
 1 Copyright © ASME 2011

Proceedings of ASME 2011 International Mechanical Engineering Congress and Exposition, IMECE2011
November 11-17, 2011, Denver, Colorado, USA

IMECE2011-63613

DERIVATION OF RIGID BODY ANALYSIS MODELS FROM VEHICLE ARCHITECTURE
ABSTRACTIONS

Rostyslav Lesiv
University of Louisville,

Louisville, KY, USA,
rmlesi01@louisville.edu

Glen Prater
University of Louisville,

Louisville, KY, USA,
gprater@louisville.edu

Gary Osborne
University of Louisville,

Louisville, KY, USA,
gary.osborne@louisville.edu

David Lamb

U.S. Army RDECOM-TARDEC,
Warren, MI, USA,

david.lamb@us.army.mil

Matthew Castanier
U.S. Army RDECOM-TARDEC,

Warren, MI, USA,
matt.castanier@us.army.mil

ABSTRACT
Vehicle analysis models of every type have their basis in

some type of physical representation of the design domain.
Rather than describing three-dimensional continua of a col-
lection of components as is done in detail-level CAD models,
an architecture-level abstraction describes fundamental
function and arrangement, while capturing just enough
physical detail to be used as the basis for a meaningful
representation of the design, and eventually, analyses that
permit architecture assessment. The design information
captured by the abstractions is available at the very earliest
stages of the vehicle developing process, so the model itself
can function as a “design space for ideas”. In this paper we
describe a generalized process for analysis model extraction
from vehicle architecture abstractions, and then apply that
process to the specific case of rigid body response models. We
also discuss implementation of a rigid body analysis engine
that forms part of the analysis suite of a software package
supporting all aspects of vehicle architecture design.

INTRODUCTION
Rigid body computer models can help predict the

mechanical characteristics and performance of a vehicle design
prior to fabricating and testing prototypes, resulting in
shortened design cycles and reduced costs. While the
engineering value of such analyses is very well established,
current vehicle development methodologies have an inherent
limitation. High-precision analysis models require
topologically accurate geometric descriptions as a basis for
abstraction. CAD solid models are generally a product of the
detail design phase, and are not available during conceptual
design. Architecture design is inherently conceptual in nature,

qualitative rather than quantitative, and based upon precedent
and designers’ experience-based intuition. As a result,
computer analyses tend to play a nominal role in vehicle
concept development and assessment. Optimization based
upon detailed CAD models tends to focus on detail level
features rather than the fundamental vehicle architecture.
There is a compelling need for vehicle modeling and analysis
methodologies supporting the quantitative assessment and
optimization of vehicle architecture design early in the design
process.

Kojima [1] has proposed “First Order Analysis” (FOA),
the analysis tool developed to execute preliminary analyses
simultaneously with the model creation. The author has
described the evolution of the car design process from the
conventional approach to the new development procedure that
incorporates concept modeling stage. Comparing to the
conventional development procedure, expensive iterative
evaluation of prototypes can be avoided, hence significantly
reducing the cost and time for making prototypes. Hou at al.
[2] has developed the ACD-ICAE (auto-body concept design-
intelligent computer aided engineering) software suitable for
the concept design phase of vehicle development. The tool for
auto-body modeling, analysis and optimization permits quick
creation of a geometric model for a conceptual vehicle design,
as well as generating the FEM. Many types of auto-body
templates have been integrated into the software, and template
geometry can be modified by changing the control points.
Another concept level analysis tool has been proposed by
Schelkle and Eslenhans [3]. A structural optimization
procedure is divided into three steps: topology optimization,
which serves to find out where material should be located;
parametric concept design, used for the layout optimization to

UNCLASSIFIED: Distribution Statement A. Approved for public release.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
17 JUN 2011

2. REPORT TYPE
Journal Article

3. DATES COVERED
 17-06-2011 to 17-06-2011

4. TITLE AND SUBTITLE
DERIVATION OF RIGID BODY ANALYSIS MODELS FROM
VEHICLE ARCHITECTURE ABSTRACTIONS

5a. CONTRACT NUMBER
W56HZV-04-C-0314

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Matt Castanier; David Lamb; Rostyslav Lesiv; Glen Prater; Gary
Osborne

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Louisville,2301 S. 3rd Street,Louisville,KY,40208

8. PERFORMING ORGANIZATION REPORT
NUMBER
; #21932

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
U.S. Army TARDEC, 6501 E.11 Mile Rd, Warren, MI, 48397-5000

10. SPONSOR/MONITOR’S ACRONYM(S)
TARDEC

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)
#21932

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Paper submitted to ASME 2011 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND
EXHIBITOIN (IMECE)

