

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

A STUDY INTO ADVANCED GUIDANCE LAWS USING
COMPUTATIONAL METHODS

by

Daniel Perh

December 2011

 Thesis Co-Advisors: Robert G. Hutchins
 Oleg Yakimenko

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2011

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE A Study into Advanced Guidance Laws Using
Computational Methods

5. FUNDING NUMBERS

6. AUTHOR(S) Daniel Perh
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government. IRB Protocol number ______N/A______.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)

Effective guidance laws that are optimal for tactical air-to-air scenarios tend to improve the performance characteristics of the
missile and increase the probability of a hit in combat. Proportional guidance is the current baseline algorithm for tactical missile
guidance. Increases in computational capabilities now permit more complicated guidance laws to be implemented. This research
focuses on two promising advanced guidance laws, comparing them to proportional navigation using simulation, with the
kinematic boundary as the performance measure. Studies are also made of performance degradation in the presence of sensor
noise.

The three guidance laws, Proportional Navigation (PN), Augmented Proportional Navigation (APN) and Differential
Geometry (DG), were each simulated against a non-maneuvering target and a maneuvering target. The theoretical missile
engagement envelope (the kinematic boundary) is utilized as a simple and intuitive visual aid in comparing the effectiveness of
each guidance law.

Band-limited white noise is then introduced into the seeker system to determine the ability of the guidance law to deal

with noise perturbations, in particular, to discover the level of noise tolerance for each guidance law.

This research used a simulation model previously developed here at the Naval Postgraduate School (NPS). This

simplified six degree of freedom (6DOF) model was used in a slightly modified form to: 1) verify earlier results obtained at NPS,
2) investigate an additional guidance law, the DG law, and 3) study the effects of noise on the robustness of the various guidance
laws.

14. SUBJECT TERMS Missile Guidance Laws, Proportional Navigation, Augmented Proportional
Navigation, Differential Geometry Guidance, Kinematic Boundary Analysis

15. NUMBER OF
PAGES

147
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

A STUDY INTO ADVANCED GUIDANCE LAWS USING COMPUTATIONAL
METHODS

Daniel Perh
Captain, Singapore Armed Forces

B.S.M.E, National University of Singapore, 2007

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 2011

Author: Daniel Perh

Approved by: Robert G. Hutchins
Thesis Co-Advisor

Oleg Yakimenko
Thesis Co-Advisor

Knox T. Millsaps
Chair, Department of Mechanical and Aerospace Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Effective guidance laws that are optimal for tactical air-to-air scenarios tend to improve

the performance characteristics of the missile and increase the probability of a hit in

combat. Proportional guidance is the current baseline algorithm for tactical missile

guidance. Increases in computational capabilities now permit more complicated guidance

laws to be implemented. This research focuses on two promising advanced guidance

laws, comparing them to proportional navigation using simulation, with the kinematic

boundary as the performance measure. Studies are also made of performance degradation

in the presence of sensor noise.

The three guidance laws, Proportional Navigation (PN), Augmented Proportional

Navigation (APN) and Differential Geometry (DG), were each simulated against a non-

maneuvering target and a maneuvering target. The theoretical missile engagement

envelope (the kinematic boundary) is utilized as a simple and intuitive visual aid in

comparing the effectiveness of each guidance law.

Band-limited white noise is then introduced into the seeker system to determine

the ability of the guidance law to deal with noise perturbations, in particular, to discover

the level of noise tolerance for each guidance law.

This research used a simulation model previously developed here at the Naval

Postgraduate School (NPS). This simplified six degree of freedom (6DOF) model was

used in a slightly modified form to: 1) verify earlier results obtained at NPS, 2)

investigate an additional guidance law, the DG law, and 3) study the effects of noise on

the robustness of the various guidance laws.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. MISSILE GUIDANCE LAWS LITERATURE REVIEW3

1. Pursuit Guidance ...4
2. Lead Pursuit / Lead Collision Guidance ..5
3. Proportional Navigation ..6

B. GOALS..7

II. SIMULATION METHODOLOGY ...9
A. SUMMARY OF SIMULATION MODEL ..9

1. SIX DEGREES OF FREEDOM (6DOF) EQUATIONS9
2. MISSILE MODEL ...10

a. Thrust Characteristics...12
b. Moments of Inertia..12
c. Drag Model ..12
d. Drag Model Validation ...14

3. Target Dynamics Model ..14
4. Guidance Law Implementation ..14
5. Navigation Model ...15
6. Noise Model ..15

B. MODEL ANALYSIS AND MODIFICATIONS ...16
1. Modified Parasitic Drag Curve..18
2. Additional Fx Saturation ...19
3. Additional Turn Limiter ...19

C. GUIDANCE LAWS ...20
1. Proportional Navigation (PN) ...20
2. Augmented Proportional Navigation (APN)21
3. Differential Geometry (DG) ..22

III. SIMULATION SCENARIOS, COMPARISON AND ANALYSIS25
A. TEST 1A - APN NAVIGATIONAL CONSTANT28
B. TEST 1B - DG NAVIGATIONAL CONSTANT ..29
C. TEST 2A - NON-MANEUVERING TARGET ...30
D. TEST 2B - MANEUVERING TARGET ...31
E. TEST 3A - NON-MANUEVERING TARGET WITH NOISE32
F. TEST 3B - MANEUVERING TARGET WITH NOISE............................35
G. TEST 4 - NOISE TOLERANCE STUDY ..38

IV CONCLUSION ..41
A. CONCLUSIONS ..41
B. FUTURE RESEARCH ..42

APPENDIX A. SIMULINK® MODELS...43

APPENDIX B. MATLAB® CODE ...61
A. SIMULATION RUN SCRIPT FILES ...62

 viii

B. SIMULATION INITIALIZATION SCRIPT FILES74
C. SIMULATION GUIDANCE LAW FUNCTION FILES78
D. SIMULATION FUNCTION FILES ..84

APPENDIX C. ADDITIONAL SIMULATION SCENARIOS105
A. PN GUIDANCE LAW ...106
B. APN GUIDANCE LAW ..108
C. DG GUIDANCE LAW ..110

APPENDIX D. NOISE SIMULATION RESULTS DATA113

LIST OF REFERENCES ..125

INITIAL DISTRIBUTION LIST ...127

 ix

LIST OF FIGURES

Figure 1. Graphical representation of three basic guidance laws. After [8].4
Figure 2. Pursuit guidance trajectories. From [9]. ...5
Figure 3. Geometry showing application of acceleration vector. From [10].6
Figure 4. Parasitic drag coefficient variations with Mach no..13
Figure 5. KB plot of PN vs. non-maneuvering target showing anomaly.17
Figure 6. Minimum miss distances vs. range. ...17
Figure 7. Original (left) and modified (right) induced drag models.18
Figure 8. Missile engagement geometry. After [11]. ..20
Figure 9. Geometry of engagement scenario. From [17]. ...23
Figure 10. Comparison of APN with N’=3 and N’=5. ..28
Figure 11. Comparison of DG with N’ = 3, 5 and 7..29
Figure 12. Non-maneuvering comparison of PN, APN and DG30
Figure 13. Maneuvering comparison of PN, APN and DG...31
Figure 14. Noise comparison for PN (no maneuver) ..32
Figure 15. Noise comparison for APN (no maneuver) ...33
Figure 16. Noise comparison for DG (no maneuver) ..33
Figure 17. Noise comparison for PN, APN and DG (no maneuver)34
Figure 18. Noise comparison for PN (6g maneuver) ..35
Figure 19. Noise comparison for APN (6g maneuver) ...36
Figure 20. Noise comparison for DG (6g maneuver) ..36
Figure 21. Noise comparison for PN, APN and DG (6g maneuver)37

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Summary of missile dimensions used in code. From [11].11
Table 2. Applied baseline noise values for noise simulation. ..16
Table 3. Summary of simulation test scenarios. ..25
Table 4. Summary table for noise tolerance of guidance laws.38
Table 5. Summary of MATLAB® files and functions. ..61

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ACRONYMS AND ABBREVIATIONS

Acronyms Definition

6DOF six degrees of freedom
AAM air to air missile
ABC aircraft body centered
abg alpha-beta-gamma
APN augmented proportional navigation
c.g. centre of gravity
c.p. centre of pressure
DG differential geometries
ECI earth centered inertial
IMU inertial measurement unit
IR infra-red
LOS line of sight
NED north east down
NPS naval postgraduate school
ode ordinary differential equation
PN proportional navigation
ZEM zero effort miss

Symbol Definition

AM missile body frame acceleration vector

T

Mx My MzA A A  
AR wing aspect ratio
AT target inertial acceleration vector

T

Tx Ty TzA A A  
BB NED rotation matrix using quarternions

() ()

() ()
() ()

2 2 2 2
0 1 2 3 1 2 0 3 1 3 0 2

2 2 2 2
1 2 0 3 0 1 2 3 2 3 0 1

2 2 2 2
1 3 0 2 2 3 0 1 0 1 2 3

2 2
2 2
2 2

q q q q q q q q q q q q
q q q q q q q q q q q q
q q q q q q q q q q q q

 + − − + −
 − − + − + 
 + − − − + 

idc induced drag coefficient

0dc parasitic drag coefficient
CN normal force coefficient
D drag force
e wing efficiency relative to an elliptical planform

,m Lη σ missile look angle

tη target heading angle relative to LOS

 xiv

FB applied forces (ABC frame)

T

x y zF F F  
FN normal force

0g gravitational constant vector (NED frame)
 []00 0 g
g0 gravitational acceleration on earth surface (29.804 m/s)
I3x3 3 x 3 identity matrix

1 0 0
0 1 0
0 0 1

 
 
 
  

J missile body inertial matrix

0 0

0 0
0 0

xx

yy

zz

J
J

J

 
 
 
  

mκ missile trajectory curvature

tκ target trajectory curvature
N’ navigational constant
nc guidance law commanded acceleration
ωB missile angular velocity vector (ABC frame)
 []TP Q R
ωx angular velocity of the earth (157.292 10 rad/s−×)
ΩB body rate cross product matrix

0

0
0

R Q
R P
Q P

− 
 − 
−  

ΩE earth rate cross product matrix

0 0 0
0 0
0 0

x

x

ω
ω

 
 − 
  

Ωq quaternion cross product matrix

0
0

0
0

P Q R
P R Q
Q R P
R Q P

 
 − − 
− − 
 − − 

p missile position vector (NED or ECI frame)
 []Tx y z

 xv

pr relative position vector
 []Tr r rx y z
q vector of missile quaternion's
 []0 1 2 3

Tq q q q
ρ atmospheric density
Sref missile cross sectional area (reference area)
σ LOS angle
σ LOS angle rate
TB vector of applied torques (ABC frame)

T

x y zT T T  
tgo time to go
V missile absolute speed
vB vector of missile velocities (ABC frame)

T

x y zv v v  
Vc missile closing velocity
vr relative velocity vector

r r r

T

x y zv v v  
03x3 3 x 3 zero matrix

0 0 0
0 0 0
0 0 0

 
 
 
  

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

ACKNOWLEDGMENTS

The author wishes to thank Professors Robert G. Hutchins and Oleg Yakimenko

for their guidance and assistance in his research. Thanks especially to Professor Hutchins,

for his patience and extra lessons necessary for the author to complete this project.

Special thanks to Robert D. Broadston, whose advice and help was deeply appreciated.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

The history of manned flight is a relatively short one. In the span of one hundred

years, we have seen technological innovations and courageous pioneers who have pushed

the development of aeronautics to where we stand today. From the day the Wright

brothers achieved powered flight in 1903, to the day Major Charles E. Yeager broke the

sound barrier in 1947 [1], to the unmanned drones that fly over Afghanistan today,

aviation history is full of stories of human courage and ingenuity: Courage to step into the

unknown, risking life and limb for the advancement of science. Ingenuity to design and

develop the technologies required for the wonders of modern day flight: planes that

takeoff vertically, flying wings that look more like a child’s boomerang than a menacing

deep penetration bomber, missiles that can be launched at enemy targets even before the

human eye can see them.

It was perhaps inevitable that with the advancement in fighter aircraft technology,

something more than simple .50 caliber rounds that fire at a fixed point ahead of the

aircraft was needed to shoot them down. Rockets have been known for hundreds of years,

far longer than human flight, yet it was not until recent decades that developments in

technology allowed for the evolution of the simple rocket into the sophisticated missiles

of today.

In this thesis, the focus is on tactical missiles. Tactical missiles are used in

scenarios where the ranges concerned are more limited and are usually guided by a seeker

sensor. The seekers can be active, passive or even semi-active, utilizing electromagnetic

waves from a radar, an infra-red (IR) sensor or a laser. This suite of sensing abilities

allows the seeker to detect and identify the target and guide the missile to it. The ability

to guide a missile to a detected target is the province of guidance laws. Perhaps the most

intuitive and also one of the earliest guidance laws is the pursuit guidance law. Pursuit

guidance basically states that as long as the missile is pointed at the target at all times,

given enough kinetic energy, the missile will hit the target. While a simple guidance law

to implement, in reality, it does not work so well because the kinetic energy available to

 2

such missiles is limited. The rocket propellant boosts the missile up to maximum speed

within seconds of launching before being consumed, and the missile than glides the rest

of the distance on kinetic energy alone. Hence, in pursuit guidance, the missile is more

apt to run out of kinetic energy before it can successfully close with the target. This is

especially true when launched at a maneuvering target from its frontal hemisphere.

The solution to this problem is the proportional navigation (PN) guidance law.

While not as intuitive as the pursuit guidance law, it is still a simple and robust concept.

Basically, the concept of proportional navigation is to point the missile at a point ahead of

the target so that the missile will lead the target, and this will reduce the amount of

maneuvers necessary, thus conserving kinetic energy for the missile to make the

intercept. The implementation is simple and the basic idea is to strive to maintain a

constant line of sight (LOS) angle between the missile and the target, the premise being

that a constant LOS angle would signify that the missile and the target are on a collision

course. The acceleration commands are theoretically applied perpendicular to the LOS

and are proportional to the LOS rate and closing velocity. This basic concept is so

successful that most of the more successful guidance laws in use today tend to be

extensions of the basic PN law.

In particular, the Augmented Proportional Navigation (APN) law [2], [3], and the

Differential Geometry (DG) law [4], [5], are investigated in greater detail in this study as

extensions of the basic PN law. Guidance laws based on Optimal Control Theory [6] are

not investigated in this study due to time and scope limitations.

The remainder of this chapter highlights the literature review conducted in this

field as well as the goals of this research. Chapter II lays out the simulation methodology

and the selected guidance laws in detail. Chapter III describes the experimental

procedures, results and analysis, while Chapter IV presents the research conclusions and

suggestions for further research.

 3

A. MISSILE GUIDANCE LAWS LITERATURE REVIEW

Simply stated, the goal of guidance is to reach the target [7]. In general, missile

command guidance can occur in two basic forms. The first form is homing guidance

where the missile relies on its onboard seeker to detect the target and compute the

required command guidance through integral software logic circuits. The second form

relies on an external source that detects the target and the missile, computes the required

guidance to bring the missile towards the target and then transmits that information to the

missile for flight control. Such command guidance control is advantageous, as the missile

is not required to have a seeker onboard, which is a costly component. Such guidance

tends to result in very good missile performance. However, command guidance is highly

susceptible to tracking errors. The quality of the commanded guidance is only as good as

the quality of the tracking data. Since the external source usually remains relatively

stationary in space, the intercept between the missile and the target usually occurs far

away from the command source. Hence measurement accuracy of the tracking data and

guidance accuracy are limited.

Conversely, for homing guidance, having a seeker onboard means additional cost,

but at the same time delivers improved guidance accuracy results since the seeker is

continuously approaching the target as time progresses. It is thus apparent that some form

of terminal homing guidance is highly desirable for Air to Air Missiles (AAM), which are

usually engaging targets at some distance from the launching platform and are highly

maneuverable at the same time.

In general, regardless of command or homing guidance, a guidance law ultimately

acts as the determinant on how a particular set of commands for guidance is to be

generated. In general, Goodstein [8] describes three guidance law general categories into

which all other guidance laws can be categorized. There are many special cases that are

modifications of these three basic guidance concepts (see Figure 1):

• LOS

• Pursuit

• Proportional

 4

Figure 1. Graphical representation of three basic guidance laws. After [8].

For homing guidance implementations, only pursuit guidance and proportional

guidance are applicable. LOS guidance by definition requires an external control vehicle

to establish the LOS between the target and the vehicle along which the missile is then

guided to travel. Hence, for this study into advanced guidance laws, the focus will remain

on onboard seeker-capable implementations.

1. Pursuit Guidance

As described earlier, pursuit guidance works by aiming the missile directly at the

target throughout the entire engagement. It is a simple implementation that is less

sensitive to noise. However, it is not effective against moving targets like aircraft, as it

usually ends up in an energy-consuming tail chase scenario. There are other applications

where the speed advantage of the interceptor is very large (as in an air-to-surface

engagement against a fixed target), in which case pursuit guidance is an effective

guidance law.

 5

2. Lead Pursuit / Lead Collision Guidance

Variations of the pursuit guidance law include lead pursuit and lead collision (see

Figure 2). As the name implies, lead pursuit means that the missile is flying a course

whereby it is in pursuit of a leading point just slightly ahead of the target. As this

guidance law aims to predict slightly ahead of where the target’s next position will be, it

tends to be more effective than pure pursuit guidance and is usually able to engage targets

earlier in the flight path. However, it still has essentially the same problems with pure

pursuit guidance and is seldom used in systems that require intercept of high speed high

maneuver targets.

