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ABSTRACT

The superfluid properties of disordered double-layer graphene systems are in-
vestigated using the non-equilibrium Green’s function (NEGF) formalism. The
complexity of such a structure makes it imperative to study the effects of lattice
vacancies which will inevitably arise during fabrication. Room-temperature per-
formance characteristics for both ideal and disordered bilayer graphene systems
are compared in an effort to illustrate the behavior of a Bose-Einstein condensate
in the presence of lattice defects under non-equilibrium conditions. The study
finds that lattice vacancies that spread throughout the top layer past the coherence
length have a reduced effect compared to the ideal case. However, vacancies con-
centrated near the metal contacts within the coherence length significantly alter
the interlayer superfluid transport properties.
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CHAPTER 1

MOTIVATION

From high-performance parallel computing to hand-held devices, the advent of ef-
ficient computer processors has significantly changed the face of the technological
landscape. The Internet has pervaded almost every facet of business information
technology, from marketing to supply-chain management. None of this revolution
would be possible without mobile and efficient data processing. Any computer
or smart phone today is powered by complementary metal-oxide-semiconductor
(CMOS) technology, which uses gated metal-oxide-semiconductor field effect
transistors (MOSFETs) to implement Boolean logic gates to carry out any par-
ticular computation. For the better part of 40 years, the density and efficiency of
these transistors has very closely followed Moore’s law, which states the number
of transistors in an integrated circuit doubles approximately every two years [1].
This is a remarkable trend propelled by decades of innovation in fabrication of
silicon CMOS technology. The trend is expected to slow in subsequent years,
however, as the transistor sizes and densities approach fundamental limits.

Perhaps the most insurmountable of these limits is the power density of cur-
rent processors. Heat is generated when current flows through the doped silicon
channel of a MOSFET. At low density, the heat can dissipate with simple air cool-
ing techniques. Higher transistor densities, however, have begun to heat chips
near the air cooling limit, at which point the processor would become too hot for
normal operation and fails. At the same time, leakage current becomes a non-
negligible factor in undesirable energy consumption as transistors shrink to di-
mensions where the effects of quantum tunneling through the gate oxide become
apparent.

A large variety of devices have been proposed to overcome these inefficiencies.
Three-dimensional gate structures were recently introduced in fabrication to in-
crease channel mobility and decrease gate voltages in silicon channels. Gallium
arsenide (GaAs) and other III-V channels provide an increase in electron mobility,
decreasing power dissipation and the resultant heat generation. Organic electron-
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ics, utilizing graphene or carbon nanotube (CNT) channels have more recently
been studied due to their high carrier mobilities and thermal conductivity. Opto-
electronic devices, using photons as signal carriers rather than electrons, are also
being actively pursued and have found practical applications in large-scale data
transfer utilizing optical fibers.

While this research has provided tremendous insight for solutions in the short
run, the MOSFET’s unavoidable limitations will remain a problem in any sys-
tem with a semiconducting channel due to dissipation and scattering of individual
carriers in the crystal lattice. A superconducting channel would resolve these
issues, but to date no room-temperature superconducting system has been real-
ized, and the channel cannot be turned on or off via a gate voltage. Recent work
in condensed matter physics, however, has shown evidence of other condensed
many-body systems that can flow around channel defects and impurities without
dissipation or scattering losses in the same fashion as a superconductor. In Chapter
2, I describe this many-body phenomenon, known as Bose-Einstein condensation
(BEC), and compare it to conventional superconductivity. I analyze its experi-
mental realization in a variety of bosonic systems to elucidate how condensation
starkly effects various macroscopic behaviors. In Chapter 3, I further discuss the
realization of superfluid transport in coupled quantum well systems, and extend
this idea in Chapter 4 to explain why double-layer graphene systems are a suitable
candidate for room-temperature operation in which the superfluid can be switched
on or off with a double-gate geometry. In Chapter 5, I provide a detailed summary
of the non-equilibrium Green’s function (NEGF) formalism and its ability to de-
termine non-equilibrium transport dynamics of a system. In Chapter 6, I utilize
NEGF to predict the observable behavior of the double-layer graphene system in
both ideal and disordered systems in order to understand how imperfect graphene
channels degrade transport dynamics.
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CHAPTER 2

INTRODUCTION

2.1 Superconductivity

A boson is defined as any quasiparticle with integer spin. Bose first showed in
1925 that photons, spin-0 light quanta, adhere to statistics qualitatively different
than fermions, particles with half-integer spin. Einstein subsequently extended
Bose’s study to matter to show that all integer-spin particles obey Bose-Einstein
statistics, where the expected number of particles in a non-degenerate energy state
i is

ni =
1

e(Ei−µ)/kBT − 1
, (2.1)

where Ei is the energy of state i, µ is the chemical potential, T is the temperature
and kB is Boltzmann’s constant. At energies well below the chemical potential,
the expected number of particles becomes much larger than 1. This is in stark con-
trast to Fermi-Dirac statistics for fermions, or spin-1

2
particles like electrons and

holes. The Pauli exclusion principle prevents fermions from occupying the same
quantum state, limiting the expectation number to less than 1 for every fermion
quantum state.

At low temperature, a large fraction of the bosons in a system decay to the
lowest quantum state. Condensation in the lowest quantum state manifests itself
with a variety of phenomena on the macroscopic scale, including superconductiv-
ity. The Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity [2] was a
crowning achievement of quantum mechanics in condensed matter systems. The
discovery, now over fifty years old, explains superconductivity as the result of con-
densation of composite bosons into a ground state. BCS predicted, however, that
two electrons can couple to form a composite boson quasiparticle called a Cooper
pair. Electrons are repelled from one another by the Coulomb interaction, but at
very low temperature a phonon-mediated electronic attraction can overcome the
Coulomb repulsion. The resulting Cooper pair has an energy lower than the en-
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ergy of a bare electron, and opens a gap about the Fermi energy, EF . Cooper pairs
are capable of flowing through the superconducting channel without dissipation,
a macroscopic realization of the many-body coherence. The pairing is very weak,
however, and superconductivity is quickly lost as temperature increases above the
critical temperature Tc - the temperature at which phonons, vibrations in the crys-
tal lattice, dominate electron motion and annihilate the weak Cooper pairs.

While the discovery of superconductivity has bred a wealth of research into
high Tc unconventional superconductors, whose critical temperatures approach
150 K [3], Tc remains well below room temperature due to the long-range phonon-
mediated nature of the condensation. However, if a strong Coulomb attraction
between oppositely charged particles replaced the weak attraction in supercon-
ductivity, the bosons could condense and survive at much higher temperatures. In
the following section, I will describe such an interaction and show how the pairing
can be large enough to remain condensed at room temperature.

2.2 Bose-Einstein Condensation

Although BEC was first predicted in the 1920s, experimental realization did not
occur until 1995 with a gas of weakly interacting rubidium atoms cooled to nearly
20 nK [4]. Anderson et al. found a signature of BEC when the concentration of
rubidium atoms in the zero-velocity ground state increased abruptly as the sample
was lowered below the critical temperature, which for a three-dimensional non-
interacting gas is

Tc =
2π~2

mRbkB

(
n

ζ(3/2)

)2/3

≈ 50 nK. (2.2)

where mRb is the mass of a rubidium atom, n is the number of particles in the
system, and ζ is the Riemann zeta function.

While the rubidium atom experiment provided definitive evidence of BEC, a
sub-micro Kelvin critical temperature is of little practical value. However, this
realization is in the weakly interacting regime with very heavy atoms (note that
critical temperature is inversely proportional to mass in Eq. 2.2). Subsequent re-
search has shown that condensates can be formed with weakly interacting exciton-
polariton quasiparticles, which are created with a continuous wave photo-pump in
a semiconductor cavity. As long as the polariton generation rate is larger than the
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rate at which the quasiparticles recombine, a condensate can persist. Exciton-
polariton quasiparticles have effective masses 109 times lighter than rubidium
atoms, so that they are suitable for observed condensation at 19 K [5; 6]. Further
research has shown that polaritons with even smaller effective masses can have
critical temperatures above room temperature in pristine bulk GaN microcavities
[7; 8].

