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Abstract: Errors in the estimated constituent concentrations in optically 

complex waters due solely to sensor noise in a spaceborne hyperspectral 

sensor can be as high as 80%. The goal of this work is to elucidate the effect 

of signal-to-noise ratio (SNR) on the accuracy of retrieved constituent 

concentrations. Large variations in the magnitude and spectral shape of the 

reflectances from coastal waters complicate the impact of SNR on the 

accuracy of estimation. Due to the low reflectance of water, the actual SNR 

encountered for a water target is usually quite lower than the prescribed 

SNR. The low SNR can be a significant source of error in the estimated 

constituent concentrations. Simulated and measured at-surface reflectances 

were used in this study. A radiative transfer code, Tafkaa, was used to 

propagate the at-surface reflectances up and down through the atmosphere. 

A sensor noise model based on that of the spaceborne hyperspectral sensor 

HICO was applied to the at-sensor radiances. Concentrations of 

chlorophyll-a, colored dissolved organic matter, and total suspended solids 

were estimated using an optimized error minimization approach and a few 

semi-analytical algorithms. Improving the SNR by reasonably modifying 

the sensor design can reduce estimation uncertainties by 10% or more. 
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1. Introduction 

As natural habitats for a wide variety of aquatic flora and fauna, estuarine and coastal waters 

play crucial roles in maintaining global biodiversity. However, these complex ecosystems 

have been under tremendous ecological stress in recent years due to natural as well as 

anthropogenic factors, and thus it is imperative to develop robust methods that can be used to 

regularly monitor the biophysical conditions of these waters. The trophic and biophysical 

status of these waters are usually determined by estimating the concentrations of optically 

active materials in water, such as, total suspended solids (TSS), colored dissolved organic 

matter (CDOM), and chlorophyll-a (chl-a). In addition to the environmental cause, there are 

also commercial, recreational, and military interests to characterizing and monitoring 

estuarine and coastal systems. Characterizing the bottom type and depth is crucial for many 

purposes, such as, seafood safety, maritime navigation, underwater geologic studies, global 

climate studies, habitat management, recreational management, coastal erosion control, etc. 

In the last several decades, airborne and spaceborne remote sensing have proven to be 

very effective and successful tools for monitoring water bodies, particularly the open ocean 

waters. However, monitoring coastal waters has been more complicated and challenging than 

monitoring open ocean waters (Case I) because of the inherent optical complexity of the Case 

II coastal waters [1–8] and also the fact that coastal waters are spatially and temporally more 

dynamic [9] than open ocean waters. Commonly used spaceborne multispectral ocean color 

sensors such as SeaWiFS (Sea-viewing Wild Field-of-view Sensor), MODIS (MODerate 

resolution Imaging Spectroradiometer), and MERIS (MEdium Resolution Imaging 
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Spectrometer) do not have the necessary spectral [10, 11] and spatial resolution [12, 13] for 

detailed coastal analysis from a biophysical standpoint. 

Advances in instrumentation technologies and data processing capabilities [10] have 

facilitated the development and operational use of hyperspectral sensors with numerous 

contiguous narrow spectral bands and high spatial resolution. Hyperspectral sensors are 

capable of measuring the necessary spectral and spatial information from the optically 

complex and highly dynamic coastal waters. Numerous studies have been conducted using 

airborne hyperspectral sensors on different coastal regions around the world. Airborne remote 

sensing offers the advantage of increased control over the data collection process. The spatial 

resolution can be adjusted by flying the sensor at different altitudes or changing the focal 

length of the sensor. At typical aircraft altitudes (less than, say, 15,000 ft) the intervening 

atmosphere is significantly less than what would be encountered from the altitude of a typical 

spaceborne platform. However, each data collection expedition is a costly endeavor and the 

results and inferences are usually confined to the specific region and environment in which 

the data were collected, which hinders the development of universal algorithms that can be 

routinely applied to coastal waters around the globe. Efforts have been made in recent years to 

launch spaceborne hyperspectral sensors. NASA (National Aeronautics and Space 

Administration) launched the first spaceborne hyperspectral sensor, Hyperion, in 2000. 

Several other spaceborne hyperspectral sensors have been launched recently. The European 

Space Agency’s CHRIS (Compact High Resolution Imaging Spectrometer) was launched in 

2001. The Air Force Research Laboratory’s ARTEMIS (Advanced Responsive Tactically 

Effective Military Imaging Spectrometer) was launched in 2009. The Naval Research 

Laboratory launched HICO (Hyperspectral Imager for the Coastal Ocean) in 2009. The 

German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt; DLR) is 

spearheading the development of EnMAP (Environmental Mapping and Analysis Program), 

which is scheduled to be launched in 2013. 

The advantage gained from the fine spectral information obtained from hyperspectral 

sensors can be offset by the lower signal-to-noise ratio (SNR) when compared to multispectral 

sensors because of the fewer number of photons captured by each detector due to the narrower 

width of the spectral channels. The photon noise has a significant impact on the retrieved 

reflectances, and therefore, the estimated biophysical parameters. This is especially the case 

for data acquired over water, which is highly absorptive and whose radiometric contribution 

to the at-sensor radiance peaks at only about 15% or less of the total radiance received by the 

sensor [14–18]. Because of this low signal level and large atmospheric contribution, 

instrument design is of particular importance for sensors intended for acquiring data over 

water. The larger magnitude of signal from the land makes systems designed for land work 

less dependent on sensor responsiveness. 