Lead collision is a further extension of the lead pursuit guidance. It is also

potentially the most efficient and optimal missile trajectory as it basically involves

pointing the missile at the point ahead of the target where a collision would occur if the

target continued in a straight line with no acceleration. This is an efficient trajectory, as it

requires minimal control effort from the missile. The largest drawback is that it requires

the target to fly a constant trajectory with minimal accelerations.

Figure 2. Pursuit guidance trajectories. From [9].

 6

3. Proportional Navigation

As one of the most popular guidance laws, PN or some augmented form exists in

many missile systems in the world today. It is based largely upon the instantaneous

direction of the target relative to the missile and its first derivative with respect to time.

There are two generic classes of PN, pure and true. Pure PN applies the commanded

acceleration with reference to the velocity vector of the missile; whereas True PN applies

the commanded accelerations with reference to the LOS (see Figure 3). PN has a highly

nonlinear set of governing equations, and attempts to solve them tend to take the

approach of true PN, which is more mathematically tractable as compared to pure PN.

However, in practical application terms, pure PN is the more natural PN law, as

implementing an acceleration vector perpendicular to the LOS as required by true PN is a

physical challenge in practical applications.

Figure 3. Geometry showing application of acceleration vector. From [10].

 7

B. GOALS

This research thesis is focused on two areas: 1) to investigate the performance of

advanced guidance laws (APN and DG) and compare them with baseline PN

performance, 2) to investigate the effects of noise injection into the seeker and analyze

the degradation in performance between the different compared guidance laws.

This will be achieved by modeling the system utilizing MATLAB® Simulink®

and six degrees of freedom (6 DOF) models. The efficacies of the guidance laws will be

compared using the kinematic boundary concept espoused by Broadston in an earlier

paper [11]. The kinematic boundary is basically a visual representation of the engagement

envelope with the target at the center, and the boundary represents the maximum range at

which a missile can be launched at the target and be expected to hit. The missile is

assumed to be launched directly at the target at all heading angles and it undergoes a

short period of constant thrust to achieve maximum speed. The missile subsequently

glides to the target while slowing down due to drag forces. The target is assumed to

maintain a constant speed.

For the noise study, defined baseline noise is added to the seeker system as band

limited white noise, and the scenarios are run over a hundred simulations to determine the

percentage of hits at various factors of the baseline noise.

 8

THIS PAGE INTENTIONALLY LEFT BLANK

 9

II. SIMULATION METHODOLOGY

For the simulation model, Broadston’s work on a simplified 6DOF model was

utilized as the main simulation engine [11]. Part of this thesis investigates the

assumptions that were utilized in creating the original model and the amendments that

were made to update the model for use in this thesis paper.

A. SUMMARY OF SIMULATION MODEL

1. SIX DEGREES OF FREEDOM (6DOF) EQUATIONS

For a free body in space, it is possible to be translated and rotated along the three

principal axes. These six freedoms of movement are the 6DOF that an unconstrained

body in free space will be able to experience.

The general practice for an aircraft body-centered (ABC) coordinate frame is to

define the origin at the center of gravity (c.g.) of the body with the x-axis pointing

towards the nose, the y-axis pointing towards the right wing (looking at the aircraft from

top down, nose pointing up) and the z-axis is 90° to both x and y axes pointing straight

down.

For simulation of the air-to-air combat scenarios, the North-East-Down (NED)

frame is used as the reference frame. The NED frame has its origin point placed at the

earth’s surface, with the x-axis pointing due north, y-axis pointing due east and the z-axis

is pointing down towards the center of the earth.

For this simulation, flat earth approximations are used, as the ranges involved in

air-to-air combat are relatively short as compared to tactical ballistic missiles, and a point

mass model will be assumed for the flight dynamics. The following vector equations fully

describe the motion dynamics of a free body in space [12], [13]:

 10

1 1

 (force - translational kinematics)

 (moment - rotational dynamics)
1 (attitude - rotational kinematics)
2

B B

B

q

B
m

J J J− −

= −Ω + +

= − Ω +

= − Ω

=









T B
B B 0

B B B

NED

Fv v g

ω ω T

q q

p (navigation - translational kinematics)T
BB Bv

 (2.1)

Here , , , , , ,B B 0 NED B Bv ω g p F T are vectors and , , , ,B q BJ BΩ Ω are square

matrices. The equations used in (2.1) are intended for flat earth approximations. Hence

they do not include terms that transform the NED frame to an earth centered inertial

(ECI) frame. Those terms would be needed for simulations that require modeling of the

missile flight path over a spherical, rotating earth, such as simulations of ballistic missile

trajectories.

It is important to note that the equations in (2.1) provide no direct correlations

between the force and moment equations. In the physical world, a dynamically stable

flight body would have its c.g. forward of its center of pressure (c.p.). This would result

in the missile self-aligning itself to the relative wind direction during flight. Therefore, to

simulate this stable dynamic behavior, a proportional-differential controller is designed to

model the missile attitude such that it simulates actual physical behavior.

2. MISSILE MODEL

In order not to duplicate previous work, this thesis adopts Broadston’s AIM-120

AMRAAM model [11] with its flight characteristics and dynamics. The missile model

was created based on capabilities reported in open source literature and on engineering

approximations. Hence it is not meant to be an exact replica of the actual missile

capabilities. However, the simulation model is created modularly so the missile model

characteristics can be easily modified and inserted into the simulation as required. The

missile body dimensions used in this simulation is given in Table 1 and has been

simplified to follow the models described in Blakelock [14] and Zarchan [3].

 11

DESCRIPTION SYMBOL USED IN CODE VALUE

MISSILE BODY DIMENSIONS

Missile mass MASS 156.8 kg

Missile diameter DIAM 0.1778 m

Missile length LENGTH 3.657 m

Location of c.g. measured from

the nose
XCG 1.8288 m

Length of the nose cone LN 0.6769 m

MISSILE TAILPLANE DIMENSIONS

Hinge line distance from nose XHL 3.454 m

Tail root chord CRT 0.4061 m

Tail tip chord CTT 0.0676 m

Tail extension TXT 0.0676 m

Tail height HT 0.2286 m

MISSILE WINGPLANE DIMENSIONS

Wing to radome tangency point

distance from nose
XW 1.134 m

Wing root chord CRW 0.3554 m

Wing tip chord CTW 0 m

Wing extension WXT 0 m

Wing height HW 0.1778 m

Table 1. Summary of missile dimensions used in code. From [11].

 12

a. Thrust Characteristics

The AMRAAM thrust profile is simulated as a constant 23,000 N thrust

for the initial six seconds of the simulation that accelerates the missile up to a maximum

speed of around 1,100 m/s, which is approximately Mach 3.5 at an altitude of 6,000 m.

b. Moments of Inertia

The missile is modeled as a thin rod for the y and z axes because the

missile control surfaces are assumed to have minimal impact on the moment of inertias

about the axes. The cylindrical model was selected for the x axis.

c. Drag Model

In general, the drag force is a combination of friction drag and drag caused

when the integral of pressure over the whole surface area of the missile body is nonzero

[13]. The components of total drag on the body can be broken down into three major

components, parasitic drag (which includes friction drag and form drag), induced drag

and wave drag. In reality, the three drag components are not independent and cannot be

linearly added to derive total drag. However, for the assumptions of the simulation, a

simplified drag model is derived from the first two components, parasitic and induced

drag. The following equation describes the total drag force along the x-axis of the ABC

frame [15]:

2

0()
2d di ref

VD C C Sρ= + (2.2)

Parasitic drag, Cd0, is estimated using typical values from [12]. Figure 4

plots the value of Cd0 at various Mach numbers. The plot shows the difference in parasitic

drag values caused by the presence or absence of the rocket thrust plume during the boost

phase and the gliding phase.

 13

0 2 4 6 8 10
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Parasitic Drag Coefficient vs Mach Number

C
do

Mach Number

Boost
No Boost

Figure 4. Parasitic drag coefficient variations with Mach no.

For induced drag, Cdi, it is normally estimated as a function of angle of

attack. In this simulation, the normal forces acting on the missile body are used instead.

For subsonic flight, a crude approximation of Cdi is made as the applied normal force

times the maximum value of Cd0 in subsonic flight. For supersonic flight, Cdi is computed

using the following [15]:

2

()
N

di
CC

e ARπ
=

 (2.3)

Where the normal force coefficient is given by:

 22 N
N

ref

FC
V Sρ

= (2.4)

For the simulation, the normal forces and induced drag acting on the y-

and z- axes are computed separately before being summed together as a vector to derive

the total induced drag acting upon the system.

 14

d. Drag Model Validation

As the figures used in generating the drag forces are estimates, a sanity

check was done to ensure that the drag profile of the missile is not too far from reality. To

do that, open source data for AIM-120 D claiming a max range of approximately 72 km

was compared against the simulation model running the drag profile. In a tail chase

scenario without target maneuvers, the missile was able to achieve a five meter radius

impact on the target at a max range of 76.6 km. This represents an error of about six

percent, which is acceptable in validating the parasitic drag coefficient numbers and

induced drag model used in this simulation.

3. Target Dynamics Model

For the simulation, the target dynamics were modeled as a point mass model and

implemented with the following vector equation [12]:

00 1 0 0 0 0
00 0 0 0 0
00 0 0 1 0 0
00 0 0 0 0
00 0 0 0 0 1

0 0 0 0 0 0 z

x x
x x
y y

X
y y
z z

az z

ω

ω

      
      −       
      

= = +       
      
      
      

       



 




 



 

 (2.5)

In this target dynamic model, the target is modeled with lateral accelerations that

are given as turn rate, ω. The vertical acceleration is given as a direct input, az, to the

subsystem, which is equal to the gravitational acceleration.

 4. Guidance Law Implementation

For the simulation, the guidance laws are invoked through MATLAB® function

calls, which compute the required acceleration commands, ny and nz for the horizontal

and vertical plane. To assist the functions in deriving the acceleration commands, the

model provides the function with data from the seeker head and the inertial measurement

 15

unit (IMU) processor. The seeker computes target range, range rate, vertical and

horizontal azimuth, as well as azimuth angular rates, while the IMU processes the

missile’s own state vectors and orientation.

Some advance guidance laws require the entire target state vector as additional

inputs, and a simple alpha-beta-gamma (abg) filter was implemented to estimate the

target states for the guidance law inputs.

Section C of this chapter will discuss the three guidance laws that were chosen to

be implemented in greater detail.

5. Navigation Model

The IMU provides navigational data that accelerometers and gyros would provide

in real life. The missile orientation in the form of Euler angles, velocity, acceleration,

angles of attack and body rotation rates are computed by the IMU. The IMU is assumed

to provide this information as truth.

6. Noise Model

For the noise model, it was necessary to change the simulation solver from a

variable step ordinary differential equation (ode) 45 (Dormand-Prince) solver to a fixed

step size ode4 (Runge-Kutta) solver. This is to ensure that the noise input process is

constant at each time step of the simulation. This results in slightly less accurate

simulation runs as the fixed step size has to be set at a large enough value that ensures

that each simulation run does not take too long while at the same time not so large that

the simulation results become very inaccurate. For the noise simulations, the selected

value for the fixed step size was 0.01s and it resulted in a difference in the results of

around 1% when compared to the ode45 solver.

To model noise, band-limited white noise was added to the seeker measurement

outputs of range, range rate, LOS, and LOS rate. Due to some issues with the abg-filter

simulation results, it was decided that the noise for the filter outputs would be modeled in

 16

a similar fashion to the seeker output, where the band-limited white noise was added

directly to the measurement outputs of target position, velocity and acceleration.

The baseline noise model is defined in Table 2, where the accuracy of the radar

systems in defining range was estimated at ±10 m, and range rate at ±1 m/s. The accuracy

of LOS and LOS rate was defined as ±1 mrad for both measurements. To test for

increased noise in the system, a common gain factor is applied to all power spectral

density values as defined in the baseline noise model. The multiple of the gain factor then

determines the amount of noise that the system is able to withstand.

Table 2. Applied baseline noise values for noise simulation.

B. MODEL ANALYSIS AND MODIFICATIONS

The simplified 6DOF model that was adopted for use in this thesis was modified

from the original in order to solve some anomaly issues that were found while attempting

to generate the kinematic boundary comparisons. In the initial implementation of the

model, it was found that certain anomalies kept appearing in the kinematic boundary

plots, an example of which can be seen in Figure 5.

 17

 50000

 100000

 150000

30

210

60

240

90

270

120

300

150

330

180 0

PN law vs Non maneuvering Target

0 deg - Tail Chase
180 deg - Head On

Figure 5. KB plot of PN vs. non-maneuvering target showing anomaly.

There was a predominance of anomalies happening at the broadsides and towards

the rear quadrant. In the case of Figure 5, the anomaly occurs at 105° heading, with a

sudden decrease in the maximum range. To investigate this problem, multiple runs were

conducted at the 105° heading at 100 m range step increments and the minimum miss

distance at each range was recorded and plotted in Figure 6.

Figure 6. Minimum miss distances vs. range.

 18

As is evident in the plot, there seems to be a specific range bin whereby the

missile miss distances at end game increases suddenly before going back to the baseline

miss distance. The sharp increase in miss distances at the far right side of the plot

represents the maximum range of the missile.

Upon investigation, it was discovered that the region where the anomalies occur

actually corresponds to the point where the missile is decelerating through the transonic

region. This occurs at the range where the missile is fired such that the missile is at the

end game near the target just as its velocity traverses the transonic region. Below Mach

one, the previous drag model (see Figure 7) demonstrated a sudden decrease in drag

coefficient, which translates to lower drag forces. The guidance law perceives this as a

sudden acceleration on the part of the missile, and simulation studies indicate a miss

(where a miss is defined as a minimum miss distance greater than 5 m). It can be seen

that if the missile is launched even further away such that it passes through the Mach one

boundary before entering end game, the missile is actually able to impact the target again.

1. Modified Parasitic Drag Curve

In a bid to reduce the transonic region’s instability, the drag mode as proposed by

Broadston [11] was modified slightly to allow for a gradual increase and decrease in drag

coefficient through the transonic boundary instead of as a sudden step increase. The old

and new parasitic drag models are shown in Figure 7 as a comparison.

Figure 7. Original (left) and modified (right) induced drag models.

 19

2. Additional Fx Saturation

The total maximum g-force the missile is assumed to be able to sustain is 52 times

the normal gravitational acceleration. An attempt to limit the commanded acceleration on

all three axes proportionally led to algebraic errors in the simulation runs. Therefore, a

simplified method was adopted to limit the accelerations, which basically is a direct

limitation placed on the accelerations in the individual axes not to exceed 30g each.

Initially, only the commanded accelerations in the y- and z- axes were limited. However,

in the simulation analysis and verification study, it was discovered that the x- axis

acceleration must be limited as well to provide consistent and smooth results. Therefore

the final model contains limitations on all three axes. The limiters for the x-, y- and z-

axis are modeled as saturation blocks within the Simulink® model.

3. Additional Turn Limiter

In the simulation analysis stage of the project, it was discovered that using the

Simulink® switch block alone to govern the moment when the target is expected to

execute a constant g-turn maneuver towards the missile could lead to unexpected effects

in certain simulation conditions. The switch block is basically given the time-to-go value

(as derived from range-to-go and range-to-go rate) and once the time-to-go drops below

the simulation determined constant value, it passes the constant turn command through to

the target dynamics model. It was discovered that in certain end game simulations where

the missile is in the transonic region of its flight, the sudden decrease in the missile’s

velocity caused the time-to-go value to increase back above the determined constant

value. This causes the switch block to stop passing the turn command. To prevent such

situations from occurring and introducing added anomalies to the results, a turn limiter

was coded into the simulation. The turn limiter basically holds the turn command once it

is passed through the switch block.

 20

C. GUIDANCE LAWS

This section describes the three guidance laws that were selected for investigation

in detail. The first two laws, PN and augmented proportional navigation (APN) were

selected as the two best performing guidance law that Broadston [11] investigated. From

the additional literature research, an additional guidance law that was not investigated

previously using the kinematic boundary technique was selected to compare against the

other two laws. This additional law is based on differential geometry (DG) [4], [5], [16],

and [17], and basically generates commanded accelerations as a function of the missile

flight geometry. The geometry of a typical engagement scenario is shown in Figure 8.

Figure 8. Missile engagement geometry. After [11].

1. Proportional Navigation (PN)

As described briefly in the literature review section of the introduction chapter,

the implementation of the PN guidance law in this simulation is modeled after the True

PN model where the commanded accelerations are applied perpendicularly to the LOS.

The 2D commanded acceleration is given as follows [3]:

 '
c cn N V σ=  (2.6)

 21

While it is mathematically more tractable to compute the commanded acceleration

perpendicular to the LOS, in the simulation, it is instead easier to apply the commanded

acceleration perpendicular to the missile body axis instead. In order to achieve this, the

commanded acceleration obtained in (2.6) is corrected to the missile y- axis as follows:

'

cos()
c

c
L

N Vn σ
σ

=


 (2.7)

The corrected missile acceleration is then fed directly to the missile dynamics

block for simulation. The navigational constant, N’ is selected to be five for the entire

simulation for PN law. As described in Zarchan [3], setting the navigation ratio at five

reduces the required missile acceleration advantage to 1.67, which increases the

maximum distance that the guidance law will be able to hit the target.

