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ABSTRACT 

Effective guidance laws that are optimal for tactical air-to-air scenarios tend to improve 

the performance characteristics of the missile and increase the probability of a hit in 

combat. Proportional guidance is the current baseline algorithm for tactical missile 

guidance. Increases in computational capabilities now permit more complicated guidance 

laws to be implemented. This research focuses on two promising advanced guidance 

laws, comparing them to proportional navigation using simulation, with the kinematic 

boundary as the performance measure. Studies are also made of performance degradation 

in the presence of sensor noise. 

The three guidance laws, Proportional Navigation (PN), Augmented Proportional 

Navigation (APN) and Differential Geometry (DG), were each simulated against a non-

maneuvering target and a maneuvering target. The theoretical missile engagement 

envelope (the kinematic boundary) is utilized as a simple and intuitive visual aid in 

comparing the effectiveness of each guidance law. 

Band-limited white noise is then introduced into the seeker system to determine 

the ability of the guidance law to deal with noise perturbations, in particular, to discover 

the level of noise tolerance for each guidance law. 

This research used a simulation model previously developed here at the Naval 

Postgraduate School (NPS). This simplified six degree of freedom (6DOF) model was 

used in a slightly modified form to: 1) verify earlier results obtained at NPS, 2) 

investigate an additional guidance law, the DG law, and 3) study the effects of noise on 

the robustness of the various guidance laws.  
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I. INTRODUCTION  

The history of manned flight is a relatively short one. In the span of one hundred 

years, we have seen technological innovations and courageous pioneers who have pushed 

the development of aeronautics to where we stand today. From the day the Wright 

brothers achieved powered flight in 1903, to the day Major Charles E. Yeager broke the 

sound barrier in 1947 [1], to the unmanned drones that fly over Afghanistan today, 

aviation history is full of stories of human courage and ingenuity: Courage to step into the 

unknown, risking life and limb for the advancement of science. Ingenuity to design and 

develop the technologies required for the wonders of modern day flight: planes that 

takeoff vertically, flying wings that look more like a child’s boomerang than a menacing 

deep penetration bomber, missiles that can be launched at enemy targets even before the 

human eye can see them. 

It was perhaps inevitable that with the advancement in fighter aircraft technology, 

something more than simple .50 caliber rounds that fire at a fixed point ahead of the 

aircraft was needed to shoot them down. Rockets have been known for hundreds of years, 

far longer than human flight, yet it was not until recent decades that developments in 

technology allowed for the evolution of the simple rocket into the sophisticated missiles 

of today.  

In this thesis, the focus is on tactical missiles. Tactical missiles are used in 

scenarios where the ranges concerned are more limited and are usually guided by a seeker 

sensor. The seekers can be active, passive or even semi-active, utilizing electromagnetic 

waves from a radar, an infra-red (IR) sensor or a laser. This suite of sensing abilities 

allows the seeker to detect and identify the target and guide the missile to it. The ability 

to guide a missile to a detected target is the province of guidance laws. Perhaps the most 

intuitive and also one of the earliest guidance laws is the pursuit guidance law. Pursuit 

guidance basically states that as long as the missile is pointed at the target at all times, 

given enough kinetic energy, the missile will hit the target. While a simple guidance law 

to implement, in reality, it does not work so well because the kinetic energy available to 
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such missiles is limited. The rocket propellant boosts the missile up to maximum speed 

within seconds of launching before being consumed, and the missile than glides the rest 

of the distance on kinetic energy alone. Hence, in pursuit guidance, the missile is more 

apt to run out of kinetic energy before it can successfully close with the target. This is 

especially true when launched at a maneuvering target from its frontal hemisphere. 

The solution to this problem is the proportional navigation (PN) guidance law. 

While not as intuitive as the pursuit guidance law, it is still a simple and robust concept. 

Basically, the concept of proportional navigation is to point the missile at a point ahead of 

the target so that the missile will lead the target, and this will reduce the amount of 

maneuvers necessary, thus conserving kinetic energy for the missile to make the 

intercept. The implementation is simple and the basic idea is to strive to maintain a 

constant line of sight (LOS) angle between the missile and the target, the premise being 

that a constant LOS angle would signify that the missile and the target are on a collision 

course. The acceleration commands are theoretically applied perpendicular to the LOS 

and are proportional to the LOS rate and closing velocity. This basic concept is so 

successful that most of the more successful guidance laws in use today tend to be 

extensions of the basic PN law.  

In particular, the Augmented Proportional Navigation (APN) law [2], [3], and the 

Differential Geometry (DG) law [4], [5], are investigated in greater detail in this study as 

extensions of the basic PN law. Guidance laws based on Optimal Control Theory [6] are 

not investigated in this study due to time and scope limitations. 

The remainder of this chapter highlights the literature review conducted in this 

field as well as the goals of this research. Chapter II lays out the simulation methodology 

and the selected guidance laws in detail. Chapter III describes the experimental 

procedures, results and analysis, while Chapter IV presents the research conclusions and 

suggestions for further research. 
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A. MISSILE GUIDANCE LAWS LITERATURE REVIEW 

Simply stated, the goal of guidance is to reach the target [7]. In general, missile 

command guidance can occur in two basic forms. The first form is homing guidance 

where the missile relies on its onboard seeker to detect the target and compute the 

required command guidance through integral software logic circuits. The second form 

relies on an external source that detects the target and the missile, computes the required 

guidance to bring the missile towards the target and then transmits that information to the 

missile for flight control. Such command guidance control is advantageous, as the missile 

is not required to have a seeker onboard, which is a costly component. Such guidance 

tends to result in very good missile performance. However, command guidance is highly 

susceptible to tracking errors. The quality of the commanded guidance is only as good as 

the quality of the tracking data. Since the external source usually remains relatively 

stationary in space, the intercept between the missile and the target usually occurs far 

away from the command source. Hence measurement accuracy of the tracking data and 

guidance accuracy are limited. 

Conversely, for homing guidance, having a seeker onboard means additional cost, 

but at the same time delivers improved guidance accuracy results since the seeker is 

continuously approaching the target as time progresses. It is thus apparent that some form 

of terminal homing guidance is highly desirable for Air to Air Missiles (AAM), which are 

usually engaging targets at some distance from the launching platform and are highly 

maneuverable at the same time. 

In general, regardless of command or homing guidance, a guidance law ultimately 

acts as the determinant on how a particular set of commands for guidance is to be 

generated. In general, Goodstein [8] describes three guidance law general categories into 

which all other guidance laws can be categorized. There are many special cases that are 

modifications of these three basic guidance concepts (see Figure 1): 

• LOS 

• Pursuit 

• Proportional 
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Figure 1.   Graphical representation of three basic guidance laws. After [8]. 

For homing guidance implementations, only pursuit guidance and proportional 

guidance are applicable. LOS guidance by definition requires an external control vehicle 

to establish the LOS between the target and the vehicle along which the missile is then 

guided to travel. Hence, for this study into advanced guidance laws, the focus will remain 

on onboard seeker-capable implementations. 

1. Pursuit Guidance 

As described earlier, pursuit guidance works by aiming the missile directly at the 

target throughout the entire engagement. It is a simple implementation that is less 

sensitive to noise. However, it is not effective against moving targets like aircraft, as it 

usually ends up in an energy-consuming tail chase scenario. There are other applications 

where the speed advantage of the interceptor is very large (as in an air-to-surface 

engagement against a fixed target), in which case pursuit guidance is an effective 

guidance law. 



 5 

2. Lead Pursuit / Lead Collision Guidance 

Variations of the pursuit guidance law include lead pursuit and lead collision (see 

Figure 2). As the name implies, lead pursuit means that the missile is flying a course 

whereby it is in pursuit of a leading point just slightly ahead of the target. As this 

guidance law aims to predict slightly ahead of where the target’s next position will be, it 

tends to be more effective than pure pursuit guidance and is usually able to engage targets 

earlier in the flight path. However, it still has essentially the same problems with pure 

pursuit guidance and is seldom used in systems that require intercept of high speed high 

maneuver targets. 

Lead collision is a further extension of the lead pursuit guidance. It is also 

potentially the most efficient and optimal missile trajectory as it basically involves 

pointing the missile at the point ahead of the target where a collision would occur if the 

target continued in a straight line with no acceleration. This is an efficient trajectory, as it 

requires minimal control effort from the missile. The largest drawback is that it requires 

the target to fly a constant trajectory with minimal accelerations. 

 

Figure 2.   Pursuit guidance trajectories. From [9]. 
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3. Proportional Navigation 

As one of the most popular guidance laws, PN or some augmented form exists in 

many missile systems in the world today. It is based largely upon the instantaneous 

direction of the target relative to the missile and its first derivative with respect to time. 

There are two generic classes of PN, pure and true. Pure PN applies the commanded 

acceleration with reference to the velocity vector of the missile; whereas True PN applies 

the commanded accelerations with reference to the LOS (see Figure 3). PN has a highly 

nonlinear set of governing equations, and attempts to solve them tend to take the 

approach of true PN, which is more mathematically tractable as compared to pure PN. 

However, in practical application terms, pure PN is the more natural PN law, as 

implementing an acceleration vector perpendicular to the LOS as required by true PN is a 

physical challenge in practical applications.  

 

Figure 3.   Geometry showing application of acceleration vector. From [10]. 
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B. GOALS 

This research thesis is focused on two areas: 1) to investigate the performance of 

advanced guidance laws (APN and DG) and compare them with baseline PN 

performance, 2) to investigate the effects of noise injection into the seeker and analyze 

the degradation in performance between the different compared guidance laws. 

This will be achieved by modeling the system utilizing MATLAB® Simulink® 

and six degrees of freedom (6 DOF) models. The efficacies of the guidance laws will be 

compared using the kinematic boundary concept espoused by Broadston in an earlier 

paper [11]. The kinematic boundary is basically a visual representation of the engagement 

envelope with the target at the center, and the boundary represents the maximum range at 

which a missile can be launched at the target and be expected to hit. The missile is 

assumed to be launched directly at the target at all heading angles and it undergoes a 

short period of constant thrust to achieve maximum speed. The missile subsequently 

glides to the target while slowing down due to drag forces. The target is assumed to 

maintain a constant speed.  

For the noise study, defined baseline noise is added to the seeker system as band 

limited white noise, and the scenarios are run over a hundred simulations to determine the 

percentage of hits at various factors of the baseline noise.  
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II. SIMULATION METHODOLOGY 

For the simulation model, Broadston’s work on a simplified 6DOF model was 

utilized as the main simulation engine [11]. Part of this thesis investigates the 

assumptions that were utilized in creating the original model and the amendments that 

were made to update the model for use in this thesis paper. 

A. SUMMARY OF SIMULATION MODEL 

1. SIX DEGREES OF FREEDOM (6DOF) EQUATIONS 

For a free body in space, it is possible to be translated and rotated along the three 

principal axes. These six freedoms of movement are the 6DOF that an unconstrained 

body in free space will be able to experience. 

The general practice for an aircraft body-centered (ABC) coordinate frame is to 

define the origin at the center of gravity (c.g.) of the body with the x-axis pointing 

towards the nose, the y-axis pointing towards the right wing (looking at the aircraft from 

top down, nose pointing up) and the z-axis is 90° to both x and y axes pointing straight 

down. 

For simulation of the air-to-air combat scenarios, the North-East-Down (NED) 

frame is used as the reference frame. The NED frame has its origin point placed at the 

earth’s surface, with the x-axis pointing due north, y-axis pointing due east and the z-axis 

is pointing down towards the center of the earth.   

For this simulation, flat earth approximations are used, as the ranges involved in 

air-to-air combat are relatively short as compared to tactical ballistic missiles, and a point 

mass model will be assumed for the flight dynamics. The following vector equations fully 

describe the motion dynamics of a free body in space [12], [13]: 
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1 1

         (force - translational kinematics)

          (moment - rotational dynamics)
1                               (attitude - rotational kinematics)
2

B B

B

q

B
m

J J J− −

= −Ω + +

= − Ω +

= − Ω

=









T B
B B 0

B B B

NED

Fv v g

ω ω T

q q

p                                   (navigation - translational kinematics)T
BB Bv

   (2.1) 

Here , , , , , ,B B 0 NED B Bv  ω  g  p  F  T  are vectors and ,  , ,  ,B q BJ BΩ Ω  are square 

matrices. The equations used in (2.1) are intended for flat earth approximations. Hence 

they do not include terms that transform the NED frame to an earth centered inertial 

(ECI) frame. Those terms would be needed for simulations that require modeling of the 

missile flight path over a spherical, rotating earth, such as simulations of ballistic missile 

trajectories. 

It is important to note that the equations in (2.1) provide no direct correlations 

between the force and moment equations. In the physical world, a dynamically stable 

flight body would have its c.g. forward of its center of pressure (c.p.). This would result 

in the missile self-aligning itself to the relative wind direction during flight. Therefore, to 

simulate this stable dynamic behavior, a proportional-differential controller is designed to 

model the missile attitude such that it simulates actual physical behavior. 