The SNR of a sensor is often specified as a single number that is the maximum value 

calculated based on a standard target. For sensors that operate over water, a spectrally uniform 

5% albedo is commonly used as the standard. However, the reflectivity of water is often lower 

than 5%, especially in the near infrared (NIR) region, and the optical complexity of Case II 

waters produces a complex reflectance pattern [19] that is not spectrally uniform. Thus the 

actual SNR encountered for optically complex water targets is usually lower than the 

prescribed SNR and is very much dependent on the magnitude and spectral shape of the 

radiance received at the sensor [20]. 

Past analyses using multispectral approaches have revealed that the task of retrieving 

inherent optical properties from remote sensing reflectance to derive geophysical and 

biophysical products is an ill-posed problem because of the non-uniqueness of the optical 

properties (e.g [21].). In other words, the same reflectance values can be obtained for more 

than one set of optical properties of the constituents in water [11, 22, 23]. Besides, there are 

other sources of error such as those arising from the calibration of the sensor and the 

procedure to correct for the atmospheric interference on the measured reflectance, in addition 
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to errors due to photon noise in the sensor. In order to correctly assess the performance of 

reflectance-based algorithms, it is necessary to have a quantitative understanding of the 

various sources of error [23, 24]. 

In this study, we have investigated the effect of a sensor’s photon noise on the accuracy of 

retrievals of the concentrations of chl-a, CDOM, and TSS in coastal waters using a 

spaceborne hyperspectral sensor. By adjusting several components of the sensor 

configuration, we obtained different magnitudes and spectral shapes of SNR. These variations 

in SNR affect the performance of spectral algorithms depending on the spectral regions in 

which the algorithms operate. The objectives were to assess the spectral effects of variations 

in SNR, arrive at quantitative estimates of expected errors due to noise in the retrievals of the 

concentrations of chl-a, CDOM, and TSS in typical coastal waters for a spaceborne sensor, 

and make feasible recommendations for sensor configurations that would result in the most 

accurate estimates of optically active material in coastal waters, judging purely on the basis of 

the effects of photon noise. 

We have used a model developed for HICO as the basis for the sensor model in this study. 

Here we consider the noise to be composed of the photon noise (shot noise), the dark noise, 

the readout noise, and the digitization noise. It must be noted that we have not considered 

systematic errors due to factors such as fixed pattern noise, absolute radiometric uncertainty, 

image distortions, stray light, etc., and as such, the retrieval accuracies reported herein 

represent a lower bound on what would be the real-life results. The effective SNR changes 

due to variations in magnitudes and spectral shapes of the retrieved reflectance, which varies 

as the constituent concentrations change and as the noise changes depending on the sensor 

configuration. The impact of these variations on the accuracy of the retrieved constituent 

concentrations is the primary topic explored in this paper. The effects of atmospheric 

contribution and their impact on the accuracy of the retrieval of constituent concentrations are 

important and could potentially be higher than the effects of sensor noise. However, an 

analysis of the atmospheric effects is not included in this study, which considers only the 

effects of sensor noise that is inevitably present regardless of the magnitudes of other sources 

of errors such as those mentioned above. Thus this study presents a lower bound of retrieval 

errors that can be expected in a real scenario where the aforementioned sources of errors will 

further affect the retrieval accuracy. 

The remainder of the paper is laid out as follows: We first describe the sensor model of 

HICO. We then describe our approach, which involved the following steps, (i) 

generation/measurement of at-surface remote sensing reflectance (Rrs) spectra, (ii) 

propagation of the at-surface Rrs through the atmosphere to estimate at-sensor radiance, (iii) 

addition of noise to the at-sensor radiance, (iv) atmospheric correction of the at-sensor 

radiance to retrieve the at-surface Rrs, and (v) retrieval of constituent concentrations from the 

atmospherically corrected at-surface Rrs. The analysis is presented in the 'Results and 

discussions' section, followed by concluding remarks. 

2. Materials and methods 

2.1. HICO noise model 

HICO is the first spaceborne hyperspectral sensor designed specifically for studying the 

coastal systems [25, 26]. It was launched on 11 September 2009 and docked on to the 

International Space Station, and has been fully operational since 01 October 2009. The sensor 

is a conventional hyperspectral imaging sensor with an Offner grating-type spectrometer and 

operates in pushbroom mode. The camera has a 512 × 512 CCD array with 16 µm wide 

detector pixels. The sensor operates in the spectral range, 350 – 1080 nm, with a spectral 

resolution of 5.73 nm. From a nadir viewing angle, its cross-track and along-track ground 

coverage are 42 km and 192 km, respectively, yielding a total scene area of approximately 
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8000 km
2
. The ground sampling distance is about 90 m at nadir. Complete information on the 

characteristics of the sensor has been reported by Lucke et al [26]. 

The total noise in the sensor is the sum of the photon noise (shot noise), the dark noise, the 

readout noise, and the digitization noise. 

The photon noise arises due to variations in the number of photons that are detected by the 

sensor per unit time. The number of photons detected per unit time follows a Poisson 

distribution whose standard deviation is the square root of the total number of detected 

photons. Thus the photon noise in the sensor is the square root of the total signal (electrons) 

generated by the photons striking the sensor. The total signal generated at the sensor is given 

by [27, 28], 

 
2
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T is the exposure time (in units of s) 

sys
η  is the overall system efficiency, which is given by, 

sys op QE g
η η η η= × × , where, 

op
η  is the optical transmissive efficiency of the system 

QE
η  is the quantum efficiency of the detector 

g
η  is the grating efficiency, which is given by, 

2

g g0( ) sinc 1 b

gf
λ

η λ η
λ

  
= −  

  
, where, 

g0
η  is the grating efficiency at the blaze wavelength, 

b
λ , 

( )sin c sinx x xπ π=  

g
f  is the fraction of a grating groove that is at the blaze angle. 

