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Abstract

This paper explores query processing in a hybrid cloud model where a user’s local computing capa-
bility is exploited alongside public cloud services to deliver an efficient and secure data management
solution. Hybrid clouds offer numerous economic advantages including the ability to better manage
data privacy and confidentiality, as well as exerting control on monetary expenses of consuming cloud
services by exploiting local resources. Nonetheless, query processing in hybrid clouds introduces nu-
merous challenges, the foremost of which is, how to partition data and computation between the
public and private components of the cloud. The solution must account for the characteristics of
the workload that will be executed, the monetary costs associated with acquiring/operating cloud
services as well as the risks affiliated with storing sensitive data on a public cloud. This paper pro-
poses a principled framework for distributing data and processing in a hybrid cloud that meets the
conflicting goals of performance, disclosure risk and resource allocation cost. The proposed solution
is implemented as an add-on tool for a Hadoop and Hive based cloud computing infrastructure.

1 Introduction

The rise of cloud computing has created a revolution in the computing industry by giving end-users
access to sophisticated computational infrastructures, platforms, and services using a pay-as-you-use
model. Several new systems like HadoopDB and Hive that support database query processing on the
cloud have emerged. Such systems investigate the potential benefits of using cloud-based systems instead
of traditional relational databases. An emerging trend in cloud computing is that of hybrid cloud. Unlike
traditional outsourcing where organizations push their data and data processing to the cloud, in hybrid
clouds in-house capabilities/resources at the end-user site are seamlessly integrated with cloud services
to create a powerful, yet cost-effective data processing solution. Hybrid cloud solutions offer similar
benefits as traditional cloud solutions. Yet, they provide advantages in terms of disclosure control and
minimizing cloud resources given that most organizations already have an infrastructure they can use.
Exploiting such benefits, however, opens numerous questions such as how should one partition data and
computation between the public and private side of the infrastructure? What are the implications of
the different designs – from the perspectives of data disclosure? computational performance? overall
costs/savings?

Let us illustrate some of the design choices and their implications using an example. Consider a
scenario in which a university IT department is considering a cloud-based solution as a cost-effective ap-
proach to supporting increased data analyses needs. We consider a simplistic database schema consisting
of the following tables:

Student(name, student_id, ssn, year_join, year_left, dept)

Catalog(c_id, title, descr, dept, units)

Instructors(i_id, i_name, ssn, i_dept, join_date)

Offering(instructor_id, course_id, quarter)

Enrollment(s_id, c_id, term, grade)
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In the above student database, while data such as catalog information is not sensitive, information
about students & instructors (e.g., ssn), student course enrollments, and their grades is deemed sensitive.
In particular, information such as ssn and grades, if leaked could lead to misuse of data and/or loss of
privacy and hence must be protected. In addition to supporting typical workload such as queries to
prepare end-of-term grade reports, identify policy violations (e.g., low/high course enrollments, students
with too low a GPA, too low term credits, etc.), the university administrators, now require the database to
support significantly more complex analyses such as degree of reciprocity amongst different departments
in terms of student enrollments in courses offered by the departments, longitudinal (e.g., over the past 10
years) study of students’ relative performance (viz. grades) in courses offered by different departments
grouped based on students’ home department, etc.

On one extreme, the university may choose to outsource its entire data and workload to the public
cloud (as is typical to outsourcing solutions). While simple to implement, such a solution, incurs the
most monetary cost in terms of cloud service (both storage & computing), and is most vulnerable to
data leakage1. In addition, the outsourcing strategy may not even be optimal in terms of performance
since it wastes local resources which are now unused. An alternate strategy might be to replicate data
at both private and public sides and to split the workload between the two. For instance, policy checks
and student reports may be prepared locally, while periodic complex analyses queries may be computed
on the cloud side. The above strategy exploits local resources, and thereby reduces cost of cloud services
required.

Another possibility might be to partition data in a way that allows multiple workload queries to be
evaluated partially on both sides. For instance, Student and Enrollment tables might be split horizontally
on both sides whereas Catalog may be replicated completely on the public side (since it is expected to
be a small table). Such an approach will allow for end-of-term grade report generation, policy violation
checks, as well as analyses queries to be parallelized, thus gaining performance. In addition, this plan
(like the previous) may also reduce the storage and potentially processing needs at the public cloud since
now only part of the data processing is done on the public side while the remainder is done at the local
side. The fourth possibility might be to only store the projection of the Enrollment table without the
“grade” attribute on the public side. This will reduce the risk of disclosure (to the public cloud) of data
that is potentially sensitive (viz., grades). Likewise, “ssn”, “s id”, and “name” from the Student relation
might only be exposed in encrypted form to the public side to curb disclosure.

The possibilities described above are just four of the multitude of design choices, each of which
represents different tradeoffs in terms of performance, costs, and disclosure.

In this paper, we develop a principled framework that provides mechanisms/opportunities to end
users to tune storage and workload execution over private and public clouds in a way that the resulting
query processing strikes the right balance of performance, risks, and costs from the users’ perspective.
The key challenge in designing such a framework is deciding what should be stored at the public and
local sites. The data partitioning and representation dictates not only the cloud storage requirement
and level of disclosure of sensitive data, but also the query processing strategies used to process the
workload. Query processing, in turn dictates the level of load generated on the public and private sides,
the risks incurred, and the monetary cost of cloud infrastructures. We postulate data partitioning as a
minimization problem where the goal is minimizing the performance cost while adhering to bounds on
risks and monetary costs2. By controlling the degree of risks and monetary costs, an end user can ensure
appropriate tradeoffs of the three factors in supporting query processing in hybrid clouds.

For a given data partitioning, the level of data exposure, as well as, workload distribution across
public and private clouds depends upon the underlying data representation used. For instance, us-
ing non-deterministic encryption to store data on the public cloud will minimize disclosure risks, but
will also limit query processing capabilities on the public cloud. Alternatively, storing data using full-
homomorphic encryption [3] will allow processing any class of queries while minimizing the risks of
sensitive data exposure. However, it increases computational overheads (and hence monetary costs)
since it is practically infeasible as the data size increases. A disclosure-limited indexing technique such as
bucketization [4] allows processing a large class of queries at reasonable monetary costs and performance,
albeit with potentially higher data exposure risk compared to full-homomorphic encryption. A plain-text
representation, of course, minimizes overheads but incurs the highest risks of disclosure. The framework

1Services such as S3 allow encrypted storage at no additional costs [1] ensuring protection for data at rest, however, the
data will be in cleartext form when in memory and hence susceptible to memory attacks [2].

2Alternate definitions of the problem are equally feasible and our framework allows for them to be studied as well.
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we develop in this paper to explore tradeoffs between costs, performance, and disclosure control is largely
agnostic to the specificity of the underlying data representation. Of course, the specific cost models used
to compute performance, costs, and risks depend upon the representation and need to be modeled and
input into the framework appropriately. While our framework is general, we use bucketization to store
sensitive data on the public side for concreteness. Bucketization is a powerful framework that allows a
range of possibilities from clear text representation (when buckets are very granular, with each value
corresponding to a bucket) to a completely secure representation (when all values are mapped to a sin-
gle bucket). We note that encryption-based approaches (such as homomorphic techniques) can also be
supported in our framework, if and when they become practical.

