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Figure 3: Correlation between results on the validation and test data in phase 1. A similar plot was
obtained with phase 2 data.

directly on the final evaluation data, for the feature representation produced by the
preprocessor trained with the development and validation data).

The team 1055A, ranking second in the first phase and third in the second
phase used classical unsupervised learning methods: Principal component analy-
sis (PCA) and k-means clustering [11]. They first computed the principal com-
ponents on validation dataset and used the on-line feedback to determine the first
n principal components that gave the best global score. Clustering was then per-
formed in the PCA representation and repeated 100 times with different class
seeds. The number of clusters was optimized with the feedback from the valida-
tion dataset. They submitted data representations in a binary encoding of cluster
membership.

The team tkgw, ranking second in the second phase, used a method called
“Random Forest Proximity”, which recursively searches for principal directions
when going down a decision tree (halting at a depth of 12). Random Forests [12]
are ensembles of decision trees built by resampling variables and training ex-
amples. The method allowed the authors to create a large number of features,
from which they generated a similarity measure. The similarity measure was then
turned into a semi-definite positive kernel matrix with a suitable normalization.
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See the fact sheet for details.
The team Airbus, ranking third in the first phase, tried various preprocess-

ing methods and selected the best one using the validation set. On AVICENNA
they ended up using PCA with 90% of variance, and then a RBF kernel. For
HARRY and TERRY, they rotated the representation then used a linear kernel. For
RITA, they ran k-means to get some clusters then Maximum Variance Unfolding
(MVU) on each of them to select features, and then a denoising algorithm. For
SYLVESTER, they used whitening, taking 90% of the variance.

The setting of the challenge revealed the power of unsupervised learning as
a preprocessor. For all the datasets, unsupervised learning produced results sig-
nificantly better than the baseline methods (raw data or simple normalizations).
The participants exploited effectively the feed-back received on the validation set
to select the best data representations. The skepticism around the effectiveness
of unsupervised learning is justified when no performance on a supervised task is
available. However, unsupervised learning can be the object of model selection
using a supervised task, similarly to preprocessing, feature selection, and hyper-
parameter selection. An interesting new outcome of this challenge is that the
supervised tasks used for model selection can be distinct from the tasks used for
the final evaluation. So, even though the learning algorithms are unsupervised,
transfer learning is happening at the model selection level.

In phase 1, there was a danger of overfitting by trying too many methods
and relying too heavily on the performance on the validation set. One team for
instance overfitted in phase 1, ranking 1st on the validation set, but only 4th on
the final evaluation set. Possibly, criteria involving both the reconstruction error
and the classification accuracy on the validation tasks may be more effective for
model selection. This should be the subject of further research. In phase 2, the
participants had available “transfer labels” for a subset of the development data
(for classification tasks distinct from the classification tasks of the validation set
and the final evaluation set). Therefore, they had the opportunity to use such labels
to devise transfer learning strategies. The most effective strategy seems to have
been to use the transfer labels for model selection again. None of the participants
used those labels for learning.

6. Conclusions

The results of the challenge confirm results reported in the literature that un-
supervised learning can be beneficial for preprocessing. The benefits of transfer
learning in the “cross-task transfer learning” setting studied in this challenge are
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mainly derived from an improvement in model selection of unsupervised learning
preprocessing techniques. In particular, the challenge demonstrated that the vali-
dation data needs not to be drawn from the same distribution, it suffices that the
source task used bears some resemblance to the target task. The importance of the
degree of resemblance of the two tasks remains to be determined.

Overall, an array of algorithms were used, including classical linear methods
like Principal Component Analysis (PCA), and non-linear methods like clustering
(k-means and hierarchical clustering being the most popular), and Kernel-PCA
(KPCA), as well as cutting edge methods including non-linear auto-encoders and
restricted Bolzmann machines (RBMs) [9]. A general methodology seems to have
emerged. Most top ranking participants used simple normalizations (like variable
standardization and/or data sphering using PCA) as a first step, followed by one or
several layers of non-linear processing (stacks of auto-encoders, RBMs, KPCA,
and/or clustering). Finally, “transduction” played a key role in winning first place:
either the whole preprocessing chain was applied directly to the final evaluation
data (this is the strategy of Fabio Aiolli who won first place in phase 1 [8]); or
alternatively, the final evaluation data, preprocessed with a preprocessor trained
on development+validation data, was post-processed with PCA (so-called “trans-
ductive PCA” used by the LISA team, who won the second phase [9]).
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