2. MISSILE MODEL 

In order not to duplicate previous work, this thesis adopts Broadston’s AIM-120 

AMRAAM model [11] with its flight characteristics and dynamics. The missile model 

was created based on capabilities reported in open source literature and on engineering 

approximations. Hence it is not meant to be an exact replica of the actual missile 

capabilities. However, the simulation model is created modularly so the missile model 

characteristics can be easily modified and inserted into the simulation as required. The 

missile body dimensions used in this simulation is given in Table 1 and has been 

simplified to follow the models described in Blakelock [14] and Zarchan [3]. 
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DESCRIPTION SYMBOL USED IN CODE VALUE 

MISSILE BODY DIMENSIONS 

Missile mass MASS 156.8 kg 

Missile diameter DIAM 0.1778 m 

Missile length LENGTH 3.657 m 

Location of c.g. measured from 

the nose 
XCG 1.8288 m 

Length of the nose cone LN 0.6769 m 

MISSILE TAILPLANE DIMENSIONS 

Hinge line distance from nose XHL 3.454 m 

Tail root chord CRT 0.4061 m 

Tail tip chord CTT 0.0676 m 

Tail extension TXT 0.0676 m 

Tail height HT 0.2286 m 

MISSILE WINGPLANE DIMENSIONS 

Wing to radome tangency point 

distance from nose 
XW 1.134 m 

Wing root chord CRW 0.3554 m 

Wing tip chord CTW 0 m 

Wing extension WXT 0 m 

Wing height HW 0.1778 m 

Table 1.   Summary of missile dimensions used in code. From [11]. 
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a. Thrust Characteristics 

The AMRAAM thrust profile is simulated as a constant 23,000 N thrust 

for the initial six seconds of the simulation that accelerates the missile up to a maximum 

speed of around 1,100 m/s, which is approximately Mach 3.5 at an altitude of 6,000 m. 

b. Moments of Inertia 

The missile is modeled as a thin rod for the y and z axes because the 

missile control surfaces are assumed to have minimal impact on the moment of inertias 

about the axes. The cylindrical model was selected for the x axis. 

c. Drag Model 

In general, the drag force is a combination of friction drag and drag caused 

when the integral of pressure over the whole surface area of the missile body is nonzero 

[13]. The components of total drag on the body can be broken down into three major 

components, parasitic drag (which includes friction drag and form drag), induced drag 

and wave drag. In reality, the three drag components are not independent and cannot be 

linearly added to derive total drag. However, for the assumptions of the simulation, a 

simplified drag model is derived from the first two components, parasitic and induced 

drag. The following equation describes the total drag force along the x-axis of the ABC 

frame [15]: 

 
2

0( )
2d di ref

VD C C Sρ= +  (2.2) 

Parasitic drag, Cd0, is estimated using typical values from [12]. Figure 4 

plots the value of Cd0 at various Mach numbers. The plot shows the difference in parasitic 

drag values caused by the presence or absence of the rocket thrust plume during the boost 

phase and the gliding phase. 
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Figure 4.   Parasitic drag coefficient variations with Mach no. 

For induced drag, Cdi, it is normally estimated as a function of angle of 

attack. In this simulation, the normal forces acting on the missile body are used instead. 

For subsonic flight, a crude approximation of Cdi is made as the applied normal force 

times the maximum value of Cd0 in subsonic flight. For supersonic flight, Cdi is computed 

using the following [15]: 

 

2

( )
N

di
CC

e ARπ
=

 (2.3) 

Where the normal force coefficient is given by: 

 22 N
N

ref

FC
V Sρ

=  (2.4) 

For the simulation, the normal forces and induced drag acting on the y- 

and z- axes are computed separately before being summed together as a vector to derive 

the total induced drag acting upon the system. 
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d. Drag Model Validation  

As the figures used in generating the drag forces are estimates, a sanity 

check was done to ensure that the drag profile of the missile is not too far from reality. To 

do that, open source data for AIM-120 D claiming a max range of approximately 72 km 

was compared against the simulation model running the drag profile. In a tail chase 

scenario without target maneuvers, the missile was able to achieve a five meter radius 

impact on the target at a max range of 76.6 km. This represents an error of about six 

percent, which is acceptable in validating the parasitic drag coefficient numbers and 

induced drag model used in this simulation. 

3. Target Dynamics Model 

For the simulation, the target dynamics were modeled as a point mass model and 

implemented with the following vector equation [12]: 

 

00 1 0 0 0 0
00 0 0 0 0
00 0 0 1 0 0
00 0 0 0 0
00 0 0 0 0 1

0 0 0 0 0 0 z

x x
x x
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

 



 

 (2.5) 

In this target dynamic model, the target is modeled with lateral accelerations that 

are given as turn rate, ω. The vertical acceleration is given as a direct input, az, to the 

subsystem, which is equal to the gravitational acceleration.  

 4. Guidance Law Implementation 

For the simulation, the guidance laws are invoked through MATLAB® function 

calls, which compute the required acceleration commands, ny and nz for the horizontal 

and vertical plane. To assist the functions in deriving the acceleration commands, the 

model provides the function with data from the seeker head and the inertial measurement  
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unit (IMU) processor. The seeker computes target range, range rate, vertical and 

horizontal azimuth, as well as azimuth angular rates, while the IMU processes the 

missile’s own state vectors and orientation. 

Some advance guidance laws require the entire target state vector as additional 

inputs, and a simple alpha-beta-gamma (abg) filter was implemented to estimate the 

target states for the guidance law inputs. 

Section C of this chapter will discuss the three guidance laws that were chosen to 

be implemented in greater detail. 

5. Navigation Model 

The IMU provides navigational data that accelerometers and gyros would provide 

in real life. The missile orientation in the form of Euler angles, velocity, acceleration, 

angles of attack and body rotation rates are computed by the IMU. The IMU is assumed 

to provide this information as truth. 

6. Noise Model 

For the noise model, it was necessary to change the simulation solver from a 

variable step ordinary differential equation (ode) 45 (Dormand-Prince) solver to a fixed 

step size ode4 (Runge-Kutta) solver. This is to ensure that the noise input process is 

constant at each time step of the simulation. This results in slightly less accurate 

simulation runs as the fixed step size has to be set at a large enough value that ensures 

that each simulation run does not take too long while at the same time not so large that 

the simulation results become very inaccurate. For the noise simulations, the selected 

value for the fixed step size was 0.01s and it resulted in a difference in the results of 

around 1% when compared to the ode45 solver.  

To model noise, band-limited white noise was added to the seeker measurement 

outputs of range, range rate, LOS, and LOS rate. Due to some issues with the abg-filter 

simulation results, it was decided that the noise for the filter outputs would be modeled in 
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a similar fashion to the seeker output, where the band-limited white noise was added 

directly to the measurement outputs of target position, velocity and acceleration.  

The baseline noise model is defined in Table 2, where the accuracy of the radar 

systems in defining range was estimated at ±10 m, and range rate at ±1 m/s. The accuracy 

of LOS and LOS rate was defined as ±1 mrad for both measurements. To test for 

increased noise in the system, a common gain factor is applied to all power spectral 

density values as defined in the baseline noise model. The multiple of the gain factor then 

determines the amount of noise that the system is able to withstand. 

 

Table 2.   Applied baseline noise values for noise simulation. 

B. MODEL ANALYSIS AND MODIFICATIONS 

The simplified 6DOF model that was adopted for use in this thesis was modified 

from the original in order to solve some anomaly issues that were found while attempting 

to generate the kinematic boundary comparisons. In the initial implementation of the 

model, it was found that certain anomalies kept appearing in the kinematic boundary 

plots, an example of which can be seen in Figure 5.  
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Figure 5.   KB plot of PN vs. non-maneuvering target showing anomaly. 

There was a predominance of anomalies happening at the broadsides and towards 

the rear quadrant. In the case of Figure 5, the anomaly occurs at 105° heading, with a 

sudden decrease in the maximum range. To investigate this problem, multiple runs were 

conducted at the 105° heading at 100 m range step increments and the minimum miss 

distance at each range was recorded and plotted in Figure 6. 

 

Figure 6.   Minimum miss distances vs. range. 
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As is evident in the plot, there seems to be a specific range bin whereby the 

missile miss distances at end game increases suddenly before going back to the baseline 

miss distance. The sharp increase in miss distances at the far right side of the plot 

represents the maximum range of the missile.  

Upon investigation, it was discovered that the region where the anomalies occur 

actually corresponds to the point where the missile is decelerating through the transonic 

region. This occurs at the range where the missile is fired such that the missile is at the 

end game near the target just as its velocity traverses the transonic region. Below Mach 

one, the previous drag model (see Figure 7) demonstrated a sudden decrease in drag 

coefficient, which translates to lower drag forces. The guidance law perceives this as a 

sudden acceleration on the part of the missile, and simulation studies indicate a miss 

(where a miss is defined as a minimum miss distance greater than 5 m). It can be seen 

that if the missile is launched even further away such that it passes through the Mach one 

boundary before entering end game, the missile is actually able to impact the target again. 

1.  Modified Parasitic Drag Curve 

In a bid to reduce the transonic region’s instability, the drag mode as proposed by 

Broadston [11] was modified slightly to allow for a gradual increase and decrease in drag 

coefficient through the transonic boundary instead of as a sudden step increase. The old 

and new parasitic drag models are shown in Figure 7 as a comparison. 

 

Figure 7.   Original (left) and modified (right) induced drag models. 
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2. Additional Fx Saturation 

The total maximum g-force the missile is assumed to be able to sustain is 52 times 

the normal gravitational acceleration. An attempt to limit the commanded acceleration on 

all three axes proportionally led to algebraic errors in the simulation runs. Therefore, a 

simplified method was adopted to limit the accelerations, which basically is a direct 

limitation placed on the accelerations in the individual axes not to exceed 30g each. 

Initially, only the commanded accelerations in the y- and z- axes were limited. However, 

in the simulation analysis and verification study, it was discovered that the x- axis 

acceleration must be limited as well to provide consistent and smooth results. Therefore 

the final model contains limitations on all three axes. The limiters for the x-, y- and z- 

axis are modeled as saturation blocks within the Simulink® model. 

3. Additional Turn Limiter 

In the simulation analysis stage of the project, it was discovered that using the 

Simulink® switch block alone to govern the moment when the target is expected to 

execute a constant g-turn maneuver towards the missile could lead to unexpected effects 

in certain simulation conditions. The switch block is basically given the time-to-go value 

(as derived from range-to-go and range-to-go rate) and once the time-to-go drops below 

the simulation determined constant value, it passes the constant turn command through to 

the target dynamics model. It was discovered that in certain end game simulations where 

the missile is in the transonic region of its flight, the sudden decrease in the missile’s 

velocity caused the time-to-go value to increase back above the determined constant 

value. This causes the switch block to stop passing the turn command. To prevent such 

situations from occurring and introducing added anomalies to the results, a turn limiter 

was coded into the simulation. The turn limiter basically holds the turn command once it 

is passed through the switch block.  
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C. GUIDANCE LAWS 

This section describes the three guidance laws that were selected for investigation 

in detail. The first two laws, PN and augmented proportional navigation (APN) were 

selected as the two best performing guidance law that Broadston [11] investigated. From 

the additional literature research, an additional guidance law that was not investigated 

previously using the kinematic boundary technique was selected to compare against the 

other two laws. This additional law is based on differential geometry (DG) [4], [5], [16], 

and [17], and basically generates commanded accelerations as a function of the missile 

flight geometry. The geometry of a typical engagement scenario is shown in Figure 8. 

 

Figure 8.   Missile engagement geometry. After [11]. 

1. Proportional Navigation (PN) 

As described briefly in the literature review section of the introduction chapter, 

the implementation of the PN guidance law in this simulation is modeled after the True 

PN model where the commanded accelerations are applied perpendicularly to the LOS. 

The 2D commanded acceleration is given as follows [3]: 

 '
c cn N V σ=   (2.6) 
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While it is mathematically more tractable to compute the commanded acceleration 

perpendicular to the LOS, in the simulation, it is instead easier to apply the commanded 

acceleration perpendicular to the missile body axis instead. In order to achieve this, the 

commanded acceleration obtained in (2.6) is corrected to the missile y- axis as follows: 

  
'

cos( )
c

c
L

N Vn σ
σ

=


 (2.7) 

The corrected missile acceleration is then fed directly to the missile dynamics 

block for simulation. The navigational constant, N’ is selected to be five for the entire 

simulation for PN law. As described in Zarchan [3], setting the navigation ratio at five 

reduces the required missile acceleration advantage to 1.67, which increases the 

maximum distance that the guidance law will be able to hit the target. 

2. Augmented Proportional Navigation (APN) 

An advanced version of PN law, the APN law is basically PN augmented with a 

component that accounts for the maneuvering target dynamics. As described in [3], an 

alternative, mathematically equivalent, expression for (2.6) is as follows: 

 
'

'
2

( )r r go
c c

go

N y y t
n N V

t
σ

+
= =


   (2.8) 

Where tgo is the time to go until intercept and yr is defined in Figure 8. The terms 

in the parentheses are also referred to as the zero effort miss (ZEM) [3]. ZEM basically 

states the miss distance that would result if the missile and the target experienced no 

further accelerations and were allowed to keep traveling with the same velocity. 

Therefore, if we were to assume a target that maneuvers, than the ZEM equation must be 

augmented with an additional term that addresses the maneuver. The new equation for 

ZEM with target maneuver is as follows: 

 21
2new r r go t goZEM y y t n t= + +   (2.9) 

Where nt is the target acceleration. Therefore, the augmented PN law becomes as 

follows: 
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It can thus be seen that APN is basically PN law augmented with a constant 

proportion of the target acceleration. This increases the complexity of the system as a 

tracking filter that will estimate the target acceleration is now required.  

The implementation of APN in the simulation is given by the vector equation 

from [18]: 
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 (2.11) 

According to [3], the optimal value for N’ occurs when N’ = 3. This would be 

evaluated subsequently in the scenario analysis. From this vector, only the values for y- 

and z- accelerations are used as x- is computed from thrust and drag components of the 

model. 

3. Differential Geometry (DG) 

DG guidance is a form of curvature control command where the command for 

missile guidance is developed based on the curvature concept in curve theory and the 

relative rotational motion of a pseudo-missile pointing velocity vector [16].  

According to Chiou in [4], the Frenet-Serret formula for classical differential 

geometry curve theory was utilized in developing this control law. The fundamental 

theory lying behind PN and APN guidance laws is that a fixed model for the likely target 

maneuvers have to be assumed and is then used to derive the guidance law. This 

approach has certain drawbacks, not least of which is that the real world target seldom 

exhibit constant maneuver tactics. Therefore, the DG guidance law attempts to address 

this issue by ignoring specific target maneuver models in its formulation. 
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Figure 9.   Geometry of engagement scenario. From [17]. 