 
2

2

sys2
Thus the photon noise

4

D
L p T

hc f
λ

λ π
η∆=     (2) 
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h (= 6.63×10
−34

 Js
−1

) and c (= 3×10
8
 ms

−1
) are constants. Nominal values for the relevant 

instrument-related quantities in Eq. (1) were taken from the corresponding values for HICO. 

The focal length, f, of the imaging system is 0.067 m and the diameter of the aperture, D, is 

0.019 m, for an f-number (= f D ) of 3.5. The spatial width of the detector pixel, p, is 16 × 

10
−6

 m. The exposure time, T, is calculated as 

,
GSD

T GMC
V

= ×  where GMC is the ground motion compensation factor, GSD is the 

ground sampling distance, and V is the ground velocity of the satellite, calculated as, 
2

E

E s E s
( ) ( )

r g
V

r H r H
=

+ +
, where rE is the radius of the Earth, Hs is the altitude of the 

satellite above the Earth’s surface, and g is the Earth’s gravitational acceleration (≈9.8 m s
−2

). 

GMC refers to the possibility of controlling a sensor’s line of sight (LOS) during an 

observation to increase the exposure time for a point on the ground. GMC = 1 for HICO, i.e., 

GMC is not used and the LOS is swept across the ground by the orbital motion of the ISS. 

Usually, the only part of system efficiency that is a free parameter for the instrument 

designer is the blaze wavelength of the grating. For HICO, the blaze wavelength of the 

grating, 
b
λ , is set as 400 nm and the groove fraction, 

g
f , as 0.92. 

The standard deviation of a dark image acquired by HICO was taken to represent the dark 

noise as well as the readout noise and the digitization noise. Thus the total noise was 

calculated as 

 
2 2 2 2

Noise ( ) ( ) ( ) ( ) = Shot Noise Dark Noise Readout Noise Digitization Noise+ + +  (3) 

For HICO, the sum of the last three terms in the square root, measured in electrons, is 

about 100
2
, that is, the noise contribution from these terms is the same as the shot noise 

contributed by 10
4
 electrons, so we may conclude that when the signal exceeds 10

4
 electrons, 

the data are essentially shot-noise-limited. For HICO, the relation between the number of 

electrons, Ne, and digital numbers, DN, from the sensor is DN ≈Ne/26 [26]. Thus for DN > 

400, the data are considered shot-noise-limited. 

 
Incomingsignal

Thesignal-to-noise ratio is,SNR
Noise

=
 

      (4) 

Even though the HICO sensor model was used as the basis for the SNR calculations in this 

study, the inferences made herein are not necessarily tied to HICO but are general, with a 

broad application to spaceborne sensors with similar SNR values. 

2.2. SNR variations with sensor configuration 

The SNR varies depending on the sensor configuration. Sensor design involves a series of 

tradeoffs between instrument cost and performance, with the objective being achieving the 

best performance within the cost constraints. Within these tradeoffs, there are parameters that 

can be changed in ways that may impact requirements placed on the foreoptics, the 

spectrograph, or the focal plane. The most obvious of these parameters are the blaze 

wavelength and the diameter of the aperture. The change in blaze wavelength can be 

considered a nearly cost-free adjustment. However, increasing the aperture size to improve 

the SNR imposes a series of additional costs. These costs can be simple or complicated 

depending on the need to make changes in the spectrometer to accommodate the larger fore-

optic. The aperture size is increased by decreasing the F-number. 

We investigated the variations in SNR as the sensor configuration is changed and the 

impact of these variations on the accuracy of the estimated constituent concentrations. 
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2.3. Data processing 

2.3.1. At-surface reflectance spectra 

The data used in this study consisted of two sets of remote sensing reflectances (Rrs) at the 

water surface: (i) reflectances that were synthetically generated using the radiative transfer 

model Ecolight [29–31] and (ii) reflectances that were actually measured using field 

spectrometers in turbid productive lakes in Nebraska, USA. The steps of the data processing 

are illustrated in Fig. 1. 

 

Fig. 1. Flow chart of the data processing steps (TOA: top of atmosphere) 

1. Synthetically generated at-surface reflectance spectra 

Ecolight simulations were executed for low, medium, and high concentrations of chl-a, 

TSS, and CDOM, typically encountered in coastal waters (Table 1). Combining different 

levels of constituent concentrations, 49 reflectance spectra were generated (Fig. 2). The water 

was assumed to be optically deep, which is true for turbid productive waters. All other 

relevant parameters (such as, sediment type, phase function of the chl-a and sediment 

particles, etc.) for the Ecolight simulations were kept the same for all 49 spectra. The Rrs 

spectra were simulated at the central wavelength locations of HICO. Only data within the 

spectral range of 400 – 800 nm was used in the analysis. Figures with data beyond this 

spectral range are shown for illustrative purpose only. 

2. In situ measured at-surface reflectance spectra 

In situ measured reflectances were taken from data collected in turbid productive lakes in 

Nebraska, USA [32–35]. Twenty seven reflectance spectra that spanned a wide range of 

concentrations of chl-a, TSS, and CDOM were chosen. The descriptive statistics of the 

corresponding constituent concentrations are given in Table 2. Complete description of the in 

situ data set can be found in Gitelson et al. (2009, 2011), Gurlin et al. (2011), and Moses 

(2009) [32–35]. 

Table 1. Ranges of concentrations of chl-a and TSS, and absorption of CDOM at 440 nm, 

for which reflectance spectra were generated using Ecolight. 

