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ABSTRACT
The formation and strength of dislocations in the hexagonal closed packed material 

beryllium are studied through dislocation junctions and the critical stress required to break them. 
Dislocation dynamics calculations (using the code ParaDiS) of junction maps are compared 

to an analytical line tension approximation in order to validate our model. Results show that the 
two models agree very well. Also the critical shear stress necessary to break 30o - 30o and 30o -
90o dislocation junctions is computed numerically. Yield surfaces are mapped out for these 
junctions to describe their stability regions as function of resolved shear stresses on the glide 
planes. 

The example of two non-coplanar binary dislocation junctions with slip planes [2-1-10] 
(01-10) and [-12-10] (0001) corresponding to a prismatic and basal slip respectively is chosen to 
verify and validate our implementation.

INTRODUCTION

Dislocation mechanisms in hexagonal closed packed (HCP) crystals are more complex than 
those in cubic systems such as face-centered cubic (FCC) and body-centered cubic (BCC) 
crystals due to the reduced crystal symmetry and different slip modes caused by the hexagonal 
lattice and material-dependent c/a ratios (where c and a are the lattice spacing on the basal plane 
and its normal direction, respectively). Instead of unanimously gliding on the close-packed basal 
planes (0001) as all dislocations do in FCC and BCC, the slip systems for dislocations in HCP 
also involve higher-order non-basal slip planes including {1 0 -1 0} prismatic, first-order {10-
11} pyramidal, and second-order {11-22} pyramidal slip planes, and several possible Burgers 
vectors including  <11-20>, <0001>, or <11-2-3> [1-2]. Despite of these complexities, the HCP 
structure and all slip systems and cross-slip planes can still be conveniently described by 
employing a simple three-index orthogonal coordinate system based on the double tetrahedron
notation for DD simulations [3-4]. In plastic deformation, dislocation junctions can form 
energetically (the so called “zipping” phenomena) but also can be destroyed via “unzipping” by 
an applied stress [5-15]. When an external stress is applied, all dislocation segments involved in 
the junction may bow out via Frank-Read (F-R) mechanism. The changing strain/stress field 
surrounding dislocations induced by the dynamically changing dislocation configurations would 
affect the process of junction unzipping. In a large dislocation network, a junction often becomes 
an obstacle for dislocation motions and interactions. Therefore, junction-related phenomena 
directly affect local dislocation microstructures and the collective properties of the entire 



dislocation network such as dislocation density. By using a modified DD code, Parallel 
Dislocation Dynamics Simulator (ParaDiS) assuming isotropic mobility and linear isotropic 
elasticity, this work investigates conditions for manipulating the formation and destruction of 
binary junctions in HCP crystals using the [2-1-10] (01-10) and [-12-10] (0001) slip systems
[16]. Junction formation from two intersecting dislocations is mapped along with two other 
possible final configurations, crossed-state and repulsion, as function of initial dislocation 
orientations. For junctions formed by the 30o - 30o and 30o - 90o intersecting dislocations, various 
stress fields from different loading directions and magnitudes are repeatedly loaded to test their 
strengths and the results are shown as yield surfaces as function of resolved shear stresses on the 
glide planes. We select to use Be as an example of HCP metals. 

SIMULATION METHOD

Instead of using the four Miller-Bravais indices for HCP, the coordinates of atomic 
positions in HCP are indexed with three orthogonal axes, using a double-tetrahedral notation 
similar to the Thompson Tetrahedral for FCC [2, 4]. Two long straight dislocations 1 and 2
gliding with different slip systems intersect each other at the midpoint. In our models, 
dislocations of equal lengths equivalent to 40,000 times of the lattice spacing with pinned end 
nodes are given with initial orientations to the intersection edge of glide planes varying from -
180o to +180o of 30o increment. In ParaDiS, the end nodes are extended using virtual segments to 
simulate two intersecting dislocations of infinite lengths. The slip systems used for dislocations
1 and 2 having Burger vectors b1 and b2, respectively, are listed in Table 1. The dislocations 
are then allowed to interact for 30,000 total timesteps. When a junction is formed energetically, 
the direction of junction ex is normal to both glide planes so that ex = n1 × n2 where n1 and n2 are 
the normal directions to glide planes 1 and 2, respectively, as shown in Fig. 1. The Burgers 
vector b3 for the junction is therefore b1 + b2 = [1 0 0] in our 3-index coordinate system, making 
the junction sessile because it is not a slip direction on either slip plane. The normal to the 
junction, n3, is b3 × ex / |b3|.

Table 1. The slip systems used for intersecting dislocations in HCP.

Dislocation Slip system 4-index notation: 
The Miller-Bravais
system

3-index notation
The orthogonal axes used in 
this work

1 Prismatic slip plane n1      (0 1 -1 0) (3/2 1/2 0)
Burgers vector b1 1/3[2 -1 -1 0] [1/2 -3/2 0]

2 Basal slip plane n2      (0 0 0 1) (0 0 1)
Burgers vector b2 1/3[-1 2 -1 0] [1/2 3/2 0]

Fig.1. A sketch showing two intersecting straight dislocations 1 and 2: (a) before and 
(b) after the formation of junction. In (a), 1 and 2 are oriented to ex with 1 and 2

angles on planes n1 and n2, respectively. In (b), the junction 3 carries a Burgers vector 
b3, a sum from b1 and b2, and the angles change to 1’ and 2’ for 1 and 2, respectively.



