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ABSTRACT 

This thesis describes a stochastic, network interdiction optimization model to guide 

defensive, counter-air (DCA) operations planning. We model a layered, integrated air-

defense system, which consists of fighter and missile engagement zones. We extend an 

existing two-stage, stochastic, generalized-network interdiction model by Pan, Charlton 

and Morton, and adapt it to DCA operations planning. The extension allows us to handle 

multiple-type interdiction assets, and constrain the attacker’s flight path by the maximum 

allowable traveled distance. The defender selects the locations to install multiple 

interceptor types, with uncertainty in the attacker’s origin and destination, in order to 

minimize the probability of evasion, or the expected target value collected by the evader. 

Then, the attacker reveals an origin-destination pair (independent of the defender’s 

decision), and sends a strike package along a path (through the interdicted network) that 

maximizes his probability of evasion. By adding a small persistence penalty we ensure 

the plans are consistent in presence of minor variations in the number of interceptors. We 

present computational results for several instances of a test case consisting of the airspace 

over a 360-by-360 nautical miles area. The computational time ranges from some 

seconds to ten minutes, which is acceptable for operational use of this model.  
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EXECUTIVE SUMMARY 

This thesis describes a stochastic network interdiction model to optimize the 

defensive counter-air (DCA) operations planning. DCA involves all those operations 

undertaken to defend friendly assets against enemy air and missile threats. Warfare 

operations, in most cases, start with defensive and offensive counter-air operations 

conducted to achieve air superiority, or at least a favorable air situation, which are 

prerequisites for further land, sea, and air operations. Control of the air is the first 

objective in every armed conflict—and successful employment of DCA operations is 

essential to achieve it. 

We model a layered integrated air-defense system (IADS) structure, which 

consists of fighter and missile engagement zones (FEZ and MEZ, respectively), in order 

guide DCA planning. To do that, we adapt a two-stage, stochastic, network interdiction 

model by Pan, Charlton and Morton used to identify the location of detectors against 

nuclear smuggling. This model is based on a generalized network where an arc’s gain 

(actually loss) for the evader represent his probability of evasion should he traverse the 

arc. 

In the adapted attacker-defender model, the defender selects the locations to 

install interceptors, with uncertainty in the attacker’s origin and destination. The 

defender’s goal is to minimize the probability of evasion, or the expected target value 

collected by the evader. The attacker reveals an origin-destination pair (independent of 

the defender’s decision), and sends a strike package along a path (through the interdicted 

network) that maximizes his probability of evasion. We extend the original model in 

order to handle multiple types of interdiction assets, and to constrain the attacker’s flight 

path by a mission metric. We handle the latter by modifying the network gains to reflect 

dependence on the arcs’ lengths, and using an adequate Lagrangian multiplier as a 

penalty. 

 



 xvi 

The suggested defensive plans are further enhanced by adding a small persistence 

penalty which guarantees consistency in presence of small variations in the number of 

assets available to the defender. Moreover, these solutions are computed even faster than 

the fully optimized ones. 

We employ commercial optimization software to solve an instance of the problem 

consisting of the airspace over a 360-by-360 nautical miles notional area. The test case 

includes 24 FEZ and MEZ areas, and 15 destinations, which correspond to our scenarios. 

(An aggregated super-source node is used to give the attacker the benefit of possible air-

refueling option.) We combine three interceptors: two fighter types and one surface-to-air 

missile system. 

We show that the computational effort to solve the IADS model is mainly 

affected by the number of interceptor types, for the same total amount of interceptors. 

Another factor that affects the computational time is the number of interdictable arcs. We 

also find that the computational effort is not necessarily increasing with the number of 

scenarios, whereas the probability of attacker’s evasion is roughly proportional to the 

number of scenarios. Cases that involve larger-size networks (over 100 nodes and a few 

hundred arcs) with a combination of large values of the above parameters can make the 

problem intractable for tactical use, requiring several hours to solve. 

Realistic air-defense problems can be modeled using networks of the size and 

characteristics similar to the one analyzed in this work because, for example, a FEF or 

MEZ (representing an interdictable arc) covers a 60-by-80 nautical miles area, whereas 

an interceptor unit represents four to eight fighters or a surface-to-air missile system 

battery. Thus, the stochastic IADS model presented in this work can contribute to the 

preparation phase of the DCA operations and both the operational and tactical levels of 

the air-war campaign. 
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I. INTRODUCTION  

A. BACKGROUND 

1. Air Defense Doctrine Preliminaries 

Nowadays, most warfare operations between two adversaries start as a duel 

between the integrated air defense system (IADS) of one side and the suppression of 

enemy air defense campaign of the other. Both sides conduct Counter Air (CA) 

operations to achieve air superiority, or at least a favorable air situation, which are 

required for further land, sea, or air operations. CA operations have the goal of gaining 

and maintaining the necessary level of control in the air battle theater, as stated in [1]. In 

other words, control of the air and, furthermore, the space, is the first and ultimate 

objective in every armed conflict—and successful employment of CA operations is a 

prerequisite to achieve it. CA operations are divided into offensive counter air (OCA) and 

Defensive Counter Air (DCA) operations. Integrated air and missile defense (IAMD) 

operations are a component of OCA and DCA, according to Air Force Doctrine 

Document (AFDD) 2-1.1 [2]. OCA includes all of the offensive operations conducted 

with the objective to decrease the enemy’s air power. This thesis focuses on the active 

DCA, and its IAMD operations component. Figure 1 shows the framework of the CA 

operations. 
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Figure 1.   The framework of counter air operations, from Joint Publication 3-0.1 

(From [3].) 

DCA is synonymous to air defense and involves all those actions undertaken to 

defend friendly assets and forces (most times over a friendly territory) against enemy air 

and missile threats, according to Joint Publication 3-0.1 [3]. DCA is further categorized 

into active and passive operations. The objective of active DCA is to destroy, negate, or 

reduce the effectiveness of enemy attacks by engaging them with multiple air-defense 

weapons systems consisting of fighters, surface-to-air missiles (SAMs), or anti-aircraft 

artillery (AAA), as stated in AFDD 2-1.1 [2]. The targeting of enemy aircraft with 

multiple types of air-defense assets must be well coordinated and integrated in order to 

optimize combat power, minimize unengaged threats (and their effectiveness), and avoid 

fratricide.  

An IADS synthesizes all anti-aircraft assets under a common system of command, 

control, communication and intelligence. The first known operational IADS occurred in 

the Battle of Britain and was derived manually (without computer assistance) by brilliant 

defensive planners, Bungay [4]. A modern IADS has multiple layers of sensors and 

systems. Defense in depth presupposes mutually supporting defensive positions designed 

to attrite and progressively weaken the enemy’s air strike force, where the issues of 

integration, mutual support, and deconfliction of the deployed air-defense assets are 
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critical. Figures 2 and 3 show two different interceptor types: a Patriot SAM system; and, 

a F-16C block52 fighter, respectively. 

 
Figure 2.   Patriot SAM system, from Joint Publication 3-01 (From [3]). 

Different air defense systems have both strengths and weaknesses. For example, 

fighters have the greatest range and mobility, but they have limited endurance to provide 

continuous coverage over a target. On the other hand, AAA and short-range SAMs 

provide continuous coverage, but only over limited range. Thus, efficient air-defense 

planning must combine and integrate multiple types of systems.  

 

Figure 3.   An F-16C block52 fighter. [Picture by author, 2006]  
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Point defense is a defensive tactic concept designed to protect single, vital targets, 

mainly employing AAA and SAM’s. Area defense is planned with missile and fighter 

engagement zones (MEZ and FEZ, respectively), in order to protect clusters of friendly 

assets. Coordination of FEZ and MEZ operations present the enemy threats with the 

dilemma to react against two vastly different systems, which deteriorate their 

survivability (see Joint Publication 3–52 [5]). Additionally, the combination of area 

defense and point defense allows the defender to deploy more efficient tactics and protect 

more friendly assets with fewer resources, promoting the war principles of economy and 

unity of the effort. An IADS may incorporate AAA and short-range SAM systems for 

point defense, and fighters, long-range SAM’s, and maritime forces for point or area 

defense. 

There are many implications if two or more interceptors are assigned to engage 

enemy air-threats in the same area. Thus, deconfliction is one of the key requirements in 

air defense. In some cases, joint engagement zones are planned where a mix of defensive 

systems (i.e., fighters and missiles) are assigned to act in the same area, either accepting a 

certain probability of fratricide, or relying on identification (friend or foe) and other 

electronics to avoid it, according to Joint Publication 3–52 [5].  

Military publications (see, e.g., Joint Airspace Control 3–52 [5]) view airspace as 

a “network” integrating specific critical points, routes, areas of interest (airspace control 

order), and weapons systems that are assigned to protect friendly assets in order to 

optimize the air-defense effort in the entire region. The lethality and the variety of the 

contemporary air threats dictate the necessity for optimizing the entire air-defense 

planning and execution effort, and the military operational analysis that can contribute to 

that goal. 