A simple 2D application of the DG guidance law in the time domain is described 

in [17], where the engagement geometry is laid out as in Figure 9.  
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 (2.12) 

In this formulation, κt and κm represents a measure of the curvature of the target 

and the missile’s trajectories respectively. ηt and ηm represents the lead angles of the 

target and the missile, r’ represents the closing speed of the system along the LOS and q’ 

represents the angular rate of LOS. N’ is the control gain and is not to be confused with 

N, which is defined as the ratio of the magnitude of the target and missile velocities, vt 

and vm. 
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The curvature of a circular track can be described simply as: 
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Substituting equation (2.13) and (2.14) into (2.12): 

 
2

'
2 2 2

cos
cos cos

m t t t c

m m m mm t

a v a VN
v vv v

η σ
η η

    
= +           

  (2.15) 



 24 

 'cos
cos cos

t c
m t

m m

Va a Nη σ
η η

= +


 (2.16) 

From the respective definitions, cos(ηm) = cos(σL), the DG law expressed in (2.16) 

can be seen to be the basic PN law augmented by a geometric term in front that requires 

target acceleration as well as target velocity heading information. 

For implementation within the simulation, the acceleration requirements are 

computed respectively in the horizontal and the vertical plane to generate the required y- 

and z- axes acceleration. 
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III. SIMULATION SCENARIOS, COMPARISON AND ANALYSIS 

To maintain similarity with Broadston’s [11] work, the simulation scenario 

parameters were kept largely the same so that effective comparisons could be made. As 

before, the simulations are run at a fixed 6000 m altitude with the target and missile 

initial speed at Mach 0.83. The missile is always considered to be fired pointing directly 

at the target at all heading angles, and for the maneuvering scenarios, the target is always 

assumed to pull a 6g turn maneuver towards the missile at tgo = 3 s. Table 3 summarizes 

the various test scenarios. 

 
Table 3.   Summary of simulation test scenarios. 

For the kinematic boundary simulations, the scenarios were run with an initial 

10000 m launch range for the missile and target at a tail chase scenario of 0° heading. 

The simulation then slowly increments the launch range with 1000 m steps, then 100 m 

steps, up to a resolution of 10 m steps to determine the max range whereby the missile 
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first misses the target by more than 5 m at the end game. Once the maximum range that 

the missile can hit the target is determined at that bearing, the heading is then 

incremented by 5° before the next simulation run to determine the maximum range at that 

bearing.  

For each simulation run, there are three stopping criteria which would stop the 

simulation once any one of the three is met. The first stopping condition is a velocity stop 

and it stops the simulation once the missile speed falls below the target speed. The second 

condition is a range rate stop and it stops the simulation when the rate of change of the 

distance between the missile and the target becomes positive. The last condition is a 

range stop and it is triggered when the range between the missile and the target is less 

than 0.0001 m.  

The simulation is run from 0° to 180° bearing and the maximum launch range 

results are all stored and finally plotted in a polar plot as the kinematic boundary of the 

simulation. The time taken for one such simulation run varies from as little as 2.5 hours 

for the simple PN guidance law with ode45 solver up to 8.5 hours for the more 

complicated DG law in a 6g target maneuvering scenario running the same variable step 

solver. 

For the noise scenarios, using the ode4 fixed step solver, the simulation times 

range from 7.5 hours to 10 hours for a single kinematic boundary simulation.  

When using the ode45 variable step solver, PN law running with a simulation 

tolerance of 1e-3 and minimum step size of 1e-3 and maximum step size at auto provides 

reasonably accurate results in a short time. However, for the more complicated APN law, 

the tolerance and minimum step size of the ode45 solver has to be tightened to 1e-5 and 

the maximum step size specified at 0.1 for reasonably accurate results. 

For the DG law, even tighter simulation parameters are required. While the 

tolerance and minimum step size is held similar to APN, the maximum step size has to be 

decreased to 0.02 and the filter sample rate for the abg-filter set at 50 Hz for reasonable 

results to be generated. In contrast, the APN law was able to generate reasonable results 

with the abg-filter set to a 10 Hz sample rate with the maximum step size at 0.1. 
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For the noise scenarios, the fixed step size is set at 0.01 as it was empirically 

tested to provide the most accurate results for all 3 guidance laws within the least amount 

of simulation run time. 

The simulation SIMULINK® models are shown in Appendix A while the 

MATLAB® codes are organized within Appendix B. 

To demonstrate the validity of the simulation model, the engagement geometry 

and time history plots of certain parameters are shown in Appendix C.  
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A. TEST 1A - APN NAVIGATIONAL CONSTANT  

In this test, the APN law was tested for the effects of the values chosen for the 

navigational constant. In [8], N’ = 3 was derived mathematically as the optimal value for 

the guidance law. The results for this scenario are shown in Figure 10. The polar plot 

represents the kinematic boundary of the guidance law at the two navigational constant 

while the top right hand plot is the same plot plotted linearly to emphasize the difference. 

The bottom right hand plot directly plots the difference in max ranges between APN 

N’=3 and APN N’=5.  

 
Figure 10.   Comparison of APN with N’=3 and N’=5. 

It can be seen from the difference plot that there is a significant improvement to 

the performance of the missile when N’=5 especially between 40° and 80° bearing where 

improvement of max range between 2000 m and 8000 m are seen. For the rest of the 

bearings, there is a minor advantage to N’=3 but the difference is insignificant. 

It is clear that having the navigational constant set at N’=5 offers a general 

improvement to the performance of the missile hence for APN law, N’ is fixed at N’=5 

for the rest of the simulations. 
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B. TEST 1B - DG NAVIGATIONAL CONSTANT 

As in test 1A, the DG law is tested at various navigational constant values for 

maneuvering target scenario. N’ = 3, 5 and 7 were chosen for the test and the results are 

shown in Figure 11. 

  
Figure 11.   Comparison of DG with N’ = 3, 5 and 7. 

It can be clearly seen that N’=7 resulted in the best performance envelope of the 

missile in this maneuvering scenario. It showed significant improvements up to 10000 m 

over N’=3. However, it demonstrates only a slight improvement of up to 2000 m over 

N’=5 and only in a very narrow tail chase region of approximately 0° to 20°. 

Since there is only a slight difference between N’=5 and N’=7, the navigational 

constant for DG is selected to be N’=5 so as to be consistent with the other two guidance 

laws that are being tested. 
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C. TEST 2A - NON-MANEUVERING TARGET 

In this test, each of the three guidance laws was simulated against a constant 0.83 

Mach velocity target. As both APN and DG laws are basically PN laws augmented with 

an additional control term that takes into account the target acceleration, it is predicted 

that all three guidance laws should perform similarly when the target exhibits constant 

velocity characteristics for the entire simulation. Figure 12 summarizes the results for all 

three guidance laws. 

 

Figure 12.   Non-maneuvering comparison of PN, APN and DG 

It can be seen that the simulation results are similar to the predicted results. The 

kinematic boundary plot shows that all three laws are within 1% - 3% error ranges of 

each other and that the difference plot shows a difference of -1000 m to 3000 m for DG 

when compared to PN and a difference of up to 1000m for a narrow heading around 120° 

for APN when compared to PN.  

This difference amounts are of little significance and it can be concluded that all 

three guidance laws perform similarly in a constant velocity target scenario. 
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D. TEST 2B - MANEUVERING TARGET 

Now that the non-maneuvering results show that all three guidance laws are 

similar at the baseline non-maneuvering scenario, the target is modeled with constant 6g 

acceleration towards the missile when tgo ≤ 3 s. Figure 13 summarizes the results. 

 
Figure 13.   Maneuvering comparison of PN, APN and DG. 

It can be seen from the results that all three guidance laws perform similarly in the 

forward and broadside quadrants of the kinematic boundary where the engagement 

geometry varies from 90° to head on with the target at 180°. 

The rear quadrant, however, shows significant differences between the three 

guidance laws. It can be seen that PN is the worst performing guidance law in a tail chase 

maneuvering target scenario except for a narrow bandwidth around 60° heading where it 

performs slightly better than APN. APN in contrast behaves generally better than PN 

between 20° to 50° heading and, other than the slight inferior performance compared to 

PN, APN is essentially performing similarly to PN guidance. 

The law that clearly performs better is DG where improvements of up to 12000 m 

in maximum range can be achieved in the rear quadrant. However, careful analysis shows 

that DG has a slight performance issue in the front quadrant when compared to the other 

two guidance laws even though the difference is insignificant. 
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E. TEST 3A - NON-MANUEVERING TARGET WITH NOISE 

For this test, baseline noise was added to the system and a single simulation to 

derive the kinematic boundary was carried out. While the noise process is random and the 

kinematic boundary simulation will output a different result each time it is ran, the 

variations from one degree step to the next should even out across the entire 180° 

boundary. This hypothesis was put to the test and the simulation results for each of the 

three guidance laws in a non-maneuvering scenario was compared with their own results 

in a noiseless simulation and summarized in Figures 14, 15 and 16. 

 
Figure 14.   Noise comparison for PN (no maneuver) 

It can be seen that the PN law under the influence of baseline noise is hardly 

affected by it and is able to perform just as well as the scenario where noise was not 

added. 
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Figure 15.   Noise comparison for APN (no maneuver) 

For the APN law, it can be seen that it is more affected by baseline noise in the 

system as compared to PN. There is an increasing difference in maximum ranges, 

especially towards the front quadrant where the difference is as much as 3000 m. 

 
Figure 16.   Noise comparison for DG (no maneuver) 
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It can be seen that DG suffers approximately the same level of degradation as 

compared to APN under the influence of baseline noise. 

 
Figure 17.   Noise comparison for PN, APN  and DG (no maneuver) 

When the three guidance laws are compared against each other under the 

influence of noise, it can be seen from Figure 17 that the difference between the two 

advanced guidance laws and PN has increased by about 2000 m when compared with the 

results in test 2A. 

This is consistent with the expectation that the advanced guidance laws should 

suffer greater performance penalties due to the additional complexity of the guidance law 

and the added command acceleration terms. 
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F. TEST 3B - MANEUVERING TARGET WITH NOISE 

Similarly to test 3A, the simulation is now carried out with the target maneuver 

scenario. The results for the individual guidance laws are shown in Figures 18, 19 and 20. 

 
Figure 18.   Noise comparison for PN (6g maneuver) 

Under the no target maneuver noise scenario, PN was the only guidance law out 

of the 3 that did not suffer performance degradation under the effects of noise. Now that 

the target is maneuvering, PN is seen to suffer the same amount of performance penalty 

as APN and DG did under the no maneuver scenario. The spike at the 55° heading point 

that seems to show a region where the PN law performed better with noise then without 

noise is most probably an anomaly. 
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Figure 19.   Noise comparison for APN (6g maneuver) 

As with the results for PN, it can be seen that APN suffers much greater 

performance degradation around the 60° to 70° heading region. While PN ‘suffered’ a 

performance increase, APN suffers a performance decrease. The reason for this increased 

performance anomaly region is most likely attributable to the transonic region effect.  

 
Figure 20.   Noise comparison for DG (6g maneuver) 
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DG does not seem to suffer as much performance degradation due to the effects of 

noise as much as the other two guidance laws. It can be seen that DG suffers 

approximately the same amount of performance loss due to noise regardless of the target 

making or not making a maneuver in the scenario. 

 
Figure 21.   Noise comparison for PN, APN and DG (6g maneuver) 

From Figure 21, it can be seen that the addition of noise in the simulation does not 

affect the relative performance of the DG law when compared to the other two laws. DG 

is still the best performing guidance law under target maneuvering scenarios. 
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G. TEST 4 - NOISE TOLERANCE STUDY 

In the noise tolerance study section, each simulation data point was run for a total 

of 100 times with random white noise throughout. Due to the time taken to run each data 

point 100 times with a fixed step ode4 solver at 0.01 s step size and 100 Hz filter sample 

rate, the simulations were run only at the 45° and 135° heading. 

For each of the three guidance laws, and for both maneuvering and non-

maneuvering target scenarios, the baseline noiseless maximum range at the two bearings 

was first determined. A 10% reduction of the maximum range was taken and the 

simulations were then run at that range. The baseline noise in the system is then increased 

by a constant factor and the factor was increased until no less than 70% of the 100 runs 

were registered as successful hits on target (i.e. for the missile to come within 5 m radius 

of the target). 

The results are summarized in Table 4. 

 
Table 4.   Summary table for noise tolerance of guidance laws. 
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From the results, it can be seen that at the 45° heading, both PN and DG laws 

exhibit robust tolerance to noise and can take noise factors around 16x to 17x of baseline 

for both the maneuvering and non-maneuvering scenarios. However, it is significant to 

note that the maximum ranges for PN law is nearly 7 km shorter than DG and APN in the 

maneuvering scenario. In contrast, APN suffers larger performance degradation under the 

effects of noise and has a noise tolerance of only around 7x though at a maximum range 

similar to that of DG. 

At the 135° heading, all three guidance laws exhibit similar noise tolerance 

characteristics of about 5x the baseline noise.  

As can be seen in test 3B, the three guidance laws suffered similar levels of 

performance degradation at the forward quadrant of the engagement scenario. For the rear 

quadrant, it could be seen that PN and DG suffered similar performance degradation 

when compared to their respective noiseless scenario performances but APN suffered 

additional performance losses at the rear quadrant. That result is reflected in the noise 

tolerance study at the 45° heading where it can be seen that the greater the performance 

degradation the guidance law suffered, the lower the noise tolerance of that guidance law 

at that particular heading. 

The full data and histogram plots for each of the scenarios described in Table 4, 

with a hit percentage greater than 70%, is presented in Appendix D. 
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IV CONCLUSION 

A. CONCLUSIONS 

The developed simplified 6DOF simulation model proved to be a useful tool in 

the modeling, simulation and evaluation of the different guidance laws. Even with a set of 

simplifying assumptions about physical system performance characteristics, the 

simulation results matched expectations. 

As a result of the simulations, it was proved that a navigational constant of N’ = 5 

is optimal for both the APN law as well as the DG law. 