Polariton condensates provide a unique environment to observe various signa-
tures of BEC. The most important of these for the scope of this thesis is dissipa-
tionless flow, or zero viscosity, known as superfluidity. The BEC is a superfluid
state, meaning it can flow freely and without diffusion through a system in the
same way a Cooper pair flows freely through a superconducting channel. The
best known observation of this is the ability of superfluid He4 to escape out of a
container by flowing along the walls of the container [9]. In a similar fashion,
Amo et al. [10] showed that droplets of polariton condensation can be excited to
flow through the channel in which they are formed with a simple light pulse. The
droplets move with a constant high group velocity, roughly 1.0 × 106 m/s, and
are able to move around defects without scattering. When the polariton superfluid
reaches a defect with size comparable to its own, it tends to split the superfluid
into two droplets, but phase coherence is not lost and group velocity remains un-
perturbed. Although the exciton-polariton is charge neutral, the observed trans-
port dynamics offer strong insight to the technological ramifications of superfluid
transport - macroscopic coherence that precludes diffusion from material defects.
In the next section, I will describe a system in which charge can be separately
transfered in a excitonic superfluid system, as well as experimental realization in
the quantum Hall regime.
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CHAPTER 3

TRANSPORT IN EXCITONIC
SUPERFLUIDS

3.1 Crossed Andreev Reflection

From a theoretical standpoint, an indirectly bound exciton superfluid can form
when two channels are stacked in close proximity to one another and doped so that
a large number of electrons (holes) occupy the top (bottom) layer. The carriers in
the top layer will form indirect excitons (bosons) with holes in the bottom layer
via an interlayer Coulomb interaction, but are prevented from recombining by a
small spacer dielectric. This is analogous to the polariton condensates discussed in
the previous section, with the exception that photo-pumping is not necessary for
condensation, and the constituent components of the condensate are separately
contacted.

It is vital to first understand the transport properties that can be achieved in such
an indirectly bound excitonic superfluid system. To obtain a more in-depth under-
standing of the interlayer transport in double-layer graphene systems, I first draw
a comparison to the Andreev reflections [12] that occur at a metal-superconductor
interface. When an electron with energy less than the superconducting band gap is
injected into a superconducting system, the injected electron penetrates a certain
distance before propelling a Cooper pair across the superconducting channel, as
seen in Fig. 3.1a. A hole of opposite spin is retro-reflected back into the metal con-
tact to conserve momentum. Similar physics occur when an electron with energy
less than the superfluid band gap is injected into the excitonic superfluid channel.
Figure 3.1b shows that the injected electron will penetrate a short distance in the
top layer before driving an exciton that moves across the channel. This process
corresponds to an electron being injected into the top left contact that causes an
exciton to move across the system while an electron is reflected into the bottom
left contact to conserve current [11]. The injected and retro-reflected currents
are separated in the top left and bottom left contacts, and the resulting physics is
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Figure 3.1: (a) Depiction of Andreev reflection in metal-superconductor-metal
system. Non-equilibrium contact bias will inject an electron of a certain spin
(black dot) into the system from the left contact. The action will cause a Cooper
pair to flow along the channel, resulting in a single electron coming out of the
right contact and a hole (red dot) of opposite spin from the left contact to conserve
momentum. (b) Depiction of crossed Andreev reflection in an indirectly bound
exciton superfluid. When an electron is injected in the top left contact in non-
equilibrium, an exciton will be driven along the channel, resulting in an electron
coming out of the top right contact and bottom left contact to conserve momentum.
Image from [11].

7



termed crossed Andreev reflection.
The drag-counterflow geometry (VTL = −VTR;VBL = VBR = 0 V) will cause

an electron to be reflected into the bottom left contact and a hole into the bottom
right contact [13], inducing an effective current through the bottom layer only
when a condensate exists. All non-equilibrium configurations described below
are in this geometry. The entire process results in a condensate current, due to the
propagating exciton, and a quasiparticle current, caused by the injected and retro-
reflected individual carriers. The quasiparticle current is only nonzero within the
coherence length (Lc), which is the maximum length an injected particle pene-
trates into the superfluid gap before triggering the exciton scattering event. While
the microscopic attributes of the superfluid and the dynamics of the Andreev re-
flection may not be readily apparent in experiments, they will have a macroscopic
effect on the observable interlayer current. The next section will discuss the real-
ization of such a system using coupled quantum wells in the quantum Hall regime.

3.2 Experimental Evidence

The quantum Hall effect (QHE), first shown experimentally in 1980 [14], was
a landmark discovery in condensed matter physics for its ability to determine the
fine-structure constant, α, and the quantum of conductance with high precision. In
the QHE, a strong magnetic field of 15 T is applied perpendicularly to a pristine
semiconductor quantum well which can be treated as a 2-dimensional electron
gas (2DEG). At extremely low temperatures, the magnetic field dominates the
electron dynamics so that electrons occupy quantized cyclotron orbits known as
Landau levels with cyclotron frequency ωc = qB/m, where B is magnetic field
strength, q is the charge of the electron, and m is its effective mass. Electrons in
each Landau level have discrete energy values,

En = ~ωc(n+
1

2
), (3.1)

which are analogous to the quantum harmonic oscillator. At weak magnetic fields,
Landau quantization is responsible for Shubnikov-de Haas oscillations, a wll-
known relation in which the longitudinal resistance oscillates as the magnetic
field is modulated. Stronger magnetic fields further separate the discrete Landau
energies, and as more Landau levels are pushed above EF , the Hall conductivity
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decreases according to

σxy = ν
q2

h
, (3.2)

where ν is the number of Landau levels below EF . This is due to the fact that only
edge states are available for transport in the quantum Hall regime; longitudinal
transport is prevented by the confining magnetic field unless a Landau level is
crossing EF . The QHE thus shows that conductance, like so many other physical
observables, takes on a quantized value proportional to some integer times the
quantum of conductance, q2/h, and the number of filled Landau levels can be
extracted easily from the conductance. It is important to note that conductance
does not depend on semiconductor material or length because carrier edge states
are completely protected from backscattering in the quantum Hall regime.

In recent years, significant experimental [15–18] and theoretical [19–23] progress
has been made in the search for BEC in coupled quantum wells in the quantum
Hall regime. Consider two GaAs quantum wells separated by a thin insulating bar-
rier layer. When the individual filling factor of each 2DEG is tuned to ν = 1/2,
so that the total filling factor is νtotal = 1, the density of electrons and holes in
the lowest Landau level is equivalent. The system thus develops a spontaneous
interlayer phase coherence when the separation between the two layers is small
enough to allow interlayer Coulomb pairing, which occurs at less than roughly 10
nm [24]. The holes (electrons) in one layer form indirect excitons with the elec-
trons (holes) in the opposite layer. The layer separation greatly increases exciton
lifetimes, which otherwise would be too small for conventional excitonic conden-
sation in bulk semiconductors [25] because the electron and hole are not hindered
from immediately recombining. Thus the layer separation is finely tuned so that
it is small enough for Coulomb attraction and exciton formation but large enough
to prevent tunneling and recombination.

The indirect excitons, being composite bosons, form a BEC in the same fashion
as the rubidium atoms and exciton-polaritons. When carriers are injected into one
of the two 2DEGs, excitons in the condensate are propagated along the channel,
the physics of which is known as Andreev reflection and is discussed at length in
Section 3.1. Thus a current can be observed in the opposite layer in spite of a bot-
tom layer contact bias. This is known as resonant tunneling current, which peaks
at a filling factor of exactly one-half [26]. Tunneling current is linearly propor-
tional to the total current in the system. Critical tunneling current, the maximum
attainable current in the BEC phase, was observed to be 1.5 nA [27] before the
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condensate is destroyed by the influx of individual quasiparticles, at which point
tunneling becomes negligible.