2. Augmented Proportional Navigation (APN)

An advanced version of PN law, the APN law is basically PN augmented with a

component that accounts for the maneuvering target dynamics. As described in [3], an

alternative, mathematically equivalent, expression for (2.6) is as follows:

'

'
2

()r r go
c c

go

N y y t
n N V

t
σ

+
= =


 (2.8)

Where tgo is the time to go until intercept and yr is defined in Figure 8. The terms

in the parentheses are also referred to as the zero effort miss (ZEM) [3]. ZEM basically

states the miss distance that would result if the missile and the target experienced no

further accelerations and were allowed to keep traveling with the same velocity.

Therefore, if we were to assume a target that maneuvers, than the ZEM equation must be

augmented with an additional term that addresses the maneuver. The new equation for

ZEM with target maneuver is as follows:

 21
2new r r go t goZEM y y t n t= + + (2.9)

Where nt is the target acceleration. Therefore, the augmented PN law becomes as

follows:

 22

' 2

'
'

2

1()
2

2
r r go t go

t
c c

go

N y y t n tN nn N V
t

σ
+ +

= + =


 (2.10)

It can thus be seen that APN is basically PN law augmented with a constant

proportion of the target acceleration. This increases the complexity of the system as a

tracking filter that will estimate the target acceleration is now required.

The implementation of APN in the simulation is given by the vector equation

from [18]:

2'

3 3 3 3 3 3 3 32 0
2

r
x

rgo
y x go x x x

tgo
z

m

p
n

vtNn I t I I
At

n
A

 
         =              

 

 (2.11)

According to [3], the optimal value for N’ occurs when N’ = 3. This would be

evaluated subsequently in the scenario analysis. From this vector, only the values for y-

and z- accelerations are used as x- is computed from thrust and drag components of the

model.

3. Differential Geometry (DG)

DG guidance is a form of curvature control command where the command for

missile guidance is developed based on the curvature concept in curve theory and the

relative rotational motion of a pseudo-missile pointing velocity vector [16].

According to Chiou in [4], the Frenet-Serret formula for classical differential

geometry curve theory was utilized in developing this control law. The fundamental

theory lying behind PN and APN guidance laws is that a fixed model for the likely target

maneuvers have to be assumed and is then used to derive the guidance law. This

approach has certain drawbacks, not least of which is that the real world target seldom

exhibit constant maneuver tactics. Therefore, the DG guidance law attempts to address

this issue by ignoring specific target maneuver models in its formulation.

 23

Figure 9. Geometry of engagement scenario. From [17].

A simple 2D application of the DG guidance law in the time domain is described

in [17], where the engagement geometry is laid out as in Figure 9.

 2 '
2

cos
cos cos

t
m t

m m m

rqN N
v

ηκ κ
η η

= +


 (2.12)

In this formulation, κt and κm represents a measure of the curvature of the target

and the missile’s trajectories respectively. ηt and ηm represents the lead angles of the

target and the missile, r’ represents the closing speed of the system along the LOS and q’

represents the angular rate of LOS. N’ is the control gain and is not to be confused with

N, which is defined as the ratio of the magnitude of the target and missile velocities, vt

and vm.

 t

m

v
N

v
= (2.13)

The curvature of a circular track can be described simply as:

2

a
v

κ = (2.14)

Substituting equation (2.13) and (2.14) into (2.12):

2

'
2 2 2

cos
cos cos

m t t t c

m m m mm t

a v a VN
v vv v

η σ
η η

    
= +           

 (2.15)

 24

 'cos
cos cos

t c
m t

m m

Va a Nη σ
η η

= +


 (2.16)

From the respective definitions, cos(ηm) = cos(σL), the DG law expressed in (2.16)

can be seen to be the basic PN law augmented by a geometric term in front that requires

target acceleration as well as target velocity heading information.

For implementation within the simulation, the acceleration requirements are

computed respectively in the horizontal and the vertical plane to generate the required y-

and z- axes acceleration.

 25

III. SIMULATION SCENARIOS, COMPARISON AND ANALYSIS

To maintain similarity with Broadston’s [11] work, the simulation scenario

parameters were kept largely the same so that effective comparisons could be made. As

before, the simulations are run at a fixed 6000 m altitude with the target and missile

initial speed at Mach 0.83. The missile is always considered to be fired pointing directly

at the target at all heading angles, and for the maneuvering scenarios, the target is always

assumed to pull a 6g turn maneuver towards the missile at tgo = 3 s. Table 3 summarizes

the various test scenarios.

Table 3. Summary of simulation test scenarios.

For the kinematic boundary simulations, the scenarios were run with an initial

10000 m launch range for the missile and target at a tail chase scenario of 0° heading.

The simulation then slowly increments the launch range with 1000 m steps, then 100 m

steps, up to a resolution of 10 m steps to determine the max range whereby the missile

 26

first misses the target by more than 5 m at the end game. Once the maximum range that

the missile can hit the target is determined at that bearing, the heading is then

incremented by 5° before the next simulation run to determine the maximum range at that

bearing.

For each simulation run, there are three stopping criteria which would stop the

simulation once any one of the three is met. The first stopping condition is a velocity stop

and it stops the simulation once the missile speed falls below the target speed. The second

condition is a range rate stop and it stops the simulation when the rate of change of the

distance between the missile and the target becomes positive. The last condition is a

range stop and it is triggered when the range between the missile and the target is less

than 0.0001 m.

The simulation is run from 0° to 180° bearing and the maximum launch range

results are all stored and finally plotted in a polar plot as the kinematic boundary of the

simulation. The time taken for one such simulation run varies from as little as 2.5 hours

for the simple PN guidance law with ode45 solver up to 8.5 hours for the more

complicated DG law in a 6g target maneuvering scenario running the same variable step

solver.

For the noise scenarios, using the ode4 fixed step solver, the simulation times

range from 7.5 hours to 10 hours for a single kinematic boundary simulation.

When using the ode45 variable step solver, PN law running with a simulation

tolerance of 1e-3 and minimum step size of 1e-3 and maximum step size at auto provides

reasonably accurate results in a short time. However, for the more complicated APN law,

the tolerance and minimum step size of the ode45 solver has to be tightened to 1e-5 and

the maximum step size specified at 0.1 for reasonably accurate results.

For the DG law, even tighter simulation parameters are required. While the

tolerance and minimum step size is held similar to APN, the maximum step size has to be

decreased to 0.02 and the filter sample rate for the abg-filter set at 50 Hz for reasonable

results to be generated. In contrast, the APN law was able to generate reasonable results

with the abg-filter set to a 10 Hz sample rate with the maximum step size at 0.1.

 27

For the noise scenarios, the fixed step size is set at 0.01 as it was empirically

tested to provide the most accurate results for all 3 guidance laws within the least amount

of simulation run time.

The simulation SIMULINK® models are shown in Appendix A while the

MATLAB® codes are organized within Appendix B.

To demonstrate the validity of the simulation model, the engagement geometry

and time history plots of certain parameters are shown in Appendix C.

 28

A. TEST 1A - APN NAVIGATIONAL CONSTANT

In this test, the APN law was tested for the effects of the values chosen for the

navigational constant. In [8], N’ = 3 was derived mathematically as the optimal value for

the guidance law. The results for this scenario are shown in Figure 10. The polar plot

represents the kinematic boundary of the guidance law at the two navigational constant

while the top right hand plot is the same plot plotted linearly to emphasize the difference.

The bottom right hand plot directly plots the difference in max ranges between APN

N’=3 and APN N’=5.

Figure 10. Comparison of APN with N’=3 and N’=5.

It can be seen from the difference plot that there is a significant improvement to

the performance of the missile when N’=5 especially between 40° and 80° bearing where

improvement of max range between 2000 m and 8000 m are seen. For the rest of the

bearings, there is a minor advantage to N’=3 but the difference is insignificant.

It is clear that having the navigational constant set at N’=5 offers a general

improvement to the performance of the missile hence for APN law, N’ is fixed at N’=5

for the rest of the simulations.

 29

B. TEST 1B - DG NAVIGATIONAL CONSTANT

As in test 1A, the DG law is tested at various navigational constant values for

maneuvering target scenario. N’ = 3, 5 and 7 were chosen for the test and the results are

shown in Figure 11.

Figure 11. Comparison of DG with N’ = 3, 5 and 7.

It can be clearly seen that N’=7 resulted in the best performance envelope of the

missile in this maneuvering scenario. It showed significant improvements up to 10000 m

over N’=3. However, it demonstrates only a slight improvement of up to 2000 m over

N’=5 and only in a very narrow tail chase region of approximately 0° to 20°.

Since there is only a slight difference between N’=5 and N’=7, the navigational

constant for DG is selected to be N’=5 so as to be consistent with the other two guidance

laws that are being tested.

 30

C. TEST 2A - NON-MANEUVERING TARGET

In this test, each of the three guidance laws was simulated against a constant 0.83

Mach velocity target. As both APN and DG laws are basically PN laws augmented with

an additional control term that takes into account the target acceleration, it is predicted

that all three guidance laws should perform similarly when the target exhibits constant

velocity characteristics for the entire simulation. Figure 12 summarizes the results for all

three guidance laws.

Figure 12. Non-maneuvering comparison of PN, APN and DG

It can be seen that the simulation results are similar to the predicted results. The

kinematic boundary plot shows that all three laws are within 1% - 3% error ranges of

each other and that the difference plot shows a difference of -1000 m to 3000 m for DG

when compared to PN and a difference of up to 1000m for a narrow heading around 120°

for APN when compared to PN.

This difference amounts are of little significance and it can be concluded that all

three guidance laws perform similarly in a constant velocity target scenario.

 31

D. TEST 2B - MANEUVERING TARGET

Now that the non-maneuvering results show that all three guidance laws are

similar at the baseline non-maneuvering scenario, the target is modeled with constant 6g

acceleration towards the missile when tgo ≤ 3 s. Figure 13 summarizes the results.

Figure 13. Maneuvering comparison of PN, APN and DG.

It can be seen from the results that all three guidance laws perform similarly in the

forward and broadside quadrants of the kinematic boundary where the engagement

geometry varies from 90° to head on with the target at 180°.

The rear quadrant, however, shows significant differences between the three

guidance laws. It can be seen that PN is the worst performing guidance law in a tail chase

maneuvering target scenario except for a narrow bandwidth around 60° heading where it

performs slightly better than APN. APN in contrast behaves generally better than PN

between 20° to 50° heading and, other than the slight inferior performance compared to

PN, APN is essentially performing similarly to PN guidance.

The law that clearly performs better is DG where improvements of up to 12000 m

in maximum range can be achieved in the rear quadrant. However, careful analysis shows

that DG has a slight performance issue in the front quadrant when compared to the other

two guidance laws even though the difference is insignificant.

 32

E. TEST 3A - NON-MANUEVERING TARGET WITH NOISE

For this test, baseline noise was added to the system and a single simulation to

derive the kinematic boundary was carried out. While the noise process is random and the

kinematic boundary simulation will output a different result each time it is ran, the

variations from one degree step to the next should even out across the entire 180°

boundary. This hypothesis was put to the test and the simulation results for each of the

three guidance laws in a non-maneuvering scenario was compared with their own results

in a noiseless simulation and summarized in Figures 14, 15 and 16.

Figure 14. Noise comparison for PN (no maneuver)

It can be seen that the PN law under the influence of baseline noise is hardly

affected by it and is able to perform just as well as the scenario where noise was not

added.

 33

Figure 15. Noise comparison for APN (no maneuver)

For the APN law, it can be seen that it is more affected by baseline noise in the

system as compared to PN. There is an increasing difference in maximum ranges,

especially towards the front quadrant where the difference is as much as 3000 m.

Figure 16. Noise comparison for DG (no maneuver)

 34

It can be seen that DG suffers approximately the same level of degradation as

compared to APN under the influence of baseline noise.

Figure 17. Noise comparison for PN, APN and DG (no maneuver)

When the three guidance laws are compared against each other under the

influence of noise, it can be seen from Figure 17 that the difference between the two

advanced guidance laws and PN has increased by about 2000 m when compared with the

results in test 2A.

This is consistent with the expectation that the advanced guidance laws should

suffer greater performance penalties due to the additional complexity of the guidance law

and the added command acceleration terms.

 35

F. TEST 3B - MANEUVERING TARGET WITH NOISE

Similarly to test 3A, the simulation is now carried out with the target maneuver

scenario. The results for the individual guidance laws are shown in Figures 18, 19 and 20.

Figure 18. Noise comparison for PN (6g maneuver)

Under the no target maneuver noise scenario, PN was the only guidance law out

of the 3 that did not suffer performance degradation under the effects of noise. Now that

the target is maneuvering, PN is seen to suffer the same amount of performance penalty

as APN and DG did under the no maneuver scenario. The spike at the 55° heading point

that seems to show a region where the PN law performed better with noise then without

noise is most probably an anomaly.

 36

Figure 19. Noise comparison for APN (6g maneuver)

As with the results for PN, it can be seen that APN suffers much greater

performance degradation around the 60° to 70° heading region. While PN ‘suffered’ a

performance increase, APN suffers a performance decrease. The reason for this increased

performance anomaly region is most likely attributable to the transonic region effect.

Figure 20. Noise comparison for DG (6g maneuver)

 37

DG does not seem to suffer as much performance degradation due to the effects of

noise as much as the other two guidance laws. It can be seen that DG suffers

approximately the same amount of performance loss due to noise regardless of the target

making or not making a maneuver in the scenario.

Figure 21. Noise comparison for PN, APN and DG (6g maneuver)

From Figure 21, it can be seen that the addition of noise in the simulation does not

affect the relative performance of the DG law when compared to the other two laws. DG

is still the best performing guidance law under target maneuvering scenarios.

 38

G. TEST 4 - NOISE TOLERANCE STUDY

In the noise tolerance study section, each simulation data point was run for a total

of 100 times with random white noise throughout. Due to the time taken to run each data

point 100 times with a fixed step ode4 solver at 0.01 s step size and 100 Hz filter sample

rate, the simulations were run only at the 45° and 135° heading.

For each of the three guidance laws, and for both maneuvering and non-

maneuvering target scenarios, the baseline noiseless maximum range at the two bearings

was first determined. A 10% reduction of the maximum range was taken and the

simulations were then run at that range. The baseline noise in the system is then increased

by a constant factor and the factor was increased until no less than 70% of the 100 runs

were registered as successful hits on target (i.e. for the missile to come within 5 m radius

of the target).

The results are summarized in Table 4.

Table 4. Summary table for noise tolerance of guidance laws.

 39

From the results, it can be seen that at the 45° heading, both PN and DG laws

exhibit robust tolerance to noise and can take noise factors around 16x to 17x of baseline

for both the maneuvering and non-maneuvering scenarios. However, it is significant to

note that the maximum ranges for PN law is nearly 7 km shorter than DG and APN in the

maneuvering scenario. In contrast, APN suffers larger performance degradation under the

effects of noise and has a noise tolerance of only around 7x though at a maximum range

similar to that of DG.

At the 135° heading, all three guidance laws exhibit similar noise tolerance

characteristics of about 5x the baseline noise.

As can be seen in test 3B, the three guidance laws suffered similar levels of

performance degradation at the forward quadrant of the engagement scenario. For the rear

quadrant, it could be seen that PN and DG suffered similar performance degradation

when compared to their respective noiseless scenario performances but APN suffered

additional performance losses at the rear quadrant. That result is reflected in the noise

tolerance study at the 45° heading where it can be seen that the greater the performance

degradation the guidance law suffered, the lower the noise tolerance of that guidance law

at that particular heading.

The full data and histogram plots for each of the scenarios described in Table 4,

with a hit percentage greater than 70%, is presented in Appendix D.

 40

THIS PAGE INTENTIONALLY LEFT BLANK

 41

IV CONCLUSION

A. CONCLUSIONS

The developed simplified 6DOF simulation model proved to be a useful tool in

the modeling, simulation and evaluation of the different guidance laws. Even with a set of

simplifying assumptions about physical system performance characteristics, the

simulation results matched expectations.

As a result of the simulations, it was proved that a navigational constant of N’ = 5

is optimal for both the APN law as well as the DG law.

For the maneuvering target scenario, this study has shown that while the APN law

does indeed perform better than the PN law except for a very narrow region, the new DG

guidance law, which is based upon target motion geometries instead of expected target

maneuvering models, performed the best out of the three guidance laws tested. With the

DG guidance law, significant improvements to the missile performance in the rear

quadrant, tail chase scenario were achieved.

For the non-maneuvering target scenarios, it was shown that while all three

guidance laws performed similarly under no noise conditions, when noise was added to

the system, both APN and DG suffered greater performance degradation as compared to

PN. This is intuitive as the more complex guidance laws are expected to be affected by

noise to a larger extent.

On the contrary, when noise was injected for the maneuvering scenarios, the DG

law was shown to be the most robust performer instead of PN, while APN suffered the

greatest performance degradations, especially around the 60° heading region. The DG

guidance maintained its performance advantage even with the addition of noise and is

shown to be an overall superior performing guidance law that can be relied upon in both

maneuvering and non-maneuvering scenarios.