 Chl-a (mg m−−−−3) TSS (g m−−−−3) aCDOM(440) (m−−−−1) 

Low 2 1 0.1 
Medium 15, 25 4, 8 1 

High 50 14, 20 2 
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Fig. 2. Reflectance spectra simulated using Ecolight. 

Table 2. Descriptive statistics of the constituent concentrations in the in situ measured 

data set. aCDOM(440) is the absorption coefficient of CDOM at 440 nm. Coefficient of 

variation is the ratio of the standard deviation to the mean. 

Parameter Min Max Median Mean 
Standard 

Deviation 
Coefficient of 

Variation 

Chl-a (mg m−−−−3) 2.27 80.16 28.59 33.33 24.052 0.722 

TSS (g m−−−−3) 1.19 15.00 8.89 7.86 3.717 0.473 

aCDOM(440) (m−−−−1) 0.46 1.45 0.90 0.90 0.251 0.278 

2.3.2. Propagation to top-of-atmosphere (TOA) radiance 

A forward version of the atmospheric correction radiative transfer model, Tafkaa [36, 37], 

was used to simulate the atmospheric effects and propagate the at-surface Rrs (synthetically 

generated as well as measured in situ) through the atmosphere in order to derive the incoming 

radiance at the sensor. The at-sensor radiances were generated at HICO wavelengths. The 

total radiance at the sensor is given by, 

 w o o

t p sfc

E t
L L L t

ρ µ
π

′
= + +  (5) 

where, 

t
L is the radiance received at the sensor 

p
L  is the atmospheric path radiance 

sfc
L  is the specularly reflected radiance from the water surface 

t is the transmittance of 
sfc

L  through the atmosphere 

w
ρ  is the remote sensing reflectance of water 

o
µ  ( = cos

o
θ ) is the cosine of the solar zenith angle (

o
θ ) 

o
E  is the solar irradiance at the top of the atmosphere 
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t′  is the transmittance of the radiance from water through the atmosphere. 

Solar illumination conditions at the sensor, as specified by the date and time of data 

acquisition, the geographic location of the target, the ground elevation, the sensor altitude, and 

the viewing angles of the sensor in the zenith and azimuth directions, were kept the same for 

all at-surface Rrs spectra. The location of the target and the date/time used in the simulation 

corresponded to a solar zenith angle of 58 degrees. The effective SNR varies with the solar 

zenith angle and increases at low solar zenith angles [38, 39]. Atmospheric parameters, such 

as, the atmospheric model, the types of atmospheric gases, the ozone amount, the column 

water vapor amount, the relative humidity, the aerosol model, the aerosol optical depth at 550 

nm, and the wind speed, were also kept the same (Table 3). 

Table 3. Geographic, illumination, and atmospheric parameter values used for the 

upward propagation of the at-surface Rrs. 

Parameter Value 
Date 09 Feb 2011 
Time 15 hrs 30 min (GMT) 
Latitude 37°30 
Longitude −76°10 
Ground Elevation 0 km 
Sensor Altitude 400 km 
Sensor Zenith Angle 0° 
Sensor Azimuth Angle 0° 
Atmospheric Model Mid-Latitude Summer 
Atmospheric Gases H2O, CO2, O2, N2O, CO, CH4, O3 
Ozone Amount 0.34 atm-cm 
Column Water Vapor 2.50 cm 
Relative Humidity 50% 
Aerosol Model Maritime 
Aerosol Optical Depth at 550 nm 0.225581 
Wind Speed 2 m s−1 

2.3.3. Addition of noise 

The noise was assumed to be normally distributed with a mean of zero and a standard 

deviation equal to the expected noise level. For example, for a radiance of 30 Wm
−2
µm

−1
Sr

−1
 

and a SNR of 100, the standard deviation would be 0.3. Each of the incoming TOA radiance 

spectra was replicated to create a 1000-pixel image, with the random noise added to each of 

the 1000 spectra. Thus, noise-added at-sensor radiance images, each containing 1000 pixels, 

were produced for each of the original at-surface Rrs spectra. The SNR was also calculated 

for each Rrs spectrum. As can be seen (Fig. 3), SNR varies, especially in the green and red 

spectral regions, as the reflectance varies spectrally depending on the bio-optical properties of 

the water. 

The effects of noise appear small on the at-sensor radiance (Fig. 4). However, when the 

contributions from the atmospheric path radiance and the specularly reflected radiance from 

the water surface, which form a significant portion of the at-sensor radiance (Fig. 4), are 

removed, the actual SNR is quite low and the impact of noise on incoming signal from the 

water target becomes quite significant. This fact is often obscured by the misleading high 

value of the prescribed SNR but is evident in the at-surface Rrs retrieved after atmospheric 

correction. As an example, the coefficient of variation ( )standard deviation mean=    of the 

1000 noisy atmospherically corrected at-surface Rrs and the plus/minus one standard 

deviation curves are shown in Fig. 5 for an original Rrs spectrum corresponding to chl-a = 2 

mg m
−3

, aCDOM(440) = 0.1 m
−1

, and TSS = 1 g m
−3

. The variations in the reflectance due to 

low SNR are significant, especially in the blue, red, and NIR regions. 
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Fig. 3. At-sensor SNR curves for the synthetically generated Rrs spectra based on nominal 

HICO sensor configuration (see section 2.1). 

 

Fig. 4. Noise-added at-sensor radiance for water with chl-a = 2 mg m−3, TSS = 1 g m−3, and 

aCDOM(440) = 0.1 m−1. The dashed line represents the contribution from atmospheric path 

radiance and specularly reflected radiance from the water surface. 