For the maneuvering target scenario, this study has shown that while the APN law 

does indeed perform better than the PN law except for a very narrow region, the new DG 

guidance law, which is based upon target motion geometries instead of expected target 

maneuvering models, performed the best out of the three guidance laws tested. With the 

DG guidance law, significant improvements to the missile performance in the rear 

quadrant, tail chase scenario were achieved. 

For the non-maneuvering target scenarios, it was shown that while all three 

guidance laws performed similarly under no noise conditions, when noise was added to 

the system, both APN and DG suffered greater performance degradation as compared to 

PN. This is intuitive as the more complex guidance laws are expected to be affected by 

noise to a larger extent. 

On the contrary, when noise was injected for the maneuvering scenarios, the DG 

law was shown to be the most robust performer instead of PN, while APN suffered the 

greatest performance degradations, especially around the 60° heading region. The DG 

guidance maintained its performance advantage even with the addition of noise and is 

shown to be an overall superior performing guidance law that can be relied upon in both 

maneuvering and non-maneuvering scenarios. 
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B. FUTURE RESEARCH 

Encouraged by the results of the current study, future research can address the 

following: 

• Increasing model fidelity with more accurate sensor and controller models. 

• Expanding the kinematic boundary concept to three dimensional scenarios 
and considering a broader range of engagement scenarios. 

• Comparing other guidance laws against the ones considered in this study. 

• Having a more thorough study in noise implementation and specific 
filtering algorithms. 
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APPENDIX A. SIMULINK® MODELS 

The SIMULINK® block diagrams used in the simulation are presented in this 

appendix. The simulation is created as a single model and functions that are not required 

can be modified or switched off as required. 
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APPENDIX B. MATLAB® CODE 

This appendix contains the list of script files and function codes that were used in 

the simulation. Table5 summarizes the code names and their purpose. 

 

FILENAME PURPOSE 

A.     Simulation run script files 
Kbouter3.m Runs and computes the kinematic boundary for a particular guidance law 
Noise_Study.m Runs the noise simulation for a 100 repetitions 
Single_run.m Runs a single simulation for a particular scenario 
B.     Simulation initialization script files 
Missile_data.m Loads the pre-defined missile constants for the AMRAAM model 
Thesis_init.m Loads the simulation initialization constants and variables 
C.     Simulation guidance law function files 
chingfanlin.m Implements APN guidance law 
diffgeo.m Implements DG guidance law 
propnavpt.m Implements PN guidance law 
D.     Simulation function files 
abgfilter.m Calls the alpha-beta-gamma filter model 
alphabeta.m Calculates the AOA 
cdvmach.m Polyfits the data curve for Cdi 
draginduced.m Calculates the induced drag force 
dragparasitic.m Calculates the parasitic drag force 
dynamic3D.m Runs 3D target dynamics 
flatearthdyn.m Runs the flat earth 6DOF dynamics 
formdrag.m Calculates the form drag of the missile 
machvalt.m Calculates the speed of Mach one at particular altitude 
q2euler.m Calculates the euler angles from quarternions 
quarternion.m Calculates the quarternions from euler angles 
quat2b.m Calculates the B rotation matrix from quarternions 
rhovalt.m Calculates the atmospheric density at particular altitude 
switchlimit.m Triggers target turn rate and prevents switch back to zero 
tgo.m Calculates the time to go for the missile to intercept target 
thebigstop.m Stops the simulation run when conditions are met 

Table 5.   Summary of MATLAB® files and functions. 
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A. SIMULATION RUN SCRIPT FILES 

%----------------------------------------------------------------------- 
%----------------------------------------------------------------------- 
%   File:           Kbouter3.m 
%   Name:           CPT Daniel Perh 
%   Compiler:       MatLab v7.11.0.584 (R2010b) 
%                   32-bit (win 32) 
%   Date:           08 July 2011 
%   Description:    Automatically computes a kinematic boundary using 6 
%     DOF simulator with tracking filter. 
%                   - Streamlined search loops 
%                   - Status indicator 
%                   - Saves most recent data to disk 
%   Inputs:         none 
%   Outputs:        one figure of kinematic boundary 
%   Process:        streamlined brute force search algorithm 
%   Assumptions: 
%   Comments:        
%----------------------------------------------------------------------- 
%----------------------------------------------------------------------- 
clear 
clc 
  
%------ define globals ------ 
global SWITCHFLAG TURNFLAG 
  
%------ define constants ------ 
Thesis_init; 
STOPFLAG = 0;       % (1) enable display of simulation stop conditions 
                    % (0) disable display of sim stop conditions 
                     
%------ define input vector ------ 
% initialize noise variables  
% Set factor to 0 if noiseless simulation is required, else set to any 
% positive integer to specify noise level desired. Factor will be 
% mulitiplied directly into the power spectral density values of the  
% white noise block 
factor = 1;                                                           
r_noise = 1*factor;                % Range Noise 
rdot_noise = 1e-2*factor;          % Range Rate Noise 
theta_noise = 1e-8*factor;         % Horizontal LOS angle 
thetadot_noise = 1e-8*factor;      % Horizontal LOS angle rate 
phi_noise = 0*factor;              % Vertical LOS angle 
phidot_noise = 0*factor;           % Vertical LOS angle rate 
  
% set noise for the abg filter 
abgfactor = factor;                 
X1_noise = 1*abgfactor;            % Target X posn noise 
X2_noise = 1e-2*abgfactor;         % Target X velocity noise 
X3_noise = 2e-2*abgfactor;         % Target X accel noise 
Y1_noise = 1*abgfactor;            % Target Y posn noise 
Y2_noise = 1e-2*abgfactor;         % Target Y velocity noise 
Y3_noise = 2e-2*abgfactor;         % Target Y accel noise 
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Z1_noise = 0*abgfactor;            % Target Z posn noise 
Z2_noise = 0*abgfactor;            % Target Z velocity noise 
Z3_noise = 0*abgfactor;            % Target Z accel noise 
  
%------ initialize variables ------ 
TARGET_TURN = 6     % set target turn rate, in g's,  
                    % default = 0, max allowable = 9. 
MIN_RNG = 10000;    % set min engagement range (10000m default) 
DEGSTEP = 5;        % set heading increment 
  
START_TIME = tic; 
MaxHit = zeros(1000,5); % Initializing 1000x5 matrix to hold MaxHit data 
load CURRENT 
  
%------ functions ------ 
% Start in tail chase step to head on by <DEGSTEP> degree increments 
for HEADING = 0:DEGSTEP:180 
    tic 
    plotcount = 1;  
    runplot = zeros(100,5); % Initialize 100x5 matrix to hold runplot  
        % data 
    runplot(:,1) = 10;      % Preload MIN_RNG column with any value  
        % greater than 5 so as to allow for correct 
        % index search later 
    rangemax = [0 0];       % Initialize 1x2 matrix to hold rangemax  
        % data 
    rangemax(1,1) = MIN_RNG;% rangemax is a 1X2 matrix to store rangemax  
                            % and min Range to go info 
    disp(['Heading ',num2str(HEADING),' deg'])  % show heading counter 
         
    % compute target speed components 
    XSPD = TGT_SPD*cos(HEADING*pi/180); 
    YSPD = TGT_SPD*sin(HEADING*pi/180); 
     
    % first range loop step by 10 km 
    for TGT_RNG = rangemax(1,1) : 10000 : 150000 
        
        disp(['*** ',num2str(TGT_RNG),', 10km step size***']) 
        % set initial target state 
        TGT_INIT = [TGT_RNG;XSPD;0;YSPD;-ALT;0]; 
        TURNFLAG = 0; 
        SWITCHFLAG = 0; 
        XLAST = [TGT_RNG;0;0;0;0;    % store data for abgfilter.m use 
                 0;-ALT;0;0];   
      
        % call simulation 
        sim('MODEL') 
         
        % save run data 
        disp(['>>> ',num2str(min(RangeToGo)),', min Range<<<']) 
        runplot(plotcount,:)=[min(RangeToGo),0,0,0,TGT_RNG]; 
        % score run 
        if (min(RangeToGo)>5) 
            break 
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        end 
        plotcount = plotcount+1; 
    end 
      
    INDEX = find(runplot(:,1)<=5); 
     
    if(INDEX) 
       rangemax(1,1) = runplot(max(INDEX),5); % Store rangemax data 
       rangemax(1,2) = runplot(max(INDEX),1); % Store min range2go data 
    end     
     
    runplot = zeros(100,5);  
    runplot(:,1) = 10; 
    plotcount = 1; 
         
    % main search loop 1km step size 
    for TGT_RNG = rangemax(1,1)+1000 : 1000 : rangemax(1,1)+9000 
         
        disp(['*** ',num2str(TGT_RNG),', 1km step size***']) 
        % set initial target state 
        TGT_INIT = [TGT_RNG;XSPD;0;YSPD;-ALT;0]; 
        TURNFLAG = 0; 
        SWITCHFLAG = 0; 
        XLAST = [TGT_RNG;0;0;0;0;    % store data for abgfilter.m use 
         0;-ALT;0;0];   
      
        % call simulation 
        sim('MODEL') 
      
        % save run data 
        disp(['>>> ',num2str(min(RangeToGo)),', min Range<<<']) 
        runplot(plotcount,:)=[min(RangeToGo),0,0,0,TGT_RNG]; 
        % score run 
        if (min(RangeToGo)>5) 
            break 
        end     
        plotcount = plotcount+1; 
    end 
  
    INDEX = find(runplot(:,1)<=5); 
    
    if(INDEX) 
       rangemax(1,1) = runplot(max(INDEX),5); % Store rangemax data 
       rangemax(1,2) = runplot(max(INDEX),1); % Store min range2go data 
    end     
     
    runplot = zeros(100,5);  
    runplot(:,1) = 10; 
    plotcount = 1; 
     
    % main search loop 100m 
    for TGT_RNG = rangemax(1,1)+100 : 100 : rangemax(1,1)+900 
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        disp(['*** ',num2str(TGT_RNG),', 100m step size ***']) 
        %set initial target state 
        TGT_INIT = [TGT_RNG;XSPD;0;YSPD;-ALT;0]; 
        TURNFLAG = 0; 
        SWITCHFLAG = 0; 
        XLAST = [TGT_RNG;0;0;0;0;    % store data for abgfilter.m use 
         0;-ALT;0;0];   
      
        % call simulation 
        sim('MODEL')      
  
        % save run data 
        disp(['>>> ',num2str(min(RangeToGo)),', min Range<<<']) 
        runplot(plotcount,:)=[min(RangeToGo),0,0,0,TGT_RNG]; 
        % score run 
        if (min(RangeToGo)>5) 
            break 
        end     
        plotcount = plotcount+1; 
    end 
  
    INDEX = find(runplot(:,1)<=5); 
    
    if(INDEX) 
       rangemax(1,1) = runplot(max(INDEX),5); % Store rangemax data 
       rangemax(1,2) = runplot(max(INDEX),1); % Store min range2go data 
    end     
     
    runplot = zeros(100,5);  
    runplot(:,1) = 10; 
    plotcount = 1; 
     
    % main search loop 10m. Note, now it is computing the full output  
    % vector for each run. Starts calculation at rangemax so as to  
    % determine full output vector for previous rangemax.   
    for TGT_RNG = rangemax(1,1) : 10 :rangemax(1,1)+90 
         
        disp(['*** ',num2str(TGT_RNG),', 10m step size***']) 
        %set initial target state 
        TGT_INIT = [TGT_RNG;XSPD;0;YSPD;-ALT;0]; 
        TURNFLAG = 0; 
        SWITCHFLAG = 0; 
        XLAST = [TGT_RNG;0;0;0;0;    % store data for abgfilter.m use 
         0;-ALT;0;0];   
      
        % call simulation 
        sim('MODEL')   
     
            % analyze data from current run 
            TOUT = MissileOut(:,14); 
            INDX = find(RangeToGo==min(RangeToGo)); 
            IP = TOUT(INDX(1)); 
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            % compute cost function J=20*e(tf)^2+integ(u^2)/200 and  
            % missile divert 
            u2 = (OmegaOut(:,1).^2+OmegaOut(:,2).^2); 
            integral = 0; 
            for ii=2:INDX 
                integral = integral+(TOUT(ii)-TOUT(ii-1))*u2(ii-1); 
            end 
            J = 20*min(RangeToGo)^2+integral/1000; 
      
        % save run data [miss dist, cost, divert, time, max range] 
        disp(['>>> ',num2str(min(RangeToGo)),', min Range<<<']) 
        runplot(plotcount,:) = [min(RangeToGo),J,integral,IP,TGT_RNG]; 
      
        if (min(RangeToGo)>5) 
            break 
        end      
        plotcount = plotcount+1; 
    end 
  
    INDEX = find(runplot(:,1)<=5); 
    
    if(INDEX) 
       rangemax(1,1) = runplot(max(INDEX),5); % Store rangemax data 
       rangemax(1,2) = runplot(max(INDEX),1); % Store min range2go data 
    end     
  
    if (isempty(INDEX)) 
        MaxHit(HEADING+1,:) = [rangemax(1,2),0,0,0,rangemax(1,1)]; 
    else 
        MaxHit(HEADING+1,:) = runplot(max(INDEX),:); 
    end 
  
    % save data to disk 
    save CURRENT MaxHit 
    toc 
    % note for some guidance laws, the down step here  
    % must be 2 or more---------------------| 
     MIN_RNG = 10000*(floor(rangemax(1,1)/10000)-1); 
     if (MIN_RNG <= 10000) 
        MIN_RNG = 10000; 
     end 
    % MIN_RNG = 10000; 
end  
toc(START_TIME) 
END_TIME = toc(START_TIME); 
  