14. ABSTRACT
Vehicle analysis models of every type have their basis in some type of physical representation of the design
domain. Rather than describing three-dimensional continua of a col-lection of components as is done in
detail-level CAD models, an architecture-level abstraction describes fundamental function and
arrangement, while capturing just enough physical detail to be used as the basis for a meaningful
representation of the design, and eventually, analyses that permit architecture assessment. The design
information captured by the abstractions is available at the very earliest stages of the vehicle developing
process, so the model itself can function as a ?design space for ideas?. In this paper we describe a
generalized process for analysis model extraction from vehicle architecture abstractions, and then apply
that process to the specific case of rigid body response models. We also discuss implementation of a rigid
body analysis engine that forms part of the analysis suite of a software package supporting all aspects of
vehicle architecture design.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT

Same as
Report (SAR)

18. NUMBER
OF PAGES

10

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

 2 Copyright © ASME 2011

prepare the body concept model; and stochastic concept
assessment, which assists in shape, size and material
optimization.

RIGID BODY ANALYSIS MODEL DERIVATION
At the architecture/conceptual level, vehicle abstraction is

of necessity fundamentally different than a detail-level
abstraction. In general, these abstractions must include general
shape and layout, major spatial features (nominal volumes, in
particular), component and subsystem connections (which can
be quite simple relative to a detailed CAD model), and inertia
properties. They should describe critical subsystems, including,
but not limited to primary body structure, suspensions and
powertrain, energy storage and transfer elements, and the
human operator and passengers.

Vehicle abstraction is best represented as a hierarchy
ordered according to function, and to a certain extent,
projected physical complexity. On the very top level of the
abstraction hierarchy are assemblies and assembly connections.
Assembly connections store the connectivity information
between assemblies. Further, each assembly can include beam,
panel, rigid components, and component connections, see Fig.
1. Like assembly connections, component connections provide
the connectivity specification between components inside an
assembly. Components and connectivity information of each
assembly are stored in the graph data structure, where
components are represented by nodes and component connec-
tion by edges.

Vehicle

0..1 *

0..*

*

Assembly

AssemblyConnection

0..*

*

0..1 *

RigidComponent

0..*

*

Panel

ComponentConnection
0..*

*

Beam

Figure 1. UML class diagram of the vehicle abstraction and

aggregation and composition relationships that make up a portion of
the vehicle hierarchy (properties and methods not shown).

Provided a suitable design abstraction can be formulated,
the architecture model can be used as a starting point for the
derivation of a rigid body analysis model. Associated analysis
algorithms should be able to determine rigid body structural
characteristics, forced time domain response, and frequency
response it terms of both natural frequencies and modes, and
frequency response transfer functions. Implementation of this

list of analysis requirements mandates the use of preprocessing
algorithms for determining gross dimensions, areas, and
inertia properties (mass, mass centers, mass moments of
inertia). Geometrically, vehicle abstraction consists of
parametric curves and surfaces, which are later in the design
process designated as representations of structural components
such as beams and panels. Volumetric enclosures can also be
designated as rigid components. During this process, material-
related properties are applied for each newly created
component in the model. Higher dimensional properties (gross
vehicle measurements, in particular) and inertia properties are
calculated based on the material type and geometric
specifications.1

Algorithmic derivation of an architecture-level rigid body
model begins with discretization of the features into
components, subsystems, and connections included in the
geometric abstraction, with nonstructural elements either
embodied only through their inertia contributions, or ignored
entirely. In the rigid body analysis model assemblies are
represented as either rigid bodies or sets of rigid bodies,
depending upon the internal connectivity. For example, the
cab, frame, and wheels are all single rigid bodies extracted
from their corresponding assemblies, whereas most
suspensions contain multiple rigid bodies based on the internal
rigid components and hinge or ball-joint connections. The
RigidBody class data structure contains inertia properties and
current information about its position, velocity, acceleration,
and active forces. Inertia parameters are extracted from the
corresponding structural or rigid component in the model.

Like the vehicle abstraction, the rigid body model is stored
in an undirected graph data structure, with each node of the
graph representing a rigid component, assembly or
subassembly (class RigidBody), and edges representing
component or assembly connections (class Edge). Figure 2
illustrates the structure of RBGraph.

Interface- and assembly-related properties provide con-
nectivity specifications between components and assemblies,
with appropriate joint models used for the derivation of rigid
body constraints. Many common joint types, including spring,
damper, ball-joint, hinge, motor, slider, and limit, are
supported in the engine. The rigid body graph does not contain
a rigid constraint type. Instead, we combine any rigidly
connected bodies into a single composite body for the purposes
of the simulation. The model formulation algorithm loops
through all rigid edges in the graph and combines bodies until
no rigid edges remain. For newly created composite bodies, the
center of mass and inertial tensor are calculated based on the
inertia properties of bodies that were combined. The model
formulation algorithm runs during the preprocessing stage,

1 The classes used to calculate these vehicle dimensions and inertia properties

represent the most fundamental of the analysis modules used to evaluate the
vehicle architecture being designed.