B. THESIS OBJECTIVES  

This thesis focuses on the active DCA operations’ planning that integrates FEZ 

and MEZ areas into a layered IADS structure. We research in which warfare campaign 

level, tactical or operational, can an optimization model aid a commander with this type 

of air-defense planning.  
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We extend the stochastic network interdiction of Pan, Charlton, and Morton [6] to 

handle multiple types of interdiction assets, add an additional distance constraint, and 

adapt the resulting mathematical program to model the airspace covered by an IADS 

consisting of FEZ and MEZ of multiple weapons systems. We use commercial 

optimization software to implement and solve an instance of the problem assuming the 

relevant airspace over an area of 360-by-360 nautical miles, and present computational 

results and insights. Primarily, the network interdiction model studied in this thesis can 

help military planners to determine the optimal allocation of multiple types of air defense 

assets into FEZ and MEZ comprising a layered IADS structure. Secondly, the model 

presents the evader’s optimal routing for every strike package scenario consisting of an 

origin-destination pair. 

C. LITERATURE REVIEW 

Network interdiction models can be employed to disrupt an adversary’s ability to 

traverse, or send flow through a network, between two given nodes. Some of the early 

military applications of network interdiction appeared during the Vietnam War when 

McMasters and Mustin [7] developed deterministic models to optimize interdiction on 

enemy supply lines. Network interdiction applications include fighting against the 

smuggling of drugs or other illicit materials—as in Pan et al. [6] and Washburn and 

Wood [8], and critical infrastructure defense—as in Brown et al. [9], among others. 

Stochastic network interdiction allows for some of the problem data (such as the 

origin and destination of the adversary) to be only known in terms of a probability 

distribution, as in Cormican et al. [10] and Pan et al. [6]. Two classical stochastic 

network interdiction problems involve removing arcs from the network in order to 

maximize the evader's shortest path—as in Israeli and Wood [11] , or reducing their flow 

capacity—as in Janjarassuk and Linderoth [12], and Wood [13]. 

This thesis extends the stochastic, network interdiction model described by Pan, 

Charlton, and Morton [6], to handle multiple types of interdiction assets. They develop a 

stochastic program for interdicting smuggled nuclear material, identifying locations for 

installing nuclear detectors to minimize the probability a smuggler can travel through a 

transportation network undetected. This model is stochastic because the evader’s origin 
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and destination are unknown at the time the detectors are installed by the defender. 

However, the origin-destination pair (scenario) is assumed to be governed by a known 

probability mass function. For each possible scenario, the evader maximizes the 

probability of avoiding detection knowing the arcs in which detectors have been installed. 

The evasion probabilities for interdicted and non-interdicted arcs in the network are also 

assumed to be known by both the evader and the defender. This model is a leader-

follower Stackelberg (sequential) game, as described in [14], because the evader decides 

his path after the interdictor reveals his defensive strategy.  

Washburn and Wood [8] view the network interdiction problem as a 

simultaneous, two-person, zero-sum game, and analyze simple extensions of the basic 

model (including instances with undirected networks, node interdiction, multiple sources 

and sinks, or more complicated generalizations which allow multiple interdictors). 

Cormican, Morton, and Wood [10] introduce a stochastic network interdiction 

model to minimize the maximum expected flow of the adversary. Here, the edge 

capacities are not known with certainty, and each interdiction outcome is a Bernoulli 

random variable (corresponding to successfully destroying an edge or failing to do so). 

Janjarassuk and Linderoth [12] employ a parallel decomposition algorithm on a 

distributed computing platform to improve the efficiency of the sampling optimization 

approach. 

Another category of relevant work has been carried out to optimize the attacker’s 

offensive operations, developing models, algorithms, and applications like auto-routers or 

mission planners for strike aircraft. For example, Royset, Carlyle, and Wood [15] develop 

a discrete, constrained shortest-path model for routing manned or unmanned aircraft, 

minimizing the risk from missile threats, while constraints limit the fuel consumption 

and/or flight time. The above model assumes the aircraft strike package is only subject to 

ground-based threats, like SAM and AAA, and the missiles effective range is represented 

by concentric circles. In contrast, this thesis considers that the main threat for the strike 

package is the fighters, as this is generally the case of similar-strength adversaries. 
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D. THESIS ORGANIZATION 

In Chapter II we describe the DCA planning problem, and formulate the 

deterministic and stochastic version of our mathematical programs. In Chapter III we 

outline our test cases and present the computational results. Chapter IV presents our 

conclusions and proposes future development areas. 
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II. MATHEMATICAL MODEL 

In this Chapter, we first introduce basic stochastic programming concepts and 

modeling approaches. Then, we introduce our IADS problem, and propose a 

mathematical formulation to address it. 

A. STOCHASTIC PROGRAMMING 

Although deterministic optimization problems assume all the addressed 

parameters to be known with certainty, in most real-world situations some aspects of the 

problem are unknown at the time when a decision needs to be made. Stochastic 

programming (see, e.g., Birge and Louveaux [16]) deals with optimization problems in 

the presence of uncertain parameters. Formulation of stochastic models depends on a 

number of assumptions related to the nature of the uncertainty, the degree to which that 

uncertainty can be modeled, and the relation between decisions and uncertain parameter 

realizations.  

Some of the stochastic programming models take advantage of the fact that 

discrete probability distributions governing the uncertain parameters are known or can be 

estimated, for example, from historical data, as stated in Shapiro et al. [17]. Often these 

models are applied in cases where decisions are essentially repeated under the same 

conditions, and the goal is to make a decision that will perform well on average. That is, 

the objective is to find a solution which is feasible for all (or almost all) possible discrete 

cases, and optimizes the expected objective function of decisions and random variables 

[18]. For example, consider a simple process of minimizing the expected value of a linear 

function F, with a decision vector x, and a discrete random vector Y (whose probability 

distribution is known), where the decision has to be made before the realization of the 

random variable: 
 

 
[ ]min ( ; )

x X
F x Y

∈
Ε         (1) 

In what follows, we shall assume that Y is finite, with potential outcomes (scenarios) 

{ }1,..., nω ωΩ = , and probabilities Pr( ) Pωω = , where 1Pω

ω∈Ω

=∑ . If the decision making 
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process repeats itself many times, then a certain x will be optimal on average, and model 

(1) seeks to find that decision vector. 

Stochastic programming can also be applied to cases in which we need to make a 

one-time decision. The complication in this case is the choice of objective function. For 

example, minimizing expected cost as in (1) is less legitimate in this case given that many 

individual scenarios may result in much worse outcomes. Thus, the measure and/or 

control of risk that we adopt play an important role in the outcome of our model (see 

Shapiro et al. [17]). 

If the random vector Y is replaced by its mean Yµ , then the modified problem is a 

deterministic instance:  

 min ( , )Yx X
F x µ

∈
 ,         (2) 

whose optimal solution may be very different from that of the original stochastic problem 

(1), because formulation (2) does not take into account the variability of random vector Y 

[18]. For example, if F is convex, according to Jensen’s inequality: 

 [ ]min ( ; ) min ( ; )Yx X x X
F x F x Yµ

∈ ∈
≤ Ε . 

A common model of stochastic programming is the two-stage linear program with 

recourse actions. In these models, the decision-maker’s initial decision, x, occurs in a first 

stage, before the random event ω∈Ω  occurs. Then, he can still make a retrospective 

decision in a second stage, which will offset some of the negative impact that may have 

been recorded as a result of the first decision. For each x in the first-stage, there is a set of 

recourse decisions, because a different action may need to be taken for each random 

outcome ω∈Ω  [17]. The expected value [ ]( ; )F x YΕ is calculated as the weighted sum of 

the n discrete scenarios, and the stochastic problem (1) is modeled as a deterministic 

equivalent:  

 min ( ; )
x X

P h xω

ω

ω
∈

∈Ω
∑         (3) 

where the expression (3) is the first-stage problem, and 

 ( ; )h x ω          (4) 
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represents the deterministic, second-stage problem for scenario realization ω∈Ω . 

Stochastic problems are usually very large, and therefore much of the research 

effort has been devoted to developing algorithms that exploit their structure. For example, 

if the second stage is a convex problem, the stochastic problem can be solved by 

Benders’ Decomposition: For any given value of the first-stage (complicating) variables 

we may solve (and retrieve duals from) the second stage problem, which is also separable 

for each scenario ω∈Ω .  

Although two-stage, linear programs with recourse are often regarded as the 

classic example of stochastic optimization; stochastic programming has expanded to 

include a wide range of models and approaches. An alternative approach uses the so-

called chance constraints. Here, constraints are required to be satisfied only with certain 

probability, which provides a significant relaxation to an optimization problem; see Birge 

and Louveaux [16]. 

A natural generalization of the two-stage model is the multi-stage model. In this 

case, each stage consists of a decision followed by a series of observations of uncertain 

parameters that are emerging gradually over time. In this context, stochastic 

programming is closely related to decision analysis, stochastic control theory, Markov 

processes, and dynamic programming; see, e.g., Ruszczynski and Shapiro [18].  

B. DEFENSIVE, COUNTER—AIR OPTIMIZATION PROBLEM  

The optimization problem addressed in this thesis involves two adversaries, an 

evader (attacker) and an interdictor (defender). The area of operations is designed as a 

directed network G(N,A) where N and A are the sets of nodes and arcs, respectively. The 

attacker executes OCA operations that consist of sending an aircraft strike package from 

a specific origin point s, traversing a path through the network defensive positions, and 

reaching the desired target t, in order to hit its target. Node s represents the aircraft 

package base (or its last air refueling point into friendly territory), whereas t represents 

the target (or a weapons release point against that target) that the defender is trying to 

protect. On the other hand, the defender designs his air defense plan to obtain the 

maximum survivability for his assets, by maximizing the attrition rate of the strike 
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package. The defender’s decisions include how to organize point and area defense, and 

how to allocate limited resources to the planned MEZ and FEZ layered IADS structure in 

order to optimize DCA operations. The resources include different types of air-defense 

weapons systems. The attacker, having being fully informed of the adversary’s DCA 

plan, selects the strike package path that ensures a minimum attrition rate (maximum 

probability of evasion) through all encountered defensive systems to the target. We 

assume that all air-defense assets are visible to the attacker, which is common given the 

capabilities of modern detection systems. 