%% 
% plot the graph 
% 0 deg represents tail chase scenario 
% 180 deg represents head on scenario 
rho1 = MaxHit(1:DEGSTEP:181,5); 
rho1 = [rho1;flipud(rho1)]; 
theta = 0:DEGSTEP:180; 
theta = pi/180*theta; 
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theta = [theta,-1*fliplr(theta)]'; 
figure(5) 
polar (theta,rho1) 
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%----------------------------------------------------------------------- 
%----------------------------------------------------------------------- 
%   File:           Noise_Study.m 
%   Name:           CPT Daniel Perh 
%   Compiler:       MatLab v7.11.0.584 (R2010b) 
%                   32-bit (win 32) 
%   Date:           08 July 2011 
%   Description:    Automatically runs 100 simulation runs at a 
particular 
%                   point with random noise input to determine noise  
%                   effects on guidance laws. 
%   Inputs:         none 
%   Outputs:        plot of abg filter data on TGT posn for the last run 
%   Process:         
%   Assumptions: 
%   Comments:       NOTE: Must switch simulation solver to a fixed step 
%                   solver before running this script file. 
%----------------------------------------------------------------------- 
%----------------------------------------------------------------------- 
clear 
clc 
  
%------ define globals ------ 
global SWITCHFLAG TURNFLAG 
  
%------ define constants ------ 
% initialize simulation 
Thesis_init; 
STOPFLAG = 0;       % (1) enable display of simulation stop conditions 
                    % (0) disable display of sim stop conditions 
     
% initialize variables to hold data 
holdrange=zeros(1000,1); 
holdpos=zeros(1000,3); 
  
%------ define input vector ------ 
% initialize noise variables 
% Set factor to any positive integer to specify noise level desired.  
% Factor will be mulitiplied directly into the power spectral density  
% values of the white noise block 
factor = 4.7 
r_noise = 1*factor;                % Range Noise 
rdot_noise = 1e-2*factor;          % Range Rate Noise 
theta_noise = 1e-8*factor;         % Horizontal LOS angle 
thetadot_noise = 1e-8*factor;      % Horizontal LOS angle rate 
phi_noise = 0*factor;              % Vertical LOS angle 
phidot_noise = 0*factor;           % Vertical LOS angle rate 
  
% set noise for the abg filter 
abgfactor = factor;                 
X1_noise = 1*abgfactor;            % Target X posn noise 
X2_noise = 1e-2*abgfactor;         % Target X velocity noise 
X3_noise = 2e-2*abgfactor;         % Target X accel noise 
Y1_noise = 1*abgfactor;            % Target Y posn noise 
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Y2_noise = 1e-2*abgfactor;         % Target Y velocity noise 
Y3_noise = 2e-2*abgfactor;         % Target Y accel noise 
Z1_noise = 0*abgfactor;            % Target Z posn noise 
Z2_noise = 0*abgfactor;            % Target Z velocity noise 
Z3_noise = 0*abgfactor;            % Target Z accel noise 
  
%------ initialize variables ------ 
% initialize target 
TGT_RNG = 79900; 
HEADING = 135; 
TARGET_TURN = 6; 
  
XSPD = TGT_SPD*cos(HEADING*pi/180); 
YSPD = TGT_SPD*sin(HEADING*pi/180); 
  
tic 
%------ functions ------ 
% 100 realizations 
for numloops=1:100 
   disp(numloops) 
   TGT_INIT = [TGT_RNG;XSPD;0;YSPD;-ALT;0]; 
   TURNFLAG = 0; 
   SWITCHFLAG = 0; 
   XLAST = [TGT_RNG;0;0;0;0;    % store data for abgfilter.m use. Must  
            0;-ALT;0;0];        % be reset to baseline value before  
                                % each simulation call 
   sim('MODEL') 
   % analyze data from current run 
   disp(min(RangeToGo)) 
   holdrange(numloops,:)=min(RangeToGo); 
   idx=find(RangeToGo==min(RangeToGo));    
   holdpos(numloops,:)=MissileOut(idx,1:3)-TgtOut(idx,1:2:5); 
   save NOISY holdrange holdpos 
end 
  
% Calculate and display mean miss distance and the standard deviation 
missdistance=mean(holdrange) 
sigmadistance=std(holdrange) 
toc 
  
% Plot target position based on abg filter results for the last run 
figure(2) 
plot(XLAST_Data(:,1),XLAST_Data(:,4)) 
title('Tgt Posn based on abg filter') 
xlabel('X Posn') 
ylabel('Y Posn') 
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%----------------------------------------------------------------------- 
%----------------------------------------------------------------------- 
%   File:           Single_run.m 
%   Name:           CPT Daniel Perh 
%   Compiler:       MatLab v7.11.0.584 (R2010b) 
%                   32-bit (win 32) 
%   Date:           08 July 2011 
%   Description:    Runs a single iteration of a particular engagement  
%                   scenario with user specified inputs 
%   Inputs:         Target Parameters (Alt, Turn rate, Mach, Hdg, Rng) 
%   Outputs:        Min Range (min miss dist)  
%                   Graphs of (LOS Range to Go vs Time) 
%                             (Engagement Geometry) 
%                             (Msl & Tgt Speed vs Time) 
%                             (Msl & Tgt Accel (g) vs Time) 
%                             (Guidance command output vs Time) 
%                             (Msl Forces vs Time) 
%   Process:         
%   Assumptions: 
%   Comments:        
%----------------------------------------------------------------------- 
%----------------------------------------------------------------------- 
clear; 
clc; 
  
%------ define globals ------ 
global STOPFLAG SWITCHFLAG TURNFLAG 
  
%------ define constants ------ 
Thesis_init; 
STOPFLAG = 0;       % (1) enable display of simulation stop conditions 
                    % (0) disable display of sim stop conditions     
                     
%------ define input vector ------ 
% initialize noise variables  
% Set factor to 0 if noiseless simulation is required, else set to any 
% positive integer to specify noise level desired. Factor will be 
% mulitiplied directly into the power spectral density values of the  
% white noise block 
factor = 0 
r_noise = 1*factor;                % Range Noise 
rdot_noise = 1e-2*factor;          % Range Rate Noise 
theta_noise = 1e-8*factor;         % Horizontal LOS angle 
thetadot_noise = 1e-8*factor;      % Horizontal LOS angle rate 
phi_noise = 0*factor;              % Vertical LOS angle 
phidot_noise = 0*factor;           % Vertical LOS angle rate 
  
% set noise for the abg filter 
abgfactor = factor;                 
X1_noise = 1*abgfactor;            % Target X posn noise 
X2_noise = 1e-2*abgfactor;         % Target X velocity noise 
X3_noise = 2e-2*abgfactor;         % Target X accel noise 
Y1_noise = 1*abgfactor;            % Target Y posn noise 
Y2_noise = 1e-2*abgfactor;         % Target Y velocity noise 
Y3_noise = 2e-2*abgfactor;         % Target Y accel noise 
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Z1_noise = 0*abgfactor;            % Target Z posn noise 
Z2_noise = 0*abgfactor;            % Target Z velocity noise 
Z3_noise = 0*abgfactor;            % Target Z accel noise 
  
%------ initialize variables ------ 
  
% set target parameters 
ALT = 6000;                    % default co-altitude in metres 
TARGET_TURN = 6;               % set target turn rate, in g's,  
                               % default = 0, max allowable = 9. 
  
% set target speed 
TGT_MACH = 0.83;                       % user sets Mach # for target 
TGT_SPD = TGT_MACH*machvalt(ALT);      % machine computes speed 
  
% define scenario variables 
TGT_HDG = 40;           % heading of 0 represents tail chase,  
                        % heading of 180 represents head on geometry 
TGT_RNG = 20000;        % set target range 
  
%------ functions ------ 
tic 
  
disp(['Heading = ',num2str(TGT_HDG),' degrees']) 
disp(['Target Range = ',num2str(TGT_RNG/1000),' km']) 
     
% compute target speed components 
XSPD = TGT_SPD*cos(TGT_HDG*pi/180); 
YSPD = TGT_SPD*sin(TGT_HDG*pi/180); 
    
TGT_INIT = [TGT_RNG;XSPD;0;YSPD;-ALT;0]; 
TURNFLAG = 0; 
SWITCHFLAG = 0; 
XLAST = [TGT_RNG;0;0;0;0;    % store data for abgfilter.m use 
         0;-ALT;0;0];   
      
sim('MODEL2') 
toc 
  
disp(['Min Range ',num2str(min(RangeToGo)),' m']) 
  
%% 
%----- plot graphs ------ 
time = rem(now,1); 
hr = floor(time*24); 
mins = floor(rem(time*24,1)*60); 
timestr = [' ',num2str(hr),':',num2str(mins)]; 
  
  
% Missile to target distance (Range-to-go vs Time) 
range = RangeToGo; 
t = MissileOut(:,14); 
t_disc = 0:FILTSAMP:max(t); 



 72 

index = find(range==min(range)); 
ip = t(index(1)); 
  
figure(1) 
subplot(2,1,2) 
plot(t,range) 
title('LOS Range to Go vs Time') 
xlabel(['time (seconds)          ',date,timestr]) 
ylabel('LOS Range (meters)') 
  
% engagement geometry 
subplot(2,1,1) 
plot(TgtOut(:,1),TgtOut(:,3),':',MissileOut(:,1),MissileOut(:,2)) 
axis equal 
outtext1 = ['time: ',num2str(ip),' seconds']; 
outtext2 = ['range: ',num2str(min(range)),' meters']; 
text(100,10000,'Intercept at:') 
text(100,7000,outtext1) 
text(100,4000,outtext2) 
  
title('Engagement Geometry') 
xlabel('x (meters)') 
ylabel('y (meters)') 
legend('Target','Missile','Location','Best') 
  
%% 
% Missile and Target Velocities 
Target_Spd = sqrt(TgtOut(:,2).^2+TgtOut(:,4).^2+TgtOut(:,6).^2); 
figure(2) 
plot(t,MissileSpeed,'b-',t,Target_Spd,'k:') 
title('Missile/Target Speed vs Time') 
ylabel('Speed (m/s)') 
xlabel('Time (s)') 
legend('Missile','Target','Location','Best') 
  
%% 
% Missile & Target Accelerations in g's 
gforce = sqrt(AccelOut(:,1).^2+AccelOut(:,2).^2 ... 
         +AccelOut(:,3).^2)./9.8045; 
figure(3) 
subplot(2,1,1) 
plot(t,gforce) 
title('Missile Accelerations (g) vs Time') 
  
ylabel('Missile Acceleration (g)') 
axis([0 round(max(t)) 0 50]) 
% compute cost function J=20*e(tf)^2+integ(u^2)/200 
u2 = (OmegaOut(:,1).^2+OmegaOut(:,2).^2); 
integral = 0; 
for ii = 2:index 
    integral = integral+(t(ii)-t(ii-1))*u2(ii-1); 
end 
J = 20*min(range)^2+integral/1000; 
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outtxt = ['Time (s) / Missile divert:  ',num2str(integral)]; 
xlabel(outtxt)   
  
Tgtgforce = (sqrt(TargetVelAccel(:,2).^2+TargetVelAccel(:,4).^2+... 
            TargetVelAccel(:,6).^2))/9.8045; 
subplot(2,1,2) 
plot(t,Tgtgforce) 
title('Target Accelerations (g) vs Time') 
xlabel('Time (s)') 
ylabel('Target Acceleration (g)') 
  
%% 
% guidance command 
figure(4) 
plot(t,OmegaOut(:,1),t,OmegaOut(:,2),':') 
title('Guidance law command output vs Time') 
outtxt = ['Cost J: ',num2str(J),'   time (seconds)']; 
xlabel([outtxt,'      ',date,timestr]) 
ylabel('n_c (m/sec^2)') 
axis([0 round(max(t)) -200 50]) 
legend('n_c y','n_c z','Location','Best')     
  
%% 
% Missile Force vs Time 
figure(5) 
plot(t,ForcesOut(:,1),'b-',t,ForcesOut(:,2),'k:') 
title('Missile Forces Fx/Fy vs Time') 
ylabel('Force') 
xlabel('Time (s)') 
legend('Fx','Fy','Location','Best') 
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B. SIMULATION INITIALIZATION SCRIPT FILES 

%% AMRAAM %% 
%----------------------------------------------------------------------- 
%----------------------------------------------------------------------- 
%   File:           Missile_data.m 
%   Name:           CPT Daniel Perh 
%   Compiler:       MatLab v7.11.0.584 (R2010b) 
%                   32-bit (win 32) 
%   Date:           08 July 2011 
%   Description:    Missile data for AMRAAM. Establishes missile  
%                   dimensions for use in computing aerodynamic forces  
%                   and moments. Except where noted, all dimensions in 
%      MKS system. 
%   Inputs:          
%   Outputs:        various 
%   Process:         
%   Assumptions: 
%   Comments:        
%----------------------------------------------------------------------- 
%----------------------------------------------------------------------- 
  
% Missile Name: PSEUDO AMRAAM 
  
%------ define globals ------ 
global MASS DIAM LENGTH XCG XCPN XCPB XHL 
global ST SW SPLAN SREF         % Areas 
global JX JY JZ                 % Rotational Inertia 
  
%------ define constants ------ 
%--- missile body dimensions ------------------------------ 
MASS = 156.8;           % mass, may be time varying 
DIAM = 0.1778;          % diameter 
LENGTH = 3.657;         % length 
XCG = 1.8288;           % initial c.g., may be time varying 
LN = 0.6769;            % length of nose cone 
%--- missile tailplane dimensions ------------------------- 
XHL = 3.454;            % hinge line arm 
CRT = 0.4061;           % tail root chord 
CTT = 0.0676;           % tail tip chord 
TXT = 0.0676;           % tail extension 
HT = 0.2286;            % tail height 
%--- missile wing dimensions ------------------------------ 
XW = 1.134;             % wing to radome tangency point 
CRW = 0.3554;           % wing root chord 
CTW = 0;                % wing tip chord 
WXT = 0;                % wing extension 
HW = 0.1778;            % wing height 
  