 42

B. FUTURE RESEARCH

Encouraged by the results of the current study, future research can address the

following:

• Increasing model fidelity with more accurate sensor and controller models.

• Expanding the kinematic boundary concept to three dimensional scenarios
and considering a broader range of engagement scenarios.

• Comparing other guidance laws against the ones considered in this study.

• Having a more thorough study in noise implementation and specific
filtering algorithms.

 43

APPENDIX A. SIMULINK® MODELS

The SIMULINK® block diagrams used in the simulation are presented in this

appendix. The simulation is created as a single model and functions that are not required

can be modified or switched off as required.

 44

Output (nx;
ny:
nz f;

0 tp I' (xt· u u .
xt_d ot;
yt;
yt_d ot;
zt;

____,~ Target State I
zt_d ot):

- 16
Target_ Model

Fen: Noise B loci:
propna vpt I chingfanlin I d i ffgeo

----4 z_+-MATL.AB
Out I In I x_mhat I

Function ~

Guida noe_ Law Traci:ing Filter 6 ang:le/range_rate/range States

No Noise Data.

L.:

Missi~-Tima

~
::::.eeke.'

Miss ile Hdg!Spdl AoceVEuler

Output: (x_d otdot; ~ Alt_Aipha_Beta.

y_d otdot; Termina tor3 X

z_d otdotf; Miss ile PosnNel

Miss ile Aocel

1MU_ &_A ir_ Data_Computer2

nc Forces
~

moments state
13

,-----+ Fx Fx/Fy /Fz for drag model 3 3 Gain: Moment_ Feedbaci:

A erodyna mic_ Foroe_ Generator

___:eso 1:001
Torques X

13

I ControJ Forces~ .- Total Drag State

- Tt\rusJ;..--

Orag_ M>Odel

Thrust Model

Moment_Controi_ G.ain

Forces x_dot

Missile_ Dyna mics

13

SIMPLIFIED GOOF SIMULATION
>MODEL

TgtOut

To_Wod:spaoe

~ J+-
19 h Sim Stopper

19 .I states

I I
Tg VMsl

Output (xm:
V eloci ties

ym:
13 zm:

xm_d ot;
ym_d ot;
zm_d ot;
P;
Q ;
R;
qO:
q 1:
q2:
q3J; .I

L.:
MissileOut ..

To Wod:spaoe2 Cloci: ;:;------
c
~

f'\ A cceiOut I
To Wod:spaoe1

c
c

Y G-Fo<oe
I ~lector

G's

 45

Constant

Constant1

Constant2

2 3
Forces

3
Torques

3

position
3

ve locities
3

angular_rates
3

X

quarternions
4

MASS 1---------+lmass x_dotl-
1
,.,-
3
--------t..(2

mass
....__~-=-~=-:-:-~--' x_dot

Flat_Earth_G_DOF _Mod'el

Flat Earth 6DOF Dynamics
from Stevens & Lewis

"Aircraft Control & Simulation"
>MODEL/Missile_Dynamics

 46

13

mass 13

x_dot

>MODEL/Missile_Dynamics/Fiat_Earth_6_DOF _Model

 47

1
13

state

Fen:
alphabeta 2

MATLAB
r Function 2

Angles_ of_ Attack

13

. u(7)
1

roll_rate

~b
Gain

r du/dt

Gain:
(100 100)

2

Derivative

• ~
,/

2

r

3
2

PD controller required to model
missile weather vaning

>MODEL/Moment_Feedback

1
moment s

 48

(x; y ; • I

3 (x_dot; y_ d ot; z_ dotJ
M issi l e Posn/Vel

Derivative2

4

M issile Acc::el

(x_dotdot: y_dotdot; z_dotdot)
}4--~----~----~~--~~dwdt~-----------,

M issi l e Head ing. (lhete_ m)

Fen:
atan2(u(2),u(1))

Fen:

Deriv ativ e 1

M issi le Speed
sq rt(u(1)"2+u(2)"2+u(3)"2)

M issile
Hdg/Spd/

AcoeUE ul s

Missile Acceleration

Deriv ative

Eu ler Angles, (psi. the ta. phi)

2

A l t_A i pha _ Seta

3

3

2

A lphaBets i+-=-2-<::::
T o Wod:space Gain

Fen:
q2euler

Fen:

3

Go to

3

E- 3

Term inator2

Simulation of Missile IMU and Air Data Computer

>MODEUIMU _&_Air _Data_ Computer2

13

X

 49

angle/ra

IAnglesData :

To Workspace

~

2 6

nge _rate/range

1
tgo

Note: tgo provided
as truth for target

turn model

~
3

No Noise Data
~

1

I

1

LOS rate I LOS noisy

ln1
~ 19

rL LOS rate I LOS

Angles_&_ Velocity 19 1
States

L- Range Rate/Range

Range Rate Noisy

ln1
19 1 Range Noisy

tgo_truth

Range_Rate

Simulator Seeker Head All Data Available to Guidance Law
User can select which to use

>MODEL/Seeker

 50

[A1[

From
Input:

thetadot_ noise

[A2[

From1
Input:

phidot_noise

[A3J

From2
Input:

theta_ noise

[A4J

From3
Input:

phi_ noise

Vert LOS noise

Goto

Fen:
atan2(u(3)-u(8),u(1)-u(7))

Gain:
57.296

19

19

To convert radians to degress

>MODEL/Seeker/Angles_&_ Velocity

19

ln1

 51

Range Rate/Range

To Workspace1

Input:
rdot_noise

Doppler Noise

Fen:
sqrt((u(1)-u(7))A2 + (u(3)-u(S))A2 + (u(5)-u(9))A2)

Range_ Calculator
ln1

>MODEUSeeker/Range_Rate

 52

Target_ Turn

Fen:
dynamic 3D

MATLAB
Function 6

Target_ Dynamics

.---+I TargetVeiAccel

To Workspace

Initial Condition:
TGT_INIT

6
Target_ State

Tgt 6

Missile Guidance Simulator Target Model
Six Dimensional State Vector

>MO DEL/Target_Model

 53

("1)
tgo_in

0

Constant

TARGET_ TURN'GRA VITY

Turn Rate

This block sets the target
turn rate in terms of

centripetal acceleration
in m/sA2

For no turn, set to 0

...
•

1\ ~

• -I

Fen:
switchlimit

~I MATLAB I
I Function I

Outputs Turn_ Rate data
once switch is triggered
until end of simulation

>MODEL/Target_Modei/Target_ Turn

Time of target
manuev er set (tgo)

h threshold by switc

~ "'"TJ
turn_rat e

 54

 55

Input ~ -:y X 1 - noise

Band-Limited
White Noise

X

~ + Input '-Y
X2_noise Band-Limite-d

White Noise3

Vx

Input ~ +
X 3_noise '-Y

Band-Limited
White Noise6

k<
Input ~ +

Y1 - noise '-Y
Band-Limited
White Noise1

y

Input ~ -:y 1

Y2_noise Out1
Band-Limited
White Noio;e4

1

ln1
Vy

Input ~ Y3_noise -:y
Band-Limited
White Noise7

Ay

Input ~ ~

Z1 noise ~y
- Band-Limited

White Noise2

z

Input ~ +
Z2_noise '-Y

Band-Limited
White Noise5

Vz

Input ~ +
Z3_noise '-Y

Band-Limited
White NoiseS

Az

>MODEL/Noise Block

 56

Upper/Lower limit set to
+I- (30'GRA VITY)

Gain1

Upper/Lower limit set to
+I- (MASS'30'GRA VITY)

Saturation 1
3

Forces

Simplified Aerodynamic Force Generator
Converts Commanded Acceleration to Force

>MODEL/Aerodynamic_Force_ Generator

 57

2 • DragForce
~ • To Workspac~

Fen:
3 "'T) draginduced ~

MATLAB 16 Controi_Forces
Function

Induced _Drag_ Model ~

(T"' 1 I'•
Total_ Drag Fen:

dragparasitic

MATLAB 14
Function ~

3) 1
Parasite _Drag_ Model

Thrust

Drag Force Model for
Simplified 6DOF Flight Model

>MODEL/Drag_Model

13 2l
State

 58

 59

 60

 61

APPENDIX B. MATLAB® CODE

This appendix contains the list of script files and function codes that were used in

the simulation. Table5 summarizes the code names and their purpose.

FILENAME PURPOSE

A. Simulation run script files
Kbouter3.m Runs and computes the kinematic boundary for a particular guidance law
Noise_Study.m Runs the noise simulation for a 100 repetitions
Single_run.m Runs a single simulation for a particular scenario
B. Simulation initialization script files
Missile_data.m Loads the pre-defined missile constants for the AMRAAM model
Thesis_init.m Loads the simulation initialization constants and variables
C. Simulation guidance law function files
chingfanlin.m Implements APN guidance law
diffgeo.m Implements DG guidance law
propnavpt.m Implements PN guidance law
D. Simulation function files
abgfilter.m Calls the alpha-beta-gamma filter model
alphabeta.m Calculates the AOA
cdvmach.m Polyfits the data curve for Cdi
draginduced.m Calculates the induced drag force
dragparasitic.m Calculates the parasitic drag force
dynamic3D.m Runs 3D target dynamics
flatearthdyn.m Runs the flat earth 6DOF dynamics
formdrag.m Calculates the form drag of the missile
machvalt.m Calculates the speed of Mach one at particular altitude
q2euler.m Calculates the euler angles from quarternions
quarternion.m Calculates the quarternions from euler angles
quat2b.m Calculates the B rotation matrix from quarternions
rhovalt.m Calculates the atmospheric density at particular altitude
switchlimit.m Triggers target turn rate and prevents switch back to zero
tgo.m Calculates the time to go for the missile to intercept target
thebigstop.m Stops the simulation run when conditions are met

Table 5. Summary of MATLAB® files and functions.

 62

A. SIMULATION RUN SCRIPT FILES

%---
%---
% File: Kbouter3.m
% Name: CPT Daniel Perh
% Compiler: MatLab v7.11.0.584 (R2010b)
% 32-bit (win 32)
% Date: 08 July 2011
% Description: Automatically computes a kinematic boundary using 6
% DOF simulator with tracking filter.
% - Streamlined search loops
% - Status indicator
% - Saves most recent data to disk
% Inputs: none
% Outputs: one figure of kinematic boundary
% Process: streamlined brute force search algorithm
% Assumptions:
% Comments:
%---
%---
clear
clc

%------ define globals ------
global SWITCHFLAG TURNFLAG

%------ define constants ------
Thesis_init;
STOPFLAG = 0; % (1) enable display of simulation stop conditions
 % (0) disable display of sim stop conditions

%------ define input vector ------
% initialize noise variables
% Set factor to 0 if noiseless simulation is required, else set to any
% positive integer to specify noise level desired. Factor will be
% mulitiplied directly into the power spectral density values of the
% white noise block
factor = 1;
r_noise = 1*factor; % Range Noise
rdot_noise = 1e-2*factor; % Range Rate Noise
theta_noise = 1e-8*factor; % Horizontal LOS angle
thetadot_noise = 1e-8*factor; % Horizontal LOS angle rate
phi_noise = 0*factor; % Vertical LOS angle
phidot_noise = 0*factor; % Vertical LOS angle rate

% set noise for the abg filter
abgfactor = factor;
X1_noise = 1*abgfactor; % Target X posn noise
X2_noise = 1e-2*abgfactor; % Target X velocity noise
X3_noise = 2e-2*abgfactor; % Target X accel noise
Y1_noise = 1*abgfactor; % Target Y posn noise
Y2_noise = 1e-2*abgfactor; % Target Y velocity noise
Y3_noise = 2e-2*abgfactor; % Target Y accel noise

 63

Z1_noise = 0*abgfactor; % Target Z posn noise
Z2_noise = 0*abgfactor; % Target Z velocity noise
Z3_noise = 0*abgfactor; % Target Z accel noise

%------ initialize variables ------
TARGET_TURN = 6 % set target turn rate, in g's,
 % default = 0, max allowable = 9.
MIN_RNG = 10000; % set min engagement range (10000m default)
DEGSTEP = 5; % set heading increment

START_TIME = tic;
MaxHit = zeros(1000,5); % Initializing 1000x5 matrix to hold MaxHit data
load CURRENT

%------ functions ------
% Start in tail chase step to head on by <DEGSTEP> degree increments
for HEADING = 0:DEGSTEP:180
 tic
 plotcount = 1;
 runplot = zeros(100,5); % Initialize 100x5 matrix to hold runplot
 % data
 runplot(:,1) = 10; % Preload MIN_RNG column with any value
 % greater than 5 so as to allow for correct
 % index search later
 rangemax = [0 0]; % Initialize 1x2 matrix to hold rangemax
 % data
 rangemax(1,1) = MIN_RNG;% rangemax is a 1X2 matrix to store rangemax
 % and min Range to go info
 disp(['Heading ',num2str(HEADING),' deg']) % show heading counter

 % compute target speed components
 XSPD = TGT_SPD*cos(HEADING*pi/180);
 YSPD = TGT_SPD*sin(HEADING*pi/180);

 % first range loop step by 10 km
 for TGT_RNG = rangemax(1,1) : 10000 : 150000

 disp(['*** ',num2str(TGT_RNG),', 10km step size***'])
 % set initial target state
 TGT_INIT = [TGT_RNG;XSPD;0;YSPD;-ALT;0];
 TURNFLAG = 0;
 SWITCHFLAG = 0;
 XLAST = [TGT_RNG;0;0;0;0; % store data for abgfilter.m use
 0;-ALT;0;0];

 % call simulation
 sim('MODEL')

 % save run data
 disp(['>>> ',num2str(min(RangeToGo)),', min Range<<<'])
 runplot(plotcount,:)=[min(RangeToGo),0,0,0,TGT_RNG];
 % score run
 if (min(RangeToGo)>5)
 break

 64

 end
 plotcount = plotcount+1;
 end

 INDEX = find(runplot(:,1)<=5);

 if(INDEX)
 rangemax(1,1) = runplot(max(INDEX),5); % Store rangemax data
 rangemax(1,2) = runplot(max(INDEX),1); % Store min range2go data
 end

 runplot = zeros(100,5);
 runplot(:,1) = 10;
 plotcount = 1;

 % main search loop 1km step size
 for TGT_RNG = rangemax(1,1)+1000 : 1000 : rangemax(1,1)+9000

 disp(['*** ',num2str(TGT_RNG),', 1km step size***'])
 % set initial target state
 TGT_INIT = [TGT_RNG;XSPD;0;YSPD;-ALT;0];
 TURNFLAG = 0;
 SWITCHFLAG = 0;
 XLAST = [TGT_RNG;0;0;0;0; % store data for abgfilter.m use
 0;-ALT;0;0];

 % call simulation
 sim('MODEL')

 % save run data
 disp(['>>> ',num2str(min(RangeToGo)),', min Range<<<'])
 runplot(plotcount,:)=[min(RangeToGo),0,0,0,TGT_RNG];
 % score run
 if (min(RangeToGo)>5)
 break
 end
 plotcount = plotcount+1;
 end

 INDEX = find(runplot(:,1)<=5);

 if(INDEX)
 rangemax(1,1) = runplot(max(INDEX),5); % Store rangemax data
 rangemax(1,2) = runplot(max(INDEX),1); % Store min range2go data
 end

 runplot = zeros(100,5);
 runplot(:,1) = 10;
 plotcount = 1;

 % main search loop 100m
 for TGT_RNG = rangemax(1,1)+100 : 100 : rangemax(1,1)+900

 65

 disp(['*** ',num2str(TGT_RNG),', 100m step size ***'])
 %set initial target state
 TGT_INIT = [TGT_RNG;XSPD;0;YSPD;-ALT;0];
 TURNFLAG = 0;
 SWITCHFLAG = 0;
 XLAST = [TGT_RNG;0;0;0;0; % store data for abgfilter.m use
 0;-ALT;0;0];

 % call simulation
 sim('MODEL')

 % save run data
 disp(['>>> ',num2str(min(RangeToGo)),', min Range<<<'])
 runplot(plotcount,:)=[min(RangeToGo),0,0,0,TGT_RNG];
 % score run
 if (min(RangeToGo)>5)
 break
 end
 plotcount = plotcount+1;
 end

 INDEX = find(runplot(:,1)<=5);

 if(INDEX)
 rangemax(1,1) = runplot(max(INDEX),5); % Store rangemax data
 rangemax(1,2) = runplot(max(INDEX),1); % Store min range2go data
 end

 runplot = zeros(100,5);
 runplot(:,1) = 10;
 plotcount = 1;

 % main search loop 10m. Note, now it is computing the full output
 % vector for each run. Starts calculation at rangemax so as to
 % determine full output vector for previous rangemax.
 for TGT_RNG = rangemax(1,1) : 10 :rangemax(1,1)+90

 disp(['*** ',num2str(TGT_RNG),', 10m step size***'])
 %set initial target state
 TGT_INIT = [TGT_RNG;XSPD;0;YSPD;-ALT;0];
 TURNFLAG = 0;
 SWITCHFLAG = 0;
 XLAST = [TGT_RNG;0;0;0;0; % store data for abgfilter.m use
 0;-ALT;0;0];

 % call simulation
 sim('MODEL')

 % analyze data from current run
 TOUT = MissileOut(:,14);
 INDX = find(RangeToGo==min(RangeToGo));
 IP = TOUT(INDX(1));