In the deterministic version of the problem, we consider that the defender knows 

the strike package’s origin and destination exactly, and that he adjusts his defensive plan 

to that particular scenario. In contrast, when the defender is uncertain about the 

adversary’s plan, he has to account for every feasible origin-destination scenario. In that 

case, he decides a single plan that minimizes the probability of a strike package evasion 

(perhaps prioritized by target value) over all possible scenarios. 

C. IADS MODEL DESCRIPTION 

1. Overview 

Pan et al. [6] formulate a Stochastic Network Interdiction Problem (SNIP) for 

identifying locations where nuclear detectors can be installed in order to combat nuclear 

smuggling. Their model is a two-stage, stochastic, mixed-integer program. We extend the 

SNIP, which assumes a single detector type, to allow several types of air-defense 

interceptors. We then constrain the attacker’s second-stage problem (shortest path in 

terms of the probability of interception) on a mission-specific metric, to a maximum 

allowable traveled distance. For clarity, we first describe the deterministic version of the 

model, and then continue with the stochastic one. 

2. Deterministic Model for Multiple Interceptor Types 

a. Networks with Gains 

Network flow models can be roughly divided into two broad categories: 

pure (or ordinary) and generalized (or “with gains”) models. Consider a directed network 
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( , )G N A . Pure network flow models assume conservation of the flow in all nodes or arcs, 

which means that the flow arriving at a node equals the flow exiting that node, or 

similarly, the flow entering an arc leaves that arc in its entirety, as described in Bertsekas 

[19]. Respectively, the generalized network models assign a gain (or loss) factor (i.e., a 

positive multiplier ijg ) to every arc ( , )i j A∈ , such that the flow passing the arc will be 

augmented (or, more frequently in practice, diminished) after it is multiplied by that 

factor. Therefore, after flow ijy  leaves node i, it arrives to node j as ij ijg y , and the 

associated conservation of flow constrains are:  

 
( , ) ( ) ( , ) ( )

ij ij ij i
i j RS i j i FS i

y g y s i N
∈ ∈

− = ∀ ∈∑ ∑ , 

where FS(i) and RS(i) are the set of arcs leaving and entering node i respectively, and is  
is the divergence of node i [19]. The relaxation of the flow conservation assumption is 

very useful to model some problems, but it also complicates the solvability of the models. 

The generalized network flow approach is the key feature that allows the extension of 

SNIP to model the air-defense problem with multiple interceptor types. 

b. Deterministic Model Description 

The deterministic model assumes the airspace over the area of operations 

is represented by a directed network ( , )G N A . The attacker sends an aircraft strike 

package departing from a specific origin node s N∈  to a specific destination node t N∈  

through the network. The defender allocates his interception resources to the arcs of the 

network in order to minimize the probability of evasion (maximize the attrition rate) of 

the strike package, knowing its origin-destination pair. If the defender has allocated an 

interceptor of type r R∈  on an arc ( , )i j , then the probability of strike package evasion 

(if that arc is traversed) is ijrq . If no interceptor has been installed on arc ( , )i j , the 

nominal probability of evasion is ijp  (where ( , ) ,ij ijrp q i j A r R< ∀ ∈ ∀ ∈ ). In other 

words, ijp  and ijrq  are the network gain (actually loss) factors used to model the attrition 

rate of the attacker’s force. We also follow Pan et al.’s [6] assumption that the 
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probabilities of the strike package being intercepted at the successive arcs, in a selected 

path, are independent. We discuss the consequences of this assumption later in this thesis.  

c. Formulation 

We use the following notation to formulate the deterministic model: 

Indices and index sets: 

 

( , )G N A  directed network with node set N and arc set A 

( , )i j A∈  arcs in ( , )G N A  

,s t N∈  source and sink nodes (evader’s origin and destination, respectively)  

( )FS i   set of arcs leaving node i  (“forward star”) 

( )RS i   set of arcs entering node i  (“reverse star”)   

AI A⊂  set of arcs where an interceptor of any type can be installed 

r R∈   interceptor types, e.g.,  { }1 2 3, ,R r r r=  is used in all of our test cases 

 

Data [units]: 
 

rb   number of available interceptors of type r R∈   [interceptors]  

ijrc   number of interceptors of type r R∈  to cover arc ( , )i j AI∈  for the  

  duration of the planning horizon  [interceptors]   

ijp   nominal probability of evasion if the attacker traverses an arc ( , )i j A∈   

  where no interceptor is installed 

ijrq   probability of evasion if the attacker traverses an arc ( , )i j AI∈    

  where an interceptor of type r R∈  is installed 
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Defender’s decision variables: 

 

ijrx  takes value 1 if an interceptor of type r R∈  is installed on arc ( , )i j AI∈ , and 0 

 otherwise 

 

Attacker’s decision variables: 

 

ijy  takes a positive value only if the attacker traverses arc ( , )i j A∈  and no 

 interceptor is installed on that arc, and represents the probability of evasion up to 

 arc ( , )i j  

ijrz  takes a positive value only if the attacker traverses arc ( , )i j AI∈  and an 

 interceptor of type r R∈  is installed on that arc, and represents the probability of 

 evasion up to arc ( , )i j  

ty  probability of evasion up to target node 

 

Deterministic IADS model formulation: 

 

( )min ;( , )
x X

h x s t
∈

         (1.1a) 

subject to 

( , )

: 1 ( , )

{0,1} ( , ) ,

ijr ijr r
i j AI

ijr
r R

ijr

c x b r R

X x x i j AI

x i j AI r R

∈

∈

 ≤ ∀ ∈ 
  = ≤ ∀ ∈ 
 
 ∈ ∀ ∈ ∀ ∈
  

∑

∑ ,     (1.1b) 

where: 

( )
, ,

; ( , ) max ty
h x s t y=

y z
          (1.2a) 

s.t.: 

( , ) ( ) ( , ) ( )
1sj sjr

s j FS s s j FS s AI r R
y z

∈ ∈ ∈

+ =∑ ∑ ∑


       (1.2b) 
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( , ) ( ) ( , ) ( )
ij ijr

i j FS i i j FS i AI r R
y z

∈ ∈ ∈

+∑ ∑ ∑
  

 
( , ) ( ) ( , ) ( )

0 \{ , }ji ji jir jir
j i RS i j i RS i AI r R

p y q z i N s t
∈ ∈ ∈

− − = ∀ ∈∑ ∑ ∑


   (1.2c) 

( , ) ( ) ( , ) ( )
0t jt jt jtr jtr

j t RS t j t RS t AI r R
y p y q z

∈ ∈ ∈

− + =∑ ∑ ∑


       (1.2d) 

0 1 ( , ) ,
ij ijr

y x i j AI r R≤ ≤ − ∀ ∈ ∀ ∈       (1.2e) 

0 ( , ) ,ijr ijrz x i j AI r R≤ ≤ ∀ ∈ ∀ ∈        (1.2f) 

ty  unrestricted, , 0, ( , ) ,ij ijry z i j A r R≥ ∀ ∈ ∀ ∈      (1.2g) 

Formulations (1.1) and (1.2) represent the mixed-integer, linear problem 

of the defender, and the linear problem of the attacker, respectively. The objective 

function (1.1a) minimizes the probability of attacker’s evasion, while (1.2a) maximizes 

that probability. The set of the feasible interceptor allocations on the arcs ( , )i j AI∈  are 

defined by (1.1b) which comprise budget and deconfliction (at most one interceptor in 

each arc) constraints.  

The attacker’s subproblem (1.2) follows the generalized network flow 

modeling approach. Each interdictable arc ( , )i j AI∈  may be thought of as multiple arcs 

between i and j (one arc for no interceptor, and one arc for each interceptor type). If an 

interceptor of type r R∈  is installed on arc ( , )i j AI∈  (that is, if 1ijrx = ), then the flow 

ijrz  will only traverse the relevant interceptor’s arc. If no interceptor is located on arc 

( , ) ,i j A∈  then (1.2e) and (1.2f) ensure that 0ijrx = , and the flow ijy  will only traverse the 

“no interceptor” arc with nominal (typically low) probability of attrition. The initial unity 

flow that the attacker sends from node s to node t is decreased by factors ijp  and ijrq , 

along the selected path. The fraction of the flow that arrives at the end node t represents 

the overall probability of attacker’s evasion. Its value, ty , is given by:  

( , ) \ ( , )

(1 )t ij ij ijr ijr ijr
r R r Ri j A AI i j AI

y p p x q x
∈ ∈∈ ∈

    = − +    
    

∑ ∑∏ ∏ , 

but its correct calculation is ensured by constraints (1.2b)–(1.2d). 
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The assumption that the attacker solves his optimization shortest-path 

problem before selecting a path is pessimistic for the defender, but necessary in the 

absence of additional information. 

The min-max structure of the model does not allow us to solve it as a 

standard optimization problem. A possible solution approach consists of taking the dual 

attacker’s linear subproblem, in order to formulate a model that simultaneously 

minimizes over the defender’s primal variables and the attacker’s dual variables.  