Critical current is extremely sensitive to filling factor, and quickly drops to a
negligible amount when total filling factor is below 0.9 or above 1.1 [28]. This
lends credence to the theory that a BEC can only form in a coupled quantum
well system when electron and hole quasiparticle densities are equivalent in each
layer. Inequalities in the quasiparticle concentrations hinder exciton formation by
screening out interlayer interaction. The resonant tunneling phenomenon is lost at
temperatures outside of the quantum Hall regime [26]. Although the critical tem-
perature for excitonic condensation is high, equal carrier concentrations can only
be achieved in the quantum Hall regime, which requires sub-Kelvin temperatures
and magnetic fields on the order of 10 T. Recent theoretical studies, however, have
predicted this can be resolved by replacing the coupled semiconductor quantum
well heterostructure with a double-layer graphene system. In the next section, I
will analyze carrier transport in graphene and show how its properties make it an
ideal candidate for indirectly bound excitonic condensation with critical tempera-
tures approaching room temperature.
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CHAPTER 4

GRAPHENE

4.1 Electronic Properties of Graphene

The unique electronic properties of graphene - an individual sheet of graphite -
were first predicted in 1946, long before its experimental discovery [29]. Figure
4.1 shows a top-down view of the hexagonal arrangement of the carbon atoms in
real space in the graphene sheet as well as the first Brillouin zone in reciprocal
space. The basis vectors are

~a1 = |a0|

(√
3

2
x̂+

1

2
ŷ

)

~a2 = |a0|

(√
3

2
x̂− 1

2
ŷ

)
,

(4.1)

where the magnitude of the basis vectors is |a0| =
√

3acc. The distance between
nearest neighbor carbon atoms is acc ≈0.142 nm.

In order to calculate the band structure of graphene, a tight binding model is
used in which a single pz orbital per carbon atom interacts with nearest neighbor
sites. This approximation works well at low energies near the Fermi energy; which
is the only important energy range for electrical conduction, because other orbitals
are either well above or well below EF . The 2x2 Hamiltonian can thus be written
in reciprocal space by summing over any unit cell and its six neighboring unit
cells,

H(~k) = −τ

[
0 1 + ei

~k·~a1 + ei
~k·~a2 + ei

~k·~a3

1 + e−i
~k·~a1 + e−i

~k·~a2 + e−i
~k·~a3 0

]
,

(4.2)
where τ=−3.03 eV is the bonding energy between carbon atoms and~a3 =~a1−~a2 =
a0ŷ. The dispersion relation, E(~k), can be calculated by solving for the eigenvalues
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Figure 4.1: (a) Real space depiction of a graphene lattice. The unit cell encom-
passes two carbon atoms, with basis vectors ~a1 and ~a2. (b) The first Brillouin
zone of graphene in reciprocal space, with basis vectors ~b1 and ~b2. The K and K’
points in the Brillouin zone are responsible for massless transport at low energy.
Adapted from [30].

of Eq. 4.2,

E(~k) = ±t
√

3 + 2 cos~k · ~a1 + 2 cos~k · ~a2 + 2 cos~k · ~a3, (4.3)

where positive (negative) energies denote the conduction (valence) bands for the
graphene lattice. Graphene is thus particle-hole symmetric about EF , an important
property which will be exploited in Section 4.2 to get the equivalent quasiparticle
densities necessary for exciton condensation. This property is in stark contrast to
silicon and other bulk semiconductors, which have conduction band minima and
valence band maxima that do not lie at the same energy or wave vector and are
not particle-hole symmetric.
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The basis vectors in reciprocal space must, for any system, satisfy

~ai ·~bj = 2πδij, (4.4)

where δij is the Kronecker delta. For graphene, the reciprocal space basis vectors
are

~b1 =
4π

a0
√

3

(
1

2
x̂+

√
3

2
ŷ

)

~b2 =
4π

a0
√

3

(
1

2
x̂−
√

3

2
ŷ

) (4.5)

to satisfy Equations 4.1 and 4.4. The K and K’ valleys of the Brillouin zone,
shown in Fig. 4.1b, are located at wave vector

~kK = (n± 1

3
)~b1 + (m∓ 1

3
~b2), n,m ∈ Z (4.6)

where n and m are integers. When ~kK is plugged into the dispersion relation
equation, the energy vanishes,

E(~kK) = ±t
√

3 + 2 cos±2

3
π + 2 cos∓2

3
π + 2 cos±4

3
π = 0. (4.7)

When solved numerically, E(~k) follows a linear dispersion about each K/K’ point
of the Brillouin zone, as seen in Fig. 4.2. The linear dispersion is symmetric
about the Dirac point, ED, in the approximate energy range of ED ± 1 eV. The
Fermi velocity is constant in the linear regime and proportional to the slope of the
dispersion,

vF =
1

~
∂E

∂k
≈ 106 m/s, (4.8)

which is roughly 1/300 the speed of light in a vacuum. The linear band structure
means that carriers act as massless Dirac fermions in graphene, because effective
mass is proportional to ∂2E/∂k2.

The electrical properties of graphene are thus unique and quite remarkable. Un-
like as in any semiconducting material, electron and hole quasiparticles are able
to flow in bulk graphene at equivalent velocities due to their equivalent mobilities.
For this reason, graphene has become an area of immense study since its initial
experimental discovery [31]. Proof of the high carrier mobility was seen from
observation of the QHE in graphene at room temperature [32]. The predicted
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Figure 4.2: The dispersion relation, E(~k), of graphene is isotropic and linear at
low energy. Zero energy modes exist at the K and K’ points of the Brillouin zone.
There are a total of six such points in the first Brillouin zone, but only two are
independent. Image from [33].

Fermi velocity, vF , is extremely high, and allows pristine graphene samples to
have equivalent room temperature carrier mobilities of 2 × 105 cm2V−1s−1, sev-
eral orders higher than bulk silicon (≤1400 cm2V−1s−1 [34]). In Section 4.2, it is
shown that these properties make graphene an ideal choice for double-layer exci-
tonic superfluidity. Unfortunately, efficient graphene growth has proven difficult,
and the best large-scale synthesis techniques, performed by epitaxial growth on
copper foils, yield carrier mobilities several orders smaller than the best samples
[35]. As such, disorder in the graphene channel becomes an important factor in
superfluid transport, and is discussed in the superfluid regime in Section 6.3.

4.2 Indirect Condensation in Double-Layer Graphene

In Chapter 3, it is shown that a BEC can arise in coupled quantum well systems
in the quantum Hall regime when each layer has a filling factor of ν = 1

2
. The

quantum Hall regime is necessary for particle-hole symmetry about the Fermi en-
ergy, so that each layer has an equivalent quasiparticle density. The system is not
suited for room-temperature application because the QHE requires very large and
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precise magnetic fields and very low temperatures. However, recent theoretical
studies [36; 37] have predicted the the same effect is possible in spatially sepa-
rated monolayers of graphene, as depicted in Fig. 4.3. Mean-field calculations
have shown that, when the two monolayers are separated by a SiO2 spacer dielec-
tric on the order of 1 nm thick and the Fermi energy of the top (bottom) monolayer
is gated to ED + 0.4 eV (ED - 0.4 eV), Tc can approach room temperature [38].
In the next chapter, I will explain the NEGF formalism which is implemented to
study the transport dynamics of the double-layer graphene system.