 66

 % compute cost function J=20*e(tf)^2+integ(u^2)/200 and
 % missile divert
 u2 = (OmegaOut(:,1).^2+OmegaOut(:,2).^2);
 integral = 0;
 for ii=2:INDX
 integral = integral+(TOUT(ii)-TOUT(ii-1))*u2(ii-1);
 end
 J = 20*min(RangeToGo)^2+integral/1000;

 % save run data [miss dist, cost, divert, time, max range]
 disp(['>>> ',num2str(min(RangeToGo)),', min Range<<<'])
 runplot(plotcount,:) = [min(RangeToGo),J,integral,IP,TGT_RNG];

 if (min(RangeToGo)>5)
 break
 end
 plotcount = plotcount+1;
 end

 INDEX = find(runplot(:,1)<=5);

 if(INDEX)
 rangemax(1,1) = runplot(max(INDEX),5); % Store rangemax data
 rangemax(1,2) = runplot(max(INDEX),1); % Store min range2go data
 end

 if (isempty(INDEX))
 MaxHit(HEADING+1,:) = [rangemax(1,2),0,0,0,rangemax(1,1)];
 else
 MaxHit(HEADING+1,:) = runplot(max(INDEX),:);
 end

 % save data to disk
 save CURRENT MaxHit
 toc
 % note for some guidance laws, the down step here
 % must be 2 or more---------------------|
 MIN_RNG = 10000*(floor(rangemax(1,1)/10000)-1);
 if (MIN_RNG <= 10000)
 MIN_RNG = 10000;
 end
 % MIN_RNG = 10000;
end
toc(START_TIME)
END_TIME = toc(START_TIME);

%%
% plot the graph
% 0 deg represents tail chase scenario
% 180 deg represents head on scenario
rho1 = MaxHit(1:DEGSTEP:181,5);
rho1 = [rho1;flipud(rho1)];
theta = 0:DEGSTEP:180;
theta = pi/180*theta;

 67

theta = [theta,-1*fliplr(theta)]';
figure(5)
polar (theta,rho1)

 68

%---
%---
% File: Noise_Study.m
% Name: CPT Daniel Perh
% Compiler: MatLab v7.11.0.584 (R2010b)
% 32-bit (win 32)
% Date: 08 July 2011
% Description: Automatically runs 100 simulation runs at a
particular
% point with random noise input to determine noise
% effects on guidance laws.
% Inputs: none
% Outputs: plot of abg filter data on TGT posn for the last run
% Process:
% Assumptions:
% Comments: NOTE: Must switch simulation solver to a fixed step
% solver before running this script file.
%---
%---
clear
clc

%------ define globals ------
global SWITCHFLAG TURNFLAG

%------ define constants ------
% initialize simulation
Thesis_init;
STOPFLAG = 0; % (1) enable display of simulation stop conditions
 % (0) disable display of sim stop conditions

% initialize variables to hold data
holdrange=zeros(1000,1);
holdpos=zeros(1000,3);

%------ define input vector ------
% initialize noise variables
% Set factor to any positive integer to specify noise level desired.
% Factor will be mulitiplied directly into the power spectral density
% values of the white noise block
factor = 4.7
r_noise = 1*factor; % Range Noise
rdot_noise = 1e-2*factor; % Range Rate Noise
theta_noise = 1e-8*factor; % Horizontal LOS angle
thetadot_noise = 1e-8*factor; % Horizontal LOS angle rate
phi_noise = 0*factor; % Vertical LOS angle
phidot_noise = 0*factor; % Vertical LOS angle rate

% set noise for the abg filter
abgfactor = factor;
X1_noise = 1*abgfactor; % Target X posn noise
X2_noise = 1e-2*abgfactor; % Target X velocity noise
X3_noise = 2e-2*abgfactor; % Target X accel noise
Y1_noise = 1*abgfactor; % Target Y posn noise

 69

Y2_noise = 1e-2*abgfactor; % Target Y velocity noise
Y3_noise = 2e-2*abgfactor; % Target Y accel noise
Z1_noise = 0*abgfactor; % Target Z posn noise
Z2_noise = 0*abgfactor; % Target Z velocity noise
Z3_noise = 0*abgfactor; % Target Z accel noise

%------ initialize variables ------
% initialize target
TGT_RNG = 79900;
HEADING = 135;
TARGET_TURN = 6;

XSPD = TGT_SPD*cos(HEADING*pi/180);
YSPD = TGT_SPD*sin(HEADING*pi/180);

tic
%------ functions ------
% 100 realizations
for numloops=1:100
 disp(numloops)
 TGT_INIT = [TGT_RNG;XSPD;0;YSPD;-ALT;0];
 TURNFLAG = 0;
 SWITCHFLAG = 0;
 XLAST = [TGT_RNG;0;0;0;0; % store data for abgfilter.m use. Must
 0;-ALT;0;0]; % be reset to baseline value before
 % each simulation call
 sim('MODEL')
 % analyze data from current run
 disp(min(RangeToGo))
 holdrange(numloops,:)=min(RangeToGo);
 idx=find(RangeToGo==min(RangeToGo));
 holdpos(numloops,:)=MissileOut(idx,1:3)-TgtOut(idx,1:2:5);
 save NOISY holdrange holdpos
end

% Calculate and display mean miss distance and the standard deviation
missdistance=mean(holdrange)
sigmadistance=std(holdrange)
toc

% Plot target position based on abg filter results for the last run
figure(2)
plot(XLAST_Data(:,1),XLAST_Data(:,4))
title('Tgt Posn based on abg filter')
xlabel('X Posn')
ylabel('Y Posn')

 70

%---
%---
% File: Single_run.m
% Name: CPT Daniel Perh
% Compiler: MatLab v7.11.0.584 (R2010b)
% 32-bit (win 32)
% Date: 08 July 2011
% Description: Runs a single iteration of a particular engagement
% scenario with user specified inputs
% Inputs: Target Parameters (Alt, Turn rate, Mach, Hdg, Rng)
% Outputs: Min Range (min miss dist)
% Graphs of (LOS Range to Go vs Time)
% (Engagement Geometry)
% (Msl & Tgt Speed vs Time)
% (Msl & Tgt Accel (g) vs Time)
% (Guidance command output vs Time)
% (Msl Forces vs Time)
% Process:
% Assumptions:
% Comments:
%---
%---
clear;
clc;

%------ define globals ------
global STOPFLAG SWITCHFLAG TURNFLAG

%------ define constants ------
Thesis_init;
STOPFLAG = 0; % (1) enable display of simulation stop conditions
 % (0) disable display of sim stop conditions

%------ define input vector ------
% initialize noise variables
% Set factor to 0 if noiseless simulation is required, else set to any
% positive integer to specify noise level desired. Factor will be
% mulitiplied directly into the power spectral density values of the
% white noise block
factor = 0
r_noise = 1*factor; % Range Noise
rdot_noise = 1e-2*factor; % Range Rate Noise
theta_noise = 1e-8*factor; % Horizontal LOS angle
thetadot_noise = 1e-8*factor; % Horizontal LOS angle rate
phi_noise = 0*factor; % Vertical LOS angle
phidot_noise = 0*factor; % Vertical LOS angle rate

% set noise for the abg filter
abgfactor = factor;
X1_noise = 1*abgfactor; % Target X posn noise
X2_noise = 1e-2*abgfactor; % Target X velocity noise
X3_noise = 2e-2*abgfactor; % Target X accel noise
Y1_noise = 1*abgfactor; % Target Y posn noise
Y2_noise = 1e-2*abgfactor; % Target Y velocity noise
Y3_noise = 2e-2*abgfactor; % Target Y accel noise

 71

Z1_noise = 0*abgfactor; % Target Z posn noise
Z2_noise = 0*abgfactor; % Target Z velocity noise
Z3_noise = 0*abgfactor; % Target Z accel noise

%------ initialize variables ------

% set target parameters
ALT = 6000; % default co-altitude in metres
TARGET_TURN = 6; % set target turn rate, in g's,
 % default = 0, max allowable = 9.

% set target speed
TGT_MACH = 0.83; % user sets Mach # for target
TGT_SPD = TGT_MACH*machvalt(ALT); % machine computes speed

% define scenario variables
TGT_HDG = 40; % heading of 0 represents tail chase,
 % heading of 180 represents head on geometry
TGT_RNG = 20000; % set target range

%------ functions ------
tic

disp(['Heading = ',num2str(TGT_HDG),' degrees'])
disp(['Target Range = ',num2str(TGT_RNG/1000),' km'])

% compute target speed components
XSPD = TGT_SPD*cos(TGT_HDG*pi/180);
YSPD = TGT_SPD*sin(TGT_HDG*pi/180);

TGT_INIT = [TGT_RNG;XSPD;0;YSPD;-ALT;0];
TURNFLAG = 0;
SWITCHFLAG = 0;
XLAST = [TGT_RNG;0;0;0;0; % store data for abgfilter.m use
 0;-ALT;0;0];

sim('MODEL2')
toc

disp(['Min Range ',num2str(min(RangeToGo)),' m'])

%%
%----- plot graphs ------
time = rem(now,1);
hr = floor(time*24);
mins = floor(rem(time*24,1)*60);
timestr = [' ',num2str(hr),':',num2str(mins)];

% Missile to target distance (Range-to-go vs Time)
range = RangeToGo;
t = MissileOut(:,14);
t_disc = 0:FILTSAMP:max(t);

 72

index = find(range==min(range));
ip = t(index(1));

figure(1)
subplot(2,1,2)
plot(t,range)
title('LOS Range to Go vs Time')
xlabel(['time (seconds) ',date,timestr])
ylabel('LOS Range (meters)')

% engagement geometry
subplot(2,1,1)
plot(TgtOut(:,1),TgtOut(:,3),':',MissileOut(:,1),MissileOut(:,2))
axis equal
outtext1 = ['time: ',num2str(ip),' seconds'];
outtext2 = ['range: ',num2str(min(range)),' meters'];
text(100,10000,'Intercept at:')
text(100,7000,outtext1)
text(100,4000,outtext2)

title('Engagement Geometry')
xlabel('x (meters)')
ylabel('y (meters)')
legend('Target','Missile','Location','Best')

%%
% Missile and Target Velocities
Target_Spd = sqrt(TgtOut(:,2).^2+TgtOut(:,4).^2+TgtOut(:,6).^2);
figure(2)
plot(t,MissileSpeed,'b-',t,Target_Spd,'k:')
title('Missile/Target Speed vs Time')
ylabel('Speed (m/s)')
xlabel('Time (s)')
legend('Missile','Target','Location','Best')

%%
% Missile & Target Accelerations in g's
gforce = sqrt(AccelOut(:,1).^2+AccelOut(:,2).^2 ...
 +AccelOut(:,3).^2)./9.8045;
figure(3)
subplot(2,1,1)
plot(t,gforce)
title('Missile Accelerations (g) vs Time')

ylabel('Missile Acceleration (g)')
axis([0 round(max(t)) 0 50])
% compute cost function J=20*e(tf)^2+integ(u^2)/200
u2 = (OmegaOut(:,1).^2+OmegaOut(:,2).^2);
integral = 0;
for ii = 2:index
 integral = integral+(t(ii)-t(ii-1))*u2(ii-1);
end
J = 20*min(range)^2+integral/1000;

 73

outtxt = ['Time (s) / Missile divert: ',num2str(integral)];
xlabel(outtxt)

Tgtgforce = (sqrt(TargetVelAccel(:,2).^2+TargetVelAccel(:,4).^2+...
 TargetVelAccel(:,6).^2))/9.8045;
subplot(2,1,2)
plot(t,Tgtgforce)
title('Target Accelerations (g) vs Time')
xlabel('Time (s)')
ylabel('Target Acceleration (g)')

%%
% guidance command
figure(4)
plot(t,OmegaOut(:,1),t,OmegaOut(:,2),':')
title('Guidance law command output vs Time')
outtxt = ['Cost J: ',num2str(J),' time (seconds)'];
xlabel([outtxt,' ',date,timestr])
ylabel('n_c (m/sec^2)')
axis([0 round(max(t)) -200 50])
legend('n_c y','n_c z','Location','Best')

%%
% Missile Force vs Time
figure(5)
plot(t,ForcesOut(:,1),'b-',t,ForcesOut(:,2),'k:')
title('Missile Forces Fx/Fy vs Time')
ylabel('Force')
xlabel('Time (s)')
legend('Fx','Fy','Location','Best')

 74

B. SIMULATION INITIALIZATION SCRIPT FILES

%% AMRAAM %%
%---
%---
% File: Missile_data.m
% Name: CPT Daniel Perh
% Compiler: MatLab v7.11.0.584 (R2010b)
% 32-bit (win 32)
% Date: 08 July 2011
% Description: Missile data for AMRAAM. Establishes missile
% dimensions for use in computing aerodynamic forces
% and moments. Except where noted, all dimensions in
% MKS system.
% Inputs:
% Outputs: various
% Process:
% Assumptions:
% Comments:
%---
%---

% Missile Name: PSEUDO AMRAAM

%------ define globals ------
global MASS DIAM LENGTH XCG XCPN XCPB XHL
global ST SW SPLAN SREF % Areas
global JX JY JZ % Rotational Inertia

%------ define constants ------
%--- missile body dimensions ------------------------------
MASS = 156.8; % mass, may be time varying
DIAM = 0.1778; % diameter
LENGTH = 3.657; % length
XCG = 1.8288; % initial c.g., may be time varying
LN = 0.6769; % length of nose cone
%--- missile tailplane dimensions -------------------------
XHL = 3.454; % hinge line arm
CRT = 0.4061; % tail root chord
CTT = 0.0676; % tail tip chord
TXT = 0.0676; % tail extension
HT = 0.2286; % tail height
%--- missile wing dimensions ------------------------------
XW = 1.134; % wing to radome tangency point
CRW = 0.3554; % wing root chord
CTW = 0; % wing tip chord
WXT = 0; % wing extension
HW = 0.1778; % wing height

%------ define input vector ------

%------ initialize variables ------

 75

%------ functions ------
%--- Centers of pressure -----------------------------------
XCPN = 0.67*LN; % nose CP
XCPW = LN+XW+0.7*CRW-0.2*CTW; % wing CP
AN = 0.67*LN*DIAM; % plan area of nose
AB = (LENGTH-LN)*DIAM; % plan area of body
XCPB = (0.67*AN*LN+AB*(LN+0.5*(LENGTH-LN)))/(AN+AB); % body CP
%--- Area computations -------------------------------------
SW = 0.5*HW*(CTW+CRW)+CRW*WXT; % wing area
ST = 0.5*HT*(CTT+CRT)+CRT*TXT; % tail area
SPLAN = (LENGTH-LN)*DIAM+0.67*LENGTH*DIAM; % body and nose plan area
SREF = pi*DIAM^2/4; % missile cross sectional
area
%--- Computing the inertial matrix -------------------------
JX = MASS*((DIAM/2)^2)/2;
JY = MASS*((LENGTH^2)/12+((DIAM/2)^2)/4)+MASS*((LENGTH/2)-XCG)^2;
JZ = JY;

 76

%---
%---
% File: Thesis_init.m
% Name: CPT Daniel Perh
% Compiler: MatLab v7.11.0.584 (R2010b)
% 32-bit (win 32)
% Date: 08 July 2011
% Description: This script file initializes thesis work missile
% simulation
% Inputs:
% Outputs:
% Process:
% Assumptions:
% Comments:
%---
%---

%------ define globals ------
global STOPFLAG SATFLAG SWITCHFLAG TURNFLAG
global TARGET_TURN XLAST FILTSAMP

%------ define constants ------
% physical constants
OMEGA_X = 7.292115e-5; % earth's rotation rate
GM_E = 3.9860014e14; % G*mass of earth
R_E = 6.378164e6; % radius of earth
F = 1/298.257; % ellipsoidal squash factor
OMEGA_E = [OMEGA_X;0;0]; % earth's rotational velocity vector
GRAVITY = 9.8045; % gravitational acceleration constant

%------ define input vector ------
% DEFAULT INPUTS REQUIRED (Data defined here can be superseded by the
% data within the individual simulation script
% files)
ALT = 6000; % set default co-altitude in metres
TARGET_TURN = 0; % set target turn rate, in g's,
 % default = 0, max allowable = 9.
 % Simulation applies tgt turn rate 8 s
 % prior to impact
TGT_MACH = 0.83; % user sets Mach # for target
TGT_SPD = TGT_MACH*machvalt(ALT);
MSL_MACH = 0.83; % user sers Mach # for missile at launch
MSL_SPD = MSL_MACH*machvalt(ALT);
TGT_HDG = 70; % target heading in degrees. 0
 % represents tail chase and 180
 % represents head on geometry
TGT_RNG = 40000; % target distance from initial launch
 % point

% REQUIRED GLOBAL VALUES
STOPFLAG = 0; % (1) enable display of simulation stop
 % conditions
TURNFLAG = 0; % store turn rate data, always set to (0)
SWITCHFLAG = 0; % prevent turn rate from switching back to
 % zero, always set to (0)

 77

TMAX = 200; % set simulation max run time

XLAST = [TGT_RNG;0;0;0;0; % store data for abgfilter.m use
 0;-ALT;0;0];

FILTSAMP = 0.01; % set filter sample interval for
 % abgfliter.m use. Also sets the Sampling
 % time for the white noise blocks as well
 % as the step size interval when selecting
 % fixed step size simulation solver. Do not
 % set larger than 0.02 for diffgeo guidance
 % law.