An issue in taking the dual of subproblem (1.2) and, specifically, dualizing 

constraints (1.2e) and (1.2f), is that nonlinear terms arise involving the defender’s 

decision variables ijrx  and the duals of those constraints. We follow the technique of Pan 

et al. [6], who relax problem (1.2) by eliminating constraints (1.2e) and (1.2f), and add a 

penalty into the objective function (1.2a) when these constraints are violated. So the 

attacker’s subproblem (1.2) is restated as follows: 

 

Relaxation of the attacker’s subproblem: 

 

( ) ( )
, , ( , )

max 1
t

t ij ij ijr ijr ijry i j AI r R r R
y y x z xλ

+
+

∈ ∈ ∈

  − − − + −  
   

∑ ∑ ∑y z
 ,    (1.3a)  

which can be restated as: 

( )
, , ( , )

max 1
t

t ij ijr ij ijr ijry i j AI r R r R
y x y x zλ

∈ ∈ ∈

  − + −  
  

∑ ∑ ∑y z
      (1.3b) 

s.t.:          Duals 

( , ) ( ) ( , ) ( )
1sj sjr

s j FS s s j FS s AI r R
y z

∈ ∈ ∈

+ =∑ ∑ ∑


      [ ]sπ  (1.3c) 

( , ) ( ) ( , ) ( )
ij ijr

i j FS i i j FS i AI r R
y z

∈ ∈ ∈

+∑ ∑ ∑
  

 
( , ) ( ) ( , ) ( )

0 \{ , }ji ji jir jir
j i RS i j i RS i AI r R

p y q z i N s t
∈ ∈ ∈

− − = ∀ ∈∑ ∑ ∑


  [ ]iπ  (1.3d) 

( , ) ( ) ( , ) ( )
0t jt jt jtr jtr

j t RS t j t RS t AI r R
y p y q z

∈ ∈ ∈

− + =∑ ∑ ∑


      [ ]tπ  (1.3e)  
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ty  unrestricted, , 0, ( , ) ,ij ijry z i j A r R≥ ∀ ∈ ∀ ∈      (1.3f) 

 

We impose a penalty only when the eliminated constraints are violated 

(that is, only when the relevant terms in (1.3a) take positive values). The objective 

function (1.3b) results from (1.3a) because of the binary nature of the decision variable 

ijrx . Therefore: 

( )1ij ijr ijr ij
r R r R

y x x y
+

∈ ∈

   − − =      
∑ ∑   and  ( ) ( )1ijr ijr ijr ijr

r R r R
z x x z

+

∈ ∈

− = −∑ ∑
  

( , )i j AI∀ ∈ . 

A valid value for the Lagrangian multiplier ijλ  in the objective function 

(1.3a) is one because the duals of the respective constraints (1.2e) and (1.2f) cannot 

exceed that value, given that the network gains , ( , ) ,ij ijrp q i j A r R∀ ∈ ∀ ∈
 
are at most 

one. This multiplier could be made tighter (i.e., smaller) based on the problem 

characteristics, strengthening the subsequent formulation of the defender’s problem.
 

Next, we take the dual of the relaxed attacker’s subproblem: 

 

Dual of the attacker’s subproblem: 

 

min sπ
π            (1.4a) 

s.t.:           Duals 

0 ( , ) \i ij jp i j A AIπ π− ≥ ∀ ∈        [ ]ijy  (1.4b) 

( , )i ij j ij ijr
r R

p x i j AIπ π λ
∈

− ≥ − ∀ ∈∑       [ ]ijy  (1.4c) 

( )1 ( , ) ,i ijr j ij ijrq x i j AI r Rπ π λ− ≥ − − ∀ ∈ ∀ ∈     [ ]ijrz  (1.4d) 

1tπ =           [ ]ty  (1.4e) 

iπ  unrestricted i N∀ ∈         (1.4f) 
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By strong duality, model (1.4a)–(1.4f) is another expression of ( ); ( , )h x s t , 

provided either model possesses an optimal solution. By construction, this is always the 

case. Dual decision variable iπ  is interpreted as the conditional probability the attacker 

traverses a path from a node i to the destination node t without being intercepted, given 

he has arrived the node i without being intercepted, as in Pan et al. [6]. Thus, sπ  

represents the probability of the attacker’s interception for the selected s-t path, while the 

objective function (1.4a) minimizes that probability, and constraints (1.4b)–(1.4d) ensure 

its correct computation. Constraint (1.4b) refers to the non-interdictable arcs, whereas 

constraints (1.4c) and (1.4d) affect the interdictable ones. The expressions (1.4c) and 

(1.4d) are controlled by the binary nature of the defender’s decision variable ijrx . When 

1ijrx = , that is, when an interceptor of type r R∈  has been located on arc ( , )i j AI∈ , 

constraint (1.4c) is void, because the flow follows the interceptor arc. Similarly, when no 

interceptor has been located on arc ( , )i j AI∈ , the flow proceeds through the “no 

interceptor” arc, and the expression (1.4d) is void. Constraint (1.4e) defines the 

conditional probability that the attacker will not be intercepted, given he reaches 

destination node t without being intercepted, as equal to one.  

Finally, the original deterministic optimization problem (1.1) is restated as 

the following minimization, mixed-integer, linear program: 

 
Deterministic IADS model reformulation as a mixed-integer, linear program: 

 

,
min sx π

π           (1.5a) 

s.t.: 

( , )

: 1 ( , )

{0,1} ( , ) ,

ijr ijr r
i j AI

ijr
r R

ijr

c x b r R

X x x i j AI

x i j AI r R

∈

∈

 ≤ ∀ ∈ 
  = ≤ ∀ ∈ 
 
 ∈ ∀ ∈ ∀ ∈
  

∑

∑      (1.5b) 

 



 20 

          Duals 

0 ( , ) \i ij jp i j A AIπ π− ≥ ∀ ∈       ijy    (1.5c) 

0 ( , )i ij j ij ijr
r R

p x i j AIπ π λ
∈

− + ≥ ∀ ∈∑      ijy    (1.5d) 

(1 ) 0 ( , )i ijr j ij ijrq x i j AIπ π λ− + − ≥ ∀ ∈      ijrz    (1.5e) 

1tπ =           
~

ty ω
 
  

 (1.5f) 

iπ unrestricted i N∀ ∈         (1.5g) 

 

Formulation (1.5) addresses the deterministic problem as a standard 

minimization problem, in which we are simultaneously optimizing over both the 

defender’s and attacker’s decision variables. Its solution can be obtained via standard 

mixed-integer programming algorithms, and/or by using commercially available 

optimization software. 

3. Stochastic Model for Multiple Interceptor Types 

a. Model description 

In the stochastic problem we assume that the defender is not aware of the (s,t) choice 

made by the attacker. However, he can enumerate a number of possible scenarios ω∈Ω  

and assign probabilities Pω  to each of them based, for example, on intelligence reports, 

or analysis of the current operational and tactical situation. The attacker’s origin and 

destination is considered a random vector ( , )S T , whose realization ( , )s tω ω  is revealed 

only after the defender’s decisions, ijrx , ( , ) ,i j AI r R∀ ∈ ∀ ∈ , have been made. The 

attacker’s model selects the optimum path after each ( , )s tω ω  realization in order to 

maximize the probability of evasion under that scenario. The defender’s objective is to 

find a solution that performs well for all scenarios, on average, without subordinating the 

decisions to any particular one. We also assign a value V ω  to target tω  in order to 



 21 

prioritize the targets to protect: an evader traversing the network and reaching this target 

with probability 
t

y ω  is assumed to collect 
t

y Vω ω  units of value.  

We next formulate the problem of minimizing the expected value 

collected as a function of defender’s decisions over all the possible outcomes of random 

vector ( , )S T . 

b. Formulation 

We add the below notation in order to formulate the stochastic IADS 

model. 

 
Additional notation for the stochastic IADS model: 
 

ω∈Ω   scenario set, assumed to be finite 

Pω   probability of scenario ω 

( , )s tω ω  realization of random origin-destination pair for scenario ω 

V ω

  a value assigned to the target tω  of scenario ω 

 

Stochastic IADS model formulation: 

 

( )min ;( , )
x X

F x S T
∈

= 

( )min ;( , )
x X

h x s t P Vω ω ω ω

ω∈
∈Ω
∑         (2.1a) 

s.t.: 

( , )

: 1 ( , )

{0,1} ( , ) ,

ijr ijr r
i j AI

ijr
r R

ijr

c x b r R

X x x i j AI

x i j AI r R

∈

∈

 ≤ ∀ ∈ 
  = ≤ ∀ ∈ 
 
 ∈ ∀ ∈ ∀ ∈
  

∑

∑ ,     (2.1b) 

where: 

( )
, ,

; ( , ) max
t

ty
h x s t y ω

ω

ω ω =
y z
         (2.2a) 
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s.t.: 

( , ) ( ) ( , ) ( )

1
s j s jr

r Rs j FS s s j FS s AI

y zω ω
ω ω ω ω ∈∈ ∈

+ =∑ ∑ ∑


      (2.2b) 

( , ) ( ) ( , ) ( )
ij ijr

i j FS i i j FS i AI r R
y z

∈ ∈ ∈

+∑ ∑ ∑
  

 
( , ) ( ) ( , ) ( )

0 \{ , }ji ji jir jir
j i RS i j i RS i AI r R

p y q z i N s tω ω

∈ ∈ ∈

− − = ∀ ∈∑ ∑ ∑


  (2.2c) 

( , ) ( ) ( , ) ( )

0
t jt jt jt r jt r

r Rj t RS t j t RS t AI

y p y q zω ω ω ω ω
ω ω ω ω ∈∈ ∈

− + =∑ ∑ ∑


      (2.2d)   

0 1
ij ijr

y x≤ ≤ −  ( , ) ,i j AI r R∀ ∈ ∀ ∈       (2.2e) 

0
ijr ijr

z x≤ ≤  ( , ) ,i j AI r R∀ ∈ ∀ ∈        (2.2f) 

t
y ω  unrestricted, , 0, ( , ) ,ij ijry z i j A r R≥ ∀ ∈ ∀ ∈      (2.2g) 

Formulation (2.2) models the attacker’s second stage problem, which is 

linear as in the deterministic subproblem (1.2), for every scenario ω∈Ω . The objective 

function (2.2a) now maximizes the conditional probability of attacker’s evasion, given 

( , ) ( , )S T s tω ω= . The objective function (2.1a) is the expected value collected across the 

targets the evader can reach, where the expectation is taken over all possible scenarios. 