Figure 4.3: Schematic depiction of the double-layer graphene system. A 1 nm
SiO2 dielectric separates the two graphene monolayers, whose Fermi levels are
set to±0.4 eV by the top and bottom gates, VTG and VBG, to effect equivalent but
oppositely charged quasiparticle densities in each layer. Four contacts on either
side of the monolayers are responsible for inducing a counterflow current.
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CHAPTER 5

NON-EQUILIBRIUM GREEN’S
FUNCTION FORMALISM

5.1 Introduction

Figure 5.1 shows a generic system to be simulated with NEGF [39; 40]. The
electron dynamics of the channel are completely described by its Hamiltonian, H,
which is connected to two contact reservoirs with respective chemical potential
µL and µR. Contacts couple to the channel via self-energy matrices, ΣL and ΣR,
which will be defined in Section 5.2, to induce a non-equilibrium current flow.
The simulation assumes ballistic transport, so self-energy from scattering, ΣS , is
neglected. The system is insulated from gate contacts, whose effects are realized
via a three-dimensional Poisson solver, which solves for the potential at a given
point in real space based on the electron density,

∇2φ(~r) =
q2

ε
[ND(~r)− n(~r)], (5.1)

where φ(~r) is the potential profile and ND(~r) is the carrier density from donors,
which is nonzero only for doped semiconductors. The electron density, n(~r), is
evaluated in the NEGF kernel (see Eq. 5.15), thus the NEGF and Poisson algo-
rithms must be repeated until a self-consistent solution is achieved. The system
is easily expandable to systems with several contacts or gate configurations by
adding additional self-energy matrices to NEGF or additional sources to the Pois-
son solver. In the case of Fig. 4.3, there are four contacts connected to the system
and two gates electrostatically dope the monolayers.

The channel is defined to be three-dimensional in nature, with Nx, Ny, and Nz

lattice points in the x, y, and z directions. The full three-dimensional real space
Hamiltonian matrix can be written in terms of its directional hopping amplitudes
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Figure 5.1: A generalized NEGF system. Two contacts with chemical potentials
µL and µR place the system with Hamiltonian H in a non-equilibrium state to
induce current flow. An assortment of gates with potential VG electrostatically
dopes the system according to the Poisson equation.

in the following nested block tridiagonal structure,

H =



H0 H1 0 · · · 0 0

H†1 H0 H1 0 · · · 0

0 H†1 H0 H1 0 · · · ...
... 0

. . . . . . . . . 0
... . . . . . . . . . 0

0 0 · · · . . . H†1 H0 H1

0 0 · · · 0 H†1 H0


. (5.2)

In Equation 5.2, H1 = [I(NxNy) ⊗ HopZ ] where I(NxNy) is the identity matrix
of dimension NxNy, HopZ is the hopping amplitude in the z direction, and ⊗
is the Kronecker product. The on-diagonal component is itself a nested block
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tridiagonal matrix,

H0 =



H00 H01 0 · · · 0 0

H†01 H00 H01 0 · · · 0

0 H†01 H00 H01 0 · · · ...
... 0

. . . . . . . . . 0
... . . . . . . . . . 0

0 0 · · · . . . H†01 H00 H01

0 0 · · · 0 H†01 H00


. (5.3)

The nested matrix H0 similarly has components H01 = [I(Ny) ⊗HopX ] and

H00 =



AA HopY 0 · · · 0 0

Hop†Y AA HopY 0 · · · 0

0 Hop†Y AA HopY 0 · · · ...
... 0

. . . . . . . . . 0
... . . . . . . . . . 0

0 0 · · · . . . Hop†Y AA HopY

0 0 · · · 0 Hop†Y AA


. (5.4)

Note that H and H0 are block tridiagonal, but H00 is not when periodic boundary
conditions in y are used.

5.2 Contact Self-Energies

The channel is only connected to the contacts along the width at x = 1 and x =
Nx, for various points in z, so that the self-energy matrices of the left and right
contacts, Σ1 and Σ2, have a nonzero component dimension of Ny ×Ny. The full
self-energy matrix has dimensions equivalent to the full Hamiltonian, but is zero at
all points not connected to the lead. The contacts are assumed to be semi-infinite
so that the surface Green’s function, gsL, self-consistently satisfies the relation

gsL(E) = [(E + i0+)I(Ny) −H00 + H†01g
s
LH01]. (5.5)
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The nonzero component of the self-energy matrix can then be computed as

Σ1(E) = H†01g
s
L(E)H01. (5.6)

Σ2(E) can be calculated in the same fashion; the nonzero components of the self-
energies are equivalent in this particular case. The imaginary part of the self-
energy matrix is the energy level broadening due to the contact,

Γ1 =
i

2
(Σ1 −Σ†1), (5.7)

which represents the rate at which carriers are injected into the channel for each
lattice point connected to the leads. The broadening matrices become important
in subsequent sections when calculating transport dynamics of the system.

5.3 Retarded Green’s Function

Given these definitions, the retarded Green’s function can be computed as

GR(E) = [(E + i0+)I(NxNyNz) −H−ΣL −ΣR]−1. (5.8)

This quickly becomes intractable for large system sizes, but the sparse, block
tridiagonal structure of the Hamiltonian (see Equations 5.2 and 5.3) can be ex-
ploited to convert the O((NxNyNz)

3) inversion computation to O(NxNyNz) using
the recursive Green’s function (RGF) method. The matrix to be inverted has the
following block tridiagonal structure:

GR(E) =



D0 t0,1

t1,0 D1 t1,2

t2,1 D2 t2,3

. . .

. . .

tN−2,N−3 DN−2 tN−2,N−1

tN−1,N−2 DN−1



−1

.

(5.9)

19



The recursive routine involves a forward and backward recursive sweep. For the
forward sweep, I define a new set of matrices,

gLR0,0 = (D0)
−1

gLRi,i = (Di − ti,i−1g
LR
i−1,i−1ti−1,i)

−1, i ∈ 1, 2...N − 1.
(5.10)

The backward recursion yields the on-diagonal blocks of the retarded Green’s
function,

GR
N−1,N−1 = gLRN−1,N−1

GR
i,i = gLRi,i (I + ti,i+1G

R
i+1,i+1ti+1,ig

LR
i,i ), i ∈ N − 2, N − 3...1, 0,

(5.11)

where I is the identity matrix of equivalent size. The off-diagonal blocks are

GR
i,j =

−gLRi,i ti,i+1G
R
i+1,j, i < j

−gLRj,j tj,j+1G
R
j+1,i, i > j

. (5.12)

The entire matrix can thus be resolved with the recursive algorithm. The blocks
to be inverted are block tridiagonal themselves, so that the algorithm can be used
in a recursive fashion within itself. The resulting complexity of the computation
is O(NxNyNz).

The electron and hole correlations are given by

Gn(E) = GR[fLΓL + fRΓR](GR)†

Gp(E) = GR[(1− fL)ΓL + (1− fR)ΓR](GR)†,
(5.13)

where fL, dependent on the contact chemical potential, µL, is given by the Fermi-
Dirac distribution,

fL(E) =
1

e(E−µL)/kT + 1
. (5.14)
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5.4 Observables

All desirable results can be calculated from the electron and hole correlated Green’s
functions. These include the following:

TLR(E) = Tr(ΓLGRΓR(GR)†)

ILR =
e2

h

∫ ∞
−∞

TLR(E)[fL(E)− fR(E)]dE

ρi,j = e

∫ ∞
−∞

dE

2π
Gn
i,j(E).

(5.15)

TLR denotes transmission from left to right contacts, and current ILR is the integral
over the transmission for which the Fermi-Dirac distributions of the contacts are
unequal. The spatially resolved electron density, ρi,j , is an integral over the elec-
tron correlated Green’s function, which is used in the Poisson solver to achieve
a self-consistent solution. Hole density is the same integral over the hole corre-
lated Green’s function, so that the sum of the two at any on-diagonal point is the
localized density of states for the particular lattice/orbital.