We note that the data partitioning problem is very well studied in the database literature in both
the parallel and distributed context [5, 6, 7, 8]. We compare and contrast the partitioning problem that
results in the context of hybrid clouds with the previously developed state-of-the-art approaches in the
related work section. Like prior partitioning problems, our problem is also NP-Hard. The paper explores
greedy heuristics that are extensively evaluated over standard TPC-H benchmark datasets under various
parameter settings and cloud side data representations.

Our primary technical contributions are listed below:

• We formalize the optimal risk-aware data partitioning problem as a mechanism for query cost min-
imization. Our formalization allows us to plug in different disclosure risk models for various use
cases. We provide an algorithm to derive good partitions for both, vertical as well as the horizontal
cases. Specifically, we develop an algorithm that searches for an optimal horizontal/vertical par-
titioning scheme given a query workload and monetary cost constraints (resource allocation and
sensitive data disclosure).

• We present a formal model for estimating the cost of SQL queries in a hybrid cloud setting and
develop techniques for their execution.

• We conduct extensive evaluation on realistic datasets and experimentally validate the benefits of
our algorithm.

The rest of the paper is organized as follows: Section 2 presents an overview of our Hadoop HDFS and
Hive based architecture for creating a hybrid cloud. In section 3, we present details on the formalization
of the data partitioning problem while in section 4 we present an iterative solution to the problem that
covers the horizontal and vertical partitioning approaches. Section 4 also provides a summary of our
query execution and estimation model that is used in solving the data partitioning problem. In section 5,
we present results of our experimental evaluation of the horizontal and vertical partitioning strategies
using the TPC-H benchmark. Section 6 reviews related work in the area of secure distributed data
processing. Finally, we present our conclusions and future work in section 7.

2 System Architecture

We begin by presenting an overview of our proposed system architecture in Figure 1. The system consists
mainly of two components: data design component responsible for optimal partitioning in the hybrid
cloud, and query processing engine that, given a partitioning, decides on the query execution strategy.
Our focus in this paper is on the data design component of the system, though, as will become clear,
cost estimation required to determine optimal partitioning depends upon the query processing strategies
implemented by the query processing engine.

For the data design component, a user begins by submitting a set of relations, R = {R1, R2, · · · , Rm},
a query workload, Q = {Q1, Q2, . . . , Qk}, and a set of resource allocation and sensitive data disclosure
constraints, C. The system initially performs the task of statistics collection over R and Q using the
statistics gathering module. This module also generates a set of predicates, P , based on R, Q and a
user-specified partitioning strategy (horizontal or vertical). The statistics SR are created as equi-width
histograms and sent to the data design layer. The data design layer receives the set P and the statistics
SR as well as the constraints C, and then systematically solves the data partitioning problem, DPP. In
solving DPP, the query cost estimation, QCEst component of the system is used to estimate the execution
costs of queries Qi ∈ Q. The QCEst, in turn, estimates the execution costs of queries by determining the
best plan for their execution by using the query processing engine. At the end, this layer outputs two
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Figure 1: The Hybrid Cloud Architecture

partial replicas of R, Rpr = {R1pr , R2pr , · · · , Rmpr} and Rpu = {R1pu , R2pu , · · · , Rmpu} that correspond
to the private and public replicas of R.

The private cloud stores R as well as its private side replica Rpr, while the public cloud stores only
the public replica, Rpu. Rpr and Rpu are constructed by partitioning set P into private (P pr) and public
(P pu) partitions respectively. Therefore, throughout the paper, a reference to “partitioning” denotes
a partitioning of set P , while “replication” denotes the replication achieved by storing Rpr and R on
the private side and moving Rpu to the public side. Finally, the data design layer also mandates how
sensitive data in Rpu will be stored on the public cloud.

After the data design layer has determined the replicas (Rpr and Rpu) and the representation (cleart-
ext or bucketization), the sensitive data in Rpu is stored on the public cloud in the decided representation.
On the other hand, the non-sensitive data in Rpu and Rpr is stored in the cleartext format on the public
and private clouds respectively.3 The metadata about replicas Rpr and Rpu is also sent to the query
processing engine. The details of constructing P as well as solving DPP will be described in Section 3,
whereas information on how SR is created will be given in Section 5.

Once the system has stored the data based on the output of the data design component, the system
can support query processing. This is achieved by the query processing engine, QPE which is responsible
for executing queries based on the way data is stored in the hybrid clouds. Given a query Q, the QPE
transforms Q into a execution plan using rewrite rules and estimates costs of different strategies for
executing Q4.

3 Data Partitioning Problem

In this section, we formalize the data partitioning problem in a hybrid cloud setting. The problem aims
to minimize the execution cost of a query workload and is bounded by two separate constraints, the
first of which limits the resources that can be rented on a public cloud, while the second captures the
disclosure risk that a user is willing to accept when sensitive data on the public side is exposed. The
solution to the problem results in a partitioning of data between the public and private sides. We model
such partitioning using predicates as is discussed next.

3We use a Hadoop HDFS based infrastructure for implementing the storage schemas. Hadoop HDFS is a distributed
file system designed to run on commodity hardware.

4We use a Hive based infrastructure for query processing. Hive is a data warehouse built on Hadoop that allows a user
to define structure for files stored in the underlying HDFS.
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3.1 Predicate Partitioning Model

In this paper, we use simple predicates as a foundation on which we can implement the horizontal and
vertical partitioning strategies that form the basis of our solutions to the data partitioning problem.
The use of predicates allows us to represent different data partitioning options (between the public and
private clouds) within the same common framework. Predicates offer a general way to represent various
partitioning strategies viz., horizontal or vertical, using a common mechanism instead of developing
separate notations for them. Additionally, in contrast to fixed strategies such as round-robin or hash
partitioning, predicates offer us a fine-grained and adaptive strategy for controlling what sensitive data
gets replicated on the public cloud. Previous techniques to policy specification for access control and
privacy have also considered a similar approach, e.g., [9] used a predicate based approach for specifying
access control policies in relational databases, [10] used predicated queries to specify confidentiality
policies for structured data. In our data partitioning problem, the set of simple predicates P is extracted
from relations R and workload Q. A simple predicate, Pi, is defined in one of the following three forms:

1. Pi ← Attribute

2. Pi ← Attribute op V alue

3. Pi ← (Pi ∧ Pi)|(Pi ∨ Pi)|(¬Pi)

where op includes {=, <,>,≤,≥}. Predicates of type 1 above can be used to specify vertical par-
titioning, while predicates of types 2 and 3 can be used for horizontal partitioning. We illustrate how
simple predicates can be extracted to specify horizontal and vertical partitionings using examples below.
Consider the relations Student (R1), Catalog (R2), Instructors (R3) Offering (R4) and Enrollment (R5)
discussed in the introduction and the following query (Q1) that retrieves names of all students who
received at least one ‘A’ grade in Winter 2011:

Q1: SELECT DISTINCT name FROM Student JOIN Enrollment

ON student_id = s_id

WHERE term = "Winter 2011"

AND grade = "A"

Vertical Partitioning: To specify a vertical partitioning policy, a simple predicate Pi is created for
each attribute of relations R1-R5 using predicates of type 1. The set P will consist of predicates such as
P1 ← name, P2 ← title, etc. that have been extracted from relations R1 and R2 respectively.