The applied stress σ for breaking the junction is calculated as   s1   s2  s3 where 
s1, s2, and s3, are the projection 3x3 matrices on dislocation 1, dislocation 2, and the dislocation 
junction 3, respectively and α, β, and γ are their respective resolved shear stresses. They are 
scalar magnitudes in the unit of GPa. In this form, s1, s2, and s3 are not independent from one 
another. We can define S1, S2, and S3 such that [18]

Sisi  I
Sis j  0, i  j

where i and j vary in {1, 3}. The coefficient γ is set to zero preventing the junction from bowing 
out. This forces the junction to only be destroyed via unzipping along a straight junction line.
Different ratios between S1 and S2 are used and applied repeatedly with incrementally increasing 
magnitudes to junctions formed by 30o-30o and 30o-90o dislocations until the junctions can be 
completely destroyed and the locked dislocations 1 and 2 can glide on their respective slip 
planes again. The extent of junction unzipping is recorded with the increasing applied stress as 
unzipping ratio, calculated by λ/ λo where λ and λo are the destroyed junction length and the 
initial junction length, respectively. Many critical pairs of α and β values just unzipping the 
junctions obtained by extensive numbers of simulations are then used to construct the yield 
surfaces of junction as function of S1 and S2. The elastic constants for Be are a shear modulus
equals to 130 GPa, a Poisson’s ratio of 0.032, c/a=1.568 with a lattice constant a=2.29nm. The 
core radius of dislocation is taken as half of the lattice spacing. The dislocations are modeled in 
the center of a cubic space of 60 micrometer cube.

RESULTS AND DISCUSSIONS

Mapping of junction formation by dislocation intersection

Depending on the initial angle the intersection dislocations make with the junction 
direction, three mechanisms can happen. A junction can form via zipping from the intersecting 
point along the intersection line, the dislocations may form a cross-state, or the dislocations may
repel each other. Fig. 2 is a mapping of these resultant dislocation configurations as function of 
1 and 2, the angles the dislocations make with the junction direction ex respectively. Symbols 
represent DD results whereas shaded regions correspond to line tension approximations. In the 
DD simulations, 13 x 13 different angles are chosen for 1 and 2 and 100 x 100 angles are 
chosen for the analytical results. As shown in the figure, the DD-simulated results agree very 
well with analytical results from the line tension approximation [12-13]. The regions of junction 
formation show excellent mirror symmetries about the axes and diagonals, similar to those 
reported for BCC and FCC [11, 13-14]. This can be attributed to the particular choice of the
equal magnitudes (one lattice spacing) for the Burgers vectors b1 and b2 used for dislocations 1

and 2, respectively, and the resultant Burgers vector b3 for the junction 3. In addition, the near
zero value for beryllium’s Poisson ratio also adds symmetry to the calculation results. 



Mapping of junction destruction by applied stress

Fig. 3 shows the yield surfaces for the junctions formed by 30o - 30o and 30o - 90o

dislocations as function of S1 and S2, the stresses applied to dislocations 1 and 2 on slip planes 
1 and 2, respectively. We observe a symmetry about the S1 = - S2 line for the 30o - 30o junction to 
about the S1 = S2 line for the 30o-90o junction. Such symmetries are expected considering the 
equal Burgers vector magnitudes and the low Poisson ratio used in this work. The symmetry 
about the diagonal of applied stresses for a yield surface of junction has also been observed for 
high symmetry crystals such as FCC and BCC even though the shapes are often more slanted [9, 
10-12]. As shown in Fig. 3, both junctions would be stable under an applied stress of ~ 50 MPa. 

                

Unzipping mechanisms of junctions 
Several interesting phenomena are noticed during junction unzipping from our DD 

simulations. The unzipping evolves with varying speed. As shown from images (a) to (e) in Fig. 
6 for the unzipping of 30o-30o junction using an applied stresses of α = β = -30MPa, the junction 
appears to translate during unzipping until it is completely destroyed due to the faster movement 
of node “a” than node “b”. The breaking of 30o-30o junction also proceeds smoothly but at a 
relatively slow speed followed by a dramatically increased speed after both junction joints are 
within a certain range. However, the unzipping would slow down again when the junction nodes 

Fig.3. Yield surfaces of 30o-30o and 
30o-90o junctions on the 
prismatic/basal planes. S’1 and S’2 are 
the stresses applied to dislocations 1

and 2 on slip planes 1 and 2, 

Fig.2. Map of the final configurations of two intersecting 
dislocations: analytical results are represented in dark, gray 
and white regions corresponding to junction formation, 
crossed-states and repulsive states, respectively. Dots and 
crosses are DD-simulated results from this work representing 
junction formation and crossed-states, respectively. 1 and 
2 are the initial angles to the intersection edge of glide 
planes for dislocations 1 and 2, respectively. 

Fig.4. Image sequences showing the 
unzipping of 30o-90o junction by the 
applied stresses S1 = S2 = 30 MPa.



are so close that the network assembles a “crossed-state” with only a tiny segment of junction 
remains prior to complete destruction of junction. This heterogeneous velocity across the 
unzipping process can be attributed to the combined effects by the varying junction length and 
segment-segment forces. Moreover, local dislocation turning and rotation is evident in DD 
simulations during junction unzipping due to the F-R mechanism of dislocations, as shown from 
images (a) to (c) in Fig. 4.

     

CONCLUSIONS

The formation and destruction of non-coplanar binary junctions in HCP have been 
investigated using [2-1-10] (01-10) and [-12-10] (0001) slip systems. The junction formation 
regions across all possible initial dislocation orientations and the yield surfaces of 30o-30o and 
30o-90o junctions show good symmetries due to the equal Burgers vectors and the low Poisson 
ratio used. Several interesting junction unzipping mechanisms including junction translation and 
local turning and rotation of dislocations are identified from DD simulations.   
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