2.3.4. Atmospheric correction 

Tafkaa was used to remove the atmospheric effects from the noise-added at-sensor radiance 

and retrieve the at-surface reflectance (Fig. 5). The same illumination conditions and 

atmospheric parameters used for the upward propagation of the original at-surface Rrs spectra 

were used in the atmospheric correction process, thereby ensuring a complete removal of 

atmospheric effects. 
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Fig. 5. Atmospherically corrected Rrs spectra for water with chl-a = 2 mg m−3, TSS = 1 g m−3, 

and aCDOM(440) = 0.1 m−1. The black curve represents the original at-surface Rrs spectrum. The 

gray curves represent mean plus/minus one standard deviation of the atmospherically corrected 

Rrs, and the dotted curve represents the coefficient of variation (on the secondary y-axis) of the 

retrieved at-surface Rrs after atmospheric correction following the addition of noise to the at-

sensor radiance. 

2.3.5. Estimation of constituent concentrations 

An optimized error minimization approach and several semi-analytical algorithms were used 

to estimate the constituent concentrations from the atmospherically corrected noise-added at-

surface Rrs spectra and compare the estimates to the original values. The optimized error 

minimization approach was used to estimate constituent concentrations from the noisy images 

produced from the at-surface Rrs spectra that were generated using Ecolight. The semi-

analytical algorithms were used for noisy images from the Rrs spectra that were actually 

measured in situ. 

1. Optimized error minimization approach 

The optimized error minimization approach was based on the idea of using a forward 

model (Ecolight) that relates Rrs to constituent concentrations (parameters of the model) and 

estimating the constituent concentrations by iteratively minimizing the squared difference 

between the modeled reflectances and the true reflectances. The parameter estimation was 

accomplished using MPFIT [40], which is a non-linear least squares curve fitting procedure. 

MPFIT is an enhancement of the FORTRAN-based software, MINPACK [41, 42], and was 

written for use with IDL (Interactive Data Language). The procedure basically fits a user-

supplied model to a user-supplied set of data by iteratively estimating new values of model 

parameters that minimize the squared difference between the data and the model estimates. 

MPFIT uses the Levenberg-Marquardt [43, 44] method to iteratively minimize the squared 

difference. MPFIT requires initial estimates of parameter values and solves the problem by 

linearizing it around the set of parameter values at each iteration [40]. One of the advantages 

of MPFIT is that it allows placing constraints on the parameters. 

Concentrations of chl-a and TSS, and the absorption of CDOM at 400 nm, were estimated 

for each of the 1000 pixels in the noise-added atmospherically corrected image for every 

original at-surface Rrs spectrum. For the MPFIT run with the Ecolight model, each noisy Rrs 

spectrum was considered as the true reflectance, with three varying parameters, namely, chl-a 

concentration, TSS concentration, and aCDOM440. The initial parameter values were the 

original constituent concentrations (see Table 1) that were used to generate the at-surface Rrs 
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spectrum from which the noisy image was generated. MPFIT generated optimal estimates of 

the constituent concentrations by iteratively minimizing the squared difference between the 

noisy spectrum and the spectrum generated (iteratively) by Ecolight for the given set of 

parameter values. 

This kind of approach is suitable for hyperspectral data as it takes the whole spectral 

range, in this case 400-800 nm, into consideration and is therefore not extremely sensitive to 

noise at a particular spectral region and virtually gives the effect of averaging the effects of 

noise in the whole spectral range. 

2. Semi-analytical algorithms 

Some well established semi-analytical two-band and three-band algorithms, which rely on 

reflectances in two or three specific spectral bands for estimating constituent concentrations, 

were also used. Only chl-a concentration was estimated using these algorithms because 

algorithms such as these are not operational as yet for quantitatively estimating the 

concentrations of TSS and CDOM. 

The following semi-analytical algorithms were considered. 

The blue-green OC4E algorithm [45, 46], given by, 

 
2 3 40.368 2.814 1.456 0.768 1.292

Chl- 10 ,
E E E ER R R R

a
− + + −

=
       

 (6) 

where, 443 490 510

10

560

max( , , )
log

E

R R R
R

R

 
=  

 

  
 and Rx is the reflectance at the waveband centered 

at x nm. 

Two-band NIR-red algorithm [32–34,47–49], given by, 

 1

665 708
Chl- A [ ] B,a R R

−= × × +   (7) 

where A and B were determined by regressing the ratio 
708 665

R R  with the chl-a 

concentrations in the in situ measured data set, and were set as 79.324 and −50.674, 

respectively. 

Three-band NIR-red algorithm [32–34,48–50], given by, 

 ( )1 1

665 708 753Chl- A [ ] B,a R R R
− −= × − × +   (8) 

where A and B were determined by regressing the three-band ratio ( )1 1

665 708 753R R R
− −− ×  with 

the chl-a concentrations in the in situ measured data set, and were set as 253.11 and 29.74, 

respectively. 

3. Results and discussion 

3.1. Variations in SNR with changes in sensor configuration 

As expected, SNR changes when the sensor configuration is changed as described in section 

2.2. Figure 6 illustrates the changes in SNR as the blaze wavelength and the diameter of the 

aperture are changed. A change in the blaze wavelength causes a spectral shift in the 

magnitude of the SNR. The decision on the location of the blaze wavelength is driven by the 

intended use of the data retrieved from the sensor. Increasing the diameter of the aperture by 

decreasing the F-number raises the SNR across the spectral range independent of wavelength. 