Horizontal Partitioning: In this case, the set P is extracted from queries (viz., Q1) instead of
relation schemas (i.e., R1-R5). We first identify predicates that appear in the where clause of queries
that are of types 2 or 3 and belong to the same relation. Then, we insert them into P . Additionally,
if a predicate Pi is of type 2, then a predicate ¬Pi is also inserted into P . On the other hand, for a
predicate Pi of type 3, if Pi is either Pi1 ∧ Pi2 or Pi1 ∨ Pi2 , then predicates Pi1 , ¬Pi1 , Pi2 and ¬Pi2 will
also be added to P . Our strategy recursively performs the same operations for Pi1 and Pi2 , until both
the predicates are simple (that is, of type 2). The set P for Q1 would consist of predicates such as:
P1 ← term = ”Winter 2011”, P2 ← term 6= ”Winter 2011”, P3 ← grade = ”A”, P4 ← grade 6= ”A”,
P5 ← term = ”Winter 2011” AND grade = ”A” and P6 ← term 6= ”Winter 2011” OR grade 6= ”A”.

Above, we have specified how predicates can be used to represent both horizontal and vertical parti-
tioning strategies. We note that a predicate based specification can capture a much larger set of hybrid
strategies as well, that combine both horizontal and vertical partitionings. However, we restrict our
solutions to only consider either horizontal or vertical partitioning leaving more complex policies (which
significantly increase the complexity of the problem) to future work.

3.2 Data Partitioning Problem Formalization

Given the predicate based representation of partitioning, we can model the data partitioning prob-
lem (DPP ) as an optimization problem whose aim is to partition a set of simple predicates, P =
{P1, P2, . . . , Pl}, over a hybrid cloud such that the total execution cost of workload Q is minimized.

DPP Problem Definition: The data partitioning problem (DPP ) is constructed as an optimization
problem that finds a simple predicate set P ′ where P ′ ⊆ P ,
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minimize
P ′

n∑
i=1

freq(Qi)×QPCQi(P
′)

subject to store(P ′) +
n∑

i=1

freq(Qi)× (commQi(P
′) + procQi(P

′))

≤ PRA COST

sens(
∪

p∈P ′

)× dis cost ≤ DIS COST

where freq(Qi) denotes the access frequency of a queryQi whileQPCQi(P
′) denotes the query processing

cost of Qi given that set P ′ is stored on a public cloud, PRA COST represents the maximum allowable
public resource allocation cost, and DIS COST represents the maximum allowable disclosure cost. The
use of a predicate partitioning model in conjunction with constraints (public side monetary cost and
sensitive data disclosure risk) allows us to capture several realistic scenarios within the same framework.
A few examples of such scenarios are as follows: (i) Users that are extremely averse to storing sensitive
data on a public cloud possibly due to laws/regulations. (ii) Users that want to achieve a speed-up
in performance and are willing to pay a price for the risk of storing sensitive data on the public side.
Furthermore, such a general framework also enables us to study different tradeoff’s that exist within the
problem domain in a systematic fashion.

Special Cases: The horizontal and vertical partitioning problems are specific cases of the general
problem defined above. The set of predicates P is constructed differently for each of these cases as was
presented previously.

Complexity of DPP : The DPP problem in general is NP-Hard as the 0-1 Knapsack Problem can
be reduced to the DPP problem. A proof sketch is given in Appendix A.

3.3 Cost Metrics

The formalization of the DPP problem above refers to three different performance metrics – query
processing cost (i.e., performance), monetary costs and disclosure risk. We now discuss these metrics in
some detail:

Performance (QPC): Query performance depends upon the strategy used for query execution.
Given a particular query plan, we can estimate the performance overheads using standard cost estimation
techniques for distributed query processing. The cost comprises of the cost of total computation at both
the public and private clouds as well as the network cost of data exchange between the private and public
clouds. We discuss the query cost estimation technique in Section 4.3.

Monetary costs: All cloud providers typically support competitive pricing models and provide
different service level agreements (SLA’s) for data storage and processing services. For example, Amazon
Web Services (AWS)5 provides a tiered pricing model where, the amortized prices become cheaper as
more data and processing services are used. AWS also provides SLA’s for Elastic Compute Cloud (EC2)
or Simple Storage Service (S3) that return a user between 10-25% of their monthly fee if Amazon fails
to meet their commitment of at least 99% up time. Monetary costs can be controlled by limiting the
data and processing outsourced to the public side, and therefore, we use this metric as a constraint in
our problem, since public cloud services will usually be limited by an operational expenditure (OpEx).
We compute the cost associated with a public side predicate set P ′ as a function of the following three
components: a) commQi(P

′): The communication cost for data items d satisfying some predicate
p ∈ P ′ where d is required to answer query Qi. b) store(P

′): The storage cost for data items satisfying
any predicate p ∈ P ′. c) procQi(P

′): The processing cost for data items d satisfying some predicate
p ∈ P ′ where d is required to answer query Qi. Furthermore, we ensure that the total monetary cost for
P ′ is limited by a maximum public resource allocation cost, PRA COST .

Disclosure risk: Disclosure risk is an important issue for organizations that deal with sensitive data,
since in the event that they lose such sensitive information, they will be required to pay compliance
fines as well as possible litigation expenses [11]6. One way to measure disclosure risk is in monetary

5http://aws.amazon.com
6See Accenture’s Technology Vision 2011 report, “Data Privacy Will Adopt a Risk-based Approach” section.
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terms. According to separate reports, organizations may need to spend between 90-1000$ per lost
record to cover various fines and expenses [12, 13]. An organization would necessarily want to limit
these expenses, therefore, we model the risk as a constraint in the data partitioning problem. For our
problem, we estimate the total disclosure cost over the set of predicates (P ′) in a public side partition
as a product of the number of sensitive tuples over the predicate set P ′ (computed as sens(

∪
p∈P ′) since

there may be overlapping predicates) times the per-tuple unit disclosure cost (dis cost). Additionally,
the disclosure risk depends on the data representation used to store sensitive data, which is fixed in our
data partitioning problem. Also, our problem ensures that the computed disclosure cost is bounded by
a user-defined value, DIS COST 7.

We observe that the above two constraints can be merged in a principled fashion into a single con-
straint, since both are modeled as monetary costs. This will, however, require us to normalize the two
monetary costs into a single metric. We leave such an undertaking for the future. We would also like to
stress that our model can incorporate other risk assessment techniques by modifying the disclosure cost
for a predicate pj .

4 Solution to the Data Partitioning Problem

Our solution approach to the data partitioning problem first partitions the set of predicates into initial
public and private side partitions. Then, we iteratively create different partitions and estimate the
execution cost of the query workload for each of these partitions and check whether any monetary and
disclosure risk constraints are violated or not. The execution cost estimation process makes use of the
query processing model discussed in subsequent subsections. Finally, we choose the best partition as the
one that minimizes the execution cost without violating the given constraints.

4.1 Greedy Approach to Finding the Best Partition

Given the exponential number of possible partitions (both for vertical and horizontal partitioning), we
use a hill climbing approach to finding the best partition. We present the iterative algorithm that solves
DPP for horizontal and vertical partitioning next.