 3 Copyright © ASME 2011

thus computationally expensive constraint resolution of the six
degrees of freedom is not needed for the rigid joints.

RBGraph

Edge

0..1

*

Hinge

Spring Damper

Prismatic

ContactFriction

0..1*

Motor

Limit

RigidBody

+Displacement
+Velocity
+Acceleration
+Mass
+InertiaTensor
+Force
+Torque

Figure 2. UML diagram of the RBGraph class.

Based on these connection types we have developed a
number of predefined templates that can be used to quickly
implement common suspension configurations in an
architecture model. Templates are available for dependent and
independent swing arm suspensions, Macpherson struts, live
axles, walking tandem suspension, and several other
configurations. We also provide support for generalized
dependent and generalized independent suspensions that do
not model suspension details, but instead, model basic
functionality, including compliance properties.

ANALYSIS ENGINE DESIGN
The rigid body analysis engine is implemented as a

module of a larger suite analysis tools, and it follows design
patterns common to all analyses included in the package. The
UML class diagram of Fig. 3 depicts this shared structure.
Analysis, Engine and PostProcessor are all abstract classes,
and interaction between them also implemented on the abstract
level through their interfaces. This allows us to implement a
simulation framework that is independent of the underlying
simulation method, and where strategy of the implementation
can be easily changed by switching to the different concrete
class.

In addition to being capable of rapid solution times, a
viable analysis suite should be capable of preparing
architecture analysis models for full vehicles, a primary
subsystem (a cab or rolling chassis, for example), and in some
cases singular features or components. It must have access to
visual renderings that depict the vehicle architecture’s physical
layout while allowing designer to interact with both the
physical design space and analysis results. Finally, individual

modules of the analysis suite should be algorithmically
integrated.
Rigid body analysis can be based upon discrete system models
with lumped mass/inertia, damping, and stiffness elements.
Mathematically, the model will consist of coupled ordinary
differential and algebraic equations. Complementary analyses
for such models include determination of rigid body natural
frequencies chracteristics, and time domain response.

+Run()

Engine

RBEngine

+GetSetupForm()
+RetrieveParameters()
+Run()

Analysis

+Result

RBAnalysis

+Display Results()

PostProcessor

RBPostProcessor

Other Analyses Other EnginesOther
PostProcessors

Figure 3. Rigid body module structure and its place in the software.

The entire rigid body module consists of the three main
classes: RBAnalysis, RBEngine and RBPostProcessor.
RBAnalysis is the class responsible for the interaction of RB
module with the rest of the software. Inside RBAnalysis we
store input parameters and results of the analysis. The class is
also responsible for constructing rigid body graph and
combining any rigidly connected components. RBEngine is the
actual multibody system dynamics engine that controls all
subclasses responsible for the multibody system dynamics
mathematical model calculations. This class defines the
interaction between its subclasses, see Fig. 4. Position, velocity,
and acceleration updates for each body in the system are
performed in RBEngine. More details on the structure and the
mathematical background of the engine are presented in the
next section.

+Run()

RBEngine

-RBGraph +Step()
+VelocityCorrection()
+PositionCorrection()
+UpdatePosition()

TimeStepper

+GetContactEdges()

TerrainContact

RBAnalysis

+InputParameters

Figure 4. UML diagram of RBEngine interactions with other classes.

 4 Copyright © ASME 2011

 RBPostProcessor is the class responsible for the visual
representation of results. The simulation results are normally
depicted as an animation of the vehicle traversing the input
terrain profile. They can also be shown as plots presenting the
position, velocity and acceleration of a specified system body
as a function of time, or as a state rendering, which represents
a rendering of the analyzed vehicle at a given moment in time.

Another important class seen in Fig. 4 is TimeStepper,
which provides the algorithmic functionality needed to
advance numerical integration in time. The class is responsible
only for the data flow within one time step, see Fig. 5.

Figure 5. Data flow diagram for the TimeStepper class.

For each time step the algorithm performs checks to see if
contact exists between individual wheels and the terrain.
Collision detection and time of impact solution methods are
implemented in the class TerrainContact. Any such contacts
found are stored in RBGraph as ContactFriction type of edges.

It is often useful to understand the rigid body modal
characteristics of a vehicle architecture design. Knowing the
system natural frequencies, damping ratios, and response
patterns allows the designer to optimize the system behavior by
tuning spring and damper characteristic properties. Accord-
ingly, a frequency analysis has been implemented as a part of
the rigid body analysis engine, see Fig. 6.