The current can likewise be resolved spatially, so that the total current from any
point to any other point on the lattice is

Ij→j+1 =
ie

~

∫
dE

2π
[Hj,j+1G

n
j+1,j(E)−Hj+1,jG

n
j,j+1(E)

−Hj,j+1G
p
j+1,j(E) +Hj+1,jG

p
j,j+1(E)].

(5.16)

In the case of graphene, the Hamiltonian is only nonzero for nearest neighbors, so
j + 1 denotes a lattice point that is only one point away from j in any direction.
All elements in Eq. 5.16 are scalars because one orbital sufficiently describes each
lattice point. The total current between lattice points is thus an integral of scalar
values rather than an integral sum over matrices.

As a verification, the sum of all longitudinal current over any slice in the y-z
plane is constant for any point in x and equivalent to ILR. All matrix elements are
verified for small system sizes using conventional matrix inversion/multiplication
methods to ensure the validity of the RGF algorithm.
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CHAPTER 6

ANALYSIS OF TRANSPORT IN
SUPERFLUID DOUBLE-LAYER

GRAPHENE

6.1 Approach

The system of interest is depicted in Fig. 4.3. This thesis studies two electrostat-
ically doped zigzag graphene monolayers that are assumed to be perfectly regis-
tered with one another and separated by a thin dielectric. Contacts along the edges
of each of the layers inject and extract current, and top and bottom gates manipu-
late the quasiparticle concentrations in each of the layers. In this way, the proper
quasiparticle concentrations predicted by many-body theory [38] may be tuned to
induce a superfluid phase transition. The top and bottom gates are separated from
the graphene layers by 20 nm of SiO2. The two graphene layers are separated
from one another by a 1 nm SiO2 spacer dielectric to be in the predicted regime of
superfluidity. The oxide regions are assumed to be perfect in the sense that they do
not contain any stray charges and have perfect interfaces with the graphene layers.
I choose the x̂ direction to lie along the length of the system, the ŷ direction to lie
along the width, and the ẑ direction along the depth. Each monolayer is 30 nm
long by 10 nm wide. These dimensions were selected rather than larger system
sizes so that the atomistic transport properties of an increased number of disorder
distributions can be calculated within a reasonable amount of time.

The top and bottom gates (VTG = −VBG) are are gated to effect individual
carrier concentrations of 1013 cm−2 in each layer, which corresponds to a Fermi
energy in the top (bottom) layer of 0.4 eV (−0.4 eV). The gate bias conditions
and the interlayer separation have been chosen so as to satisfy the conditions for
room temperature pseudospin ferromagnetism [38]. Here, I focus on the regime
where the layer electron and hole populations place the system firmly in the dense
electron-hole regime where the electron-hole pairs are expected to form a BCS-
type state. In practice, this is a nontrivial density to achieve, but is necessary
for condensation. The electric field created (8 × 106 V/cm) between the top and

22



bottom monolayers is slightly below the dielectric breakdown voltage for SiO2

and is theoretically feasible. The transport characteristics of such a system are
in stark contrast to the dilute limit of electron-hole densities, which can be de-
scribed as a weakly interacting Bose system of excitons [41]. In order to collect a
sufficient statistical distribution on the effects of vacancy distribution on the inter-
layer transport properties of double-layer graphene, several randomized vacancy
configurations for each concentration are examined in this work.

The three-dimensional Hamiltonian, as described in Chapter 5, begins with the
atomistic tight-binding description of an individual graphene monolayer,

HTL =
∑
<i,j>

τ | i〉〈j | +Vi | i〉〈i |, (6.1)

where lattice points i and j are first nearest neighbors. τ = −3.03 eV is the near-
est neighbor hopping energy for the pz orbital of graphene, which allows for the
unique low-energy linear dispersion at the K and K ′ points in the Brillouin zone
shown in Fig. 4.2. Hopping among further nearest neighbors and other orbitals is
neglected, because nearest neighbor pz orbital hopping is the predominant inter-
action for graphene in the probed energy range of ED ±1 eV. The on-site potential
energy Vi = φ(~ri) is calculated via a three-dimensional Poisson solver given in
Eq. 5.1. The contact self-energy matrices use a phenomenological model to simu-
late a generic metal contact with a constant density of states [30; 42]. This model
captures the basic self-energy needed to appropriately simulate a metal contact
without taking into account multiple orbitals or complex interface problems such
as lattice mismatch or Schottky barrier height.

The monolayer Hamiltonian is expaned to the double-layer Hamiltonian by
coupling the top and bottom monolayers with the following Bogoliubov-de Gennes
(BdG) Hamiltonian,

HBdG =

[
HTL 0

0 HBL

]
+
∑

µ=x,y,z

µ̂ · ~∆⊗ σµ, (6.2)

with the interlayer interactions including both single particle tunneling and the
mean-field many-body contribution, ~∆, coupling the two layers using a local den-
sity approximation. In Eq. 6.2, µ represents a vector that isolates each of the
Cartesian components of the pairing vector, σµ represents the Pauli spin matrices
in each of the three spatial directions, and ⊗ represents the Kronecker product.
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In order to correctly account for the dynamics of the double-layer graphene
system, I first include the many-body interlayer interactions in the Hamiltonian.
Within the Hartree-Fock mean-field approximation, the interlayer interactions may
be defined through the expectation value of the full Hamiltonian,

〈↑i| HBdG |↓j〉 = Umexcδi,j. (6.3)

The graphene monolayers are assumed to be perfectly registered, so that electrons
at site i in the top layer (〈↑i|) only bind with holes at site j on the bottom layer
(|↓j〉) when i = j. U is the strength of the interlayer on-site Coulomb interaction,
whose selected value is addressed later in this section.

The magnitude of the order parameter resulting from the analysis of BECs of
indirectly bound excitons is mexc. It is proportional to the off-diagonal terms in
the single-particle density matrix, which is represented as [13; 39]

ρ =

[
ρ↑↑ ρ↑↓

ρ↓↑ ρ↓↓

]
. (6.4)

The on-diagonal density matrix (ρ↑↑, ρ↓↓) corresponds to the associated electron
and hole densities of the top and bottom monolayers, respectively. The order
parameter mexc can now be defined as a function of the interlayer component of
the density matrix,

mx
exc = ρ↑↓ + ρ↓↑ = 2Re(ρ↑↓),

my
exc = −iρ↑↓ + iρ↓↑ = 2Im(ρ↑↓).

(6.5)

The density matrix is directly calculated within the NEGF formalism. It is con-
sequently both an input and an output of the simulation, and the algorithm must
iterate over the above mean-field equations, in conjunction with the Poisson equa-
tion for electrostatics, to obtain a self-consistent solution with compatible particle
densities and potential profile. The Broyden method [43] is utilized to expedite
numerical convergence.

Equation 6.2 can be expanded to show a simplified form for the BdG Hamil-
tonian in which interlayer interactions are expressed in terms of their directional
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components [44],

HBdG =

[
HTL + ∆z ∆x − i∆y

∆x + i∆y HBL −∆z

]
. (6.6)

The directional components of the interlayer interactions ~∆ are expressed as

∆x = (∆sas + Umx
exc)

∆y = Umy
exc

∆z =
1

2
(V↑ | i〉〈i | −V↓ | i〉〈i |).

(6.7)

The on-diagonal term in the interlayer interactions, ∆z, is due to screening caused
by the unbound carriers in each monolayer, and acts to separate the two Fermi
surfaces. The value of the single particle tunneling energy, ∆sas, is proportional
to the probability of a single electron tunneling through the thin dielectric and
recombining with a hole. Single-particle tunneling is an adverse event; thus it is
desirable to have a very thick barrier in between the two graphene layers to max-
imize the lifetime of the indirectly bound excitons. However, a strong interlayer
Coulomb interaction is needed to drive the superfluid phase transition, which ne-
cessitates a thin barrier. In this work, I set ∆sas = 1 µeV sufficiently small so that
the lifetime of the indirectly bound exciton is long enough to observe condensa-
tion but not so small as to require an intractably large number of iterations before
self-consistency is reached.