%------ initialize variables ------
% missile physical parameters
Missile_data;

VB = [MSL_SPD;0;0]; % Missile initial velocity vector
POSN = [0;0;-ALT]; % initial missile position vector, note
 % altitude is negative in NED coord

% compute Euler angles for missile
PSI = 0*pi/180; % Varying PSI will determine the angle at
 % which the missile is pointing at the
 % target. 0 deg will be pointing straight
 % at the target.
THETA = 0*pi/180;
PHI = 0*pi/180;

%------ functions ------
Q_0 = quarternion(PHI,THETA,PSI);
Q_0 = Q_0/sqrt(Q_0(1)^2+Q_0(2)^2+Q_0(3)^2+Q_0(4)^2);

B = quat2b(Q_0);

P = 0*pi/180;
Q = 0*pi/180;
R = 0*pi/180;

OMEGA_B = [P;Q;R];

% missile initial state vector
MSL_INIT = [POSN;VB;OMEGA_B;Q_0];

% compute target speed components
XSPD = TGT_SPD*cos(TGT_HDG*pi/180);
YSPD = TGT_SPD*sin(TGT_HDG*pi/180);

% target initial state vector [x;x_dot;y;y_dot;z;z_dot]
TGT_INIT = [TGT_RNG;XSPD;0;YSPD;-ALT;0];

 78

C. SIMULATION GUIDANCE LAW FUNCTION FILES

function [y] = chingfanlin (u)
% CHINGFANLIN
% Computes the optimal guidance law derived by Ching Fan Lin pg 475 with
% drag force inputs for point mass simulation

%---
%---
% File: chingfanlin.m
% Name: CPT Daniel Perh
% Compiler: MatLab v7.11.0.584 (R2010b)
% 32-bit (win 32)
% Date: 08 July 2011
% Description: computes APN guidance law from Ching Fan Lin
% Inputs: seeker output, filter output, accelerometer, missile
% timer
% Outputs: command accelerations, y & z forces for drag
% Process:
% Assumptions:
% Comments:
%---
%---

%------ define globals ------
global MASS SATFLAG

%------ define constants ------
Nprime = 5;
Nprimez = 5;

%------ define input vector ------
thetadot = u(1);
phidot = u(2);
los = u(3);
philos = u(4);
Vc = -u(5);
R = u(6);
heading = u(7);
Vm = u(8);
Vmdot = u(9);
phi = u(10);
theta = u(11);
psi = u(12);

tgt_state = u(13:21);
time = u(22);

accel_in = u(23:25);

%------ initialize variables ------

%------ functions ------

 79

if (Vc==0)
 tgo = 1e6;
else
 tgo = R/Vc;
end

% Compute relative state estimate
xhat = [R*cos(los);
 R*sin(los);
 R*sin(philos);
 tgt_state(2)-Vm*cos(psi);
 tgt_state(5)-Vm*sin(psi);
 tgt_state(8)-Vm*sin(theta);
 tgt_state(3);
 tgt_state(6);
 tgt_state(9);
 accel_in(1);
 accel_in(2);
 accel_in(3)];
if time<2.0
 ny = Nprime*Vc*(thetadot)/cos(heading-los);
 nz = Nprimez*Vc*(phidot)-9.8045;
else
 uc = (5/tgo^2)*[eye(3),tgo*eye(3), tgo^2/2*eye(3), zeros(3)]*xhat;
 ny = uc(2);
 nz = uc(3) - 9.8045;
end

% Define acceleration in x-axis as 0 as it will be determined from the
% thrust and drag model blocks
nx = 0;

% Saturation of forces at 30 g's will be done in the Aerodynamic Force
% Generator Block
y = [nx;ny;nz];

end

 80

function [y] = diffgeo (u)
% DIFFGEO
% Computes the differential geometric guidance law derived by Chaoyong
Li

%---
%---
% File: diffgeo.m
% Name: CPT Daniel Perh
% Compiler: MatLab v7.11.0.584 (R2010b)
% 32-bit (win 32)
% Date: 08 July 2011
% Description: computes Differential Geometry guidance law from
% Chaoyong Li
% Inputs: seeker output, filter output, accelerometer, missile
% timer
% Outputs: command accelerations, y & z forces for drag
% Process:
% Assumptions:
% Comments:
%---
%---

%------ define globals ------
global MASS SATFLAG

%------ define constants ------
Nprime = 5;
Nprimez = 5;

%------ define input vector ------
thetadot = u(1);
phidot = u(2);
los = u(3);
philos = u(4);
Vc = -u(5);
R = u(6);
heading = u(7);
Vm = u(8);
Vmdot = u(9);
phi = u(10);
theta = u(11);
psi = u(12);

tgt_state = u(13:21);
time = u(22);

accel_in = u(23:25);

%------ initialize variables ------

%------ functions ------
tgt_accel = [u(15);u(18)]; % Target acceleration vector in X-Y
 % plane

 81

eta_t = atan2(u(17),u(14)) - los; % Angle between velocity vector of
 % target and the los vector in
 % horizontal plane
eta_tz = atan2(u(21),norm(tgt_accel)); % angle eta in vertical plane
eta_m = psi - los; % Look angle of the missile

% Diff Geometric guidance law
ny = norm(tgt_accel)*cos(eta_t)/cos(eta_m) +...
 Nprime*Vc*(thetadot)/cos(eta_m);
% vertical acceleration must account for gravity
nz = u(21)*cos(eta_tz)/cos(theta-philos) +...
 Nprimez*Vc*(phidot)/cos(theta-philos) - 9.8045;

% Define acceleration in x-axis as 0 as it will be determined from the
% thrust and drag model blocks
nx = 0;

% Saturation of forces at 30 g's will be done in the Aerodynamic Force
% Generator Block
y = [nx;ny;nz];

end

 82

function [y] = propnavpt (u)
% PROPNAVPT
% Computes the exact proportional navigation with drag force inputs for
% point mass simulation

%---
%---
% File: propnavpt.m
% Name: CPT Daniel Perh
% Compiler: MatLab v7.11.0.584 (R2010b)
% 32-bit (win 32)
% Date: 08 July 2011
% Description: Prop nav guidance law for 6 DOF flight model.
Computes
% the applied forces for use by induced drag model.
% Required to eliminate algebraic loops in the
simulation
% Inputs: [seeker data, IMU data, timer]
% Outputs: [command accelerations. applied forces]
% Process:
% Assumptions:
% Comments:
%---
%---

%------ define globals ------
global MASS SATFLAG

%------ define constants ------
Nprime = 5;
Nprimez = 5;

%------ define input vector ------
thetadot = u(1);
phidot = u(2);
los = u(3);
philos = u(4);
Vc = -u(5);
theta = u(11);
psi = u(12);

%------ initialize variables ------

%------ functions ------
% classic PN guidance law
ny = Nprime*Vc*(thetadot)/cos(psi-los);
% vertical acceleration must account for gravity
nz = Nprimez*Vc*(phidot)/cos(theta-philos)-9.8045;

% Define acceleration in x-axis as 0 as it will be determined from the
% thrust and drag model blocks
nx = 0;

 83

% Saturation of forces at 30 g's will be done in the Aerodynamic Force
% Generator Block
y = [nx;ny;nz];

end

 84

D. SIMULATION FUNCTION FILES

function [y] = abgfilter (u)
% ABGFILTER
% Implements an alpha-beta-gamma filter as outlined in Bar-Shalom & Li
% "Estimation and Tracking"

%---
%---
% File: abgfilter.m
% Name: CPT Daniel Perh
% Compiler: MatLab v7.11.0.584 (R2010b)
% 32-bit (win 32)
% Date: 08 July 2011
% Description: Implements a 9-dimensional state vector
% alpha-beta-gamma tracking filter for use with
% missile guidance laws requiring tracking filters
% (Note: Uses global XLAST to preserve state between
% iterations)
% Inputs: measurements (los,los_dot,R,R_dot),
% missile posn (x,y,z)
% Outputs: 9-dimensional estimate of target state
% (x,vx,ax,y,vy,ay,z,vz,az)
% Assumptions:
% Comments: May require up to 20 samples to stabilize from
% initialization
%---
%---

%------ define globals ------
global FILTSAMP XLAST

%------ define constants ------

%------ define input vector ------
losdot = u(1);
phidot = u(2);
los = u(3);
phi = u(4);
rdot = u(5);
R = u(6);
xm = u(7);
ym = u(8);
zm = u(9);

%------ initialize variables ------
% compute target cartesian coordinates
xt = R*cos(los)+xm;
yt = R*sin(los)+ym;
zt = R*sin(phi)+zm;

z = [xt;yt;zt];

 85

% set noise parameters
sigmav = 1;
sigmaw = 1;
lamda = sigmav*(FILTSAMP^2)/sigmaw;

% set filter parameters from Bar-Shalom & Li (Assumed Numbers)
falpha = .9;
fbeta = .9;
fgamma = .9;

% filter matrices
F = [1 FILTSAMP FILTSAMP^2/2 zeros(1,6);
 0 1 FILTSAMP zeros(1,6);
 0 0 1 zeros(1,6);
 0 0 0 1 FILTSAMP FILTSAMP^2/2 zeros(1,3);
 0 0 0 0 1 FILTSAMP zeros(1,3);
 0 0 0 0 0 1 zeros(1,3);
 0 0 0 0 0 0 1 FILTSAMP FILTSAMP^2/2;
 0 0 0 0 0 0 0 1 FILTSAMP;
 0 0 0 0 0 0 0 0 1];

 H = [1 0 0 0 0 0 0 0 0;
 0 0 0 1 0 0 0 0 0;
 0 0 0 0 0 0 1 0 0];

 % compute steady state gains
 W = [falpha;fbeta/FILTSAMP;fgamma/(2*FILTSAMP^2)];

 % build gain matrix
 P = [W zeros(3,2);
 zeros(3,1) W zeros(3,1);
 zeros(3,2) W];

 %------ functions ------
 % run filter
 xhat = F*XLAST;
 xhat1 = xhat + P*(z-H*xhat);

 XLAST = xhat1;

 y = xhat1;

end

 86

function [y] = alphabeta(u)
% ALPHABETA
% Computes angles of attack in both vertical and horizontal planes

%---
%---
% File: alphabeta.m
% Name: CPT Daniel Perh
% Compiler: MatLab v7.11.0.584 (R2010b)
% 32-bit (win 32)
% Date: 08 July 2011
% Description: Computes angles of attack using ATAN formulation in
% Bryson "Control of Spacecraft and Aircraft"
% Inputs: Missile state
% Outputs: Angles of attack (alpha, beta)
% Process: ATAN formulation of Bryson
% Assumptions:
% Comments:
%---
%---

%------ define globals ------

%------ define constants ------

%------ define input vector ------
v = [u(4);u(5);u(6)];

%------ initialize variables ------

%------ functions ------
% (Equations developed in Bryson)
% using beta1 for sideslip angle to avoid problems with built in matlab
% function 'beta'

alpha = atan2(v(3),sqrt(v(1)^2+v(2)^2));
beta1 = atan2(v(2),v(1));

y = [alpha;beta1];

end

 87

function [y] = cdvmach (mach, boost)
% CDVMACH
% Computes approximation of zero lift drag coefficient vs. mach number

%---
%---
% File: cdvmach.m
% Name: CPT Daniel Perh
% Compiler: MatLab v7.11.0.584 (R2010b)
% 32-bit (win 32)
% Date: 08 July 2011
% Description: Computes polynomial fit for cd0 vs Mach number
% Inputs: mach # and boost status
% Outputs: cd0
% Process: Fit on data from Hutchins EC4330 notes
% Assumptions:
% Comments:
%---
%---
%------ define globals ------
%------ define constants ------
NoBoost = [-0.0014 0.0299 -0.2110 0.6256];
Boost = [-0.0012 0.0243 -0.1521 0.4044];
%------ define input vector ------
%------ initialize variables ------
%------ functions ------
if (boost & (mach<0.7))
 y=0.15;
end
if (~boost & (mach<0.7))
 y=0.25;
end
if (boost & (mach>=0.7) & (mach<1.2))
 y=(mach-0.7)*0.2 + 0.15;
end
if (~boost & (mach>=0.7) & (mach<1.2))
 y=(mach-0.7)*0.3 + 0.25;
end
if ((mach>=1.2) & (boost~=0))
 y=polyval(Boost, mach);
end
if ((mach>=1.2) & (boost==0))
 y=polyval(NoBoost, mach);
end
if ((mach>5 & boost))
 y=0.10;
end
if ((mach>6.4) & ~boost)
 y=0.132;
end
end

 88

function [y] = draginduced(u)
% DRAGINDUCED
% Computes the induced aerodynamic drag force

%---
%---
% File: draginduced.m
% Name: CPT Daniel Perh
% Compiler: MatLab v7.11.0.584 (R2010b)
% 32-bit (win 32)
% Date: 08 July 2011
% Description: computes induced drag for simplified 6DOF
% Inputs: force output of guidance law, state
% Outputs: drag force
% Process: work backwards to CN from forces
% Assumptions:
% Comments:
%---
%---

%------ define globals ------
global MASS SREF

%------ define constants ------
eAR = 1.5; % elliptical eff & AR

%------ define input vector ------
Fy = u(2);
Fz = u(3);
v2 = u(7)^2+u(8)^2+u(9)^2; % missile velocity
alt = u(6); % missile alt

%------ initialize variables ------
rho = rhovalt(abs(alt)); % atmospheric density
mach = sqrt(v2)/machvalt(alt);
Q = rho*v2/2; % dynamic pressure

%------ functions ------
if (Q==0)
 Cny = 0;
 Cnz = 0;
else
 Cny = Fy/(Q*SREF); % y normal coefficient
 Cnz = Fz/(Q*SREF); % z normal coefficient
end
Cdi = (Cny^2+Cnz^2)/(pi*eAR); % induced drag coefficient

if (mach<1)
 Cdi = 0.25*sqrt(Fy^2+Fz^2)/(MASS*9.8045); % subsonic drag equal to
 % max Cd0*applied G force
end
y = Cdi*Q*SREF; % drag force

end

 89

function [y] = dragparasitic (u)
% DRAGPARASITIC
% Computes parasitic aerodynamic drag force

%---
%---
% File: dragparasitic.m
% Name: CPT Daniel Perh
% Compiler: MatLab v7.11.0.584 (R2010b)
% 32-bit (win 32)
% Date: 08 July 2011
% Description: Computes parasitic drag after breaking apart state
% vector
% Inputs: state vector, boost status
% Outputs: parasitic drag force
% Process:
% Assumptions:
% Comments:
%---
%---

%------ define globals ------
global SREF

%------ define constants ------

%------ define input vector ------
vel2 = u(4)^2+u(5)^2+u(6)^2;
alt = u(3);

boost = u(14);

%------ initialize variables ------

%------ functions ------
y = formdrag(SREF, alt, vel2, boost);

end

 90

function [y] = dynamic3D (u)
% DYNAMIC3D
% Computes the motion dynamics for a body (target) in three dimensions

%---
%---
% File: dynamic3d.m
% Name: CPT Daniel Perh
% Compiler: MatLab v7.11.0.584 (R2010b)
% 32-bit (win 32)
% Date: 08 July 2011
% Description: target motion dynamics
% Inputs: target state, turn rate input
% Outputs: derivative of target state
% Process:
% Assumptions:
% Comments:
%---
%---

%------ define globals ------

%------ define constants ------

%------ define input vector ------
Ac = u(1); % Centripetal Acceleration
x = u(2);
xdot = u(3);
y = u(4);
ydot = u(5);
z = u(6);
zdot = u(7);

%------ initialize variables ------

%------ functions ------
TgtSpd = sqrt(xdot^2+ydot^2+zdot^2);
omega = Ac/TgtSpd; % where Ac = TgtSpd^2 / r
 % & omega = TgtSpd / r

y = [xdot;
 -omega*ydot;
 ydot;
 omega*xdot;
 zdot;
 0];

end

 91

function [y] = flatearthdyn (u)
% FLATEARTHDYN
% Computes motion dynamics for 6 DOF flat earth model

%---
%---
% File: flatearthdyn.m
% Name: CPT Daniel Perh
% Compiler: MatLab v7.11.0.584 (R2010b)
% 32-bit (win 32)
% Date: 08 July 2011
% Description: Computes 6 DOF dynamics for flat earth using
% quarternion formulation
% Inputs:
% Outputs: derivative of state vector
% Process: Steven & Lewis
% Assumptions:
% Comments:
%---
%---

%------ define globals ------

%------ define constants ------

%------ define input vector ------
p = [u(1);u(2);u(3)];
v_b = [u(4);u(5);u(6)];
omega_b = [u(7);u(8);u(9)];
P = u(7); Q = u(8); R = u(9);

q = [u(10);u(11);u(12);u(13)];

magq = sqrt(q(1)^2+q(2)^2+q(3)^2+q(4)^2);
q = q/magq;

x = [p;v_b;omega_b;q];

J = [u(14) 0 0; % inertial matrix
 0 u(15) 0;
 0 0 u(16)];