On average, changing the blaze wavelength from 400 nm to 600 nm decreases the SNR-peak 

by about 15, changing the aperture size from 0.019 m to 0.024 m by decreasing the F-number 

from 3.5 to 2.8 increases the SNR-peak by about 50 (Table 4). Table 4 contains estimated 

errors in the retrieved constituent concentrations for various sensor configurations. 
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Fig. 6. Variations in at-sensor SNR as the sensor configuration is changed, for a case with chl-a 

= 2.27 mg m−3, aCDOM(440) = 1.35 m−1, and TSS = 1.19 g m−3. The solid black line represents 

the SNR for nominal sensor setting (the blaze wavelength, λb = 400 nm; diameter of the 

aperture, D = 0.019 m). 

3.2. Spectral effect of noise in the retrieved reflectance 

Each of the noise-added atmospherically corrected spectra was compared with the 

corresponding original at-surface Rrs spectrum and quasi-SNR values were calculated by 

taking the root mean square error of the noise-added atmospherically corrected Rrs spectra as 

a measure of noise. 

 

( )
1000

2

1

orig( )
Quasi-SNR( ) ,

1
noise( ) orig( )

1000
i

i

R_

R_ R_
=

=

−∑

λ
λ

λ λ

 (9) 

where _orig( )R λ  is the original at-surface Rrs at wavelength λ and _noise( )
i

R λ  is the noise-

added Rrs at wavelength λ for the i
th

 pixel. The quasi-SNR(λ) values varied depending on the 

magnitude of the radiance from the target. CDOM absorbs light strongly in the blue region. 

Therefore, high concentrations of CDOM produce low magnitudes of reflectance in the blue 

region, resulting in low levels of quasi-SNR in the blue region (Fig. 7). Conversely, high 

concentrations of sediments produce increased scattering of light, which increases the 

magnitude of reflectance, thereby increasing the quasi-SNR and consequently reducing the 

impact of photon noise on the retrieved reflectance. An understanding of the expected levels 

of SNR in different spectral regions will help in the choice of spectral algorithms for 

retrieving constituent concentrations. 
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Fig. 7. Quasi-SNR of the noise-added atmospherically corrected Rrs spectra with the nominal 

sensor setting. High CDOM concentration causes low quasi-SNR, especially in the blue region, 

whereas high TSS concentration causes high quasi-SNR throughout the spectrum. 

3.3. Estimation of constituent concentrations 

3.3.1. Estimates from the optimized error minimization approach 

Estimates of constituent concentrations from each of the noise-added (based on nominal 

HICO sensor configuration) atmospherically corrected spectra were compared with the true 

concentrations corresponding to the original Rrs spectra. For the sake of brevity, only the 

results for the nominal HICO sensor configuration are shown in the figures. Table 4 contains 

the error estimates for various sensor configurations. The normalized root mean square errors 

were calculated as, 

 

( )
1000

2

1

1
Chl noise Chl orig

1000
Norm_RMSE Chl

Chl orig

i

i

_ _

_
_

=

−

=
∑

 (10) 

 

( )
1000

2

1

1
TSS noise TSS orig

1000
Norm_RMSE TSS

TSS orig

i

i

_ _

_
_

=

−

=
∑

 (11) 

 

( )
1000

2

CDOM CDOM

1

CDOM

1
(440) noise (440) orig

1000
Norm_RMSE CDOM ,

(440) orig

i

i

a _ a _

_
a _

=

−
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∑
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Table 4. The magnitude of SNR-peak (SNRpeak), the location of SNR-peak (SNRpeak wl) in 

nm, and the percent normalized RMSEs of chl-a concentration (%NRChl-a), CDOM 

absorption (%NRaCDOM(440)), and TSS concentration (%NRTSS) estimated by the 

optimized error minimization approach at low (aCDOM(440) = 0.1 m−−−−1) and high 

(aCDOM(440) = 2 m−−−−1) concentrations of CDOM for various sensor configurations. The 

blaze wavelength was kept at 400 nm for sensor configurations with the nominal setting 

and D = 0.024 m, and the peak SNR was achieved at 457 nm 

Constituent 
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2 0.1 1 246 31 13 10 299 27 12 9 231 497 40 17 13 
2 0.1 4 250 42 18 3 303 35 15 2 238 508 53 23 4 
2 0.1 8 251 49 22 1 306 41 18 1 242 508 61 28 1 
2 0.1 14 252 45 22 1 307 38 19 1 246 577 53 27 1 
2 0.1 20 253 38 22 1 308 32 18 1 252 583 43 26 1 

15 0.1 1 245 14 22 15 298 12 18 12 231 497 17 28 18 
15 0.1 4 248 15 26 3 301 13 22 3 235 508 19 33 4 
15 0.1 8 250 16 28 1 304 14 24 1 239 508 20 35 2 
15 0.1 14 251 15 28 1 305 13 24 1 242 577 18 35 1 
15 0.1 20 252 12 26 1 306 11 23 1 248 583 14 31 1 
25 0.1 1 245 11 25 16 298 10 21 13 230 497 14 33 20 
25 0.1 4 247 13 30 4 301 11 25 3 234 508 16 38 5 
25 0.1 8 249 13 31 1 303 11 26 1 238 508 16 39 2 
25 0.1 14 251 12 31 1 305 10 26 1 241 508 14 38 1 
25 0.1 20 251 10 31 1 306 9 25 1 246 583 11 36 1 
50 0.1 1 245 9 33 19 298 8 28 16 230 497 12 45 25 
50 0.1 4 247 10 37 4 300 8 31 4 233 508 12 47 5 
50 0.1 8 248 10 38 2 302 8 32 2 236 508 12 46 2 
50 0.1 14 250 8 36 1 304 7 30 1 239 508 10 44 1 
50 0.1 20 250 7 35 1 305 6 30 1 243 577 8 43 1 
2 2 1 239 79 11 32 290 71 9 28 222 479 80 11 33 
2 2 4 240 78 4 6 292 67 3 5 224 479 79 4 6 
2 2 8 242 63 2 2 294 55 2 2 227 497 60 2 2 
2 2 14 244 46 2 1 296 40 2 1 230 508 44 2 1 
2 2 20 245 37 2 1 298 32 2 1 233 508 35 2 1 