%------ define input vector ------ 
  
%------ initialize variables ------ 
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%------ functions ------ 
%--- Centers of pressure ----------------------------------- 
XCPN = 0.67*LN;                                      % nose CP 
XCPW = LN+XW+0.7*CRW-0.2*CTW;                        % wing CP 
AN = 0.67*LN*DIAM;                                   % plan area of nose 
AB = (LENGTH-LN)*DIAM;                               % plan area of body 
XCPB = (0.67*AN*LN+AB*(LN+0.5*(LENGTH-LN)))/(AN+AB); % body CP 
%--- Area computations ------------------------------------- 
SW = 0.5*HW*(CTW+CRW)+CRW*WXT;              % wing area 
ST = 0.5*HT*(CTT+CRT)+CRT*TXT;              % tail area 
SPLAN = (LENGTH-LN)*DIAM+0.67*LENGTH*DIAM;  % body and nose plan area 
SREF = pi*DIAM^2/4;                         % missile cross sectional 
area 
%--- Computing the inertial matrix ------------------------- 
JX = MASS*((DIAM/2)^2)/2; 
JY = MASS*((LENGTH^2)/12+((DIAM/2)^2)/4)+MASS*((LENGTH/2)-XCG)^2; 
JZ = JY; 
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%----------------------------------------------------------------------- 
%----------------------------------------------------------------------- 
%   File:           Thesis_init.m 
%   Name:           CPT Daniel Perh 
%   Compiler:       MatLab v7.11.0.584 (R2010b) 
%                   32-bit (win 32) 
%   Date:           08 July 2011 
%   Description:    This script file initializes thesis work missile 
%                   simulation 
%   Inputs:          
%   Outputs:         
%   Process:         
%   Assumptions: 
%   Comments:        
%----------------------------------------------------------------------- 
%----------------------------------------------------------------------- 
  
%------ define globals ------ 
global STOPFLAG SATFLAG SWITCHFLAG TURNFLAG  
global TARGET_TURN XLAST FILTSAMP  
  
%------ define constants ------ 
% physical constants 
OMEGA_X = 7.292115e-5;          % earth's rotation rate 
GM_E = 3.9860014e14;            % G*mass of earth 
R_E = 6.378164e6;               % radius of earth 
F = 1/298.257;                  % ellipsoidal squash factor 
OMEGA_E = [OMEGA_X;0;0];        % earth's rotational velocity vector 
GRAVITY = 9.8045;               % gravitational acceleration constant 
  
%------ define input vector ------ 
% DEFAULT INPUTS REQUIRED (Data defined here can be superseded by the  
%                          data within the individual simulation script 
%            files)  
ALT = 6000;                     % set default co-altitude in metres 
TARGET_TURN = 0;                % set target turn rate, in g's,  
                                % default = 0, max allowable = 9. 
                                % Simulation applies tgt turn rate 8 s  
                                % prior to impact 
TGT_MACH = 0.83;                % user sets Mach # for target 
TGT_SPD = TGT_MACH*machvalt(ALT); 
MSL_MACH = 0.83;                % user sers Mach # for missile at launch 
MSL_SPD = MSL_MACH*machvalt(ALT); 
TGT_HDG = 70;                   % target heading in degrees. 0  
                                % represents tail chase and 180  
                                % represents head on geometry 
TGT_RNG = 40000;                % target distance from initial launch  
            % point 
  
% REQUIRED GLOBAL VALUES 
STOPFLAG = 0;                % (1) enable display of simulation stop  
                             % conditions 
TURNFLAG = 0;                % store turn rate data, always set to (0) 
SWITCHFLAG = 0;              % prevent turn rate from switching back to 
                             % zero, always set to (0) 
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TMAX = 200;                  % set simulation max run time 
  
XLAST = [TGT_RNG;0;0;0;0;    % store data for abgfilter.m use 
         0;-ALT;0;0];    
        
FILTSAMP = 0.01;             % set filter sample interval for  
                             % abgfliter.m use. Also sets the Sampling 
                             % time for the white noise blocks as well 
                             % as the step size interval when selecting 
                             % fixed step size simulation solver. Do not 
                             % set larger than 0.02 for diffgeo guidance 
                             % law.  
  
%------ initialize variables ------ 
% missile physical parameters 
Missile_data; 
  
VB = [MSL_SPD;0;0];          % Missile initial velocity vector 
POSN = [0;0;-ALT];           % initial missile position vector, note  
                             % altitude is negative in NED coord 
  
% compute Euler angles for missile 
PSI = 0*pi/180;              % Varying PSI will determine the angle at  
                             % which the missile is pointing at the 
                             % target. 0 deg will be pointing straight  
                             % at the target. 
THETA = 0*pi/180; 
PHI = 0*pi/180; 
  
%------ functions ------ 
Q_0 = quarternion(PHI,THETA,PSI); 
Q_0 = Q_0/sqrt(Q_0(1)^2+Q_0(2)^2+Q_0(3)^2+Q_0(4)^2); 
  
B = quat2b(Q_0); 
  
P = 0*pi/180; 
Q = 0*pi/180; 
R = 0*pi/180; 
  
OMEGA_B = [P;Q;R]; 
  
% missile initial state vector 
MSL_INIT = [POSN;VB;OMEGA_B;Q_0]; 
  
% compute target speed components 
XSPD = TGT_SPD*cos(TGT_HDG*pi/180); 
YSPD = TGT_SPD*sin(TGT_HDG*pi/180); 
   
% target initial state vector [x;x_dot;y;y_dot;z;z_dot] 
TGT_INIT = [TGT_RNG;XSPD;0;YSPD;-ALT;0]; 
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C. SIMULATION GUIDANCE LAW FUNCTION FILES 

function [ y ] = chingfanlin ( u ) 
% CHINGFANLIN 
% Computes the optimal guidance law derived by Ching Fan Lin pg 475 with 
% drag force inputs for point mass simulation 
  
%----------------------------------------------------------------------- 
%----------------------------------------------------------------------- 
%   File:           chingfanlin.m 
%   Name:           CPT Daniel Perh 
%   Compiler:       MatLab v7.11.0.584 (R2010b) 
%                   32-bit (win 32) 
%   Date:           08 July 2011 
%   Description:    computes APN guidance law from Ching Fan Lin 
%   Inputs:         seeker output, filter output, accelerometer, missile 
%                   timer 
%   Outputs:        command accelerations, y & z forces for drag 
%   Process:         
%   Assumptions: 
%   Comments:        
%----------------------------------------------------------------------- 
%----------------------------------------------------------------------- 
  
%------ define globals ------ 
global MASS SATFLAG 
  
%------ define constants ------ 
Nprime = 5; 
Nprimez = 5; 
  
%------ define input vector ------ 
thetadot =  u(1); 
phidot =    u(2); 
los =       u(3); 
philos =    u(4); 
Vc =       -u(5); 
R =         u(6); 
heading =   u(7); 
Vm =        u(8); 
Vmdot =     u(9); 
phi =       u(10); 
theta =     u(11); 
psi =       u(12); 
  
tgt_state = u(13:21); 
time =      u(22); 
  
accel_in =  u(23:25); 
  
%------ initialize variables ------ 
  
%------ functions ------ 
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if (Vc==0) 
    tgo = 1e6; 
else 
    tgo = R/Vc; 
end 
  
% Compute relative state estimate 
xhat = [R*cos(los); 
        R*sin(los); 
        R*sin(philos); 
        tgt_state(2)-Vm*cos(psi); 
        tgt_state(5)-Vm*sin(psi); 
        tgt_state(8)-Vm*sin(theta); 
        tgt_state(3); 
        tgt_state(6); 
        tgt_state(9); 
        accel_in(1); 
        accel_in(2); 
        accel_in(3)]; 
if time<2.0 
    ny = Nprime*Vc*(thetadot)/cos(heading-los); 
    nz = Nprimez*Vc*(phidot)-9.8045; 
else 
    uc = (5/tgo^2)*[eye(3),tgo*eye(3), tgo^2/2*eye(3), zeros(3)]*xhat; 
    ny = uc(2); 
    nz = uc(3) - 9.8045; 
end 
  
% Define acceleration in x-axis as 0 as it will be determined from the 
% thrust and drag model blocks 
nx = 0;  
  
% Saturation of forces at 30 g's will be done in the Aerodynamic Force  
% Generator Block  
y = [nx;ny;nz]; 
  
end 
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function [ y ] = diffgeo ( u ) 
% DIFFGEO 
% Computes the differential geometric guidance law derived by Chaoyong 
Li 
  
%----------------------------------------------------------------------- 
%----------------------------------------------------------------------- 
%   File:           diffgeo.m 
%   Name:           CPT Daniel Perh 
%   Compiler:       MatLab v7.11.0.584 (R2010b) 
%                   32-bit (win 32) 
%   Date:           08 July 2011 
%   Description:    computes Differential Geometry guidance law from 
%                   Chaoyong Li 
%   Inputs:         seeker output, filter output, accelerometer, missile 
%                   timer 
%   Outputs:        command accelerations, y & z forces for drag 
%   Process:         
%   Assumptions: 
%   Comments:        
%----------------------------------------------------------------------- 
%----------------------------------------------------------------------- 
  
%------ define globals ------ 
global MASS SATFLAG 
  
%------ define constants ------ 
Nprime = 5; 
Nprimez = 5; 
  
%------ define input vector ------ 
thetadot =  u(1); 
phidot =    u(2); 
los =       u(3); 
philos =    u(4); 
Vc =       -u(5); 
R =         u(6); 
heading =   u(7); 
Vm =        u(8); 
Vmdot =     u(9); 
phi =       u(10); 
theta =     u(11); 
psi =       u(12); 
  
tgt_state = u(13:21); 
time =      u(22); 
  
accel_in =  u(23:25); 
  
%------ initialize variables ------ 
  
%------ functions ------ 
tgt_accel = [u(15);u(18)];          % Target acceleration vector in X-Y  
                                    % plane 
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eta_t = atan2(u(17),u(14)) - los;   % Angle between velocity vector of  
                                    % target and the los vector in 
                                    % horizontal plane 
eta_tz = atan2(u(21),norm(tgt_accel)); % angle eta in vertical plane 
eta_m = psi - los;                  % Look angle of the missile 
  
  
% Diff Geometric guidance law 
ny = norm(tgt_accel)*cos(eta_t)/cos(eta_m) +... 
     Nprime*Vc*(thetadot)/cos(eta_m); 
% vertical acceleration must account for gravity 
nz = u(21)*cos(eta_tz)/cos(theta-philos) +... 
     Nprimez*Vc*(phidot)/cos(theta-philos) - 9.8045; 
  
% Define acceleration in x-axis as 0 as it will be determined from the 
% thrust and drag model blocks 
nx = 0;  
  
% Saturation of forces at 30 g's will be done in the Aerodynamic Force  
% Generator Block  
y = [nx;ny;nz]; 
  
end 
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function [ y ] = propnavpt ( u ) 
% PROPNAVPT 
% Computes the exact proportional navigation with drag force inputs for 
% point mass simulation 
  
%----------------------------------------------------------------------- 
%----------------------------------------------------------------------- 
%   File:           propnavpt.m 
%   Name:           CPT Daniel Perh 
%   Compiler:       MatLab v7.11.0.584 (R2010b) 
%                   32-bit (win 32) 
%   Date:           08 July 2011 
%   Description:    Prop nav guidance law for 6 DOF flight model. 
Computes 
%                   the applied forces for use by induced drag model.  
%                   Required to eliminate algebraic loops in the 
simulation  
%   Inputs:         [seeker data, IMU data, timer] 
%   Outputs:        [command accelerations. applied forces] 
%   Process:         
%   Assumptions: 
%   Comments:        
%----------------------------------------------------------------------- 
%----------------------------------------------------------------------- 
  
%------ define globals ------ 
global MASS SATFLAG 
  
%------ define constants ------ 
Nprime = 5; 
Nprimez = 5; 
  
%------ define input vector ------ 
thetadot =  u(1); 
phidot =    u(2); 
los =       u(3); 
philos =    u(4); 
Vc =       -u(5); 
theta =     u(11); 
psi =       u(12); 
  
  
%------ initialize variables ------ 
  
%------ functions ------ 
% classic PN guidance law 
ny = Nprime*Vc*(thetadot)/cos(psi-los); 
% vertical acceleration must account for gravity 
nz = Nprimez*Vc*(phidot)/cos(theta-philos)-9.8045; 
  
% Define acceleration in x-axis as 0 as it will be determined from the 
% thrust and drag model blocks 
nx = 0;  
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% Saturation of forces at 30 g's will be done in the Aerodynamic Force  
% Generator Block  
y = [nx;ny;nz]; 
  
end 
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D. SIMULATION FUNCTION FILES 

function [ y ] = abgfilter ( u ) 
% ABGFILTER 
% Implements an alpha-beta-gamma filter as outlined in Bar-Shalom & Li 
% "Estimation and Tracking" 
  
%----------------------------------------------------------------------- 
%----------------------------------------------------------------------- 
%   File:           abgfilter.m 
%   Name:           CPT Daniel Perh 
%   Compiler:       MatLab v7.11.0.584 (R2010b) 
%                   32-bit (win 32) 
%   Date:           08 July 2011 
%   Description:    Implements a 9-dimensional state vector 
%                   alpha-beta-gamma tracking filter for use with  
%                   missile guidance laws requiring tracking filters  
%                   (Note: Uses global XLAST to preserve state between   
%          iterations) 
%   Inputs:         measurements (los,los_dot,R,R_dot), 
%                   missile posn (x,y,z) 
%   Outputs:        9-dimensional estimate of target state 
%                   (x,vx,ax,y,vy,ay,z,vz,az) 
%   Assumptions: 
%   Comments:       May require up to 20 samples to stabilize from 
%                   initialization 
%----------------------------------------------------------------------- 
%----------------------------------------------------------------------- 
  
%------ define globals ------ 
global FILTSAMP XLAST 
  
%------ define constants ------ 
  
%------ define input vector ------ 
losdot = u(1); 
phidot = u(2); 
los = u(3); 
phi = u(4); 
rdot = u(5); 
R = u(6); 
xm = u(7); 
ym = u(8); 
zm = u(9); 
  