F_B = [u(17);u(18);u(19)]; % Forces

T_B = [u(20);u(21);u(22)]; % Torques

g = [0; 0; 9.8045]; % Not using external gravity model

m = u(23); % Mass

%------ initialize variables ------
% Compute rotation matrices
B = quat2b(q);

 92

OMEGA_B = [0 -R Q;
 R 0 -P;
 -Q P 0];

OMEGA_q = [0 P Q R;
 -P 0 -R Q;
 -Q R 0 -P;
 -R -Q P 0];

%------ functions ------
y = [zeros(3) B' zeros(3) zeros(3,4);
 zeros(3) -OMEGA_B zeros(3) zeros(3,4);
 zeros(3) zeros(3) -1*inv(J)*OMEGA_B*J zeros(3,4);
 zeros(4,3) zeros(4,3) zeros(4,3) -(1/2)*OMEGA_q];

y = y*x;

y = y+[zeros(3,1);
 B*g+(1/m)*F_B;
 inv(J)*T_B;
 zeros(4,1)];

end

 93

function [y] = formdrag (A, alt, vel2, boost)
% FORMDRAG
% Computes form drag for a missile with frontal area A in a standard
% atmosphere. Uses MACHVALT, CDVMACH, RHOVALT

%---
%---
% File: formdrag.m
% Name: CPT Daniel Perh
% Compiler: MatLab v7.11.0.584 (R2010b)
% 32-bit (win 32)
% Date: 08 July 2011
% Description: Computs the form drag for a missile with frontal
% area A in a standard atmosphere
% Inputs: area, altitude. V^2, boost on/off
% Outputs: parasitic drag force
% Process:
% Assumptions:
% Comments:
%---
%---

%------ define globals ------

%------ define constants ------

%------ define input vector ------

%------ initialize variables ------
rho = rhovalt(alt);
mach = (vel2)^(1/2)/machvalt(alt);

%------ functions ------
if (mach>100)
 mach = 0.83;
end

Cd = cdvmach(mach,boost);

y = rho*vel2*Cd*A/2;

end

 94

function [y] = machvalt (alt)
% MACHVALT
% Computes the linear approximation for a given altitude in meters/sec
% based on standard ICAO atmosphere

%---
%---
% File: machvalt.m
% Name: CPT Daniel Perh
% Compiler: MatLab v7.11.0.584 (R2010b)
% 32-bit (win 32)
% Date: 08 July 2011
% Description: Computes the linear approximation to Mach 1 for
% standard ICAO atmosphere
% Inputs: altitude
% Outputs: Mach 1
% Process:
% Assumptions:
% Comments:
%---
%---

%------ define globals ------

%------ define constants ------
Mach1 = [-0.0041 340.3];
Mach2 = 295.1;
Mach3 = [0.00067 281.7];

%------ define input vector ------

%------ initialize variables ------
alt = abs(alt); % account for NED coords

%------ functions ------
if (alt<11000)
 y = polyval(Mach1,alt);
else
 if (alt>20000)
 y = polyval(Mach3,alt);
 else
 y = Mach2;
 end
end

end

 95

function [y] = q2euler(u)
% Q2EULER
% Computes the Euler angles from quarternions

%---
%---
% File: q2euler.m
% Name: CPT Daniel Perh
% Compiler: MatLab v7.11.0.584 (R2010b)
% 32-bit (win 32)
% Date: 08 July 2011
% Description: Computes the euler angles from the quarternions
% Inputs: Quarternions
% Outputs: Euler Angles
% Process: Kuiper
% Assumptions:
% Comments:
%---
%---

%------ define globals ------

%------ define constants ------

%------ define input vector ------
q0 = u(1);
q1 = u(2);
q2 = u(3);
q3 = u(4);

%------ initialize variables ------

%------ functions ------
% convert quarternions to euler angles
m11 = 2*q0^2+2*q1^2-1;
m12 = 2*q1*q2+2*q0*q3;
m13 = 2*q1*q3-2*q0*q2;
m23 = 2*q2*q3+2*q0*q1;
m33 = 2*q0^2+2*q3^2-1;

psi = atan2(m12,m11);
theta = asin(-m13);
% correct for singularity in pitch
if (isreal(theta))
 theta = theta;
else
 theta = sign(-m13)*pi/2;
end

phi = atan2(m23,m33);
y = [phi, theta, psi];

end

 96

function [y] = quarternion (phi,theta,psi)
% QUARTERNION
% Computes the quarternions from Euler angles in radians

%---
%---
% File: quarternion.m
% Name: CPT Daniel Perh
% Compiler: MatLab v7.11.0.584 (R2010b)
% 32-bit (win 32)
% Date: 08 July 2011
% Description: Computes the quarternions from euler angles
% Inputs: Euler angles in radians
% Outputs: Quarternions
% Process: Kuiper
% Assumptions:
% Comments:
%---
%---

%------ define globals ------

%------ define constants ------

%------ define input vector ------

%------ initialize variables ------

%------ functions ------
% Quarternion equations
q0 = cos(phi/2)*cos(theta/2)*cos(psi/2)...
 +sin(phi/2)*sin(theta/2)*sin(psi/2);
q1 = sin(phi/2)*cos(theta/2)*cos(psi/2)...
 -cos(phi/2)*sin(theta/2)*sin(psi/2);
q2 = cos(phi/2)*sin(theta/2)*cos(psi/2)...
 +sin(phi/2)*cos(theta/2)*sin(psi/2);
q3 = cos(phi/2)*cos(theta/2)*sin(psi/2)...
 -sin(phi/2)*sin(theta/2)*cos(psi/2);

y = [q0; q1; q2; q3];

end

 97

function [y] = quat2b (u)
% QUAT2B
% Computes rotation matrix from quarternions

%---
%---
% File: quat2b.m
% Name: CPT Daniel Perh
% Compiler: MatLab v7.11.0.584 (R2010b)
% 32-bit (win 32)
% Date: 08 July 2011
% Description: Computes rotation matrix from quarternions
% Inputs: Quarternion
% Outputs: Rotation Matrix B
% Process: Kuiper
% Assumptions:
% Comments:
%---
%---

%------ define globals ------

%------ define constants ------

%------ define input vector ------
q0 = u(1);
q1 = u(2);
q2 = u(3);
q3 = u(4);

%------ initialize variables ------

%------ functions ------
y = [q0^2+q1^2-q2^2-q3^2 2*(q1*q2+q0*q3) 2*(q1*q3-q0*q2);
 2*(q1*q2-q0*q3) q0^2-q1^2+q2^2-q3^2 2*(q2*q3+q0*q1);
 2*(q1*q3+q0*q2) 2*(q2*q3-q0*q1) q0^2-q1^2-q2^2+q3^2];

end

 98

function [y] = rhovalt (alt)
% RHOVALT
% Computes the atmospheric density vs altitude for ICAO standard
atmosphere

%---
%---
% File: rhovalt.m
% Name: CPT Daniel Perh
% Compiler: MatLab v7.11.0.584 (R2010b)
% 32-bit (win 32)
% Date: 08 July 2011
% Description: Computes the atmospheric density from ICAO standard
% atmosphere. Exponential model
% Inputs: Altitude
% Outputs: rho
% Process:
% Assumptions:
% Comments:
%---
%---

%------ define globals ------

%------ define constants ------

%------ define input vector ------

%------ initialize variables ------
alt = abs(alt); % account for NED coord

%------ functions ------
if alt>9144
 y = 1.75228763*exp(-alt/6705.6);
else
 y = 1.22557*exp(-alt/9144);
end

end

 99

function [y] = switchlimit (u)
% SWITCHLIMIT
% Governs the output of the switch in activating target turn maneuvers.

%---
%---
% File: switchlimit.m
% Name: CPT Daniel Perh
% Compiler: MatLab v7.11.0.584 (R2010b)
% 32-bit (win 32)
% Date: 08 July 2011
% Description: In certain scenarios, after Time-to-Go falls below
% specified threshold and the switch activates to
% start Target evasive maneuvers, the Time-to-Go may
% increase back above the specified threshold. When
% this happens, the switch no longer outputs the
% target turn rate and the target stops turning into
% the missile for evasive maneuvers until Time-to-Go
% falls below threshold again.
%
% Therefore, this function is implemented to output
% the turn rate value from the time where the Time-to-
% Go falls below the specified threshold for the first
% time and keeps outputting the turn rate value
% regardless if the Time-to-Go subsequently increases
% above threshold value until the end of the
% simulation.
%
% NOTE: the global variables SWITCHFLAG and TURNFLAG
% must always be reset to 0 prior to calling for the
% next model simulation.
% Inputs: Target Turn Rate
% Outputs: Target Turn Rate
% Process:
% Assumptions:
% Comments:
%---
%---

%------ define globals ------
global SWITCHFLAG TURNFLAG
%------ define constants ------
%------ define input vector ------
%------ initialize variables ------
%------ functions ------

if ((u==0) & (SWITCHFLAG==0))
 y=u;
else if (u~=0 & (SWITCHFLAG==0))
 SWITCHFLAG = 1;
 y = u;
 TURNFLAG = u;
 else if (u~=0 & (SWITCHFLAG==1))
 y=u;
 else if (u==0 &(SWITCHFLAG==1))

 100

 y = TURNFLAG;
 end
 end
 end
end

end

 101

function [y] = tgo (u)
% TGO
% Computes time to go from Range and Range Rate

%---
%---
% File: tgo.m
% Name: CPT Daniel Perh
% Compiler: MatLab v7.11.0.584 (R2010b)
% 32-bit (win 32)
% Date: 08 July 2011
% Description: Computes Time-to-Go (tgo)
% Inputs: range, range rate
% Outputs: tgo
% Process:
% Assumptions:
% Comments:
%---
%---

%------ define globals ------

%------ define constants ------

%------ define input vector ------
range = u(2);
rate = u(1);

%------ initialize variables ------

%------ functions ------
if (rate==0)
 y = 100;
else
 y = abs(range/rate);
end

end

 102

function [y] = thebigstop (u)
% THEBIGSTOP
% Consolidated simulation stop function

%---
%---
% File: thebigstop.m
% Name: CPT Daniel Perh
% Compiler: MatLab v7.11.0.584 (R2010b)
% 32-bit (win 32)
% Date: 08 July 2011
% Description: Stops simulation under a variety of conditions
% Inputs: see below
% Outputs: stop flag
% Process:
% Assumptions:
% Comments:
%---
%---

%------ define globals ------
global STOPFLAG

%------ define constants ------

%------ define input vector ------
R = u(1);
Rdot = u(2);
Vm = u(3);
Vt = u(4);
G = u(5);
Ny = u(6);
Nz = u(7);
time = u(8);

%------ initialize variables ------
stop = [];
y = 0;

%------ functions ------

 if ((time>2.0)&(Vm<Vt))
 y = 111;
 stop = 'V stop';
 end

 if ((time>2.0)&(Rdot>0))
 y = 111;
 stop = 'Rdot stop';
 end

 if (R<0.000001)
 y = 111;
 stop = 'R stop';

 103

 end

 if ((STOPFLAG==1)&(y==111))
 disp(['*** ',stop,' ***'])
 end

end

 104

THIS PAGE INTENTIONALLY LEFT BLANK

 105

APPENDIX C. ADDITIONAL SIMULATION SCENARIOS

A sample of the single simulation run outputs are arranged in this appendix for

each of the guidance law in a noise included scenario. For each law, a different target and

missile heading is chosen with different simulation parameters to demonstrate the

capability of the model and the guidance laws. The following plots are then used to

present the results:

• Engagement geometry

• LOS range to go vs. time

• Missile and target speed vs. time

• Missile and target total acceleration vs. time

• Missile forces (Fx/Fy) vs. time

 106

A. PN GUIDANCE LAW

The first scenario has an initial range of 20 km, direct tail chase at 0° azimuth but

with the missile initially being launched pointing 45° away from the target. Co-altitude at

6000 m, with target 6g maneuver towards the missile at three seconds tgo.

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5
x 10

4 LOS Range to Go vs Time

time (seconds) 18-Nov-2011 13:22

LO
S

 R
an

ge
 (

m
et

er
s)

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

-2000

0

2000

4000

6000 Intercept at:
time: 56.6729 seconds
range: 66.0747 meters

Engagement Geometry

x (meters)

y
(m

et
er

s)

Target
Missile

0 10 20 30 40 50 60
200

300

400

500

600

700

800

900

1000

1100
Missile/Target Speed vs Time

S
pe

ed
 (

m
/s

)

Time (s)

Missile
Target

 107

0 10 20 30 40 50
0

10

20

30

40

50
Missile Accelerations (g) vs Time

M
is

si
le

 A
cc

el
er

at
io

n
(g

)

Time (s) / Missile divert: 90704.9795

0 10 20 30 40 50 60
0

2

4

6

8
Target Accelerations (g) vs Time

Time (s)

Ta
rg

et
 A

cc
el

er
at

io
n

(g
)

0 10 20 30 40 50 60
-5

-4

-3

-2

-1

0

1

2

3
x 10

4 Missile Forces Fx/Fy vs Time

Fo
rc

e
(N

)

Time (s)

Fx
Fy

 108

B. APN GUIDANCE LAW

This second scenario has an initial range of 20 km, at 45° azimuth but with the

missile initially being launched pointing -25° away from the target. Co-altitude at 6000

m, with target 6g maneuver towards the missile at three seconds tgo.

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2
x 10

4 LOS Range to Go vs Time

time (seconds) 18-Nov-2011 13:51

LO
S

 R
an

ge
 (

m
et

er
s)

0 0.5 1 1.5 2 2.5

x 10
4

0

2000

4000

6000
Intercept at:
time: 37.917 seconds
range: 0.34855 meters

Engagement Geometry

x (meters)

y
(m

et
er

s)

Target
Missile

0 5 10 15 20 25 30 35 40
200

300

400

500

600

700

800

900

1000

1100
Missile/Target Speed vs Time

S
pe

ed
 (

m
/s

)

Time (s)

Missile
Target

 109

0 5 10 15 20 25 30 35
0

10

20

30

40

50
Missile Accelerations (g) vs Time

M
is

si
le

 A
cc

el
er

at
io

n
(g

)

Time (s) / Missile divert: 61342.8127

0 5 10 15 20 25 30 35 40
0

2

4

6

8
Target Accelerations (g) vs Time

Time (s)

Ta
rg

et
 A

cc
el

er
at

io
n

(g
)

0 5 10 15 20 25 30 35 40
-5

-4

-3

-2

-1

0

1

2

3

4

5
x 10

4 Missile Forces Fx/Fy vs Time

Fo
rc

e
(N

)

Time (s)

Fx
Fy

 110

C. DG GUIDANCE LAW

This third scenario has an initial range of 20 km, at 110° azimuth but with the

missile initially being launched pointing 80° away from the target. Co-altitude at 6000 m.

In this scenario, the target is modeled as moving with a constant 2g amplitude sinusoidal

acceleration with a frequency of 0.1π rad/sec with a final 6g maneuver towards the

missile at three seconds tgo.