The set X in (2.1b) defines the feasible interceptor allocations as in the 

deterministic version. The expressions (2.2b)-(2.2g) restrict the attacker’s linear 

subproblem, and have the same interpretation as in the deterministic version, because 

they refer to each possible ( , )s tω ω  realization separately. 

The stochastic version of the problem is also a sequential game. First, the 

defender decides how to allocate his interceptors. Second, the attacker solves the problem 

for a ( , )s tω ω  realization and decides the optimal path that minimizes the probability of 

being intercepted. 

Next, we derive the relaxation of the attacker’s second stage problem by 

eliminating constraints (2.2e) and (2.2f), and then take the dual of that relaxed problem. 
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Relaxation of the attacker’s second-stage problem: 

( ) ( )
, , ( , )

max 1
t

ij ij ijr ijr ijrty i j AI r R r R
y y x z xω

ω

λ
+

+

∈ ∈ ∈

  − − − + −  
   

∑ ∑ ∑y z
  

which can be restated as: 

( )
, , ( , )

max 1
t

ij ijr ij ijr ijrty i j AI r R r R
y x y x zω

ω

λ
∈ ∈ ∈

  − + −  
  

∑ ∑ ∑y z
      (2.3a) 

s.t.:          Duals 

( , ) ( ) ( , ) ( )

1
s j s jr

r Rs j FS s s j FS s AI

y zω ω
ω ω ω ω ∈∈ ∈

+ =∑ ∑ ∑


     
sω

π    (2.3b) 

( , ) ( ) ( , ) ( )
ij ijr

i j FS i i j FS i AI r R
y z

∈ ∈ ∈

+∑ ∑ ∑


 

 
( , ) ( ) ( , ) ( )

0 \{ , }ji ji jir jir
j i RS i j i RS i AI r R

p y q z i N s tω ω

∈ ∈ ∈

− − = ∀ ∈∑ ∑ ∑


 [ ]iπ  (2.3c) 

( , ) ( ) ( , ) ( )

0
t jt jt jt r jt r

r Rj t RS t j t RS t AI

y p y q zω ω ω ω ω
ω ω ω ω ∈∈ ∈

− + =∑ ∑ ∑


     
tω

π    (2.3d) 

t
y ω  unrestricted, , 0, ( , ) ,ij ijry z i j A r R≥ ∀ ∈ ∀ ∈      (2.3e)  

The rationale for the Lagrangian multiplier ijλ  and the resulting penalty 

term in the objective function (2.3a) are the same as those described in the deterministic 

version of the problem, see equation (1.3a). Formulation (2.3) is an instance of model 

(1.3) for each scenario ω∈Ω . 

The dual of the relaxed attacker’s second stage problem is as follows: 

Dual of the attacker’s second-stage problem: 

 

min
sω

π
π           (2.4a) 

s.t.:           Duals 

0 ( , ) \i ij jp i j A AIπ π− ≥ ∀ ∈       [ ]ijy  (2.4b) 

( , )i ij j ij ijr
r R

p x i j AIπ π λ
∈

− ≥ − ∀ ∈∑       [ ]ijy  (2.4c) 

( )1 ( , ) ,i ijr j ij ijrq x i j AI r Rπ π λ− ≥ − − ∀ ∈ ∀ ∈     [ ]ijrz  (2.4d) 

1
tω

π ω= ∀ ∈Ω         
t

y ω    (2.4e) 
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iπ  unrestricted i N∀ ∈         (2.4f) 

The inner sub-problem (2.4) has the same optimal solution as (2.3). The 

interpretation of the dual decision variables, , ,i s tω ωπ π π , is the same as that given for 

, ,i s tπ π π  in model (1.4). 

Stochastic IADS model reformulation as a two-stage, stochastic, mixed-integer, linear 

program: 

 

,
min

sx
P Vω
ω ω

π ω

π
∈Ω
∑          (2.5a) 

s. t.: 

( , )

: 1 ( , )

{0,1} ( , ) ,

ijr ijr r
i j AI

ijr
r R

ijr

c x b r R

X x x i j AI

x i j AI r R

∈

∈

 ≤ ∀ ∈ 
  = ≤ ∀ ∈ 
 
 ∈ ∀ ∈ ∀ ∈
  

∑

∑      (2.5b) 

          Duals  
0 ( , ) \ ,i ij jp i j A AIω ωπ π ω− ≥ ∀ ∈ ∀ ∈Ω      ijyω    (2.5c) 

0 ( , ) ,i ij j ij ijr
r R

p x i j AIω ωπ π λ ω
∈

− + ≥ ∀ ∈ ∀ ∈Ω∑     ijyω    (2.5d) 

(1 ) 0 ( , ) ,i ijr j ij ijrq x i j AI r Rω ωπ π λ− + − ≥ ∀ ∈ ∀ ∈    ijrzω    (2.5e) 

1
tω

π ω= ∀ ∈Ω         
t

y ω    (2.5f) 

iπ  unrestricted, i N∀ ∈         (2.5g) 

Formulation (2.5) is a stochastic linear mixed-integer program, which 

minimizes the maximum average expected value collected by the attacker over the 

defined scenarios ω∈Ω . 
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4. Side Constraints in the Second-Stage Problem 

The attacker’s second stage program is a shortest-path problem on a generalized 

network. This problem computes the unconstrained evader’s shortest path, where the 

length of the path is considered his probability of evasion. 

Some of the evader’s shortest paths may be infeasible in a real-world situation 

due to, for example, flight distance, fuel, or time. We choose to constrain the model on a 

maximum allowable traveling distance given that fuel quantity and consumption is 

aircraft dependent, and flight time does not always reflect the distance traveled.  

Generally, side constraints complicate the problem’s solution because they cause 

a departure from the original network structure. In our problem, complications may arise 

from split flow (e.g., two fractional paths) for certain ( , )s tω ω  pairs, i.e., the integer 

character of the computed solution may be lost, as described in Bertsekas [19]. We 

propose two options to constrain the second-stage attacker’s problem: (a) explicitly add 

side constraints, and (b) follow an approximation solution (i.e., a heuristic). 

a. Explicit Side Constraints 

We add the below notation to: (i) impose additional side constraints to 

problem (2.2), which becomes a constrained, shortest-path problem; and, (ii) maintain 

integrality in our solution, by explicitly introducing integer constraints on the arc flows. 

Variable: 
 

ijξ   a binary variable that takes value 1 if arc ( , )i j  is in the s tω ω−  path (for  
  the incumbent scenario ω∈Ω ), and 0 otherwise 
 
Data: 
 

ijd   length of arc ( , )i j A∈   [nautical miles] 

D   maximum allowable distance for all s tω ω−  paths  [nautical miles] 
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Formulation of additional side constraints for scenario ω∈Ω: 

( , ) ( ) ( , ) ( )

1
s j js

s j FS s j s RS s
ω ω

ω ω ω ω

ξ ξ
∈ ∈

− =∑ ∑       (2.2h) 

{ }
( , ) ( ) ( , ) ( )

0 \ ,ij ji
i j FS i j i RS i

i N s tω ωξ ξ
∈ ∈

− = ∀ ∈∑ ∑     (2.2i) 

( , ) ( ) ( , ) ( )

1
t j jt

t j FS t j t RS t
ω ω

ω ω ω ω

ξ ξ
∈ ∈

− = −∑ ∑    
   

(2.2j) 

0 ( , )ij ij
y i j Aξ≤ ≤ ∀ ∈        (2.2k)   

0 ( , ) ,ijr ij
r R

z i j AI r Rξ
∈

≤ ≤ ∀ ∈ ∀ ∈∑      (2.2l) 

( , )
ij ij

i j A
d Dξ

∈

≤∑          (2.2m) 

{ }0,1 ( , )ij i j Aξ ∈ ∀ ∈        (2.2n) 

Constraints (2.2h)-(2.2j) ensure the conservation of the flow for the new 

binary variables for every s tω ω−  path. Constraints (2.2k) and (2.2l) force ijξ  to be 1 

whenever the ijy  or ijrz  decision variables take a positive value. Finally, constraint 

(2.2m) restricts the evader’s optimal path, for every scenario ω, to not exceed the 

maximum distance D. 

Pan et al. [6] prove that the SNIP model is NP-hard, while the related 

decision problem is NP-complete. Therefore, the same applies to the stochastic IADS 

model. In addition, if we pursue the described solution strategy by eliminating constraints 

(2.2k), (2.2l) and adding the respective penalty term into the objective function (2.2a), 

nonlinear terms (involving products of binary and continuous variables) appear. 