%------ initialize variables ------ 
% compute target cartesian coordinates 
xt = R*cos(los)+xm; 
yt = R*sin(los)+ym; 
zt = R*sin(phi)+zm; 
  
z = [xt;yt;zt]; 
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% set noise parameters 
sigmav = 1; 
sigmaw = 1; 
lamda = sigmav*(FILTSAMP^2)/sigmaw; 
  
% set filter parameters from Bar-Shalom & Li (Assumed Numbers) 
falpha = .9; 
fbeta = .9; 
fgamma = .9; 
  
% filter matrices 
F = [1 FILTSAMP FILTSAMP^2/2 zeros(1,6); 
     0 1 FILTSAMP zeros(1,6); 
     0 0 1 zeros(1,6); 
     0 0 0 1 FILTSAMP FILTSAMP^2/2 zeros(1,3); 
     0 0 0 0 1 FILTSAMP zeros(1,3); 
     0 0 0 0 0 1 zeros(1,3); 
     0 0 0 0 0 0 1 FILTSAMP FILTSAMP^2/2; 
     0 0 0 0 0 0 0 1 FILTSAMP; 
     0 0 0 0 0 0 0 0 1]; 
  
 H = [1 0 0 0 0 0 0 0 0; 
      0 0 0 1 0 0 0 0 0; 
      0 0 0 0 0 0 1 0 0]; 
   
 % compute steady state gains 
 W = [falpha;fbeta/FILTSAMP;fgamma/(2*FILTSAMP^2)]; 
  
 % build gain matrix 
 P = [W zeros(3,2); 
     zeros(3,1) W zeros(3,1); 
     zeros(3,2) W]; 
  
 %------ functions ------  
 % run filter 
 xhat = F*XLAST; 
 xhat1 = xhat + P*(z-H*xhat); 
  
 XLAST = xhat1; 
  
 y = xhat1; 
  
end 
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function [ y ] = alphabeta( u ) 
% ALPHABETA 
% Computes angles of attack in both vertical and horizontal planes  
  
%----------------------------------------------------------------------- 
%----------------------------------------------------------------------- 
%   File:           alphabeta.m 
%   Name:           CPT Daniel Perh 
%   Compiler:       MatLab v7.11.0.584 (R2010b) 
%                   32-bit (win 32) 
%   Date:           08 July 2011 
%   Description:    Computes angles of attack using ATAN formulation in 
%                   Bryson "Control of Spacecraft and Aircraft" 
%   Inputs:         Missile state 
%   Outputs:        Angles of attack (alpha, beta) 
%   Process:        ATAN formulation of Bryson 
%   Assumptions: 
%   Comments:        
%----------------------------------------------------------------------- 
%----------------------------------------------------------------------- 
  
%------ define globals ------ 
  
%------ define constants ------ 
  
%------ define input vector ------ 
v = [u(4);u(5);u(6)]; 
  
%------ initialize variables ------ 
  
%------ functions ------ 
% (Equations developed in Bryson) 
% using beta1 for sideslip angle to avoid problems with built in matlab 
% function 'beta' 
  
alpha = atan2(v(3),sqrt(v(1)^2+v(2)^2)); 
beta1 = atan2(v(2),v(1)); 
  
y = [alpha;beta1]; 
  
end 
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function [ y ] = cdvmach (mach, boost) 
% CDVMACH 
% Computes approximation of zero lift drag coefficient vs. mach number 
  
%----------------------------------------------------------------------- 
%----------------------------------------------------------------------- 
%   File:           cdvmach.m 
%   Name:           CPT Daniel Perh 
%   Compiler:       MatLab v7.11.0.584 (R2010b) 
%                   32-bit (win 32) 
%   Date:           08 July 2011 
%   Description:    Computes polynomial fit for cd0 vs Mach number 
%   Inputs:         mach # and boost status 
%   Outputs:        cd0 
%   Process:        Fit on data from Hutchins EC4330 notes 
%   Assumptions: 
%   Comments:        
%----------------------------------------------------------------------- 
%----------------------------------------------------------------------- 
%------ define globals ------ 
%------ define constants ------ 
NoBoost = [-0.0014 0.0299 -0.2110 0.6256]; 
Boost = [-0.0012 0.0243 -0.1521 0.4044]; 
%------ define input vector ------ 
%------ initialize variables ------ 
%------ functions ------ 
if (boost & (mach<0.7)) 
    y=0.15; 
end 
if (~boost & (mach<0.7)) 
    y=0.25; 
end 
if (boost & (mach>=0.7) & (mach<1.2)) 
    y=(mach-0.7)*0.2 + 0.15; 
end 
if (~boost & (mach>=0.7) & (mach<1.2)) 
    y=(mach-0.7)*0.3 + 0.25; 
end 
if ((mach>=1.2) & (boost~=0)) 
    y=polyval(Boost, mach); 
end 
if ((mach>=1.2) & (boost==0)) 
    y=polyval(NoBoost, mach); 
end 
if ((mach>5 & boost)) 
    y=0.10; 
end 
if ((mach>6.4) & ~boost) 
    y=0.132; 
end 
end 
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function [ y ] =  draginduced( u ) 
% DRAGINDUCED 
% Computes the induced aerodynamic drag force 
  
%----------------------------------------------------------------------- 
%----------------------------------------------------------------------- 
%   File:           draginduced.m 
%   Name:           CPT Daniel Perh 
%   Compiler:       MatLab v7.11.0.584 (R2010b) 
%                   32-bit (win 32) 
%   Date:           08 July 2011 
%   Description:    computes induced drag for simplified 6DOF 
%   Inputs:         force output of guidance law, state 
%   Outputs:        drag force 
%   Process:        work backwards to CN from forces 
%   Assumptions: 
%   Comments:        
%----------------------------------------------------------------------- 
%----------------------------------------------------------------------- 
  
%------ define globals ------ 
global MASS SREF 
  
%------ define constants ------ 
eAR = 1.5;            % elliptical eff & AR 
  
%------ define input vector ------ 
Fy = u(2); 
Fz = u(3); 
v2 = u(7)^2+u(8)^2+u(9)^2;          % missile velocity 
alt = u(6);                         % missile alt 
  
%------ initialize variables ------ 
rho = rhovalt(abs(alt));            % atmospheric density 
mach = sqrt(v2)/machvalt(alt); 
Q = rho*v2/2;                       % dynamic pressure 
  
%------ functions ------ 
if (Q==0) 
    Cny = 0; 
    Cnz = 0; 
else 
    Cny = Fy/(Q*SREF);              % y normal coefficient 
    Cnz = Fz/(Q*SREF);              % z normal coefficient 
end 
Cdi = (Cny^2+Cnz^2)/(pi*eAR);       % induced drag coefficient 
  
if (mach<1) 
    Cdi = 0.25*sqrt(Fy^2+Fz^2)/(MASS*9.8045);  % subsonic drag equal to 
                                               % max Cd0*applied G force 
end 
y = Cdi*Q*SREF;                     % drag force 
  
end 
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function [ y ] = dragparasitic ( u ) 
% DRAGPARASITIC 
% Computes parasitic aerodynamic drag force 
  
%----------------------------------------------------------------------- 
%----------------------------------------------------------------------- 
%   File:           dragparasitic.m 
%   Name:           CPT Daniel Perh 
%   Compiler:       MatLab v7.11.0.584 (R2010b) 
%                   32-bit (win 32) 
%   Date:           08 July 2011 
%   Description:    Computes parasitic drag after breaking apart state 
%                   vector 
%   Inputs:         state vector, boost status 
%   Outputs:        parasitic drag force 
%   Process:         
%   Assumptions: 
%   Comments:        
%----------------------------------------------------------------------- 
%----------------------------------------------------------------------- 
  
%------ define globals ------ 
global  SREF  
  
%------ define constants ------ 
  
%------ define input vector ------ 
vel2 = u(4)^2+u(5)^2+u(6)^2; 
alt = u(3); 
  
boost = u(14); 
  
%------ initialize variables ------ 
  
%------ functions ------ 
y = formdrag(SREF, alt, vel2, boost); 
  
end 
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function [ y ] = dynamic3D ( u ) 
% DYNAMIC3D 
% Computes the motion dynamics for a body (target) in three dimensions 
  
%----------------------------------------------------------------------- 
%----------------------------------------------------------------------- 
%   File:           dynamic3d.m 
%   Name:           CPT Daniel Perh 
%   Compiler:       MatLab v7.11.0.584 (R2010b) 
%                   32-bit (win 32) 
%   Date:           08 July 2011 
%   Description:    target motion dynamics 
%   Inputs:         target state, turn rate input 
%   Outputs:        derivative of target state 
%   Process:         
%   Assumptions: 
%   Comments:        
%----------------------------------------------------------------------- 
%----------------------------------------------------------------------- 
  
%------ define globals ------ 
  
%------ define constants ------ 
  
%------ define input vector ------ 
Ac = u(1);              % Centripetal Acceleration 
x = u(2); 
xdot = u(3); 
y = u(4); 
ydot = u(5); 
z = u(6); 
zdot = u(7); 
  
%------ initialize variables ------ 
  
%------ functions ------ 
TgtSpd = sqrt(xdot^2+ydot^2+zdot^2); 
omega = Ac/TgtSpd;                   % where Ac = TgtSpd^2 / r 
                                     % & omega = TgtSpd / r 
  
y = [xdot; 
     -omega*ydot; 
     ydot; 
     omega*xdot; 
     zdot; 
     0]; 
  
end 
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function [ y ] = flatearthdyn ( u ) 
% FLATEARTHDYN 
% Computes motion dynamics for 6 DOF flat earth model 
  
%----------------------------------------------------------------------- 
%----------------------------------------------------------------------- 
%   File:           flatearthdyn.m 
%   Name:           CPT Daniel Perh 
%   Compiler:       MatLab v7.11.0.584 (R2010b) 
%                   32-bit (win 32) 
%   Date:           08 July 2011 
%   Description:    Computes 6 DOF dynamics for flat earth using 
%                   quarternion formulation 
%   Inputs:          
%   Outputs:        derivative of state vector 
%   Process:        Steven & Lewis 
%   Assumptions: 
%   Comments:        
%----------------------------------------------------------------------- 
%----------------------------------------------------------------------- 
  
%------ define globals ------ 
  
%------ define constants ------ 
  
%------ define input vector ------ 
p = [u(1);u(2);u(3)]; 
v_b = [u(4);u(5);u(6)]; 
omega_b = [u(7);u(8);u(9)]; 
P = u(7); Q = u(8); R = u(9); 
  
q = [u(10);u(11);u(12);u(13)]; 
  
magq = sqrt(q(1)^2+q(2)^2+q(3)^2+q(4)^2); 
q = q/magq; 
  
x = [p;v_b;omega_b;q]; 
  
J = [u(14)   0     0;               % inertial matrix 
       0   u(15)   0; 
       0     0   u(16)]; 
  
F_B = [u(17);u(18);u(19)];          % Forces 
  
T_B = [u(20);u(21);u(22)];          % Torques 
  
g = [0; 0; 9.8045];                 % Not using external gravity model 
  
m = u(23);                          % Mass 
  
%------ initialize variables ------ 
% Compute rotation matrices 
B = quat2b(q); 
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OMEGA_B = [0 -R  Q; 
           R  0 -P; 
          -Q  P  0]; 
  
OMEGA_q = [0  P  Q  R; 
          -P  0 -R  Q; 
          -Q  R  0 -P; 
          -R -Q  P  0]; 
       
%------ functions ------ 
y = [zeros(3)         B'         zeros(3)            zeros(3,4); 
     zeros(3)    -OMEGA_B        zeros(3)            zeros(3,4); 
     zeros(3)     zeros(3)    -1*inv(J)*OMEGA_B*J    zeros(3,4); 
     zeros(4,3)   zeros(4,3)     zeros(4,3)       -(1/2)*OMEGA_q]; 
  
y = y*x; 
  
y = y+[zeros(3,1); 
       B*g+(1/m)*F_B; 
       inv(J)*T_B; 
       zeros(4,1)]; 
  
end 
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function [ y ] = formdrag (A, alt, vel2, boost ) 
% FORMDRAG 
% Computes form drag for a missile with frontal area A in a standard 
% atmosphere. Uses MACHVALT, CDVMACH, RHOVALT 
  
%----------------------------------------------------------------------- 
%----------------------------------------------------------------------- 
%   File:           formdrag.m 
%   Name:           CPT Daniel Perh 
%   Compiler:       MatLab v7.11.0.584 (R2010b) 
%                   32-bit (win 32) 
%   Date:           08 July 2011 
%   Description:    Computs the form drag for a missile with frontal  
%                   area A in a standard atmosphere  
%   Inputs:         area, altitude. V^2, boost on/off 
%   Outputs:        parasitic drag force 
%   Process:         
%   Assumptions: 
%   Comments:        
%----------------------------------------------------------------------- 
%----------------------------------------------------------------------- 
  
%------ define globals ------ 
  
%------ define constants ------ 
  
%------ define input vector ------ 
  
%------ initialize variables ------ 
rho = rhovalt(alt); 
mach = (vel2)^(1/2)/machvalt(alt); 
  
%------ functions ------ 
if (mach>100) 
    mach = 0.83; 
end 
  
Cd = cdvmach(mach,boost); 
  
y = rho*vel2*Cd*A/2; 
  
end 
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function [ y ] = machvalt ( alt ) 
% MACHVALT 
% Computes the linear approximation for a given altitude in meters/sec 
% based on  standard ICAO atmosphere 
  
%----------------------------------------------------------------------- 
%----------------------------------------------------------------------- 
%   File:           machvalt.m 
%   Name:           CPT Daniel Perh 
%   Compiler:       MatLab v7.11.0.584 (R2010b) 
%                   32-bit (win 32) 
%   Date:           08 July 2011 
%   Description:    Computes the linear approximation to Mach 1 for 
%                   standard ICAO atmosphere 
%   Inputs:         altitude 
%   Outputs:        Mach 1 
%   Process:         
%   Assumptions: 
%   Comments:        
%----------------------------------------------------------------------- 
%----------------------------------------------------------------------- 
  