Figure 6. Relationship of the frequency analysis classes to the rigid

body analysis.

THEORETICAL BACKGROUND
The main building blocks of the time domain rigid body

solution engine are the system equations of motions and
associated constraints and assumptions, the numerical solution
approach, the time stepping algorithm, and the collision
detection scheme, see Fig. 7.

Figure 7. Primary functional blocks of the rigid body engine.

There are a number of possible approaches to the rigid
body simulations. The earliest formulations were developed
using an acceleration-based approach in the works of Pfeiffer
et al. [4], Featherstone [5], and Baraff [6]. In the acceleration-
based approach, all equations are written in terms of forces and
accelerations. The main drawback to this method is that
constraints are usually imposed in terms of position of a body,
not on acceleration. Converting position constraints to
acceleration constraints is complex, often producing large
equations, and computationally expensive.

An alternative to the acceleration approach is the use of
velocity-based equations. In a velocity-based approach,
equations are formulated in terms of impulses and velocities. A
velocity-based approach was selected as the best option for this
application, as it combines a relatively simple set of equations,
a number of well-proven solution methods, and a fast run time.
Two families of algorithms typically in use with velocity-based
approach are constraint-based [7] and impulse-based [8]. The
most popular and one used in our work is constraint-based
paradigm.

Having established a formulation approach for the
equations of motion, we must now choose a solver. It is well
know that the formulation of the constrained rigid body
problem represents an example of a mixed linear comple-
mentary problem (MLCP). There are number of solution
methods available for solving MCLPs, and these can be
divided into two groups: exact and iterative algorithms. For
this application, an iterative solver is the best option, since
exact algorithms are much slower. A scheme for the numerical
integration of the equations of motion also has to be chosen.
Popular methods used in rigid body simulations are Verlet or
explicit, semi-implicit, and implicit Euler schemes. Euler
methods are first order techniques and converge slowly,
therefore, we chose to use a Verlet method. Finally, collision
detection between wheels and terrain is handled using a Ray
casting method.

Mixed Linear Complementary Problem Formulation
In three-dimensional space, a rigid body position can be

uniquely specified by 6 coordinates. Convenient reference fame
uses three variables to provide the location of the body’s center

 5 Copyright © ASME 2011

of mass and three others to provide successive Euler angles.
The Newton-Euler equations of motion of a single rigid body
may be stated as follows:

 v = efM

 , (1a)

 ,
=

m
M

I
 v ,

v
ω

=

 fe
f

τ ω ω

=

− × I

 (1b-d)

Here m and I are the mass matrix and inertia tensor, f

and τ
are the vector of the resultant force and torque acting on the
mass center, and v and ω are the linear and angular velocity
vectors for the mass center. In addition to external forces, a
rigid body is often subjected to contact forces cf

, joint reaction
forces jf

, and friction forces ff

. Equation 1 then becomes:

 v = + + +e c j ff f f fM

 (2)

The contact, joint, and friction forces are modeled using
Lagrange multipliers:

 ,= T
c c cf λJ

 ,= T
j j jf λJ

,= T
f f ff λJ

 (3)

where J and λ

 are the Jacobians and vectors of the Lagrange
multipliers, respectively.

Using the above defined notations, the rigid body system
with joints, contact and friction can be formulated as a mixed
linear complimentary problem (MLCP):

 ()1 0v v− = + +T T
u u b b efλ λM J J

 (4)

 v 0=bJ , −∞ ≥ ≥ +∞bλ

 (5a)

 v 0≥uJ

, 0≥uλ

 (5b)

Equations (4) and (5) represent a set of differential algebraic
equations (DAE) that governs the dynamics of constrained
multibody system. Here Jb and Ju are the Jacobians
representing bilateral and unilateral constraints, respectively.
Solving for velocity 1v and satisfying constraint Eq. (5a) and
(5b) yields

 1 1 1
0v 0− − −+ + + =T T

b b u u b b b b efλ λJ J M J J M J J M

 (6a)

 1 1 1
0v 0− − −+ + + ≥T T

u u u u u b b u efλ λJ J M J J M J J M

 (6b)

The Projected Gauss-Seidel (PGS) method is the most
popular iterative solver used in rigid-body simulation, offering
a reasonable compromise between computational speed and
accuracy [9]. PGS has a number of advantages relative to exact
algorithms, including ease of implementation and accuracy
that can be controlled by changing the number of iterations.
Significant performance improvement is achieved when using
constraint reaction caching, also called “warmstarting” [9]. In
this scheme, the final constraint reaction set from the previous

time step is used as the starting point for the current solution
step. We chose to implement the PGS method in a matrix-free
fashion as described by Catto [10]. In this formulation PGS is
called a Sequential Impulse solver.