Results of previous many-body calculations show the value of the order pa-
rameter is approximately one-tenth the Fermi energy [38]. The simulations show
that this value of mexc corresponds to an interlayer coupling strength of 2.0 eV.
Although this is less than the unscreened mean-field interaction strength [13]
(U = q2

εd
≈ 4.6 eV), it is more plausible because it factors in damping effects

due to screening [45]. The interlayer Coulomb interaction is thus set to U = 2.0
eV in all simulations to be compatible with the mean-field theory. The magnitude
of the order parameter, using the expectation values of the density matrix in Eq.
6.5, is

|mexc| =
√

(mx
exc)

2 + (my
exc)2 (6.8)

The phase of the order parameter is similarly dependent on the same expectation
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values of the density matrix [44],

φexc = tan−1
[
my
exc

mx
exc

]
. (6.9)

As the interlayer transport properties are similar to the case of a Josephson junc-
tion, the phase is expected to be φexc = π/2 at zero bias to maximize interlayer
current [46; 47]. The quasiparticle and condensate current densities, the artifacts
of the Andreev reflection action, are proportional to the spatial phase gradient and
magnitude of the order parameter [13].

6.2 The Ideal System

All simulations are run in the drag-counterflow geometry (VTL = −VTR;VBL =

VBR = 0 V) [13] to induce an effective current through the bottom layer only
when the condensate exists, as described in Section 3.1. All non-equilibrium con-
figurations described below are in this geometry, with the left and right contacts
on the top monolayer set to the magnitude of the counterflow bias parameter. The
entire process results in a condensate current, due to the propagating exciton, and
a quasiparticle current, caused by the injected and retro-reflected individual car-
riers. The quasiparticle current is only nonzero within the coherence length (Lc),
the maximum length an injected particle penetrates into the superfluid gap before
triggering the exciton scattering event. The microscopic attributes of the super-
fluid and the dynamics of the Andreev reflection may not be readily apparent in
experiments, but will have a macroscopic effect on the observable interlayer cur-
rent.

These observable interlayer and intralayer transport properties are presented for
an ideal system in Fig. 6.1. The currents are odd functions of the bias, reflecting
the system’s ambipolar nature. At low bias, interlayer current is linear and inter-
layer conductance is constant, because injected carriers see the superfluid gap and
trigger the Andreev event discussed above. Low-energy injected carriers are un-
able to pass through the superfluid gap, and intralayer current is negligible within
this range. States above the superfluid band gap do begin to form at |E| ≥ 0.14

eV, as seen in the superfluid band structure in Fig. 6.2a. Interlayer transmission
quickly vanishes when higher-energy states become accessible in the spectrum;
transport along the monolayer dominates in these ranges. This is evidenced by the
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Figure 6.1: Interlayer and intralayer current plots for the ideal system as a function
of counterflow bias (solid black line and red dashed line, respectively).

emergence of intralayer current and a drop in interlayer conductance beginning at
a counterflow bias of 0.14 V.

Beyond the critical counterflow bias, 0.22 ± 0.01 V in the ideal system, the su-
perfluid can no longer adjust its phase to accommodate the current flow. When
self-consistency is lost, only single-particle tunneling contributes to interlayer
tunneling. The small magnitude of the resultant interlayer current, less than 1
pA for a bias of VTL = −VTR = 0.25 V, is negligible compared to the many-
body contribution to the interlayer current observed when the system obtains self-
consistency. Additionally, past the critical current, transport characteristics be-
come time-dependent [48], and the mean field equations no longer represent a
valid description of the physics. Although a transient remnant of the superfluid
may yet persist beyond the critical bias, the many-body portion of the Hamilto-
nian is approximately zero and the time dependent oscillation in the interlayer
transport relationship cannot be captured in the steady-state simulations.

The phase transition is observed in Fig. 6.2b, which shows the dispersion for
the ideal system after critical current has been passed. There is no appreciable
change to the band structure within each phase. When no superfluid exists, each
monolayer has a vanishing band gap and linear dispersion, as seen in Fig. 4.2. As
expected, the Dirac points occur in the normal phase at the K’ and K points in the
Brillouin zone with a Fermi energy of ±0.4 eV. The band gap vanishes at biases
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Figure 6.2: The dispersion relation for an ideal double-layer graphene system in
the transport direction (a) at a counterflow bias of VTL = −VTR = 0.05 V, which
is below the critical current and (b) at a counterflow bias of VTL = −VTR = 0.23
V, which is above the critical current.
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larger than this critical transition value. The closing of the band gap after the
phase transition allows for more low-energy states, causing a spike in intralayer
current well beyond the range of interlayer transport in the superfluid phase.

The band structure in the transport direction of the system is derived [49] from
a small portion of the converged Hamiltonian by assuming mexc is periodic in
the transport direction. This holds true only for the ideal system, where mexc is
smooth and consistent throughout the channel with a magnitude near 10% of the
Fermi energy and a phase of π/2. Randomly placed impurities and vacancies,
however, break translational symmetry so that the Hamiltonian is no longer pe-
riodic in the transport direction. The dispersion relations of disordered systems
thus cannot be calculated.

The ideal system’s critical current is calculated to be Ic = ±18.4 µA, occurring
at a counterflow bias of ±0.22 V. The analytic approximation for the critical cur-
rent in a system where coherence length is smaller than system length [48] can be
evaluated by ensuring the condensate satisfies the elliptic sine-Gordon equation,

λ2~∇2φ− sin(φ) = 0. (6.10)

When this equation is solved in the static (DC) case, the critical current of the
system simplifies to a relatively simple expression,

Ic ∼
eWmexc

~Lc
. (6.11)

Therefore, for a system of width W = 10 nm with a coherence length of Lc ≈ 5

nm and order parameter magnitude of ρs ≈ 0.04 eV, the analytic critical current
is roughly IAc ≈ 19.5 µA. This is in good agreement with the simulated critical
current for an ideal system. The reduction in the critical current is expected in
the system as reflections off the superfluid gap lead to enhanced differences in lo-
cal interlayer interaction terms which enter into the Hamiltonian self-consistently
through the ∆z term and serve to energetically separate the layers [44].

Figure 6.3 plots the interlayer quasiparticle current densities along the transport
direction averaged along the width of the system in an ideal system with a coun-
terflow bias of 0.05 V and 0.20 V, just before the phase transition to a normal state.
Quasiparticle current tunneling, which is part of the same process that launches
the exciton through the channel, is highest near the contacts where carriers are
injected, and evanescently decays into the channel, so that carriers which provoke
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Figure 6.3: The interlayer quasiparticle current density along the transport direc-
tion in the ideal system averaged along the width of the system for counterflow
biases of 0.05 V (red dashed line) and 0.20 V (blue solid line). The current density
is only nonzero within the coherence length, which by inspection is approximately
5 nm. Quasiparticle current density is approximately odd about the center of the
system at low bias, but symmetry is lost when a high contact bias limits carrier
concentration on one side of the system.
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interlayer transmission are only present a small distance into the channel. This
distance, termed the coherence length (Lc), is roughly 5 nm by inspection of the
plot.

Note in Fig. 6.3 that interlayer quasiparticle current magnitude is nearly equiv-
alent at low bias but becomes very asymmetric near the critical transition point.
The Poisson equation in the counterflow bias configuration restricts the magni-
tude of the order parameter because the negatively biased top right contact locally
decreases the density of electrons able to pair into the condensate. Conversely,
applying a bias across the hole-doped bottom layer will limit superfluid density
and quasiparticle current near the left (positively biased) contact. The decreased
density results in a smaller interlayer current density on one side, as seen in the
case with higher counterflow bias. All interlayer currents are the currents gener-
ated by the contacts on the right side of the system, because this is the side with
limited exciton density is the transport bottleneck. When the disparity in conden-
sate currents from each contact reaches a critical limit, steady-state supercurrents
are no longer possible [13].