Unfortunately, taking the dual of the updated second-stage problem, the primal variables 

reappear in the dual problem’s constraints. Even if we could linearize the non-linear 

terms in the resulting objective function, this solution approach is computationally 

limited by the rapid explosion in the model’s size and the weakness in the linearization of 

the nonlinear terms.  Given the inherent complexity of the model, we prefer to discard 

this approach and employ a heuristic approach. 
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b. Heuristic Approach  

In this approach, similar to Bertsekas [19], we discard constraints (2.2h)-

(2.2n) and use a heuristic to compensate for the violated maximum distance constraint 

(2.2n). Then, instead of correcting the arc lengths (probabilities of evasion) as in [19], we 

correct the network’s gains , ( , ) ,ij ijrp q i j A r R∀ ∈ ∀ ∈  to reflect a dependence on the 

arc coefficient ijd . Let μ be the Lagrange multiplier for constraint (2.2m). The corrected 

network gains in the expressions (2.5c)-(2.5e) have the form: 

ˆ ( , )ij ij ijp p d i j Aµ= − ∀ ∈        (3.1) 

ˆ ( , ) ,ijr ijr ijq q d i j AI r Rµ= − ∀ ∈ ∀ ∈      (3.2) 

In practice, we choose µ  to be a small, positive penalty factor. We restrict 

the second-stage, shortest-path problem on a maximum allowable traveled distance, 

replacing the corrected network gains (3.1) and (3.2) into the (2.5) formulation. 

The method is efficient because it can compensate for k constraints on k 

different resources without increasing the problem’s complexity, while providing the 

desired constrained optimal solutions. For example, the expressions (3.1) and (3.2) can be 

generalized for k constraints on k resources as: 

1

ˆ ( , )
K

k k
ij ij ij

k
p p d i j Aµ

=

= − ∀ ∈∑ , and 

1

ˆ ( , ) ,
K

k k
ijr ijr ij

k
q q d i j AI r Rµ

=

= − ∀ ∈ ∀ ∈∑  

A difficulty arises in choosing μ, because we may need to evaluate 

different values until we find the smallest one that ensures that all the computed s tω ω−  

paths have distance less than the maximum allowable traveled distance D. 
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III. COMPUTATIONAL RESULTS 

A. TEST SCENARIO 

1. Baseline Case Description 

The baseline case considers the airspace over a notional area of operations of 360-

by-360 nautical miles. The defender covers part of the airspace with a layered IADS 

structure comprising FEZ and MEZ. Each of these covers an area of 60-by-80 nautical 

miles, from the ground up to 45,000 feet. A directed network (see, e.g., Figure 4) 

represents this topology and includes three locations types: 

(1) The origins, representing the attacker’s bases from which an aircraft strike package 

can depart, or last air-refueling point before the ingress phase. 

(2) The destinations, representing the potential strike package’s targets, or the weapons-

release points against those targets. 

(3) The planned FEZ and MEZ, where interceptors can be installed by the defender. 

The underlying infiltration network contains one node for each of these entities, 

excluding the case in which two or more entities are synthesized in one node, when one 

or more targets are located in a planned FEZ or MEZ. In that case the target (or targets) 

and the FEZ or MEZ comprise one node. Sequentially, these nodes are connected by 

directed arcs that represent the potential strike package’s flight legs. Each feasible 

combination of origin-destination (in terms of distance) represents one of the finite 

scenarios ω∈Ω  of the model. The SNIP model locates the interdictors on the arcs [6], 

and following the same approach we split every FEZ and/or MEZ node into two nodes. 

Figure 4 illustrates the underlying test case with 6 origins, 24 FEZ and/or MEZ areas 

(including the 48 separated nodes), and 15 targets. 
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Figure 4.   The baseline case considers an area 360-by-360 nautical miles, including 
three location types: sources, FEZ or MEZ areas, and target nodes. Each 
rectangular area represents a FEZ or MEZ of 60-by-80 nautical miles, 

which includes the corresponding entering and leaving nodes. When a target 
(or targets) is located in a FEZ or MEZ, the target and area nodes are 

consolidated, and then the resulting node is separated. We also indicate the 
way the nodes are linked. Interdictable arcs link the separated nodes inside 

the FEZ and MEZ areas. 

The arcs that link the separated FEZ or MEZ nodes are the interdictable arcs 

( , )i j AI∈ . We consider three types of interceptors: two types of fighters and one type of 

SAM system. In the IADS model the separated FEZ or MEZ nodes are linked with four 

arcs: one for each interceptor type and one for “no-interceptor.” Nodes are linked as 

shown in the example for area A3. The area can be traversed (from left to right) on the 

nominal arc, if the area is not interdicted; or, on either one of the three other arcs 

depending on the type of interdiction. The route may continue upwards (to cell A2) or 
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downwards (to cell A4) using oblique arcs in the graph, which allow interdiction on 

either area (e.g., A2 and A4) if the evader needs to traverse them. 

2. Baseline Case Assumptions and Modeling 

We model only the ingress part of the strike package’s flight path, because the 

objective for the defender is to prevent the attack against his assets. The current 

formulation provides the optimal allocation of multiple interceptor types, on average, for 

a finite number of origin-destination scenarios, as well as the optimal routing for the 

attacker through the defensive positions from each source to the targets. We do not 

explicitly model the egress part, but that extension can be accommodated easily. We 

assume that the maximum feasible traveled distance D, for every s tω ω−  path, is 400 

nautical miles (considering an average speed of eight nautical miles per minute and 

maximum flight time, at that speed, of 50 minutes for the ingress part of the mission). 

The model represents the attacker’s straight and level flight in two dimensions, 

and any altitude changes are not represented. The optimal solution for every scenario 

provides the FEZ or MEZ nodes that comprise the attacker’s path but not specific way 

points inside these FEZ or MEZ areas. That is, any deviation (lateral or vertical 

maneuvering) from the straight and level flight is not accounted for in the distance 

penalty; accordingly, the computed solution is pessimistic for the defender. 

By extending the SNIP formulation, we are still assuming independence among 

the interdiction at the successive arcs in the path the evader traverses. In our case, the 

layered structure of the network favors the defender, because the probability that a strike 

package will be intercepted is increased if it has already been intercepted at the preceding 

arcs. Thus, the optimal solution is, again, pessimistic for the defender. 

In our baseline case, the nominal probability of evasion, ijp , if the attacker 

traverses an arc ( , )i j A∈ , given no interceptor has been located on that arc, is assumed to 

be one. The probability of evasion ijrq , if the attacker traverses an arc ( , )i j AI∈ , depends 

only on the efficiency of the installed interceptor type r R∈ , and not on the arc 

( , )i j AI∈ . In other words, we are assuming the defensive systems perform with the same 
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efficiency in every area. We roughly estimate ijrq , considering that interceptors 1 2,r r  are 

fighter formations of type A and B respectively, whose efficiency is defined by the 

number and the probability of kill of the loaded air-to-air missiles. Interceptor 3r  is 

assumed to be a SAM system, and its efficiency depends on the number and the 

probability of kill of the loaded ground-to-air missiles. The strike package consists of 20 

aircraft. Every time the strike package enters into a FEZ or MEZ where an interceptor has 

been located, it is interdicted, diminishing its force according to the installed type of 

interceptor. Specifics are shown in Table 1. 

Interceptor Type Number of missiles Probability of kill  ijrq  

1r  
Aircraft formation: 

Type-A 16 0.5 0.6 

2r  
Aircraft formation: 

Type-B 8 0.75 0.7 

3r  SAM system 20 0.5 0.5 

Table 1.   The evasion probabilities ijrq  depend on: (i) the type of interceptor, (ii) the 
number of missiles against a 20-ship strike package, and (iii) the probability 

of kill of the loaded missiles. 

The corrected gains ˆ ( , )
ij

p i j A∀ ∈  and ˆ ( , ) ,
ijr

q i j AI r R∀ ∈ ∀ ∈  are determined 

by the equations (3.1) and (3.2), respectively. For both expressions, ijd  is the arc distance 

and µ  is a Lagrangian multiplier, set as a small positive factor that ensures the attacker’s 

optimal path remains under D=400 nautical miles ω∀ ∈Ω . We use 0.00033µ =  in all of 

our test cases.  

Cost ijrc  represents the number of interceptors we need to cover a FEZ area for 60 

minutes (combat air-patrol time), as indicated in Table 2. Consequently, for air 

interceptors with similar fuel consumption, it only depends on the distance to the nearest 

defender’s air base or air refueling point, that is, on the arc ( , )i j AI∈ . The cost for the 

SAM system is considered " " 1 ( , )ij SAMc i j AI= ∀ ∈ .  
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Table 2.   The cost of allocating an aircraft formation in a FEZ area depends on the 
available time over station, or on the distance to the nearest refueling point. 
For example, the cost for an area ( , )i j AI∈  is one if an aircraft formation 
can stay on combat air patrol for 60 minutes, but it increases to three if it 
can only stay for 20 min, because we need three formations to cover that 

area for 60 minutes. 

The target value V ω  can be used to reflect the significance of the targets. In the 

baseline case, all target values are considered equal to one. We also assume equal 

probabilities among all scenarios ω∈Ω .  That is, 1/15, 1,P Vω ω ω= = ∀ ∈Ω . 