Contact and Friction Modeling
Contact and friction are among the MCLP constraints

included in Eq. (5). Specifically, the requirement that

 v 0, 0, and v 0, 0,c c f fλ λ≥ ≥ ≥ ≥J J

 (7a,b)

means that the normal velocity of a body cannot be negative,
thus precluding penetration. Also, the friction force is limited
by the normal contact reaction:

 − ≤ ≤c f cµλ λ µλ

, (8)

where µ is the coefficient of friction. The term vcJ is
projection of the body contact point velocity on the surface
normal n :

 ()v = ⋅ + ×g
c n v r ωJ

 (9)

Here gr is the vector of the global moment arm of the body,
connecting center of the mass of a body and its point of contact
with a surface. Analogously, friction Jacobians have the
following form:

 ()1
1v ,= ⋅ + ×g

f t v r ωJ

 (10a)

 ()2
2v ,= ⋅ + ×g

f t v r ωJ

 (10b)

where 1t
 and 2t

 are two mutually perpendicular vectors in the
tangent plane of the terrain contact point such that 1t n⊥

 and
2t n⊥

 .
 The contact and friction Jacobians in matrix form are
6×1 row vectors:

 c g

n

n r

=
×

J

 (11)

 11

1
f g

t

t r

=

×
J

 (12a)

 22

2
f g

t

t r

=

×
J

 (12b)

Now it will be demonstrated how to solve separately for
contact and friction.

 1
1 0

−= + T
c cv v λM J

 (13)

 1
0 0−+ =T

c c c cv λJ J M J

 (14)

The Lagrange multipliers that assure no penetration, are
calculated as

 6 Copyright © ASME 2011

 ()0 1
1, ,
−

= − =c c c c T
c c

vλ m J m
J M J

 (15)

where mc is often referred to as the effective mass. Similarly,
in case of friction we have

 ()0 1
1,f f f f T

f f
vλ

−
= − =m J m

J M J

 (16)

The one should notice that this formulation only approx-
imates the Coulomb friction law, while the original formula is
non-linear: 2 2 2

1 2 ()f f cλ λ µλ+ ≤ . On the practice also more
accurate linearized models can be used, for example as in [11].

Impulse Solver
Wheel to terrain surface collision can be modeled using

Newton’s Law of Impact:

 ,= − ⋅a bv e v (17)

where vb and va are the wheel velocities normal to the surface
of contact velocities before and after collision, and e is the
restitution coefficient (e = 0 corresponds to fully plastic
contact; e = 1 corresponds to fully elastic contact). To calculate
normal velocity before impact, the contact Jacobian can be
used. The vector of Lagrange multipliers is calculated as for
the case of contact and friction, though the desired velocity b =
va - vb must be taken into account. Lagrange multipliers
guaranteeing this velocity increment are calculated as

 ()0= − +c c cv bλ m J

 (18)

Substitution in the Eq. (13) will now give the velocity 1v of
the body after the impact.

Joint Modeling
The basic equation for a bilateral constraint is formulated

as follows:

 v 0=J (19)

As an example, we will demonstrate constraint modeling for a
revolute joint, also known as a hinge, or pin joint. Hinge joints
allow only one degree of freedom, specifically rotation about
an arbitrary axis l. Thus we have five equations constraining
the motion of two bodies. Three of these describe translational
constraints (one vector equation for the , ,X Y Z degrees of
freedom):

 1 1 2 21 2 0+ × − − × =g gv r v rω ω
 (20)

The remaining two scalar equations preclude rotation:

 1 1 1 2 0⋅ − ⋅ =k kω ω

 (21a)

 2 1 2 2 0⋅ − ⋅ =k kω ω

 (21b)

Here gr is the vector of the global moment arm of the body
connecting center of the mass and anchor point, 1v , 2v , 1ω ,

2ω are the linear and angular velocities of body 1 and 2,
respectively, and 1k

 2k

are orthogonal vectors such that 1k l⊥

and 2k l⊥

. The entire Jacobian in matrix form becomes

1 1

1 1

2 2

,

× × − −

= −

−

g g

T T
h

T T

r r

k k

k k

I I

J 0 0

0 0

 (22)

where I is a 3×3 identity matrix.
Mathematical formulations for many other types of

constraints may be found in the open literature [12, 13]. In
addition to hinge joints, our rigid body analysis engine
supports several other lower pair joints, including limits,
motors, prismatic (slider), and spherical joints. To deal with
the problem of constraint “drifting” (the phenomenon when
anchor points that connect two bodies drift apart due to the
numerical error) we have used a post stabilization method
described in the work of Cline and Pai [14].