6.3 Disordered Systems

I now seek to understand how the behavior of the interlayer transport properties
change as disorder is introduced into the system. The main result of the analysis
is shown in Fig. 6.4, which plots the statistical variation in critical current as a
function of vacancy concentration. Two distinct categories of disorder in the top
layer are considered. The critical current obtained for the ideal case is plotted in
the middle of the figure, at a vacancy concentration of 0%. To the left of the ideal
case, the statistical variation in the critical current is plotted for random vacancy
concentrations which are beyond the coherence length, Lc, from either contact
on the top layer. In this case, an increase in the random vacancy concentrations
causes a decrease in the critical current approximately following a square root de-
pendence. Furthermore, the mean of the statistical distribution of critical currents
associated with various top layer vacancy distributions varies only by approxi-
mately 5% even as the concentration of vacancies is increased.

The statistical change of the critical current associated with disorder within a
distance of Lc from either top layer contact is plotted on the right hand side of
Fig. 6.4. Here quite different behavior is observed compared to the situation
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Figure 6.4: Statistical variation of critical interlayer current for several runs at
the bias just before the condensate is broken. Vacancies which are more than a
distance of one coherence length away from the top layer contacts are to the left of
the ideal (0%) case, depicted by a black circle, while vacancies which are within
one coherence length from the top layer contacts are to the right. The excitonic
condensate is lost in both cases for top layer vacancy concentrations larger than
4%. The solid lines represent analytic calculations using Eq. 6.11 with modified
values obtained from calculations as described in Section 6.3.
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Figure 6.5: Set of I-V curves for systems with varying concentrations of randomly
placed vacancies at least 5 nm away from the top layer contacts.

where the vacancies are further than Lc from the top layer contacts. Now the
critical current has a very distinct linear decrease with respect to an increase in
vacancy concentrations. There are very large variations in the location of the
critical current, which is dependent on the locations of the top layer vacancies. In
the subsequent sections, I will explore the physics of these two distinct regions
and explain the observed dependence of the critical current seen in each situation.

6.3.1 Layer Disorder beyond Lc

Disorder is modeled by randomly placing vacancies within the top layer of the
double-layer system. Vacancies are modeled by setting all hopping to a missing
atom to zero in the model Hamiltonian. This effectively blocks any interaction
with the vacancy by setting the tight-binding overlap integral of the spatial pz or-
bital states to zero [50]. A fixed percentage of carbon atoms are randomly removed
from the specified region of the top monolayer, leaving the bottom monolayer un-
perturbed, and the transport calculations from the ideal case are repeated.

The interlayer current is plotted as a function of voltage bias in Fig. 6.5 for var-
ious concentrations of vacancies in the top layer along with the ideal double-layer
case for comparison. At low bias, there is little reduction in the interlayer conduc-
tivity regardless of vacancy concentration or vacancy location past the coherence
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Figure 6.6: Magnitude of the order parameter for a system with 1% vacancies in
the channel. The condensate is very close to that of the ideal case, with a drop
in magnitude only occuring locally near disorder. As expected, |mexc| ≈ 0.1 EF
away from disorder.

length. The phase transition to two normal, incoherent Fermi liquids, however,
occurs at a lower bias than in the ideal case. Channel disorder decreases critical
current by 20% for 1% vacancy concentration to 30% for vacancy concentrations
of 4%. Beyond top layer vacancy concentrations of 4%, no self-consistent solu-
tion is found and the interlayer transport is dominated by single-particle tunneling
events. Resultant interlayer currents are orders of magnitude smaller because the
majority of the current injected into the system now flows across the graphene
layers.

In order to better understand these reductions in interlayer current as the top
layer vacancy concentration is increased, I examine the magnitude of the order
parameter, |mexc|. In Fig. 6.6, the magnitude of the order parameter is plotted
for a random vacancy concentration of 1%. In this situation, the order parameter
magnitude does not remain constant over the entire system at 10% EF , as was the
case in the ideal system. The vacancies locally destroy the condensate [45] and
reduce |mexc| at surrounding points up to a distance of 0.5 nm, or three to four
nearest neighbors from the vacancies. However, no long-range effect is seen when
vacancies are isolated from one another by more than approximately 2 nm. At this
particular vacancy concentration,mexc is reduced by 40% over an appreciable area
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Figure 6.7: Magnitude of the order parameter for a system with 4% vacancies in
the channel. Magnitude clearly drops nonlinearly with the increase in disorder,
but quasiparticle current is still able to form near the contacts.

of the system as a result of these vacancies.
This situation is to be contrasted with Fig. 6.7, in which mexc is plotted for

a random top layer vacancy concentration of 4%. In this case, significant areas
clearly emerge where concentrated disorder has long-range effects on superfluid
density. These areas of high vacancy concentrations in Fig. 6.7 give rise to values
for |mexc| that are less than 20% the ideal value over significant areas of the sys-
tem. Superfluid magnitude remains at its ideal level near the contacts, sufficiently
quarantined from the vacancies.

Nevertheless, the root cause of the sublinear behavior in the critical current with
respect to an increase in the top layer vacancy concentration remains unresolved,
from Eq. 6.11. The localized density of states (LDOS) [51] is examined to ex-
plain the sublinear behavior. Vacancies induce a LDOS similar to the case of an
impurity [52; 53] in graphene layers. Figures 6.8 and 6.9 plot the LDOS for the
ideal case and for the case of 4% top layer vacancy concentration as an average
along the disordered area of each monolayer. The average shows the magnitude of
uncoupled states that form not only at vacancies, but at neighboring locations and
in the ideal bottom layer as a result of electrostatics. A stark contrast is seen in
the low-energy LDOS in the superfluid phase when vacancies are introduced. The
LDOS closely resembles those of monolayer graphene at higher energies [54],
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Figure 6.8: Local density of states at low energy for an ideal system. The solid
(dashed) line represents the top (bottom) layer. No localized states exist below a
magnitude of 0.14 eV for the superfluid.

Figure 6.9: Local density of states at low energy for a system with 4% vacancies
in the top layer. The solid (dashed) line represents the top (bottom) layer. Low-
energy states due to the vacancies introduce a weak but apparent LDOS in the
ideal bottom layer as well, due to the thinness of the spacer dielectric.
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with peaks at E = EF ± τ . The ideal top and bottom monolayers exhibit per-
fectly antisymmetric densities of states so that equivalent carrier concentrations
arise in the oppositely gated top and bottom monolayers. No states exist in the
superfluid gap in the ideal double-layer, as is expected for a condensate in which
all of the quasiparticles participate.

Disorder changes the transport properties of the system by introducing mid-
gap states in the top layer, as seen in Fig. 6.9. Localized states also arise, to
a lesser degree, in the bottom layer due to charge pileup induced by Coulomb
attraction through the thin spacer dielectric. The biased top and bottom gates,
necessary to generate the sufficient carrier concentrations, cause the undesirable
occupation of the mid-gap states up to the Fermi energy. As the electrons and
holes make their way across the layers, they scatter off localized states, changing
the interlayer phase relationship between the top and bottom layers. This effect
manifests itself as a change in the ∆y term in Eq. 6.5. As a result, when the
decreased interlayer phase relationship is input into the calculation of mexc in
Eq. 6.8, mexc drops from its ideal value of 0.041 eV to 0.029 ± 0.002 eV at 4%
top layer vacancy concentration, a decrease of roughly 30%. The result is thus
that the reduced interlayer phase component decreases mexc in a rough square
root correlation. The square root dependence is not exact and saturates at higher
disorder concentrations because mexc is not affected near the contact regions and
is allowed to remain at its ideal value, as seen in Fig. 6.7. When the average value
of the change in the coupling strength is added into the calculation of the critical
current in Eq. 6.11 and plotted along with the numerical results on the left hand
side of Fig. 6.4, good agreement is found between the two values. The average
coupling strength does not change appreciably between disorder configurations,
resulting in critical current approximations with small deviations relative to the
contact disordered scenario.