3. Network reduction 

The baseline test case has 6 origin locations, 15 destination (targets) points, and 

24 FEZ and/or MEZ areas. So, the network has | | 58N =  nodes after the consolidation of 

10 destinations into the corresponding FEZ or MEZ areas, and the separation of later 

location entities into two nodes each. Additionally, there are | | 218A =  arcs and 

| | 90Ω = scenarios. The optimization problem has 5,292 decision variables (72 binary, 

corresponding to first stage, ijrx , variables, and 5,220 continuous in the second stage), 

and 26,175 constraints, as shown in Table 3. Also, we can see in that table the model size 

is mainly increased by the products of the number of scenarios and the number of 

interceptor types. 

  1st stage 2nd stage 
Decision Variables |AI| x |R| |N| x |Ω| 

Constraints |R| + (|R| x |AI|) [ |A| + (|R| x |AI|)] x |Ω| 

Table 3.   Number of decision variables and constraints, in both first and second 
stages.  

FEZ cost Combat air patrol time Distance to the nearest refueling point 

ijrc =1 60 minutes less than 80 nautical miles 

ijrc =1.5 40 minutes less than 140 nautical miles 

ijrc =3 20 minutes less than  200 nautical miles 
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We make a tactical assumption in order to decrease the computational effort: We 

consider air refueling is available for the attacker, so he can enter the defender’s territory 

from any point, as needed, in order to reach the desired target. We implement this by 

connecting all the sω  nodes to a super source node (with a zero-length arc), which 

represents the attackers departure point for every scenario ω∈Ω . 

Additionally, in order to improve the formulation in (2.5) and further decrease the 

computational time, we tighten the Lagrangian multiplier ijλ  in constraints (2.5d) and 

(2.5e). In the discussion of formulation (1.3), we mentioned that 1ijλ =  is a valid 

assumption, because we stated that the Lagrangian multiplier has to be greater than or 

equal to the network gains [6]. Now, having defined the ,ij ijrp q  values, we substitute 

them in equations (3.1) and (3.2) to determine the corrected networks gains ˆ ˆ,ij ijrp q . 

Finally, we define as: 

{ }ˆmax : ( , )ij ijp i j AIλ = ∈   ( , )i j A∀ ∈ , in constraint (2.5d), and  

{ }ˆmax : ( , )ij ijrq i j AIλ = ∈   ( , ) ,i j AI r R∀ ∈ ∀ ∈ , in constraint (2.5e). 

B. PERSISTENCE 

Many managerial decisions are based on the solution to mathematical models. 

Often, small, last minute changes in some of the input data significantly alter the already 

calculated solutions—creating problems in many aspects. Brown, Dell, and Wood [21] 

address the problem by stating cases and solution approaches where a previously optimal 

solution may still be near-optimal, in a slightly changed scenario, and preferable to the 

fully updated, optimal one. The key question is how the optimization model will be used 

by the decision makers [21]. Pan et al. [6] address the persistence issue in the nuclear 

smuggling scenario by adding a penalty term 
( , )

| |ij ij
i j AI

x xδ
∈

−∑   whenever small changes in 

the number of available nuclear detectors evokes changes between the new and the 

already announced solutions ijx . 
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In the IADS model, the optimization persistence feature is also reasonable from a 

tactical and operational point of view. Uncertainty, in terms of the available resources, is 

often present. Thus, in cases where many near optimal solutions exist, we wish to derive 

and implement “nested” plans. That is, we prefer to derive several plans for a wide range 

of budget values rb r R∀ ∈ , so that the plan for n resources is “almost nested” into the 

plan for n+1 resources. Our objective is not to eliminate all relocations, because some of 

them are imperative as new resources become available [6], but to reduce the unnecessary 

ones.  

In order to accomplish the above objective, we add the below persistence penalty 

term (3.3) to the minimization objective function (2.5a): 

 
( , ) | 1

(1 )
ijr

ijr
i j AI r R x

xδ
∈ ∈ =

−∑ ∑


 ,       (3.3) 

where ijrx  are the defender’s decision variables, ijrx  are the current values resulting from 

the plan with one fewer unit of resource, and δ is a small, positive number. In (3.3), every 

change from an announced presence of an interceptor, 1ijrx = , to no such interceptor, 

0ijrx = , penalizes the original objective function (2.5a) by adding a fixed cost δ. 

C. NUMERICAL RESULTS 

We have implemented the baseline case using General Algebraic Modeling 

System (GAMS) with CPLEX as solver [20], on a 2.53 GHz, Dell Intel Core TM laptop 

with 6 GB of memory. We also examine several excursions from that case, and present 

results and insights. 

1. Output Display 

For any interceptor resources, the solution report includes the optimal interceptor 

allocation (the first stage decisions ijrx ), as well as the optimal attacker’s solution path, 

the fraction of the flow (strike package force) that arrives at the target, and the flight path 

( s tω ω−  ) distance, for every scenario ω∈Ω . Table 4 presents a sample output that 

includes the optimal interceptor allocation and the relevant data for just one scenario ( 6ω ) 
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of the baseline case, and for a given budget (resource) vector 1 2 3( , , ) (2, 2, 2)r r rb b b =  

interceptors. 

Optimal interceptor allocation 
Node B1    to    Node B1a    installed  resource   r1 
Node B2    to    Node T1      installed  resource   r3 
Node C2    to    Node T7      installed  resource   r3 
Node C3    to    Node C3a    installed  resource   r2 
Node C4    to    Node C4a    installed  resource   r2 
Node D4    to    Node T10    installed  resource   r1 

 
Attacker's Flight Path for scenario ω6 
Node S1     to     Node A1     flow  =  1.0000 
Node A1    to     Node A1a    flow  =  0.9967 
Node A1a   to     Node B1     flow  =  0.9770 
Node B1     to     Node B1a    flow  =  0.9770   (intercepted with resource r1) 
Node B1a   to     Node C1      flow  =  0.5668 
Node C1     to     Node T6      flow  =  0.5668 
Node T6     to     Node T6a    flow  =  0.5556 
Final force on target  =  0.5556% 
Flight path distance  =  190.00 nautical miles 

Table 4.   The output displays the optimal interceptor allocation, as well as the 
attacker’s flight path, the final attacking force on target and the distance 

s tω ω−  for scenario 6ω . Budget vector is 1 2 3( , , ) (2, 2, 2)r r rb b b =  
interceptors. 

2. Changing the Amount of Interceptors 

We solve the stochastic IADS model starting with budget vector 

1 2 3( , , ) (1,1,1)r r rb b b =  and iteratively increase the available resources to 

1 2 3( , , ) (8,8,8)r r rb b b = . Table 5 shows the computational effort (in seconds), and the 

optimal solution (the attacker’s probability of evasion) as the defender’s resources 

increase. 
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Budget 1 2 3( , , )r r rb b b  
Computational time  

(seconds) Optimal value 
(1,1,1) 1 0.857842 
(2,1 1) 5.9 0.828381 
(2,2,1) 6.7 0.792637 
(2,2,2) 13.8 0.759867 
(3,2,2) 18.3 0.712325 
(3,3,2) 34.2 0.682133 
(3,3,3) 45.3 0.636128 
(4,3,3) 94.3 0.605176 
(4,4,3) 105.6 0.596484 
(4,4,4) 133.4 0.560683 
(5,4,4) 202.1 0.534955 
(5,5,4) 225.1 0.517078 
(5,5,5) 371.2 0.489927 
(6,5,5) 385.8 0.452058 
(6,6,5) 357.3 0.444301 
(6,6,6) 227.8 0.404100 
(7,6,6) 373.7 0.396269 
(7,7,6) 444.3 0.378298 
(7,7,7) 463.5 0.360124 
(8,7,7) 436.3 0.344073 
(8,8,7) 457.3 0.340977 
(8,8,8) 476.5 0.327881 

Table 5.    Numerical results testing the baseline case, including computational time in 
seconds, and the optimal solution (attacker’s probability of evasion), as the 

available defender’s budget 1 2 3( , , )r r rb b b  is sequentially increased from 
(1,1,1) to (8,8,8) 

3. Changing the Number of Interceptor Types 

The degradation of the computational efficiency for larger values of resources 

prompts us to examine the influence of each interceptor type on the problem complexity. 

To do this, we modify the baseline case and assess the effect of the number of types of 

interceptors. 

Specifically, we compare three cases where the defender uses one, two, and three 

types of interceptors, given that the total number of interceptor units is the same. Figure 5 
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presents the results. These reveal that as the number of total available resources is 

increased, the more interceptor types we model, the more computational effort is 

required. 

Also of note, in the single-interceptor type case, the computational time is not 

affected by the total number of interceptors. 

 
Figure 5.   Comparison of the computational effort among three instances of the 

baseline case, with equal number of resources, but with one, two, and three 
types of interceptors. The horizontal axis represents the budget range rb  for 

one interceptor type. The respective budget range for two types is 
{ }1 2( , ) (2,1),(2,2),(3.2),..., (12,12)r rb b = , and for three types is 

{ }1 2 3( , , ) (1,1,1), (2,1,1), (2, 2,1),..., (8,8,8)r r rb b b = . The more interceptor types 
we model, the more the computational time is needed for the same total 

number of interceptors. 

4. Changing the Number of Scenarios 

We examine the effect of the number of scenarios on: (i) the overall probability of 

evasion, and (ii) the computational effort.  We carry out the comparison by considering 

two budget resources, (4,4,4) and (6,6,6), and running the model from |Ω|=1 to |Ω|=15 

scenarios, with equal probabilities (1/|Ω|) for the defined scenarios ω∈Ω . Figure 6 

indicates the results for probability of evasion which, as anticipated, is roughly 
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proportional to the number of scenarios: The more attacker’s scenarios for which the 

defender needs to plan, the less effective the defensive strategy results 

 
Figure 6.   For select budget cases, that the probability of attacker’s evasion is 

increased as the number of scenarios Ω  is increases.  