Algorithm 1 builds an initial solution (seed) in which the public side predicate set is empty (line 1),
ensuring that we start with a feasible solution. This solution corresponds to storing the entire data and
computing all queries on the private side. Then, an initial estimate of execution cost for workload Q
is computed (line 2). Next, we iterate until we do not get any performance gain by moving predicates
to the public side or a max number of iterations (equal to P.size) is reached. In each iteration, a loop
determines the predicate that brings the most gain from amongst all the remaining private side predicates
(bestPredicate). In this loop, a predicate (p ∈ P ) is copied one at a time to the public side (line 8). If
the transition of p to the public side does not violate the disclosure risk constraint, then we estimate the
execution cost of Q (queryCost in line 10) as well as the monetary cost associated with moving p to the
public side (totalMoneyCost in line 11). If the estimated query execution cost is lower than the current
minimum execution cost (curMinCost) and the monetary cost constraint is also not violated, then we
update curMinCost with queryCost (line 13) and we set bestPredicate to p (line 14). Finally, after the
loop terminates, if we have found a new bestPredicate then we move that predicate to the public side
(line 20) and proceed to the next iteration. On the other hand, if no such bestPredicate is found, the
algorithm exits and returns the set of predicates on the public side (P pu).

Note that the above algorithm is general in the sense that it applies to both horizontal and vertical
partitioning; the only difference being the construction of predicate set P during the statistics collection
process. In vertical partitioning, P contains one predicate for each attribute of the relations, while in

7In this paper, we have restricted our attention to a framework that selects optimal data partitioning given a fixed
approach for representing the data. Different choices of representation offer different levels of information disclosure -e.g., a
cleartext representation reveals the sensitive data completely, while bucketization, based on an information hiding technique,
offers a higher level of protection and encrypted representation offers the most protection. Furthermore, these different
representations have implications on both, monetary costs and performance of queries. An extension of our framework that
jointly optimizes the partitioning and selects the right representation for different data items is an interesting, and a non-
trivial, direction of future work. One of the main complexities is the lack of concrete comparisons of different information
hiding approaches in terms of the security they offer.
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Algorithm 1 Iterative()

Input: P , Q, PRA COST , DIS COST , dis cost
Output: P pu

1: P pu = ∅ {Initial solution}
2: curMinCost← QWC-EST(Q, SR, P pu) {Initial cost}
3: isGain← true; ctr ← 1
4: while isGain AND ctr ++ < P.size do
5: isGain← false {Checks if there is a gain at each pass}
6: bestPredicate← ∅ {Keeps the predicate brings the most gain}
7: for Predicate p ∈ P do
8: P pu ← P pu ∪ p
9: if sens(

∪
p∈Ppu)× dis cost < DIS COST then

10: queryCost← QWC-EST(Q, SR, P pu)
11: totalMoneyCost← store(P pu) +

∑n
i freq(Qi)× (commQi(P

pu) + procQi(P
pu))

12: if queryCost < curMinCost AND totalMoneyCost < PRA COST then
13: curMinCost← queryCost
14: bestPredicate← {p}
15: isGain← true
16: end if
17: end if
18: P pu ← P pu − p
19: end for
20: P pu ← P pu ∪ bestPredicate
21: P ← P − bestPredicate
22: end while
23: return P pu

horizontal partitioning, P contains predicates derived from the queries in the query workload using the
rules specified in Section 3.1.

The algorithm above requires us to determine various costs (viz., disclosure, monetary, and query
execution) for a given workload of queries Q for a given partitioning Pi. We note that disclosure costs,
in our model, depend entirely on the partitioning Pi and are independent of the query workload. Disclo-
sure cost can simply be computed as sens(

∪
p∈Ppu) × dis cost. Determining query execution costs and

monetary costs, however, depends upon the query workload. They can both be estimated as the sum of
costs of individual queries8.

Thus, to fully specify our approach, we need to further describe the query costs (both performance,
and monetary) for a given query Qj over partition Pi. Such a cost estimation depends upon the query
execution strategy, which, in turn, depends upon the underlying data representation. Therefore, we next
discuss the query processing strategies over a hybrid cloud, followed by our mechanism to estimate costs.

4.2 Query Processing

In this subsection we briefly outline how query execution proceeds in our hybrid cloud setting. Before a
given query Qp is executed, we will already have a fixed partitioning of predicate set P (based on Algo-
rithm 1 in Section 4.1). Then, using the methodology of our query cost estimation module (Section 4.3),
we first generate private-only and public-most strategies for Qp. Then, we select the best strategy out of
them in terms of execution cost, and use this strategy to execute Qp. We note that our query execution
strategy is simplistic, however, the goal of this paper is data partitioning in a hybrid cloud setting, rather
than building a complete query execution and optimization engine for a hybrid cloud. In addition, we
note that the problem of query optimization has been addressed in the context of single-cluster systems
[15], but not in the context of hybrid clouds. The query processing strategy for a given query Qp in our
framework depends on the underlying data representation used.

8Recent work has explored techniques such as shared scans in the context of executing queries over MapReduce frame-
works [14] which can reduce costs of query workloads. We, however, do not consider such optimizations in developing our
partitioning framework in this paper.
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For concreteness, we use bucketization as a flexible security mechanism while allowing approximate
query answering to be performed by a public cloud. This representation is therefore appropriate for
users that want to limit their disclosure cost while performing some amount of query processing on a
public cloud. In addition, varying the number of buckets for a predicate provides a tradeoff between
performance vs. disclosure cost.

Note that, Encrypted and Cleartext representations can be simulated using bucketization in which
the buckets for each attribute are set to 1 and number of unique values, respectively.

We illustrate our query processing strategy for a hybrid cloud through the following example. Consider
the following relational schema and query q:

S(A string, B int, C string)

T(A date, B int, C int, D int)

Query q: SELECT S.A, T.A, T.C

FROM S, T

WHERE S.B = T.C AND T.A < 1995-03-15 AND S.C = "FRANCE"

S.B and T.C are primary keys in S and T , while T.D is a foreign key in T . We assume that S and
T are horizontally partitioned into Spr, Spu, Tpr and Tpu. Note that Spr and Tpr are the private cloud
replicas, while Spu and Tpu are the public cloud replicas of S and T . The details on creation of Spr,
Spu, Tpr and Tpu have already been discussed in Section 3. Also, both S and T are stored along with
the replicas in the private cloud in case q is executed entirely on that side. Furthermore, we assume
that attribute A of relation T is sensitive and is stored in a bucketized representation on the public
side. Therefore, conditions involving T.A need to be mapped according to the bucketization schema
after which they can be applied onto the data. We now describe each of the three stages used in query
execution:

a) Private-only Plan Generation: At this step, an initial query plan (Private-only Plan, τpr on)
which could completely run on the private side and doesn’t involve any public side processing will be
created. Figure 2(a) shows the private-only plan for q which is always a valid plan since the private cloud
always contains the original dataset R.

b) Public-most Plan Generation: The plan (Public-most Plan, τpu mo), that migrates the largest
amount of processing to the public side amongst the candidate query plans, without allowing multi-round
data transfer between the two sides (i.e. base data or generated intermediate data can only be transferred
from public to private clouds) will be produced. τpu mo is created by successively applying query rewrite
rules to the initial Private-only Plan (Appendix B provides some details on query rewrite rules). Fig-
ure 2(b) shows the public-most plan for q produced through the private-only plan from Figure 2(a). In
the case of bucketization, when results of the public query are transferred to the private side, additional
decryption and filtering of false positives may be required before executing the combination query. The
operator D in the figure denotes the combination of these tasks.

c) Best Strategy Selection : We now select the cheaper of the Private-only Plan and Public-most
Plan to be used as our strategy for executing query q over the hybrid cloud. While these two plans might
not be optimal, they represent two extremes in terms of monetary cost and disclosure risk. Namely, the
private-only plan has the least monetary cost and disclosure risk, whereas the public-most plan is the one
that has the largest monetary cost and disclosure risk. Therefore, they provide a reasonable estimation
of execution costs for queries over a hybrid cloud, and moreover, they give acceptable solutions to the
data partitioning problem9.