%------ define globals ------ 
  
%------ define constants ------ 
Mach1 = [-0.0041 340.3]; 
Mach2 = 295.1; 
Mach3 = [0.00067 281.7]; 
  
%------ define input vector ------ 
  
%------ initialize variables ------ 
alt = abs(alt);             % account for NED coords 
  
%------ functions ------ 
if (alt<11000) 
    y = polyval(Mach1,alt); 
else 
    if (alt>20000) 
        y = polyval(Mach3,alt); 
    else 
        y = Mach2; 
    end 
end 
         
end 
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function [ y ] =  q2euler( u ) 
% Q2EULER 
% Computes the Euler angles from quarternions 
  
%----------------------------------------------------------------------- 
%----------------------------------------------------------------------- 
%   File:           q2euler.m 
%   Name:           CPT Daniel Perh 
%   Compiler:       MatLab v7.11.0.584 (R2010b) 
%                   32-bit (win 32) 
%   Date:           08 July 2011 
%   Description:    Computes the euler angles from the quarternions 
%   Inputs:         Quarternions 
%   Outputs:        Euler Angles 
%   Process:        Kuiper 
%   Assumptions: 
%   Comments:        
%----------------------------------------------------------------------- 
%----------------------------------------------------------------------- 
  
%------ define globals ------ 
  
%------ define constants ------ 
  
%------ define input vector ------ 
q0 = u(1); 
q1 = u(2); 
q2 = u(3); 
q3 = u(4); 
  
%------ initialize variables ------ 
  
%------ functions ------ 
% convert quarternions to euler angles 
m11 = 2*q0^2+2*q1^2-1; 
m12 = 2*q1*q2+2*q0*q3; 
m13 = 2*q1*q3-2*q0*q2; 
m23 = 2*q2*q3+2*q0*q1; 
m33 = 2*q0^2+2*q3^2-1; 
  
psi = atan2(m12,m11); 
theta = asin(-m13); 
% correct for singularity in pitch 
if (isreal(theta)) 
    theta = theta; 
else 
    theta = sign(-m13)*pi/2; 
end 
  
phi = atan2(m23,m33); 
y = [phi, theta, psi]; 
  
end 
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function [ y ] = quarternion ( phi,theta,psi ) 
% QUARTERNION 
% Computes the quarternions from Euler angles in radians 
  
%----------------------------------------------------------------------- 
%----------------------------------------------------------------------- 
%   File:           quarternion.m 
%   Name:           CPT Daniel Perh 
%   Compiler:       MatLab v7.11.0.584 (R2010b) 
%                   32-bit (win 32) 
%   Date:           08 July 2011 
%   Description:    Computes the quarternions from euler angles 
%   Inputs:         Euler angles in radians 
%   Outputs:        Quarternions 
%   Process:        Kuiper 
%   Assumptions: 
%   Comments:        
%----------------------------------------------------------------------- 
%----------------------------------------------------------------------- 
  
%------ define globals ------ 
  
%------ define constants ------ 
  
%------ define input vector ------ 
  
%------ initialize variables ------ 
  
%------ functions ------ 
% Quarternion equations 
q0 = cos(phi/2)*cos(theta/2)*cos(psi/2)... 
        +sin(phi/2)*sin(theta/2)*sin(psi/2); 
q1 = sin(phi/2)*cos(theta/2)*cos(psi/2)... 
   -cos(phi/2)*sin(theta/2)*sin(psi/2); 
q2 = cos(phi/2)*sin(theta/2)*cos(psi/2)... 
   +sin(phi/2)*cos(theta/2)*sin(psi/2); 
q3 = cos(phi/2)*cos(theta/2)*sin(psi/2)... 
   -sin(phi/2)*sin(theta/2)*cos(psi/2); 
  
y = [q0; q1; q2; q3]; 
  
end 



 97 

function [ y ] = quat2b ( u ) 
% QUAT2B 
% Computes rotation matrix from quarternions 
  
%----------------------------------------------------------------------- 
%----------------------------------------------------------------------- 
%   File:           quat2b.m 
%   Name:           CPT Daniel Perh 
%   Compiler:       MatLab v7.11.0.584 (R2010b) 
%                   32-bit (win 32) 
%   Date:           08 July 2011 
%   Description:    Computes rotation matrix from quarternions 
%   Inputs:         Quarternion 
%   Outputs:        Rotation Matrix B 
%   Process:        Kuiper 
%   Assumptions: 
%   Comments:        
%----------------------------------------------------------------------- 
%----------------------------------------------------------------------- 
  
%------ define globals ------ 
  
%------ define constants ------ 
  
%------ define input vector ------ 
q0 = u(1); 
q1 = u(2); 
q2 = u(3); 
q3 = u(4); 
  
%------ initialize variables ------ 
  
%------ functions ------ 
y = [q0^2+q1^2-q2^2-q3^2    2*(q1*q2+q0*q3)      2*(q1*q3-q0*q2); 
       2*(q1*q2-q0*q3)    q0^2-q1^2+q2^2-q3^2    2*(q2*q3+q0*q1); 
       2*(q1*q3+q0*q2)       2*(q2*q3-q0*q1)    q0^2-q1^2-q2^2+q3^2]; 
  
end 
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function [ y ] = rhovalt ( alt ) 
% RHOVALT 
% Computes the atmospheric density vs altitude for ICAO standard 
atmosphere 
  
%----------------------------------------------------------------------- 
%----------------------------------------------------------------------- 
%   File:           rhovalt.m 
%   Name:           CPT Daniel Perh 
%   Compiler:       MatLab v7.11.0.584 (R2010b) 
%                   32-bit (win 32) 
%   Date:           08 July 2011 
%   Description:    Computes the atmospheric density from ICAO standard 
%                   atmosphere. Exponential model 
%   Inputs:         Altitude 
%   Outputs:        rho 
%   Process:         
%   Assumptions: 
%   Comments:        
%----------------------------------------------------------------------- 
%----------------------------------------------------------------------- 
  
%------ define globals ------ 
  
%------ define constants ------ 
  
%------ define input vector ------ 
  
%------ initialize variables ------ 
alt = abs(alt);                 % account for NED coord 
  
%------ functions ------ 
if alt>9144 
    y = 1.75228763*exp(-alt/6705.6); 
else 
    y = 1.22557*exp(-alt/9144); 
end 
  
end 
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function [ y ] = switchlimit ( u ) 
% SWITCHLIMIT 
% Governs the output of the switch in activating target turn maneuvers. 
  
%----------------------------------------------------------------------- 
%----------------------------------------------------------------------- 
%   File:           switchlimit.m 
%   Name:           CPT Daniel Perh 
%   Compiler:       MatLab v7.11.0.584 (R2010b) 
%                   32-bit (win 32) 
%   Date:           08 July 2011 
%   Description:    In certain scenarios, after Time-to-Go falls below 
%                   specified threshold and the switch activates to  
%                   start Target evasive maneuvers, the Time-to-Go may  
%                   increase back above the specified threshold. When  
%                   this happens, the switch no longer outputs the  
%                   target turn rate and the target stops turning into  
%                   the missile for evasive maneuvers until Time-to-Go  
%     falls below threshold again. 
% 
%                   Therefore, this function is implemented to output  
%                   the turn rate value from the time where the Time-to-  
%                   Go falls below the specified threshold for the first  
%                   time and keeps outputting the turn rate value  
%                   regardless if the Time-to-Go subsequently increases  
%                   above threshold value until the end of the  
%     simulation. 
% 
%                   NOTE: the global variables SWITCHFLAG and TURNFLAG  
%                   must always be reset to 0 prior to calling for the  
%                   next model simulation. 
%   Inputs:         Target Turn Rate 
%   Outputs:        Target Turn Rate 
%   Process:         
%   Assumptions: 
%   Comments:        
%----------------------------------------------------------------------- 
%----------------------------------------------------------------------- 
  
%------ define globals ------ 
global SWITCHFLAG TURNFLAG 
%------ define constants ------ 
%------ define input vector ------ 
%------ initialize variables ------ 
%------ functions ------ 
  
if ((u==0) & (SWITCHFLAG==0)) 
    y=u; 
else if (u~=0 & (SWITCHFLAG==0)) 
    SWITCHFLAG = 1; 
    y = u; 
    TURNFLAG = u; 
    else if (u~=0 & (SWITCHFLAG==1)) 
        y=u; 
        else if (u==0 &(SWITCHFLAG==1)) 
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            y = TURNFLAG; 
            end 
        end 
    end 
end 
  
end 
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function [ y ] = tgo ( u ) 
% TGO 
% Computes time to go from Range and Range Rate 
  
%----------------------------------------------------------------------- 
%----------------------------------------------------------------------- 
%   File:           tgo.m 
%   Name:           CPT Daniel Perh 
%   Compiler:       MatLab v7.11.0.584 (R2010b) 
%                   32-bit (win 32) 
%   Date:           08 July 2011 
%   Description:    Computes Time-to-Go (tgo) 
%   Inputs:         range, range rate 
%   Outputs:        tgo 
%   Process:         
%   Assumptions: 
%   Comments:        
%----------------------------------------------------------------------- 
%----------------------------------------------------------------------- 
  
%------ define globals ------ 
  
%------ define constants ------ 
  
%------ define input vector ------ 
range = u(2); 
rate = u(1); 
  
%------ initialize variables ------ 
  
%------ functions ------ 
if (rate==0) 
    y = 100; 
else 
    y = abs(range/rate); 
end 
  
end 
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function [ y ] = thebigstop ( u ) 
% THEBIGSTOP 
% Consolidated simulation stop function 
  
%----------------------------------------------------------------------- 
%----------------------------------------------------------------------- 
%   File:           thebigstop.m 
%   Name:           CPT Daniel Perh 
%   Compiler:       MatLab v7.11.0.584 (R2010b) 
%                   32-bit (win 32) 
%   Date:           08 July 2011 
%   Description:    Stops simulation under a variety of conditions 
%   Inputs:         see below 
%   Outputs:        stop flag 
%   Process:         
%   Assumptions: 
%   Comments:        
%----------------------------------------------------------------------- 
%----------------------------------------------------------------------- 
  
%------ define globals ------ 
global STOPFLAG  
  
%------ define constants ------ 
  
%------ define input vector ------ 
R = u(1); 
Rdot = u(2); 
Vm = u(3); 
Vt = u(4); 
G = u(5); 
Ny = u(6); 
Nz = u(7); 
time = u(8); 
  
%------ initialize variables ------ 
stop = []; 
y = 0; 
  
%------ functions ------ 
  
    if ((time>2.0)&(Vm<Vt)) 
        y = 111; 
        stop = 'V stop'; 
    end 
  
    if ((time>2.0)&(Rdot>0)) 
         y = 111; 
        stop = 'Rdot stop'; 
    end 
  
    if (R<0.000001) 
        y = 111; 
        stop = 'R stop'; 
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    end 
  
    if ((STOPFLAG==1)&(y==111)) 
        disp(['*** ',stop,' ***']) 
    end 
     
end 
 
 
 
 
 
 
 
   
  
  
  
 
 
 
 
 
 
 
 
 
 



 104 

THIS PAGE INTENTIONALLY LEFT BLANK  



 105 

APPENDIX C. ADDITIONAL SIMULATION SCENARIOS 

A sample of the single simulation run outputs are arranged in this appendix for 

each of the guidance law in a noise included scenario. For each law, a different target and 

missile heading is chosen with different simulation parameters to demonstrate the 

capability of the model and the guidance laws. The following plots are then used to 

present the results: 

• Engagement geometry 

• LOS range to go vs. time 

• Missile and target speed vs. time 

• Missile and target total acceleration vs. time 

• Missile forces (Fx/Fy) vs. time 
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A. PN GUIDANCE LAW 

The first scenario has an initial range of 20 km, direct tail chase at 0° azimuth but 

with the missile initially being launched pointing 45° away from the target. Co-altitude at 

6000 m, with target 6g maneuver towards the missile at three seconds tgo. 
     

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5
x 10

4 LOS Range to Go vs Time

time (seconds)          18-Nov-2011 13:22

LO
S

 R
an

ge
 (

m
et

er
s)

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

-2000

0

2000

4000

6000 Intercept at:
time: 56.6729 seconds
range: 66.0747 meters

Engagement Geometry

x (meters)

y 
(m

et
er

s)

 

 

Target
Missile

 

0 10 20 30 40 50 60
200

300

400

500

600

700

800

900

1000

1100
Missile/Target Speed vs Time

S
pe

ed
 (

m
/s

)

Time (s)

 

 

Missile
Target

 
 



 107 

0 10 20 30 40 50
0

10

20

30

40

50
Missile Accelerations (g) vs Time

M
is

si
le

 A
cc

el
er

at
io

n 
(g

)

Time (s) / Missile divert:  90704.9795

0 10 20 30 40 50 60
0

2

4

6

8
Target Accelerations (g) vs Time

Time (s)

Ta
rg

et
 A

cc
el

er
at

io
n 

(g
)

 
 

0 10 20 30 40 50 60
-5

-4

-3

-2

-1

0

1

2

3
x 10

4 Missile Forces Fx/Fy vs Time

Fo
rc

e 
(N

)

Time (s)

 

 
Fx
Fy

 
 



 108 

B. APN GUIDANCE LAW 

 

This second scenario has an initial range of 20 km, at 45° azimuth but with the 

missile initially being launched pointing -25° away from the target. Co-altitude at 6000 

m, with target 6g maneuver towards the missile at three seconds tgo. 
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C. DG GUIDANCE LAW 

 

This third scenario has an initial range of 20 km, at 110° azimuth but with the 

missile initially being launched pointing 80° away from the target. Co-altitude at 6000 m. 

In this scenario, the target is modeled as moving with a constant 2g amplitude sinusoidal 

acceleration with a frequency of 0.1π rad/sec with a final 6g maneuver towards the 

missile at three seconds tgo.  
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APPENDIX D. NOISE SIMULATION RESULTS DATA 
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