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This study presents the temperature dependence of small signal parameters of GaN/SiC HEMTs across the 0-150°C range.
The changes with temperature for transconductance (g ), output impedance (Cyg, and Ry;), feedback capacitance (Cyg), input
capacitance (Cg), and gate resistance (R,) are measured. The variations with temperature are established for gm,» Cas» Ras> Cag> Cs»

and R, in the GaN technology. This information is useful for MMIC designs.

1. Introduction

Devices based on wide bandgap materials (such as GaN,
SiC) promise much higher power densities and potential
for higher temperature operation than GaAs, Si, and SiGe
devices [1-3]. The reliability and performance of HEMTs
and MMICs depend critically on the device operating
channel temperature [4, 5]. Previous studies [6-11] have
focused on various effects with temperature. However, the
referenced temperature was the chuck (or base plate) temper-
ature. This study presents characterization and comparison
of two current GaN/SiC devices from different foundries
across temperature where the temperature is reference to the
channel reference.

2. Measured Results

To quantize the effect of temperature on the performance
of GaN/SiC device, two state-of-the-art AlGaN/GaN HEMT
devices were characterized at —25, 25, 75, and 125°C base
plate (on-wafer chuck). At each temperature, S-parameters
are measured at Vg = 20V and a fixed drain current (equal
to 25% of the room temperature I4s) and the small signal
extracted. The dissipated DC power is fixed, and hence the
channel temperature to the chuck temperature is constant.
For example, in the first device the temperature difference
between the channel and the chuck was 26°C (calculated

from finite element simulation of the structure), temperature
contours shown in Figure 1. In both devices, the gate length
(Lg) for the HEMT was about 0.25um and the gate width
was 2 X 100 ym. A standard equivalent circuit is used to
match the measurements, see Figure 2. The model used
includes a source inductance L and resistance Ry to model
the via holes to ground. In the current case, a via hole
structure was measured independently in order to find L,
and R;. Additionally, the input and output feeding structures
(Figure 3), were constructed on full wave analysis simulator
(EM Sight from Microwave Office Suite) and simulated. The
structures were used to de-embed the S-parameters. This is a
critical step to separate the intrinsic device behavior from the
extrinsic-layout-dependent behavior. In the optimization,
the S-parameters are normalized to give equal-weight real
and imaginary parts as well to all the parameters (S11, Sz,
S12, and S2). Upon de-embedding and optimization of the
S parameters against the layout circuit, several important
points are noted for both devices. First, the optimization is
very robust and always arrives at the same values for various
R, and L,. Second, the match between the measurement
and model is very close, at all frequencies and temperatures,
see Figure 4. Third, the optimized values for the parasitic
components Ly, Ly, Cas, and Rq are zero, indicating that
the feeding structures account for them completely. The
only exception is R; where the gate resistance was not
fully included in the input matching structure because the
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FiGurg 1: Temperature contours of 2 X 100 ym device based on
finite element simulation.
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FiGure 2: Equivalent circuit used to extract small signal parameters.
The ground vias are modeled as a series inductor and resistance.

resistance is sensitive to the exact gate dimension and shape
(T-gate, Mushroom gate, etc.) information which was not
available.

For each device type, two identical transistors were mea-
sured to check for consistency of the results. Figures 5, 6, 7, 8,
and 9 show the temperature dependence of Cg, Cyg, Rg, Ras»
and gm, respectively. In all cases, the values are normalized to
1 mm gate periphery. For example, in Figure 4, a Cy value of
1 pF corresponds to 1 pF/mm, and, for a 2 X 100 ym device,
Cgs would be 0.2 pE. Figure 10 shows the saturation current

(Idss)-

3. Discussion and Analysis

The measured results contain a number of findings. In par-
ticular, the following may be noted.

(1) The transconductance gy, decreases with tempera-
ture, as expected. The mean square slope of g, versus
T is —0.16%/°C and —0.25%/°C for the two devices.

(2) The gate resistance Ry with temperature, as expected,
is at a slope of 0.27%/°C and 0.22%/°C for the two
devices.

(3) The change in input capacitance Cgy with temper-
ature is —0.12%/°C and —0.34%/°C for the two
devices. The decrease in capacitance with temper-
ature could be due to decrease in sheet charge or
charge confinement with temperature. It merits fur-
ther investigation.

(®)

FIGURE 3: (a) Input feeding and (b) output feeding structure sim-
ulated with full wave analysis and used for de-embedding the S-
parameters.
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FIGURE 4: The model equivalent circuit versus the measured S-pa-
rameters at 25°C.
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F1GURE 5: Variation of input capacitance (Cg) with temperature.
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FIGURE 6: Variation of feedback capacitance (Cyq) with temperature.
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FIGURE 7: Variation of gate resistance (Ry) with temperature.
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FIGURE 8: Variation of output resistance (Rqs) with temperature.
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FIGURE 9: Variation of transconductance (g,) with temperature.
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FiGure 10: Saturated current (I4) versus temperature.

(4) The change in feedback capacitance Cyg with tem-

perature is 0.11%/°C and 0.14%/°C for the two
devices. An increase in Cyg is generally detrimental to
achieving high performance as it decreases gain and
efficiency. Reduced charge confinement is expected
to increase the feedback capacitance, which may
indicate a link between the feedback capacitance
Cyg increase and the input capacitance Cgs decrease.
Further studies are required.

(5) The output resistance Rys is a very critical parameter

as it directly influences power added efficiency, and
output power. A small R4, results in more RF power
dissipation inside the transistor. Hence, the increase
in Rys with temperature should reduce the decline of
efficiency and Poyt with temperature. It increases with
T at 0.3%/°C and almost 0%/°C for the two devices.

(6) In each case, a linear fit (using least square error) is

shown. This should prove valuable in device mod-
eling as most models (Angelov, EEHEMT, Curtice,
etc.) allow temperature coefficients of various com-
ponents and there is a general lack of experimental
values.



4. Conclusion

From the preceding measurements, one may conclude that
GaN HEMT devices experience higher parasitic, greater feed-
back capacitance, and lower gains with temperature. How-
ever, the degradation observed is less than (or equal to) GaAs
degradation with temperature. Additionally, if the input
matching network (which compensates for Cg) and the
output matching network (which compensates for Cqs and
Cag) can tolerate 10-15% variation in the reactance value,
then they will work over 100°C range.
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