4.3 Query Workload Cost Estimation

Estimating costs for a query workload requires us to estimate the cost of each individual queryQi. Having
discussed query processing in the previous section, we next discuss mechanisms to estimate query costs.

The execution cost of a query plan over a hybrid cloud can be measured in terms of the total
running time required to execute that plan. However, in this paper we will use the I/O size of a query
plan as a substitute for the running time in the estimation process. Previous approaches to query cost
estimation in a cloud environment have also used a similar approach, e.g., Afrati et al. [16] use an I/O

9We leave the incorporation of complex plans and more accurate cost estimation techniques for the future.
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(a) Private-only Plan (τpr on) (b) Public-most Plan (τpu mo)

Figure 2: A join query execution

based data-volume cost model to evaluate different algorithms for executing query plans on a cluster. In
another paper, Wu et al. [15] propose an I/O based cost model that is used to evaluate the performance
of query plans in the MapReduce framework. In addition, they also observe that the cost model based
on query response time does not improve the accuracy of estimation by much over a model that uses
I/O size. The I/O size of a query plan τ in a hybrid cloud can be estimated as:

cτ = (max(Spu + w2 × Str, w1 × Spr) + w1 × Sco), (1)

where Spu and Spr are the estimated I/O sizes on the public and private cloud respectively, Str is
the estimated transfer size of the intermediate results from public to private cloud, and Sco is the I/O
size required to combine intermediate results at the private side. The weights w1 and w2 account for
differences in computational resources between a public and private cluster (details are given in Section 5).

In order to accurately calculate Spu, Spr, Str and Sco for any given plan τ , τ will be split into 3
subplans: public cloud subplan (τpu), private cloud subplan (τpr) and combination subplan (τ co). The
subplan τpu is that part of the plan τ that is executed over data in the public cloud, whereas τpr is
executed directly over data in the private cloud. Also, τpu is executed in parallel with τpr. Further, τ co

is used to combine the intermediate results generated by τpu and τpr into the final result. Additionally,
only τpu is executed within the public side while τpr and τ co are executed at the private side. We also
observe that τpr and τpu need to be executed before being able to process τ co. Splitting the private-only
plan τpr on is quite simple; since the entire plan is only a private cloud subplan. (i.e. τprpr on = q, whereas
τpupr on = τ copr on = ∅). On the other hand, dividing the public-most plan may be challenging. To overcome
this challenge, we use the partitioning of set P as well as query rewrite rules to divide the public-most
plan into its constituent elements. Figure 2(a) and Figure 2(b) illustrate how the private-only and
public-most plans for query q are divided into a public cloud, private cloud and combination subplans.

The I/O sizes for the various components of the plan τ are computed using statistics SR and the par-
titioning of P . Unfortunately, Hive does not maintain attribute level statistics for a relation. Therefore,
we implemented a statistics gathering module that analyzes the data for a relation once, and maintains
statistics for that relation and its attributes using separate histograms for unencrypted (using partitions)
and encrypted (using buckets) versions of attributes. Then, at run-time the I/O size for a query is es-
timated using histograms over partitions for non-sensitive attributes and histograms over buckets for
sensitive attributes.

Algorithm 2 performs the strategies proposed earlier to compute the cost of each query Qi by applying
Equation 1 over the generated τpr on and τpu mo for Qi. Further, Algorithm 2 sums up the individual
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Algorithm 2 QWC-Est()

Input: Q, SR, P pu

Output: Query Workload Cost, c

1: c← 0
2: for i← 1 to Q.length do
3: ci ←∞
4: plan list← ∅
5: Generate τpr on and τpu mo for Qi

6: plan list.add(τpr on); plan list.add(τpu mo)
7: for each candidate plan τ ∈ plan list do
8: resSize← 0 {Output Size of plan τ}
9: Spu ← 0 {I/O Size of public cloud subplan}

10: Str ← 0 {I/O Size of Transferred Results }
11: Spr ← 0 {I/O Size of private cloud subplan}
12: Spr

op ← 0 {Output Size of private cloud subplan}
13: Divide τ into τpr, τpu and τ co

14: Estimate Spu, Str, Spr, Spr
op and resSize using SR and P pu

15: Sco ← |Str + Spr
op + resSize|

16: ctau ← max(Spu + w2 × Str, w1 × Spr) + w1 × Sco {Total execution cost for plan τ}
17: if ctau < ci then ci = ctau end if
18: end for
19: c← c+ freq(Qi) × ci
20: end for
21: return c

query costs to return the overall execution cost of Q. We begin by creating candidate plans (private-only
or public-most plan) for Qi, and then we estimate the cost of each of these plans (lines 5-17). The
algorithm first initializes various I/O cost variables for a plan τ to 0 (lines 8-12). Next, we divide the
plan τ into τpr, τpu and τ co (line 13) after which values for the variables are estimated using SR as well
as the given partitioning P pu (lines 14-15). Note that, for a private-only plan Spu = Sco = Str = 0. The
execution cost of τ is computed using Equation 1 (line 16) and is compared with the current minimum
cost plan value for Qi. Finally, the overall cost of Q is computed as a sum of each Qi’s minimum cost
multiplied with freq(Qi) and is returned as the output (lines 19-21). Our current work supports simple
SPJ queries while we leave the support of nested queries as future work.

Additionally, as we said earlier our architecture should be able to compute the monetary cost of
the query workload for a fixed partitioning P ′. Our system calculates this monetary cost as the sum-
mation of the monetary cost associated with storing P ′ on the public side (i.e. store(P ′)) and the
total processing monetary cost (TPMC) for the workload over the partition P ′ (i.e. Monetary Cost
of Q for P ′ = store(P ′) + TPMC). TPMC is computed by adding the monetary cost for pro-
cessing each individual query Qi. The monetary cost for processing Qi is equal to the sum of the
monetary cost related to transferring results from a public to a private cloud during Qi’s execution,
commQi(P

′), and the actual monetary cost of processing Qi over the public cloud, procQi(P
′). As

a result, TPMC =
∑n

i=1 commQi(P
′) + procQi(P

′) and so monetary cost of Q for P ′ = store(P ′) +∑n
i=1 commQi(P

′) + procQi(P
′).

5 Experimental Results

This section presents results of experiments that we conducted to compare the performance of our
partitioning algorithm for horizontal and vertical partitioning. We first present details of our setup
followed by the experiments.