6.3.2 Layer Disorder within Lc

While the double-layer graphene system is moderately robust to vacancies deep in
the channel, this is not the case when the top layer vacancies occur within one Lc
of the contacts on the top layer. The interlayer current is plotted as a function of the
random top layer vacancy concentration in Fig. 6.10, where the vacancies occur
within one Lc of the contacts on the top layer. Vacancies near the contacts cause a
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Figure 6.10: I-V curve for systems with varying concentrations of randomly
placed vacancies within 5nm of the top layer contacts.

significant drop in both conductivity and the voltage bias at which self-consistency
is lost. Quasiparticle current density is now dependent on the location of disorder
within the coherence length, because magnitude evanescently decays from the
contact interface. Interlayer current is thus sensitive to the specific location and
amount of disorder within the coherence length.

Figure 6.11 shows the magnitude of the order parameter, mexc, for a case of
1% vacancies randomly distributed near the contacts. Quasiparticle current den-
sity drops with the presence of contact disorder, because it is proportional to the
magnitude of the order parameter. Clearly, groups of vacancies appear on the left
and right side of the contact that begin to show a nonlinear, long-range effect on
superfluid density. Top layer vacancies closest to the contact, where quasiparticle
tunneling magnitude is largest, cause the biggest detriment to the magnitude of in-
terlayer current. Despite the vacancies reducing the space in which quasiparticles
may be injected without scattering, the condensate is able to form; sites within
three nearest neighbors of a single defect are not appreciably affected. Little ran-
domized bunching occurs in the 1% case, because the disorder is too sparse to
create significantly different scenarios. Interlayer current remains rather robust,
roughly 30% smaller than ideal. The random nature of the placement, however,
causes a high variance in interlayer current in this scenario, which is discussed
below.
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Figure 6.11: Magnitude of the order parameter, in eV, for a system subjected to
1% vacancies near the contacts. A single defect does not affect the condensate
appreciably, but several defects nearby can drop magnitude significantly.

Larger deviations from the ideal interlayer critical current are found as the top
layer vacancy concentration is increased. A large amount of clustering occurs,
which leads to a significant reduction in the available space into which quasiparti-
cles may be injected, as seen in Fig. 6.12, and generates a very different transport
relationship relative to channel disorder. Carriers injected into the system see a
significant reduction in the area in which quasiparticle tunneling can occur near
the contact, significantly reducing conductivity. There is a linear dependence on
the width of the system in Eq. 6.11, and this provides a very simple explanation
for the physics of the linear decrease in the critical current observed in Fig. 6.4.
This information allows us to conclude that graphene with vacancies within the
coherence length effectively reduces the width over which quasiparticle tunneling
occurs, and causes a linear decay in Ic with respect to contact disorder strength
until the condensate vanishes.

Figure 6.13 shows how the average interlayer quasiparticle current density qual-
itatively shifts when top layer vacancies are included within the coherence length
of the top layer contacts. Equivalent disorder concentrations generate disparate
condensate currents on each side because vacancies are randomly configured to be
more closely lumped near one contact than the other. Whereas superfluid excitons
are able to permeate disorder as long as the condensate exists, an increasing pro-
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Figure 6.12: Magnitude of the order parameter, in eV, for a system subjected to
4% vacancies near the contacts. The contacts are too saturated with defects for a
large amount of tunneling to occur, and interlayer conductivity suffers.

Figure 6.13: Quasiparticle current density for a system with 4% contact disorder
with a counterflow bias of 0.04 V, just before the phase transition. No condensate
exists near the contacts, so the largely degraded quasiparticle tunneling that does
occur only happens beyond the disorder.
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portion of bare electrons and holes cannot penetrate the contact disorder to reach
the condensate. The critical bias at which the phase transition occurs decreases
as disorder increases because of the discrepancy in condensate current from each
contact. The on-site potential is greater at vacancies near the contacts due to VTR
and VTL. The LDOS is thus more quickly occupied, and further accelerates the
phase transition. As a result, critical current drops approximately by an average
of 30%, 45%, 60%, and 80% for vacancy concentrations of 1%, 2%, 3%, and 4%,
respectively. The accuracy of the conclusion can be seen on the right hand side of
Fig. 6.4 where the data is superimposed with a model of the reduction of the crit-
ical current expected when each vacancy is assumed to remove 0.5 nm from the
effective width of the system in the affected region for a given vacancy concen-
tration. The theory and numerical calculations prove to be in good agreement; the
model falls within the error bars of the simulations, where deviation is the result
of non-linear randomized bunching of disorder.

It is clear in Fig. 6.4 that a large variance in critical current exists when va-
cancies lie within the coherence length of the contacts in the top layer. This is
due to the fact that the quasiparticle current flow, in this system, is concentrated
close to the contacts in the middle of the channel, and evanescently decays into
the system. This is best seen in Fig. 6.11 where the magnitude of the order param-
eter is significantly reduced from the bulk value near the edge of the system both
near and away from the contacts. Moreover, vacancies that are closely lumped
together exacerbate the scattering to an even greater degree because vacancies in
close proximity to one another have a significant non-local effect on the perturbed
mexc, as seen in Fig. 6.12. Also in Fig. 6.12, the variance in critical current decays
at 4% vacancies because quasiparticle tunneling is almost completely prevented
at such a high concentration of vacancies. As in the channel-disordered case, no
self-consistent solution was found for vacancy concentrations greater than 4%.
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CHAPTER 7

CONCLUSION

Superfluid transport is an observed phenomenon in BECs in which bosons flow
through a channel without dissipation. Many-body transport in such a system
can lead to efficiencies and speeds beyond the fundamental limit of conventional
CMOS technology. The performance enhancement could be realized in the elec-
tronic systems that have become so ubiquitous in telecommunications, computing,
processing, and information technology. This thesis studies self-consistent calcu-
lations to understand how vacancies in the graphene monolayer channel can hinder
such performance of a predicted room-temperature exciton condensate. Vacan-
cies within a coherence length of the contacts significantly obstruct performance
by effectively reducing the width over which interlayer transport occurs. For a
selected value of 4% vacancies in this region, tunneling current at a selected bias
can drop by more than 80% compared to the ideal scenario. The reduced width
of the system caused by the presence of the top layer vacancies produces a lin-
ear dependence on the critical current as the vacancy concentration is increased.
Vacancies outside of the coherence length have little effect on the interlayer con-
ductivity, showing a critical current with an approximate square root dependence
on vacancy concentration in the top layer. Critical current degrades up to 30%
due to a phase transition at smaller bias. The reduction is due to scattering of
layer quasiparticles from localized mid-gap states, which modifies the average
interlayer phase relationship between the two layers. Concentrations of vacan-
cies larger than 4% in one of the layers prevent the condensate from forming in a
steady state.

The thesis thus provides a concise model to show how channel disorder affects
superfluid transport. As the ideal system is difficult to realize, it provides exper-
imentalists a numerical framework for characterizing fabricated systems domi-
nated by short-range scattering impurities. Future work includes adding the effect
of phonon scattering to the lattice to see how superfluid density and critical tunnel-
ing current decay as temperature increases. Aside from lattice disorder, phonon
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coupling to the substrate is a dominant scattering mechanism that must be studied
in order to have a complete picture of room-temperature performance degradation
from an ideal system.
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