15 2 1 239 26 7 33 291 23 6 29 223 479 26 8 35 
15 2 4 241 24 4 6 292 21 3 5 225 479 24 4 6 
15 2 8 242 19 3 2 294 17 2 2 227 497 20 3 2 
15 2 14 244 15 2 1 296 13 2 1 230 508 14 2 1 
15 2 20 245 13 2 1 298 11 2 1 233 508 12 2 1 
25 2 1 240 21 7 35 291 18 5 30 224 479 21 7 37 
25 2 4 241 19 4 7 292 16 3 6 225 479 20 4 7 
25 2 8 242 16 3 2 294 13 2 2 227 497 15 3 2 
25 2 14 244 11 2 1 296 10 2 1 230 508 11 2 1 
25 2 20 245 10 2 1 298 9 2 1 233 508 9 2 1 
50 2 1 240 16 6 38 292 13 5 31 224 479 16 7 40 
50 2 4 241 13 4 7 293 12 3 6 226 479 14 4 7 
50 2 8 242 11 3 3 294 9 3 2 227 497 11 3 3 
50 2 14 244 8 3 1 296 7 2 1 230 508 8 3 1 
50 2 20 245 8 2 1 297 6 2 1 232 508 7 2 1 

where X_noisei is the constituent concentration at the i
th

 pixel of the noise-added 

atmospherically corrected image and X_orig is the true constituent concentration of the 

original Rrs spectrum. 
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Variations up to 80% were observed in the estimated chl-a concentration due to photon 

noise (Fig. 8), especially in cases of high concentration of CDOM and low concentrations of 

TSS and chl-a. At low-to-moderate concentrations of chl-a and TSS, the presence of CDOM 

enhanced the variations in estimated chl-a concentrations due to photon noise. As the 

concentrations of TSS and chl-a increased, the effect of CDOM on the variations in estimated 

chl-a concentrations diminished, and the variations in chl-a estimation decreased to around 

15% or less. 

 

Fig. 8. Normalized RMSE of estimated chl-a concentrations (by the optimized error 

minimization approach) for (a) aCDOM(440) = 0.1 m−1 and (b) aCDOM(440) = 2 m−1 at various 

TSS concentrations. 

CDOM had a similar effect on the variations in the estimated TSS concentrations also 

(Fig. 9). Increase in TSS concentration produced a decrease in the variations of the estimated 

aCDOM(440) values (Fig. 10) due to sensor noise except at very low concentrations of CDOM, 

where increased scattering due to TSS masks the CDOM absorption feature in the blue region, 

which is already small at low concentrations of CDOM. 

 

Fig. 9. Normalized RMSE of estimated TSS concentrations (by the optimized error 

minimization approach) for (a) aCDOM(440) = 0.1 m−1 and (b) aCDOM(440) = 2 m−1 at various 

chl-a concentrations. 

Increasing the diameter of the aperture to 0.024 m resulted in a reduction in the variations 

in the estimated chl-a concentration, with the improvement more pronounced at low 

concentrations of chl-a and TSS (Fig. 11). Changing the blaze wavelength to 600 nm had a 

negligible effect on the estimated chl-a concentration when the CDOM concentration was 

high. But when the CDOM concentration was low, changing the blaze wavelength to 600 nm 

resulted in an increase in the variations, especially at low chl-a concentration, where the 

sensitivity of the sensor to the absorption by chl-a in the blue region plays a critical role. 
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Fig. 10. Normalized RMSE of estimated aCDOM(440) (by the optimized error minimization 

approach) for (a) TSS = 1 g m−3, (b) TSS = 8 g m−3, and (c) TSS = 20 g m−3 at various chl-a 

concentrations. 

 

Fig. 11. Normalized RMSE of estimated chl-a concentrations (by the optimized error 

minimization approach) for various sensor configurations at low and high concentrations of 

TSS and CDOM: (a) TSS = 1 g m−3 and (b) TSS = 20 g m−3 with aCDOM(440) = 0.1 m−1; (c) 

TSS = 1 g m−3and (d) TSS = 20 g m−3 with aCDOM(440) = 2 m−1. 

Changing the aperture size and the blaze wavelength produced similar effects on the 

estimated TSS concentrations as for the estimated chl-a concentrations. 
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In general, for all sensor configurations, variations due to photon noise were higher in the 

estimates of chl-a concentration than in the estimates of TSS concentration and aCDOM(440), 

which is consistent with the results obtained by Levin and Levina [51]. 

3.3.2. Estimates from semi-analytical algorithms 

The semi-analytical algorithms considered in this study were originally developed for use 

with data from the multispectral sensor, MERIS. Therefore, MERIS images were simulated 

from the HICO-based noiseless as well as noise-added atmospherically corrected images 

based on the central wavelength locations and the full width at half maximum of the spectral 

channels of MERIS. Chl-a concentrations were calculated from the noiseless images using 

each of the semi-analytical algorithms and were used as the standard against which the chl-a 

concentrations estimated from the noise-added image by these algorithms were compared. 