Experimental Setup: We conducted experiments on two local clusters setup on different sub-
networks of the same intranet. The first cluster consists of 9 nodes (used as private cloud) while the
second consists of 14 nodes (used as public cloud). Each node consists of a Pentium IV processor with
290GB-320GB disk space and 4GB of main memory. Both clusters are setup using Hadoop v0.20.2 and
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Hive v0.6.0.
Statistics collection: The statistics gathering module analyzed the 100GB TPC-H dataset and

generated equi-width histograms for every attribute of TPC-H relations. We used the datatypes, int,
double and string in Hive to represent TPC-H data. We also created a datatype ‘date’ that allows us
to represent various dates from the TPC-H schema. The number of partitions used in a histogram is
dependent on the datatype; this number is fixed for a given datatype: (i) For integers and doubles,
the number of partitions = log2(max −min), where min and max represent the min and max domain
values mandated by TPC-H. (ii) For dates, since TPC-H only allows dates between ‘1992-01-01’ and
‘1998-12-31’, we created one partition for each year from 1992 through 1998. (iii) For strings, we created
95 partitions that cover alphabets (a− z and A− Z), digits (0− 9) and all special characters (!, @, #,
etc.).

Bucketization parameters: In our experiments, the number of buckets, B, is a user-configurable
parameter that can be varied from 1 to the number of unique values in the domain of an attribute. We
also used AES in CTR mode to encrypt subsets of attributes in our experiments.

Query Workload: We have used the TPC-H benchmark with a scale factor 100 in our experiments.
We used a query workload of 60 queries containing modified versions of TPC-H queries Q1, Q3, Q6 and
Q11. In particular, we do not perform grouping and aggregate operations in any query. Further, we
assumed that each query was equally likely in the workload. The predicates in each of the queries are
randomly modified to vary the range (as mandated by TPC-H) of the data that is accessed.

Estimation of weights w1 and w2: The weight w1 is calculated as a ratio between the relative
processing time of a private cloud to that of a public cloud. We estimated the relative processing times
of our public and private clusters by running all 22 TPC-H queries for a 300GB dataset on them. Then,
w1 is computed as the average ratio of the running times of queries on the private cluster to that on the
public cluster. In this way, w1 was estimated to be 1.624. Another interesting observation to be made
here is that the value 1.624 is very close to the ratio of number of nodes used in our public cloud to that
in our private cloud (14/9 ≈ 1.556). A value greater than 1 indicates that our private cloud is slower than
our public cloud. Additionally, w1 is used for the private cloud as well as the combination components
of a query since they both run on the same private cluster. The estimation of w2 is done in a similar
way. However, since Str is the estimated transfer size, we need to account for the network bandwidth
when computing w2. Therefore, w2 is computed as a ratio of the inverse of the network bandwidth to the
processing time on a public cloud. The previously computed processing time was reused. The network
bandwidth was taken to be ≈ 672KB/sec since this is the bandwidth available on our clusters. In this
way, w2 was estimated to be 61.481. This clearly suggests that in the time a unit of data is transferred
from our public to private cloud (a unit is 1 byte, 1MB and so on), the public cloud processes ≈ 61 times
more data. This confirms the intuition that we should move processing to the public side rather than
transferring relations and computation from public to private clouds.

Computation of resource allocation cost: The resource allocation cost was computed using
unit prices from Amazon Web Services. We specifically used Amazon S3 pricing to determine storage
($0.140/GB + PUT) and communication ($0.120/GB + GET) costs, where the price for PUT and GET
operations is $0.01/1000 requests and $0.01/10000 requests respectively. Also, we used Amazon EC2 and
EMR pricing to calculate the processing cost ($0.085 + $0.015 = $0.1/hour). Finally, the total public
cloud resource allocation cost was computed as, PRApu ≈ 77K, using the previously given values.

Computation of disclosure cost: The sensitive data disclosure cost can be computed as:

DIS COSTP ′
= sens(

∪
p∈P ′

)× dis cost

dis cost = UNIT COST × Pr(data is disclosed|data repr.)

where sens(
∪

p∈P ′) is the number of sensitive tuples released for a public side predicate set, which
is approximated by our query estimation module. In addition, dis cost represents the per-tuple unit
disclosure cost which depends on the following factors: (i) A unit price per-tuple, UNIT COST , which
we assume to be $100. (ii) The probability that sensitive data is disclosed given that a particular data
representation is used for that data. In our experiments, we considered four different data representations
by bounding the buckets (B) used to store sensitive data such as names, phone numbers and addresses
from TPC-H on the public side. Note that, we assume the values used are supplied to us by an oracle,
since the task of determining them is beyond the scope of the current paper. We present each case along
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Figure 3: Comparison of partitioning strategies for a variable disclosure cost

with their probabilities (Pr): (a) Cleartext - B is set to the number of unique values for each sensitive
attribute; Pr = 10e−5; (b) Bucketized - For our experiments, this case was further divided into the
following sub-cases: (1) B = 100 for each sensitive attribute; Pr = 10e−6; (2) B = 10 for each sensitive
attribute; Pr = 10e−7; (c) Encrypted - B is set to 1 for each sensitive attribute; Pr = 10e−8. Also, the
choices of B = 10 and B = 100 were randomly made for the bucketized case. Finally, using the previously
defined values, we calculated the various maximum possible public cloud disclosure costs (DISpu) as:
(a) Cleartext - $1.18M; (b) Bucketized - (1) B = 100: $118K; (2) B = 10: $12K; (c) Encrypted - $1.2K.

Preliminary Experiments: For all our experiments, we first computed the running time of the
query workload for the following cases: (i) All computation is performed on our private cloud (Private).
(ii) All computation is performed over public cloud data using one of the four strategies presented earlier
(Public). Figures 3 and 5 clearly show that the time taken to run the query workload on the public
cloud is much faster than the private cloud. Moreover, there is an additional overhead involved for all
cases due to decryption and filtering. This overhead increases as the number of buckets is reduced from
B = number of unique values to B = 1.

Experiments with a variable disclosure cost: The goal of these experiments is to compare for
both, the horizontal and vertical partitioning strategies, the query workload performance as well as the
monetary expenditure on public side resources when the acceptable disclosure cost increases (from 25%
to 100% of DISpu costs) while the resource allocation cost is fixed randomly (at 50% of the PRApu

cost). Figure 3 clearly shows that when a user is willing to take additional risks by storing more sensitive
data on the public side, they can gain a considerable speed-up in overall execution time (almost 50%
for both strategies). On the other hand, Figure 4 shows that the monetary expenditure on public side
resources is substantially low even when a user takes additional risks by storing increasing amounts of
sensitive data on the public cloud. Finally, from Figures 3 and 4, we also observe that for a relatively
low resource allocation cost (≈ 28K on average over both cases) we can gain a considerable amount of
speed-up in performance (≈ 50%).