Time Stepping Scheme
Implicit integration can provide computational savings by

allowing large time steps without risk of instability; however,
such large increments may result in a loss of accuracy and an
inability to detect higher frequency response characteristics of
a system. One result of the large step sizes is overly damped
behavior of the rigid bodies being simulated. While it not as
important for “qualitative” animation purposes, accuracy is
quite important for mechanical simulation of a vehicle model.
It is certainly possible to decrease the time step of an implicit
method so it approaches the size required for stability of an
explicit method, but this will make implicit method unusable,
since an implicit method requires matrix inversion and is
thereby more complex in implementation. Thus, for reason of
accuracy and simplicity we prefer explicit methods.

The approach chosen for our analysis engine, Verlet
integration, is a conditionally stable [15] second order explicit
method with computational efficiency comparable to that of
first order methods. The Courant stability criterion must be
satisfied in order for the method not to diverge:

 2
∆ ≤

d
t

ω
 (23)

Here ωd is the highest damped modal natural frequency of the
system.

Collision Detection and TOI Solver
The fundamental objectives of architecture concept

modeling justifies using a somewhat simplified approach to
rigid body collision detection. Specifically, only the collision of
wheels with the terrain surface is considered. Ignoring

 7 Copyright © ASME 2011

collision detection between the terrain and other bodies in the
vehicle system considerably improves the simulation response
time.2 We used ray casting against a Minkowski sum of the
wheel radius and the radius of the larger object involved in the
collision, which in our case is the terrain [16]. Collision
detection is now simplified to determination of the smallest
distance from the center of the wheel to the above defined
Minkowski sum.

A more complicated problem involves establishing the
time of impact (TOI) for colliding bodies. Consider a situation
where at the beginning of a time step there was no contact, and
at the end of step t∆ , penetration is detected. The algorithm
must go back to a safe position at time ti ≤ t ≤ ti+∆t where no
contact has occurred. This algorithm is sometime called
Conservative Advancement [13], since it iteratively comes
closer to the contact until a certain threshold is reached.

Algorithm Implementation
Along with the rest of the vehicle architecture design

software, the methods and algorithms embodied in this rigid
body response engine have been implemented using the C#
programming language and Microsoft Visual Studio .NET
compiler. Microsoft’s XNA Framework has been used as a 3D
graphics API, permitting animation of the time domain
response simulations.

RESULTS AND DISCUSSION
The fundamental result from the rigid body analysis

module is the kinematic response of the rigid bodies making
up the system. Specifically, the simulation yields translational
and rotational velocities, positions, and accelerations for the
cab, frame, and suspension mass centers. These results can be
displayed as time domain response plots (cab velocity mag-
nitude versus time, for example), or represented
simultaneously as an animated rendering of the entire vehicle.
The response of important non-centriodal points can also be
calculated and displayed, as can connection forces. The
instantaneous response can be compared with quaisi-static
responses to emphasize the effects of system compliance and
contact. Vehicles can be excited by specifying a torque-speed
relationship from the powertrain. Transient or steady-state
response can be evaluated. In addition to time-dependent
powertrain inputs, the vehicle models can be excited through
terrain profile inputs.

To demonstrate the rigid body analysis results we have
built concept models for two different vehicles. The first of
these models has architecture typical of a Class 33 (3,850 -

2 This approximation means what the simulation will not detect and respond

to collision cases where the vehicle frame or other structure “bottoms-out”
on a terrain feature. However, such interference will be visually apparent on
an animation, and will show up on kinematic response plots.

3 US Department of Transportation Federal Highway Administration (FHWA)
commercial truck classifications based on the vehicle's gross vehicle weight
rating (GVWR).

4,540 kg GVWR) light-duty commercial truck: four-wheel
ladder frame, engine-forward crew cab and open cargo box, see
Fig. 8a. The second model represents the architecture of a
Class 7 (11,800 - 14,970 kg GVWR) heavy-duty commercial
truck with three axles (two driven), a cab-over-engine layout,
and no payload module, see Fig. 8b.4

For the light-duty truck we used Macpherson struts for the
front suspension and dependent swing arm as a rear
suspension5, see Fig. 8a. Suspension compliance is controlled
by tuning the spring stiffness coefficient and damping
coefficient. The cab is modeled as single rigid body with
rigidly attached seats. It is connected to the frame by mean of
springs, dampers and prismatic joints. The cargo box is
connected rigidly to the frame, thus these two bodies are
analyzed as a single rigid body. In addition to the cab, frame,
cargo box and payload, suspensions, and wheels, we included a
compliantly mounted connected engine and a rigidly mounted
fuel tank. For the Class 7 truck, we used a longitudinally-
constrained live axle for the front suspension, and swing arm
rear suspensions for both of the rear axles.