The normalized root mean square errors of chl-a estimation were calculated in the same 

manner as in Eq. (10), with Chl_orig substituted by the respective chl-a concentration 

estimated from the noiseless image. 

1. OC4E algorithm 

When compared to the chl-a concentrations calculated from noiseless images, the 

estimated chl-a concentrations varied by an average of more than 15% due to photon noise for 

the nominal sensor setting (Fig. 12). Increasing the diameter of the aperture to 0.024 m 

reduced the average variation to 13.4%. The blaze wavelength was adjusted in steps of 50 nm 

from 400 nm to 600 nm. The changes in the relative errors of estimated chl-a concentration 

were minor (< 1% on average), with the best results obtained when the blaze wavelength was 

set at the blue-green wavelength, 500 nm. When the blaze wavelength was set at 500 nm and 

the diameter of the aperture at 0.024 m simultaneously, the relative error in the estimated chl-

a concentration decreased to ~12.75%. 

 

Fig. 12. Normalized RMSE of chl-a concentrations estimated by the OC4E algorithm. 

2. Two-band NIR-red algorithm 

Due to low reflectance of water in the NIR region, the two-band NIR-red algorithm is 

quite vulnerable to the effects of photon noise in the 708 nm band. This is especially 

pronounced when the concentrations of chl-a and TSS are low, resulting in very low 

magnitudes of reflectance in the 708 nm band. The algorithm relies significantly on the 

reflectance peak around 708 nm, which is quite sensitive to chl-a concentration [47]. 
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Therefore at low chl-a concentrations, when the reflectance at 708 nm is low, the two-band 

NIR-red algorithm is very susceptible to photon noise. 

With the nominal sensor setting, relative errors in estimated chl-a concentrations reached 

as high as 80% (Fig. 13(a)) for low chl-a concentrations, excluding three stations with chl-a 

concentration less than 5 mg m
−3

, for which about 50% of the pixels had invalid reflectances 

in the NIR region due to photon noise and were hence excluded. The average relative error in 

the estimated chl-a concentration was 19.23%. Increasing the diameter of the aperture to 

0.024 m reduced the relative error to 17.54%, whereas changing the blaze wavelength to 600 

nm reduced the relative error to 17.43%. When chl-a concentrations less than 15 mg m
−3

 were 

omitted, the relative error for the nominal sensor setting was 10.96%, and the aforementioned 

changes in the aperture size and the blaze wavelength produced relative errors of 9.74% and 

9.7%, respectively. 

 

Fig. 13. Normalized RMSE of chl-a concentrations estimated by the two-band NIR-red 

algorithm for (a) low and (b) moderate-to-high chl-a concentrations. 

3. Three-band NIR-red algorithm 

Similar results were obtained for the three-band NIR-red algorithm (Fig. 14) as with the 

two-band NIR-red algorithm. Variations in the estimated chl-a concentrations due to photon 

noise were high for low chl-a concentrations. Excluding three stations because of the high 
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percentage of pixels (> 50%) with invalid reflectances in the NIR wavebands at 708 nm and 

753 nm, the relative error in the estimated chl-a estimation for the nominal sensor setting was 

19.11%, which decreased to 17.38% and 17.21%, respectively, as the diameter of the aperture 

was increased to 0.024 m and the blaze wavelength changed to 600 nm. When chl-a 

concentrations less than 15 mg m
−3

 were omitted, the relative errors were 10.67% for the 

nominal setting, 9.54% for D = 0.024 m and 9.49% for λb = 600 nm. 

 

Fig. 14. Normalized RMSE of chl-a concentrations estimated by the three-band NIR-red 

algorithm for (a) low and (b) moderate-to-high chl-a concentrations. 

4. Conclusion 

The results indicate that even in “best possible” conditions the photon noise in the sensor 

alone can result in errors at the level of 50% or more in the retrieved constituent 

concentrations. The error is particularly significant for waters with high levels of CDOM and 

low-to-moderate concentrations of chl-a and TSS, where errors as high as 80% or more are 

attributable to uncertainties in the retrieved reflectance due to photon noise. The magnitude of 

the effect of photon noise can be controlled by adjusting the sensor configuration. Increasing 

the aperture size and/or changing the blaze wavelength can improve the accuracy of estimated 

constituent concentrations by a few percentage points. The suggestion here is not that it is 

unnecessary or impossible to further improve the bio-optical algorithms for retrieving 
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constituent concentrations from spaceborne remotely sensed data. On the contrary, some 

improvements to the algorithms can be made. In the optimized error minimization approach, 

for example, weighting the wavelengths specific to the spectral features of interest (for 

instance, the chl-a absorption feature around 440 nm or 670 nm) may produce improved 

results. However, even then the general behavior shown here will still persist. In other words, 

the observed errors due to photon noise will be present even in the case of a perfect bio-

optical algorithm as long as the algorithm relies on retrieved reflectances. Thus, the 

quantitative effects of uncertainties due to photon noise need to be considered when assessing 

the accuracies yielded by bio-optical algorithms. 

The results presented here are for a best case scenario. Errors due to imperfect radiometric 

calibration of the sensor have not been considered. Only the nadir viewing angle (ensuring the 

lowest amount of atmosphere possible) is considered. Sun glint is ignored. It is assumed that 

the atmosphere is perfectly known and the atmospheric effects are perfectly removed. In a real 

scenario, these aforementioned effects and others that are hard to recognize and/or repair will 

contribute to further errors in the retrieved constituent concentrations, and the sensitivity of 

these effects to the sensor’s SNR needs to be investigated in order to get a comprehensive 

understanding of the uncertainties in the retrieved constituent concentrations. 
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