Experiments with a variable resource allocation cost: These experiments measure the time
to run the query workload as well as the monetary expenditure on sensitive data exposure when the
acceptable resource allocation cost is increased (from 25% to 100% of PRApu) while the disclosure cost
is fixed randomly (at 50% of the DISpu costs). As seen from Figure 5, when a user invests more capital
towards resource allocation, a considerable gain in overall workload performance (almost 50% for both
strategies) can be achieved. This is expected since when more resources are allocated on the public side,
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Figure 4: Comparison of partitioning strategies for a variable disclosure cost
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Figure 5: Comparison of partitioning strategies for a variable resource allocation cost
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Figure 6: Comparison of partitioning strategies for a variable resource allocation cost

we are better able to exploit the parallelism that is afforded by a hybrid cloud. Thus, the intuition that
a hybrid cloud improves performance due to greater use of inherent parallelism is justified. Additionally,
Figure 6 shows that a hybrid cloud approach can considerably downgrade sensitive data exposure risks
when compared with the outsourcing approach of moving everything to a cloud provider. Moreover, the
sensitive data exposure risks continue to remain low even when a user rents more public side resources.
Finally, from Figures 5 and 6, we also notice that irrespective of the data representation used, we can
achieve a considerable improvement in query performance (≈ 50%) for a relatively low risk (≈ 30%).

Experiments with dynamic workloads: These experiments measure the robustness of our par-
titioning algorithm to variations in query workload characteristics. For these experiments, we initially
constructed multiple query workloads (Workload-1 to Workload-5 ) by randomly changing the predi-
cates of all queries from the original workload. For example, a selection condition such as l shipdate =
1992 − 03 − 01 was randomly changed to l shipdate = 1998 − 10 − 31. The experiments were then
conducted in the following two phases: (i) We first fixed the public and private clouds to the partitions
obtained for the case, B = 100, DISpu = 50% and PRApu = 50%. Then, the running times of the mod-
ified workloads were computed for this original partitioning (Original-Partitions). (ii) We next ran the
partitioning algorithm using the modified workloads in place of the original workload to create partitions
specific to these changed workloads. Next, we computed the running time of the modified workloads on
these newly created partitions (Modified-Partitions). Figure 7 clearly shows that for both, horizontal
and vertical partitioning, the running times for (i) and (ii) are nearly identical. This assures us of the
robustness of our algorithm and further implies that partitions do not need to be changed each time a
query workload is modified.

General Observations: We observe from Figures 3 and 5 that for both, horizontal and vertical
partitioning, changing the number of buckets (B) has little effect on the performance time. This is
because our partitioning algorithm leaves most of the sensitive data that is part of the query workload
on the private side. Therefore, very little additional overhead (associated with decrypting and filtering
false positives) is incurred even when B is reduced from number of unique values to 1, leading to a
negligible change in query performance. Consequently, both approaches are suitable for users who place
a higher weight on executing mission-critical tasks (operating on sensitive data) locally. On the other
hand, Figures 4 and 6 show that for both, horizontal and vertical partitioning, there are significant
monetary savings to be made even when the risks of data exposure as well as resource allocation costs
increase. Therefore, both approaches are appropriate for users who want to balance the risks of sensitive
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Figure 7: Comparison of partitioning strategies for dynamic workloads

data exposure and a reduced operational budget with optimal query performance.

6 Related Work

Our work builds upon a significant body of prior work on data partitioning (e.g., [7, 8, 5, 6]), distributed
query processing (e.g., evolution from systems such as SDD-1 [17] to DISCO [18] that operates on
heterogeneous data sources, to Internet-scale systems such as Astrolabe [19], and cloud systems [20]),
and data privacy [21, 4, 22]. However, to our knowledge, this is the first paper that takes a risk-based
approach to data security in the hybrid model. Also, the modeling of monetary constraints into the
optimization problem at hand is a novel exploration in this domain. We summarize a few of the most
relevant previous works below.

Data partitioning has been studied fairly extensively in distributed and parallel databases from a
variety of perspectives, ranging from load balancing [5], efficient transaction processing [6] to physical
database design [7, 8]. In [8], the authors consider the problem of workload driven horizontal data
partitioning for parallel databases. They propose a two step approach wherein the first step involves
candidate partition generation and the second step is partition evaluation which selects the best partition
for each table with respect to the given workload. They generate partitioning “keys”, which are basically
sets of attributes to be considered together as keys to hash functions that a partitioner will use. They
use columns that appear in join and grouping statements to generate candidate keys. In contrast,
we use the predicates appearing in query statements (or predicates derived from them) as criteria for
partitioning the tables across the private and public clouds which gives us greater control over deciding
which particular records get replicated on the public side since disclosure risk is also a concern in our
framework. Furthermore, having a predicate based partitioning makes our statistics more accurate and
more efficient to compute than in [8] where they have to resort to sampling after the partitioning function
is applied.

A more recent related paper [6] looks at the data partitioning and replication problem in distributed
databases for supporting OLTP queries efficiently. The objective is to improve the throughput by reduc-
ing the time it takes to commit a transaction that needs to access multiple records distributed across
multiple nodes of a cluster with a shared nothing architecture. The time taken to complete a transaction
is dependent upon whether it accesses data on a single node or multiple nodes and therefore, reducing
the number of such multi-node transactions can significantly increase the throughput. They propose a
graph based data partitioning (including limited replication) approach based on a well known class of
graph partitioning algorithms called METIS [23] which are known to generate balanced partitions in
practice. The idea is to store all nodes within each partition at a single node and minimize the number
of edge crossings between different partitions which in turn minimizes multi-node transactions. Previous
approaches have used round-robin, range partitioning and hash partitioning based techniques [24] for
distributed and parallel databases. However, a graph partitioning based approach proposed in [6] may
not be very suitable for our setting, most importantly because of the poor scalability of graph partition-
ing algorithms with size of the graph. Since the graph size is proportional to the number of records in
tables, such an approach is not amenable (as yet) for even medium sized databases. Also, since we are
not considering typical OLTP workloads, the execution time of a query is not so dependent on it being
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multi-site or single site (which is the focus in [6]) as it is on the size of the intermediate and final result
which is what we consider.

The work most related to ours is Relational Cloud proposed in [21] which addresses a similar hybrid
cloud problem. Relational Cloud uses the graph-based partitioning scheme described above to split data
into private and public sides. The partitions are encrypted with multiple layers of encryption and stored
on a server. A query is executed over the encrypted data with multiple rounds of communication between
a client and server without considering the cost of decrypting intermediate relations. The difference
between our work and Relational Cloud is that our data partitioning scheme explicitly considers the cost
of queries over all components of a hybrid cloud: queries over data in a private cloud and queries over a
mixed data representation (i.e., encrypted and plaintext) in a public cloud. To the best of our knowledge,
ours is the first work to explicitly estimate the cost of querying over unencrypted and encrypted data in
a distributed setting.

A paper by Aggarwal et al. [25] considered the problem of secure query processing using a distributed
architecture. The authors propose a solution for secure outsourcing of relational data using two non-
colluding servers. The privacy policies are stated in terms of subsets of attributes. The goal is to not
give either of the two servers access to all attributes specified in a policy. The techniques employed are
vertical partitioning of data along with selective encryption of some attributes. The data partitioning
algorithm tries to partition the attributes across the two servers such that no set of attributes appear
in plaintext on either server. While the two-server model can be mapped to our case, where the private
cloud is both a server and the trusted client where the combination of partial query results take place,
their model of disclosure risk is completely different from ours. While they do not allow all attributes
specified in a confidentiality policy to be exposed to either one of the servers at any time, we are willing
to do so in a controlled manner. This relaxation in our case, makes the fundamental solution approaches
quite distinct from their solutions.