Figure 7 depicts computational time, which is not necessarily increasing on the 

number of scenarios. 

 
Figure 7.   For select budget cases, the computational effort is not increasing in Ω . 
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5. Considering High-Value Targets 

We examine the effect of the target value (parameter V ω ) in the model. We 

modify the baseline case by assuming a higher value for five of the fifteen targets: T3, 

T7, T12, T13 and T14. In this case, the optimal objective function value does not 

represent the expected probability of evasion because for some destinations the 

corresponding probability is multiplied by the assigned value. That is, the objective 

function now represents the expected target value collected by the attacker. The 

computational effort, on average, is slightly increased for the same level of interceptor 

budget (see Figure 8). 

 
Figure 8.   The graph compares the computational effort in seconds, between the 

baseline case (with equal-value targets) and a case that involves five higher-
value targets (out of 15), as a function of interceptor budget 1 2 3( , , )r r rb b b . 

The computational time, on average, is slightly increased in the high-value 
target case.  

By modifying target values, interceptors are reallocated to focus on the protection 

of high-value assets. The refinement of targets into value categories provides more 

realistic and effective defensive plans, because the defender can address the significance 

of the targets. For example, for a budget 1 1 3( , , ) (4, 4, 4)r r rb b b = , Figure 9 depicts the 

allocation of defensive assets under the assumption that all targets have value equal to 
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one. In Figure 10 we observe a different interceptor allocation when the targets T3, T7, 

T12, T13, and T14 are assigned a value equal to two.  

 

 
Figure 9.   Interceptor optimal allocation for the baseline case, considering all targets 

have value one, and the available budget is 1 1 3( , , ) (4, 4, 4)r r rb b b = . 

Note: Recall that the interceptors that appear in Figures 9 and 10 are fewer than 

available, (4,4,4), because we need more than one aircraft formation to cover some areas 

for one hour. That is, the model computes one hour duration defensive plans, and we 

need 12 interceptors to implement these two specific plans.  
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Figure 10.   We modify the baseline case by assuming targets T3, T7, T12, T13, T14 are 

high-valued. The available budget is 1 1 3( , , ) (4, 4, 4)r r rb b b = . The new 
optimal interceptor allocation is influenced by those targets. 

6. Persistence 

We add the penalty term introduced in equation (3.3) to the formulation of the 

objective function (2.5a) in order to seek solution persistence in our baseline case. We 

solve the problem iteratively for budget vectors 1 2 3( , , ) (1,1,1)r r rb b b =  to (8,8,8) , and for 

three penalty factor values: δ = 0.000, 0.001, and 0.003. Note our model is susceptible to 

interceptor exchanges in the same area. That is, we want to find a near-optimal solution, 

which is not only persistent with the suggested interdicted areas, but also with the 

selected interceptor types. 

The persistent version of the model computes the near optimal solutions slightly 

faster than the original one computes the optimal solutions, as expected (see, e.g., [21], 
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[6]). In Figure 11 we show the total time required to solve 22 instances of the baseline 

case iteratively for budget values 1 2 3( , , )r r rb b b  ranging from (1,1,1) to (8,8,8), and for the 

aforementioned penalty values. 

 
Figure 11.   The graph compares the total computational time, in minutes, for 22 

sequential runs of the program, with budget values ranging from (1,1,1) to 
(8,8,8), and persistence penalty factors δ = 0.000, 0.001, and 0.003. The 

“persistent” solutions require less computational effort. 

We also demonstrate the persistence characteristic of the model, enumerating the 

number of interceptor relocations (both area and type exchanges), as the defender’s 

interceptor budget gradually increases, and comparing the results for the three penalty 

factors. For each δ, we compare every budget optimal solution to the next, with one 

additional resource, counting any area and/or interceptor type change. Figure 12 shows 

the number of interceptor relocations for the above δ factors as a function of the available 

budget resources. When δ = 0.000 we attain optimal but not persistent solutions, totaling 

92 relocations for 21 program runs (at different budget levels). A penalty factor δ = 0.003 

induces only 39 interceptor relocations in the same runs.  
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Figure 12.   The graph compares the number of interceptor relocations, among three 

persistence penalty factor cases. For each case δ = 0.000, 0.001, and 0.003, 
respectively, we enumerate the interceptor relocations, for different budget 
levels, where each optimal solution is compared to the next budget level for 

persistence. δ = 0.000 provides optimal but not persistent solutions. δ = 
0.003 induces significantly fewer interceptor relocations.  

In Figure 13 we present the reduction of the attacker’s probability of evasion, for 

different persistence penalties, as a function of available interceptor resources. By 

adopting small positive values for the persistence penalty δ, we accept a near-optimal 

solution (instead of the optimal one for δ = 0.000), but also save computational time and 

attain persistence, which is convenient for the abovementioned reasons. We estimate 

δ=0.003 as an adequate persistence penalty factor in our IADS test case, providing the 

best tradeoff between increased probability of evasion (almost negligible) and increased 

persistence. 
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Figure 13.   The graph compares the probability of the attacker’s evasion among three 
cases with persistence penalty factors δ = 0.000, 0.001, and 0.003 

respectively, as a function of the available interceptor resources. δ=0.001 
and 0.003 cause a negligible increase in the probability of evasion, 

compared to the benefit of providing persistent solutions. 
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IV. CONCLUSIONS AND FUTURE DEVELOPMENT 

A. CONCLUSIONS 

This thesis has modeled a layered IADS structure, which consists of FEZ and 

MEZ areas, in order to propose a decision support aid for DCA operations planning. We 

have extended the stochastic network interdiction program of Pan et al. [6] to handle 

multiple types of interdictors, and have constrained the second-stage attacker’s shortest-

path problem on a mission resource, a realistic constraint. 

We have extended previous stochastic network interdiction models to handle 

multiple types of interdiction assets, add an additional distance constraint, and adapt the 

resulting mathematical program to model the airspace covered by an IADS consisting of 

FEZ and MEZ of multiple weapons systems.  

The program output includes the optimal defender’s multi-type interceptor 

allocation, and the attacker’s optimal routing through the interdicted network for every 

defined scenario (origin-destination pair). The suggested defensive plans can be made 

consistent to small, last minute input data variations, by adding a small persistence 

penalty to the formulation.  

We have used a heuristic restriction for the second-stage problem, in order to 

handle the attacker’s flight paths on a maximum traveled distance limit. This entails 

modifying the arcs gains to reflect dependence with the arcs distance. Using the concept 

of the Lagrangian multiplier, the formulation is flexible, allowing the addition of other 

constraints without deteriorating the model complexity.  

Additionally, the formulation allows various input parameters to realistically 

model the air-defense problem. The arcs’ gains reflect the deployed interceptor 

efficiency, while the arcs’ cost depends on the vicinity to the nearest refueling area, and 

thus, they are related to the duration of continuous coverage the air interceptors can 

provide. The target categorization in a value scale, and the ability to assign probabilities 

to the potential scenarios, enables the planner to prioritize the different elements in the 
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problem, for example, to minimize either the expected probability of evasion or the 

expected target value collected by the evader. 

Specifically, we have solved a hypothetical instance of the problem assuming the 

relevant airspace over an area of 360-by-360 nautical miles, and presented computational 

results and insights, including the assessment of factors that affect the computational 

effort of this NP-hard problem.  

The computational time is increased as the number of interceptor types is 

increased, for the same number of total resources. We also show that the computational 

time is not necessarily increasing with the number of scenarios, whereas the probability 

of attacker’s evasion does. Other factors that affect the computational effort are the 

number of interdictable arcs, and the number of interceptor resources. Cases that involve 

larger-size networks (over 100 nodes and a few hundred arcs) with a combination of large 

values of the above parameters may make the problem intractable for tactical use, 

requiring several hours to solve. 

Realistic air-defense problems can be modeled using networks of the size and 

characteristics similar to the one analyzed in this thesis because, for example, a FEZ or 

MEZ (representing an interdictable arc) covers a 60-by-80 nautical miles area, whereas 

an interceptor unit represents four to eight fighters or a SAM system battery. Thus, the 

stochastic IADS model presented in this work can contribute to the preparation phase of 

the DCA operations and both the operational and tactical levels of the air-war campaign. 

B. FUTURE DEVELOPMENT 

The IADS model addresses the DCA operations planning problem for a single 

strike package. The first intuitive model reformulation would focus on a multiple 

attackers, with sub-cases to either attack the same target or not. 

Another reformulation would revise the independence assumption for the 

probabilities of interdiction, among the successive arcs in an evader’s path. In the DCA 

operations, the layered IADS structure will increase the probability that the attacker is 

intercepted, if he has already been intercepted at the preceding arcs. The dependence 
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assumption will further minimize the optimal solution (probability of evasion value) 

more realistically for the defender. 

Future development, with minimal effort, can generalize the interceptor 

deconfliction issue by modeling multiple interceptors in a single (joint engagement zone) 

area, or adding point defense assets to every target in the network. Additionally, further 

studies may explore the ability to model the MEZ as concentric circles (and not only as 

rectangular areas), integrating air and missile interceptors in a different way. 

Finally, we propose further algorithmic development so that the IADS model may 

be used to solve other relevant, larger-scale problems faster, for tactical use in the air-

campaign. 
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