 (a)

 (b)

Figure 8. Vehicle concept model renderings for the example cases.6
(a) Two-axle Class 3 truck with an engine-forward architecture, and

(b) three-axle Class 7 truck with a cab-over-engine architecture.

4 The architecture models used for these examples and reproduced in Figure 8

do not represent the full range of architecture features that can be included in
the architecture concept model and the derived rigid body analysis model.
These models could have included closures, driver/passenger objects,
additional geometric detail, and mass/inertia corrections to account for
build-out weight.

5 These suspension configurations were chosen for model validation purposes
only, and are not typical of Class 3 trucks.

6 Like the abstractions themselves, abstraction displays used with vehicle
concept models use rendering queues that represent function, rather than
topological geometry that does not exist at the concept level. In many cases,
functional rendering results in depictions that are reasonably representative
of physical appearance. Other visual queues, particularly those related to
structural layout (location and configuration of assembly and major
compliant joints, for example) are not as intuitive.

 8 Copyright © ASME 2011

Figure 9. Class 3 truck traversing a 50 m long terrain profile with

superimposed periodic bumps.

To investigate the rigid body response characteristics of
the vehicle, we specified a two-dimensional (longitudinal)
terrain profile, see Fig. 97, and applied a desired angular
velocity (equivalent to a target speed) and maximum torque to
the driving wheels. The maximum torque is calculated based
on the properties of the engine defined during the architecture
design/modeling process. Braking is simulated by specifying a
maximum braking torque and minimum wheel speed of zero
(to model the case of lock-up). Braking performance also
depends on the road surface, road condition, and tire type,
parameters that can also be specified. Simulation rate and
accuracy is controlled by defining the time step, number of
iterations for the solver, and number of sub-steps iterations for
the springs and dampers. The last option is helpful in case of
very stiff springs that can lead to solution stability due to the
explicit time integration.

 (a)

 (b)
Figure 10. State rendering for the terrain response analysis showing
(a) the Class 3 truck model clearing a dip in the terrain surface while

7 Terrain profiles are currently specified using elevation singularity functions
of various orders; however, the simulation algorithm can be adapted to
support other, more complex approaches.

driving down a 15 degree incline, and (b) the Class 7 model moving
over a bump on a generally flat surface.

Figure 10 shows animation screen captures depicting vehicle
state renderings of the example case architecture models as
they traverse portions of different terrain profiles. While a
multitude of time domain kinematic response plots can be
generated, the plot of Class 3 cab vertical displacement in Fig.
11 is representative.

Figure 11. Class 3 truck cab displacement response while traversing

a terrain profile periodic.

While a designer’s understanding the rigid body time
domain response of these models is critical, the frequency
domain response can be important as well. Unfortunately, the
system of differential equations governing the vehicle
response, Eq. (4)-(5), can be highly nonlinear, and formulating
an appropriate eigenproblem is quite complicated. The best
way of acquiring modal characteristics or frequency response
functions for such systems would be to linearize the system
equations of motion, express them in standard matrix form,

+ + = , y y yM C K Q and apply appropriate harmonic
input/response assumptions. For more details on linearization
methods, the interested reader is referred to the work of Negrut
and Ortiz [17].

In our application we chose not to directly linearize the
system equations; instead, we characterize the frequency
domain response by using a discrete Fourier transformation
(DFT). After running the rigid body simulation, acceleration
responses of each body are used as input data for the DFT
algorithm, which yields frequency response spectra for the
bodies. DFT response spectra can permit identification of
natural frequencies as high as the Nyquist frequency,
particularly when transient inputs are specified. The frequency
response spectrum (magnitude only) for the Class 3 light duty
truck model is shown in Fig. 12.

The validly of our DFT/signal proccessing algorithm has
been tested in three different ways. For the first test we
compared the DFT scheme against the simple functions that
have known sinusoidal components. Next, we built a very
simple vehicle configuration consisting of a frame and four
wheels connected to the frame with vertically positioned
springs. For this configuration eigenvalues were calculated

 9 Copyright © ASME 2011

analytically. For both cases we achieved good correlation
between analytical results and numerical experiments. Finally,
for a few very complex vehicle configurations we have visually
inspected the cab and frame vibrations on the slowly animated
models. The resulting lowest frequencies from the plot
matched all the frequencies obtained by mean of visual
inspection.

Figure 12. Cab acceleration spectrum magnitude for the Class 3

truck model.