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2
x 10

4 LOS Range to Go vs Time

time (seconds) 18-Nov-2011 14:7

LO
S

 R
an

ge
 (

m
et

er
s)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

1000

2000

3000

4000

5000

6000

Intercept at:
time: 32.8761 seconds
range: 0.0037852 meters

Engagement Geometry

x (meters)

y
(m

et
er

s)

Target
Missile

0 5 10 15 20 25 30 35
200

300

400

500

600

700

800
Missile/Target Speed vs Time

S
pe

ed
 (

m
/s

)

Time (s)

Missile
Target

 111

0 5 10 15 20 25 30
0

10

20

30

40

50
Missile Accelerations (g) vs Time

M
is

si
le

 A
cc

el
er

at
io

n
(g

)

Time (s) / Missile divert: 66379.6214

0 5 10 15 20 25 30 35
0

2

4

6

8
Target Accelerations (g) vs Time

Time (s)

Ta
rg

et
 A

cc
el

er
at

io
n

(g
)

0 5 10 15 20 25 30 35
-5

-4

-3

-2

-1

0

1

2

3

4

5
x 10

4 Missile Forces Fx/Fy vs Time

Fo
rc

e
(N

)

Time (s)

Fx
Fy

 112

THIS PAGE INTENTIONALLY LEFT BLANK

 113

APPENDIX D. NOISE SIMULATION RESULTS DATA

Guidanc.e
law

PN

M in

Max
Mean

Median

Standard
Deviation

Varianc.e

Miss
Distance

w/ o noise
(same sim
co ndi t ions)

9£ Hits

Guidanc.e
law

PN

M in
Max
Mean
Median

Standard
Deviation

Varianc.e

Miss
Distance
wjo noise

(same sim
co ndi t ions)

9£ Hits

Heading

45 deg

0 .0003
132.4260

7.5901

0 .0 526

21.9122

480 .1443

0 .82335 m

81%

Heading

45 deg

0 .0034
232.8992
14.5629

0 .0 662

30 .0 578

903.4687

0 .82335 m

65%

Target
Maneuver

0 turn

90

BO

70

~ 60 ,
~ 50
~
3 40
~

&'. 30
zo

10

0
0

Target
Maneuver

0 turn

70

60

~ 50 ,
8 40

~
3 30
~ e
~ zo

10

0
0

Max Range

42120 m

Factor of Baseline
Noise

17.7x

Histogram Plot

• • •
s 10 15 zo 25 30 405060 7080

!Min Miss Distance (m)

Max Range
Factor of Baseline

Noise

42120 m 17.8x

Histogram Plot

• • I • • I I
s 10 15 zo 25 3040506070 BO

!Min Miss Distance (m•

Simulation Run Time

4929 s

90 100 110 120 130 140

Simulation Run Time

4666 s

90 100 110 120 130 140

 114

Guidance
law

APN

Min
Max
Mean

Median

Standard
Deviation

Varianc.e

Miss
Distance
wjo noise

(same sim
condi t ions)

9£ Hits

Guidance
law

APN

M in
Max
Mean
Median

Standard
Deviation

Varianc.e

Miss
Distance

w/ o noise

(same sim
condi t ions)

9£ Hits

Heading

45 deg

0.0682
30.6004
4.4470

2.0 60 1

6.2311

38.8270

2.6854m

76%

Heading

45 deg

0 .0292
67.3485

8.6013
3.0416

13.2316

175.0759

2.6854m

60%

Target
Maneuver

0 turn

BO

70

60
~
8 50

~ 40
3
p o
~

zo

10

0

Target
Maneuver

0 turn

70

60

~ 50 ,
840

~
3 30
~ e
~ zo

10

0

0

0

Max Range

42110 m

Fact or of Baseline
Noise

7.2x

Histogram Plot

=-=-:
s 10 1S zo zs 30

Max Range

42110 m

Min Miss Distance (m)

Fact or of Baseline
Noise

7.3x

Histogram Plot

•
I I I •

s 10 1S zo zs 30 3S 40 4S

Min Miss Distance (m)
50

Simulation Run Time

4306 s

3S 40

Simulation Run Time

4468 s

SS 60 6S 70 7S

 115

 116

Guidanc.e
Heading

law

PN 45 d•g

M in 0 .0019
Max 11.3017
Mean 3.3956
Median 3.1703

Standard
2.6143

Deviation

Varianc.e 6.8347

Miss
Oist:ance 0 .18861m
wjo noise

(same sim
condit ions)

9£ Hits 75%

Guidanu
Heading

law

PN 45 deg

M in 0 .0026
Max 11.9976

Mean 3.6613
Median 3.3864

Standard
2.6794

Deviation

Varianc.e 7.1791

Miss
Distance 0 .18861m

w/ o noise
(same sim
condit ions)

9£ Hits 69%

Target
Maneuver Max Range

6 turn 35270 m

BO

70 -

60 -
so -

40 -
30 -

zo - -
10 - -

0 - -
0 s 10

Targtt
Maneuver Max Range

6 turn 35270 m

BO

70 -
60 -

~
sso -
~ 40 -
3
~ 30
~

-
zo -
10 -
0 -

0 s 10

-
1S

Factor of Baseline
Noise

16x

zo zs 30

Factor of Bas.tlint
Noise

16.1x

3S

Histogram Plot

1S zo zs 30 3S

Min Miss Distance

Simulation Run Time

2797'

40 .. so

Simulation Run Time

2798 s

40 •• so

 117

 118

 119

GuidiOC·t
law

PN

M in

Max
Mean

Median

Standard
Deviation

Varianc.e

Miss
Distance

wjo noise

(same sim
condi t ions)

9£ Hi ts

Guidanc.e

law

PN

M in

Max

Mean
Median

Standard
Deviation

Varianre

Miss
Distance
wjo noise

(same sim
condi t ions)

9£ Hi ts

Heading

135 deg:

0 .0 194

76.1915

2.5258

0 .8874

10 .7369

115.2809

2.3919 m

979£

Heading

135 deg:

0 .0013
174.0091

25.3632
1.104 7

43.7803

1916.7121

2.3919 m

699£

Tirgt t
Maneuver

0 turn

120

100

~ ,
8 "'
~ 60
3
~ e .. 40

20

0
0

Target
Maneuver

0 turn

"'
70

60

E
8 50

~ 40
3
~ 30 ..

20

10

0

Max Range

83270 m

F~tor of &tie line
Noise

4.9x

Histogram Plot

Simulation Run Time

4806 s

S 10 1S20 2S 30 3S 40 4S SO SS 60 6S 70 7S 80 SS 90 9S

0

Max Range

83270 m

Min Miss Distance (m)

Fact or of Baseline
Noise

5x

Histogram Plot

Simulation Run Time

4758 s

•
s WUWB30~40U50 ~60M 70 ~SO~~~

Min Miss Distance (m)

 120

Guldanu

l aw

APN

M in

M ax

Mean

Median

Standard
Deviation

Variance

Miss
Distance

w/o noise

(same sim
condit ions)

% Hits

Guidanu

l aw

APN

M in
Max

Mean
Median

Standard
Deviat ion

Varlanu

Miss
Olstanct

wjo noist

(same sim
condit ions)

" Hiu

Heading

135 dec

0 .0205
28.8667
3.6803

1.1109

5.9450

35.3430

1.0216m

78%

Heading

135 deg

0 .1590
49.1520

8.7913

5.8286

9.9349

98.7024

1.0216m

49%

Target
Maneuver

0 turn

90

so

"' ~ 60
850
[
~ "' ~

~ lO
20

10

0

Target
Maneuver

0 turn

60

50

~40
8
[so
~
~ e 20
~

10

0

Max Range

83090 m

0 s 10

M ax Range

83090 m

0 s 10

Factor of Baseline
Noise

5.3x

Histogram Plot

I
1S zo " 30 3S

Min Miss Distance (m)

Fattor of Baseline
Noise

5.4x

Histogram Pot

u 20 2S lO ss
Min Miss Distance (ml

Simulation Run Time

4936 s

40 •• 50

Simulation Run Time

4795 s

"' 4S lO

 121

Guidanc.e

law

OG

M in

Max
Mean

Median

Standard
Deviation

Varianc.e

Miss
Distance
wjo noise

(same sim
condi t ions)

9£ Hits

Guidanc.e

law

OG

M in

Max

Mean
Median

Standard
Deviation

Varianc.e

Miss
Distance
wjo noise

(same sim
condi t ions)

9£ Hits

Heading

135 d eg:

0 .0515
187.80 93

8.0 243

0 .7488

23.6310

558.4258

1.7183m

829£

Heading

135 d eg:

0 .10 94
243.3163

48.7813

27.1343

57.64 61

3323.0703

1.7183m

389£

Target
Maneuver

0 turn

90

"'
70

.li SO
~

~ so

~ ""
&'. 30

20

10

0

Tarcet

Maneuver

0 turn

40

3S

30

2S

20

1S

10

s

0

0

Max Range

81120 m

Fact or of Baseline
Noise

4.5x

Histogram Plot

••
0~ ~~R IQ!91

Max Range

81120 m

•
I I I I

~ s;:s g ~ ~~~~
Min Miss Distance (m)

Fact or of Baseline

Noise

4.6x

•
II I

Simulation Run Time

4929 s

I< ~ :;< s g 0 ~~ =
" "" "" "

Simulation Run Time

510 2 s

s 10 20 40 60 80 100120 140160180200220 240260280

 122

Guidanc.e
Law

PN

M in

Max
M n n
Median

Standard
Deviation

Variance

Miss
Olrtanct

w/ o noise

(same slm
condit ions)

% Hits

Guldane-e
Law

PN

M in

Max
Mean

Median

Standard
Deviation

Varianc.e

Miss
Distance

w/o nola

(same sim
conditions)

Heading

135 deg

0 .0067

83.8048
10 .7393
1.7782

20.5951

424.1596

1.2905m

76%

Heading

135 dt l

0 .2698
109.9653
25.7535
20.2508

27.0179

729.9655

1.2905m

" Hits 38"

Target
Maneuver

6 turn

so

70

60

" a"'
~ 40
! p o
~

20

10

0

Tarcet
M aneuver

6 turn

40

3S

"' " a I S

~ 20
!
~ iS
~

10

s

0

0

0

s

79640 m

-

Fact or of Baseline
Noise

6.1x

Histogram Plot

•

Simulation Run Time

4750 s

-
S 10 1S 20 2S 30 3S 40 4S 50 SS 60 6S 70 7S 80 SS 90

Min Min D~tance (mt

Max Factor of Baseline
Simulation Run Time

Range Noise

79640 m 6.2x 4369 '

Histogram Plot

I
I I I I I I I I I
10 1.S 20 2.S 3040 50607080 90 100 110 120 1.30 140

Min M~s D~tance (mt

 123

Guidance
Heading

law

APN 135 deg

M in 0.0352
Max 26.7813
Mean 2.0190
M t dian 1.2028
Standard
Deviat ion

3.6137

Variance 13.0591

Miss
Oisu nct 1.9015m
wjo noise

(same sim
conditions)

" Hits 94"

Guidanc.e
Heading l iW

APN 135 dec

M in 0.0731
Max 43.6102

Mean 6.9663
M edian 1.8493

Standard 10.3143
Deviation

Varianc.e !06.3846

Miss
Distance 1.9015m
wjo noist

(same sim
conditions)

% Hits 669£

Tarcet
Maneuver

6 turn

100

00

BO

~ 70

a 60

[50
!
a 40
~
~ 30

20

10

0

Target
M aneuver

6 turn

70

"'
~50
8 40

~
! 30
a e
~ 20

10

0
0

M ax Range

82080m

0 s

Max Range

82080m

-

FK t or of Baseline
Noise

5.5x

HistoEram Plot

10 1S 20 2S

Min Min Dinl nct (mt

Fatt or of Baseline
Noise

5.6x

Histogram Plot

I I • • •
s 10 1S 20 2S 30 3S

M in Miss Distance (m~

Simulation Run n me

4353 s

30 3S

Simulation Run Time

4539 s

40 •• so

 124

Guidance
Ltw

OG

M in
Max
M n n

M edian

Standard
Deviation

Varianc.e

Miss
Oirtanct
wj o noise

(same sim
condit ions)

" Hits

Guidance
ltw

OG

M in
Max

M ean
M tdlan

Standard
Deviat ion

Varianu

Miss
Olrtanct
wjo noise

(same sim
condit ions)

" Hits

Hndina

135 deg

0 .0015
94.1398
6.5540
1.5178

15.4116

237.5164

2.637m

83"

HtadlnJ

135 dog

0 .0171
177.5913
48.1942
39.0 50 9

47.1788

2225.8394

2.637m

29"

Tarcet
M antuwr

6 turn

00

"'
"'

§ eo
850
~
! 4<> ..
!! 30

20

10

0

Tarcet
M ant uw r

6 turn

..
30

~ zs ,
8 20

~
! u .. e
~ 10

5

0

M IIC Ran11

79900 m

Factor of Baseline
Nola

4.7x

Histogram Plot

Simulat ion Run Timt

4811 s

•
0 "' 0

~ "' ~

M IIC Ran11

79900 m

R IQ j;l 1!1 11 II S! lli &l 1!1 ~ iC i ll Sl ~ 8
~

M in M iss Dist ance (m)

Fact or of Baseline
NoiH

4.8x

Histogram Plot

•

Simulat ion Run Timt

4669 s

• 11111111 • I I • I
0 "' 0 "' ~ ~ R IQ j;l 1!1 11 II S! ~ &l 1!1 ~ iC i ll Sl ~ 8

~

M in M iss Distance (m)

 125

LIST OF REFERENCES

[1] C. Yeager and L. Janos, Yeager: An Autobiography. New York: Bantam Books,
 1985.

[2] N. A. Shneydor, Missile Guidance and Pursuit: Kinematics, Dynamics and

Control. Cambridge, UK: Woodhead Publishing Limited, 2008.

[3] P. Zarchan, Tactical and Strategic Missile Guidance, 4th ed. Reston, VA:
 American Institute of Aeronautics and Astronautics Inc., 2002.

[4] Y. C. Chiou, and C. Y. Kuo, “Geometric approach to three-dimensional missile
 guidance problem,” Journal of Guidance, Control, and Dynamics, vol 21, no. 2,
 pp. 335–341, 1998.

[5] J. A. Lukacs, IV, and O. Yakimenko, “Trajectory-shape-varying missile guidance
 interception of ballistic missiles during the boost phase.” AIAA Guidance,
 Navigation and Control Conference and Exhibit. Hilton Head, SC: Aug 2007.

[6] J. Z. Ben-Asher, and I. Yaesh, Advances in Missile Guidance Theory. Vol. 180,

P. Zarchan, ed. Reston, VA: American Institute of Aeronautics and Astronautics,
1998.

[7] R. Yanushevsky, Modern Missile Guidance. Boca Raton, FL: CRC Press, 2008.

[8] R. Goodstein, “Guidance law applicability for missile closing,” Guidance and
 Control of Tactical Missiles, AGARD Lecture Series, no. 52, May 1972.

[9] R. L. Shaw, Fighter Combat: Tactics and Maneuvering. Annapolis, MD: Naval
 Institute Press, 1988.

[10] U. S. Shukla and P. R. Mahapatra, “The proportional navigation dilemma—pure
 or true?” IEEE Trans. on Aerospace and Electronics Systems, vol. 26, no. 2, pp.
 382–392, March 1990.

[11] R. D. Broadston, “A method of increasing the kinematic boundary of air-to-
 air missiles using an optimal control approach,” M.S. thesis, Naval Postgraduate
 School, Monterey, CA, 2000.

[12] R. G. Hutchins, “Navigation, Missile, and Avionics Systems,” class notes for EC
 4340, Department of Electrical and Computer Engineering, Naval Postgraduate
 School, Monterey, CA, Spring 2011.

 126

[13] B. L. Stevens, and F. L. Lewis, Aircraft Control and Simulation, 2nd ed. Hoboken,
 NJ: John Wiley & Sons, Inc, 2003.

[14] J. H. Blakelock, Automatic Control of Aircraft and Missile, 2nd ed. New York:
 John Wiley & Sons, 1991

[15] J. D. Anderson, Fundamentals of Aerodynamic, 2nd ed. Los Angeles, CA:
 McGraw-Hill, Inc., 1991.

[16] C. Y. Kuo, and Y. C. Chiou, “Geometric analysis of missile guidance command,”
 IEEE Proceedings: Control Theory and Appliations. vol 147, no. 2, pp. 205–211,
 2000.

[17] C. Y. Li, W. X. Jing, H. Wang, and Z. G. Qi, “Application of 2D differential
 geometric guidance to tactical missile interception,” IEEE Aerospace Conference,
 25th Chinese Control Conference, 2006.

[18] C. F. Lin, Modern Navigation, Guidance, and Control Processing. Englewood
 Cliffs, NJ: Prentice-Hall Inc, 1991.

 127

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Chairman, Code ME
Department of Mechanical and Aerospace Engineering
Naval Postgraduate School
Monterey, California

4. Associate Professor Robert G. Hutchins, Code EC/Hu
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California

5. Professor Oleg Yakimenko, Code SE/Yk
Department of Systems Engineering &
Department of Mechanical and Aerospace Engineering
Naval Postgraduate School
Monterey, California

6. Professor Yeo Tat Soon
Temasek Defense Systems Institute
National University of Singapore
Singapore

7. Ms Tan Lai Poh
Temasek Defense Systems Institute
National University of Singapore
Singapore

	I. INTRODUCTION
	A. MISSILE GUIDANCE LAWS LITERATURE REVIEW
	1. Pursuit Guidance
	2. Lead Pursuit / Lead Collision Guidance
	3. Proportional Navigation

	B. GOALS

	II. SIMULATION METHODOLOGY
	A. SUMMARY OF SIMULATION MODEL
	1. SIX DEGREES OF FREEDOM (6DOF) EQUATIONS
	2. MISSILE MODEL
	a. Thrust Characteristics
	b. Moments of Inertia
	c. Drag Model
	d. Drag Model Validation

	3. Target Dynamics Model
	 4. Guidance Law Implementation
	5. Navigation Model
	6. Noise Model

	B. MODEL ANALYSIS AND MODIFICATIONS
	1. Modified Parasitic Drag Curve
	2. Additional Fx Saturation
	3. Additional Turn Limiter

	C. GUIDANCE LAWS
	1. Proportional Navigation (PN)
	2. Augmented Proportional Navigation (APN)
	3. Differential Geometry (DG)

	III. SIMULATION SCENARIOS, COMPARISON AND ANALYSIS
	A. TEST 1A - APN NAVIGATIONAL CONSTANT
	B. TEST 1B - DG NAVIGATIONAL CONSTANT
	C. TEST 2A - NON-MANEUVERING TARGET
	D. TEST 2B - MANEUVERING TARGET
	E. TEST 3A - NON-MANUEVERING TARGET WITH NOISE
	F. TEST 3B - MANEUVERING TARGET WITH NOISE
	G. TEST 4 - NOISE TOLERANCE STUDY

	IV CONCLUSION
	A. CONCLUSIONS
	B. FUTURE RESEARCH

	APPENDIX A. SIMULINK® MODELS
	APPENDIX B. MATLAB® CODE
	A. SIMULATION RUN SCRIPT FILES
	B. SIMULATION INITIALIZATION SCRIPT FILES
	C. SIMULATION GUIDANCE LAW FUNCTION FILES
	D. SIMULATION FUNCTION FILES

	APPENDIX C. ADDITIONAL SIMULATION SCENARIOS
	A. PN GUIDANCE LAW
	B. APN GUIDANCE LAW
	C. DG GUIDANCE LAW

	APPENDIX D. NOISE SIMULATION RESULTS DATA
	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