A recent paper by Ko et al. [26] proposes a “hybrid execution (HybrEx)” model that splits data and
computation between public and private clouds for preserving privacy and confidentiality in a distributed
MapReduce framework. In the paper by Chul Tak et al. [27] authors look at the economics of cloud
computing and try to answer the important question of “when does it make economic sense to migrate
to the cloud?” They identify a set of factors that may affect the choice of deployment (in-house, cloud,
and hybrid). While, somewhat related to our work, these papers tackle different problems and we do not
summarize them here due to lack of space.

7 Conclusions and Future Work

With the advent of cloud computing, a hybrid cloud is suitable for users who wish to balance data
security risks with scalable processing. We have identified three challenges that must be overcome before
this approach can be adopted.

The first challenge deals with data partitioning between a private cloud and a service provider when
there are sensitive attributes in the data. We formalized this challenge as a risk-aware query optimization
problem and presented an iterative approach that results in the construction of optimal partitions. The
second challenge is how to store a user’s data securely on a cloud provider. We presented three different
solutions to this challenge that can be tailored to suit a user’s data privacy needs. We specifically used
the bucketization technique to store sensitive data as well as to push most of the query processing to the
provider without the need of decrypting stored data. Finally, the last challenge addresses the problem of
distributed query processing over data stored in a mixed representation (i.e., encrypted and plaintext).
We proposed query rewrite rules that operate over a mixed representation for the construction of query
plans over a partitioned database. In addition, we developed a cost model that estimates the cost of
query execution over a mixed representation. Finally, we also presented a query processing engine that
splits a user query into one or more public and private cloud queries, each of which can be executed at
a site using the best available local query plan.

We are primarily exploring the following ideas for future research from amongst the various areas
that we outlined throughout the paper: 1) We have considered horizontal and vertical partitioning of
relations in this paper which can be extended to include hybrid partitioning schemes. 2) Our cost model
only considers simple SQL queries. We plan to build a more sophisticated model with support for nested
queries. 3) We used Hadoop and Hive as the underlying cloud computing technologies. We aim to extend
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this work with more experiments into a generalized tool that will work with other existing public cloud
services.
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A DATA PARTITIONING PROBLEM (DPP) IS NP-HARD

We begin by stating the assumptions we make in our proof: We eliminate the sensitive data disclosure
cost constraint from the DPP problem (we assume DIS COST is infinitely high) and we also assume
that ∀Qi ∈ Q, freq(Qi) = 1 . This simplified problem called Simplified-DPP SDPP, is a subset of our
original problem, DPP . We now give a proof sketch showing that SDPP is NP-Hard and since SDPP
≤P DPP can be trivially shown (fix DIS COST to an arbitrarily large number and set the frequencies
for all queries to 1), we conclude that DPP is NP-Hard.

To show that SDPP is NP-Hard, we show that the 0-1 Knapsack Problem (KP)≤P SDPP . However,
before proving 0-1 KP ≤P SDPP , we convert the maximization function in 0-1 KP to a function that
needs to be minimized and name this new problem as MIN 0-1 KP.

MIN 0-1 KP is defined as follows: Given a set of n items S and a knapsack, with pj = profit of item
j, wj = weight of item j, c = capacity of the knapsack, select a subset of S which minimizes z where
z =

∑m
j=1 pjxj , under the following constraints:∑m
j=1 wjxj ≤ c and xj = 0 or 1, j ∈ N = {1, 2, . . . ,m}

As the only difference between 0-1 KP and MIN 0-1 KP is in the optimization function, 0-1 KP
≤P MIN 0-1 KP can be simply inferred through multiplying the given pj values in 0-1 KP with −1
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and assigning these new values as pj values in MIN 0-1 KP, (i.e., z =
∑m

j=1 pjxj in 0-1 KP equals to

z =
∑m

j=1−pjxj in MIN 0-1 KP).
The reduction algorithm begins with an instance of MIN 0-1 KP. Let S = {s1, s2, . . . , sm } be the

set of items, each of which has a profit pj and weight wj . Also, let c be the capacity of the knapsack.
We will construct an instance of SDPP with a set of predicates P in which the predicates are defined
as attributes over all relations R. Namely, the items in MIN 0-1 KP correspond to attributes in SDPP .

For every item sj ∈ S, the instance of SDPP has an attribute Aj in P (i.e., P = {A1, A2, . . . , Am}).
Further, the weight wj of sj corresponds to the overall monetary cost when P ′ = {Aj}, i.e., wj =
store(P ′) +

∑n
i=1 freq(Qi) × (commQi(P

′) + procQi(P
′)) where P ′ = {Aj} and the capacity c in a

MIN 0-1 KP instance will be matched with PRA COST in the SDPP instance. Then, profit of sj
can be computed as: pj = tin − tj , in which tin =

∑n
i=1 freq(Qi) × QPCQi(P

′) when P ′ = ∅ and
tj =

∑n
i=1 freq(Qi) × QPCQi(P

′) when P ′ = {Aj}. This instance of SDPP can be easily computed
from the instance of MIN 0-1 KP in polynomial time.

To conclude, the reduction that we have shown above provides a proof sketch that SDPP is NP-Hard,
and since SDPP ≤P DPP , DPP is also NP-Hard.

B Query Rewriting Rules

We will briefly describe the query rewriting rules for the selection, projection and join operators, since we
currently support only SPJ queries. Additionally, we also want to push as much processing to a public
cloud as possible. Therefore, we neglect the trivial solution of bringing an entire relation from the public
to the private side. We also omit the case of showing how these operators will be applied on a private
cloud, since for this case the query processing will be similar to traditional database query processing.

In the context of rewriting rules, D denotes the combination of transferring results, decrypting the
encrypted part of transferred results and removing the false positives within the transferred data. More-
over, Mapcond(C) indicates the outcome of translating C by the rules studied in [4] if C involves any
encrypted attribute. When C is not defined over any encrypted attribute, Mapcond(C) will be equal to
C.

To successfully perform any basic relational operator at any point in a query plan, we propose the
following rewrite rule for each main operator in case of horizontal or vertical partitioning: Rule 1 aims
to perform operators over both, private and public side partitions, transfer the public side result of the
processed operator and return the overall result by merging the results of both sides (through

∪
or ./).

Note that decrypting public side results and eliminating false positives within transferred data may be
needed if the transferred data includes any encrypted information.

In the examples below, we define the rewrite rule for only one of the SPJ operators for each partitioning
technique so as to understand the notion behind creating rewrite rules. The first example presents the
selection rewrite rule for the horizontal partitioning case, while the second one details the join operator
for the vertical partitioning case.
Example 1:

Selection Operator for Horizontal Partitioning (σC(R))

• Rule 1: σC (Rpriv)
∪

D
(
σMapcond(C) (Rpub)

)
Example 2:

Join Operator for Vertical Partitioning (R ./
R.A=S.B

S)

• Rule 1:
res1← Rpriv ./

R.A=S.B
Spriv

res2← Rpub ./
Mapcond(R.A=S.B)

Spub

res← res1 ./
R.A=S.B

D (res2)
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