CONCLUDING REMARKS
This paper has presented a description of the metho-

dologies, basic data structures, and implementation algorithms
for a rigid body analysis engine that makes up one portion of a
comprehensive software package for vehicle concept modeling
design and analysis.8 As noted, the hierarchical organization of
the vehicle architecture abstraction is based on the component
and feature functionality. These abstractions contain geometric
information sufficient to enable direct derivation of parametric
models for many analyses appropriate for the conceptual
design phase, including rigid body analysis.9 Like the original
vehicle abstraction, derived analysis models encompass the
advantages (focus on primary functional attributes, small
model size, direct coupling with the design process) and
limitations of architecture concept models.

The multibody response engine is fully automated and
capable of deriving the rigid body model from the vehicle
model abstraction; however, it does have limitations. Flexible
body elements are not supported, as is appropriate for rigid
body analyses. The collision detection module identifies only
contact between the wheels and terrain, while ignoring other
interference. These restrictions aside, the rigid body analysis
engine in its initial form is complete and validated. Future
enhancement efforts will focus on:

• Continued improvement in computational and
rendering speeds.

• Implementation of advanced terrain modeling routines,
including support for transversely asymmetric profiles,

8 The working title of this package is Concept Modeling Tool Suite (CMTS).
9 Other analysis types supported in the software include mass, kinematic, and

geometric (MKG) properties, structural finite element analysis (including
standard NVH calculations), powertrain performance, and ergonomic
characteristics, to name just a few.

and profiles with spatially varying friction and
restitution coefficients.

• Development of standardized input functions and
sampling rates optimized for generation of frequency
response functions and modal parameters extraction
(including use of standard signal processing
techniques).

• Formulation of methods to characterize system
linearity using homogeneity and additivity tests.

• Adding support for localized restitution coefficients
greater than unity to represent vehicle response to
explosions triggered by wheel contact.

ACKNOWLEDGEMENTS
This research was sponsored in part by U.S. DoD contract

no. W56HZV-04-C-0314, administered through the U.S. Army
U.S. Army Tank-Automotive and Armaments Command
(TARDEC). The authors wish to acknowledge the
contributions of R.E. Meyers and Y. Yu for their assistance
with response animation routines.

REFERENCES
[1] Kojima Y., 2000, “Mechanical CAE in automotive

design,” R&D Review of Toyota CRDL, 35, pp. 1-10.

[2] Hou W., Zhang H., Chi R., and Hu P., 2009,
“Development of an intelligent CAE system for auto-
body concept design,” Int. J. Automotive Technology, 10,
pp. 175-180.

[3] Schelkle E., and Elsenhans H., 2002, “Virtual vehicle
development in the concept stage – current status of CAE
and outlook on the future,” Conference Proceedings for
the 3rd Worldwide MSC.Software Aerospace Conference
& Technology Showcase.

[4] Pfeiffer F., and Glocker C., 2004, “Multibody dynamics
with unilateral contacts,” Wiley-VCH.

[5] Featherstone R., 2008, “Rigid body dynamics
algorithms,” Springer.

[6] Baraff D., 1996, “Linear-time dynamics using Lagrange
multipliers,” ACM Transactions on Graphics
(SIGGRAPH 1996).

[7] Potra F., Anitescu M., Gavrea B., and Trinkle J., 2006,
“A linearly implicit trapezoidal method for integrating
stiff multibody dynamics with contact, joints and
friction,” Int. J. Numer. Meth. Engng, 66, pp. 1079-
1124.

[8] Mirtich B., 1996, “Impulse-based dynamic simulation of
rigid body systems,” Ph.D. thesis, University of
California, Berkeley.

 10 Copyright © ASME 2011

[9] Catto E., 2005, “Iterative dynamics with temporal
coherence,” GDC 2005.

[10] Catto E., 2009, “Modeling and solving constraints,”
GDC 2009.

[11] Stewart D., and Trinkle J., 1996, “An implicit time-
stepping scheme for rigid body dynamics with Coulomb
friction,” Int. J. Numer. Meth. Engng, 39, pp. 2673-
2691.

[12] Shabana A., 2001, “Computational dynamics,” Wiley-
Interscience.

[13] Erleben K., 2004, “Stable, robust, and versatile
multibody dynamics animation,” Ph.D. thesis, University
of Copenhagen.

[14] Cline M., and Pai D., 2003, “Post-stabilization for rigid
body simulation with contact and constraints,” In
Proceedings of IEEE International Conference on
Robotics and Automation.

[15] Kacic-Alesic Z., Nordenstam M., and Bullock D., 2003,
“A practical dynamics system,” ACM Transactions on
Graphics (SIGGRAPH 2003).

[16] Bergen G., 2005, “Ray casting against general convex
objects with application to continuous collision
detection,” GDC 2005.

[17] Negrut D., and Ortiz J., 2006, “A practical approach for
the linearization of the constrained multibody dynamics
equations,” ASME J. Comput. Nonlin. Dyn, 1, pp. 230-
239.

