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ABSTRACT 

The focus of this thesis is a lossy Fourier-transform-based compression algorithm for 

implementation on field programmable gate arrays in the space environment.  The 

algorithm computes the fast Fourier transform (FFT) of a real input signal, determines the 

energy in user-defined time and frequency ranges of interest, and transmits only those 

frequency domain portions of the signal that exceed the predefined thresholds.  Error 

detection against single event upsets for the FFT is implemented by comparing the sum 

of the squares of the input to the scaled sum of the squares of the FFT output, which 

should be equal according to Parseval’s Theorem.  Error correction is implemented by 

duplicating the FFT calculation and error detection and choosing the output of the FFT 

that is not in error. 
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EXECUTIVE SUMMARY 

Because of their high cost and long lead-time of development, manufacture, and launch, 

satellites are designed for a long service life in order to recoup investment.  This means 

that the technology aboard operational satellites lags behind the state-of-the-art 

technology on the ground.  In fact, a satellite may be rendered obsolete because the 

technology onboard has been surpassed by the technology of the ground infrastructure.  

In addition, the long lead-time results in delays in delivery of vital services to end-users.  

The Office of Operationally Responsive Space (ORS) is charged with developing 

strategies to mitigate these twin problems of obsolescence and untimeliness. 

One of the methods for increasing the flexibility of communications satellites is 

through the use of software defined radio (SDR).  Because the function of the radio is 

programmable, the satellite’s software can be updated to keep up with the pace of 

technology on the ground.  Field programmable gate arrays (FPGAs) are becoming the 

design choice for including the processing required to implement an SDR because they 

can approach the performance of application specific integrated circuits (ASICs) while 

exceeding the flexibility of general purpose processors (GPPs).   

Computing in space has special considerations due to radiation effects.  High 

energy radiation causes several degradations to computational hardware.  Single-event 

upsets (SEUs) are caused when a high-energy particle deposits enough charge in a 

memory element to change its state.  This has special significance to FPGAs used for 

onboard processing since the configuration of the calculation being conducted is stored in 

memory.  FPGA applications must be designed to detect and correct errors caused by 

SEUs.   

The traditional method to implement error correction is through triple modular 

redundancy (TMR), where the digital circuit is triplicated and a voter circuit decides the 

correct calculation based on a majority vote.  In order to reduce the logic resources 

required for error correction, reduced precision redundancy (RPR) can be used to protect 

arithmetic calculations.  In RPR, one full-precision result is calculated along with lower-
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precision upper and lower bounds.  The full precision calculation is deemed correct if it is 

between the bounds, otherwise the result returned is a lower-precision average of the two 

bounds. 

Design for FPGA applications differs from writing programs for execution by 

GPPs.  The focus of this thesis is the design flow of FPGA design, from high-level design 

entry and simulation through low-level functional simulation to hardware 

implementation.  Xilinx System Generator, a high-level graphical design and simulation 

tool for use within The MathWorks’ Simulink® environment, was used to design and test 

the algorithm.  Once the design was behaving as desired, very high speed integrated 

circuit hardware description language (VHDL) code was generated by System Generator.  

This code was imported into the Xilinx integrated software environment (ISE) design 

suite for syntax checking and compilation.  Mentor Graphics’ ModelSim software was 

used with ISE for simulating the function of the algorithm defined by the HDL code. 

The design of a lossy Fourier-transform-based compression algorithm for 

implementation on a FPGA-based SDR in the space environment is the focus of this 

thesis.  The compression algorithm was designed by Wright and further refined by 

Livingston, both students at the Naval Postgraduate School.  The algorithm computes the 

fast Fourier transform (FFT) of a wideband signal, divides it into user-defined time-

frequency ranges of interest (ROI), and calculates the energy in those ROIs.  If the energy 

exceeds the user-defined threshold, then the signal within that ROI is forwarded for 

downlink. 

The FFT calculation that comprises the first stage of the compression algorithm is 

implemented using Xilinx FFT intellectual property (IP) blocks.  The original algorithm 

designed by Wright uses the FFT v4.1 block and was targeted for the Virtex™-II Pro.  In 

order to implement the algorithm on a Virtex™ FPGA, Livingston modified the 

algorithm to use the FFT v1.0 block.  The performance of these FFT algorithms is 

examined and compared to the performance of the FFT v3.2 block, which is supported 

for implementation on Virtex™-II FPGAs. 



 xvii

The FFT used in the compression algorithm is a Xilinx, Inc. IP black box.  TMR 

or RPR cannot be implemented directly within the FFT.  Livingston implemented error 

detection by making use of Parseval’s Theorem.  Parseval’s theorem states that the 

energy prior to the Fourier transform is equal to the energy after the transform.  The sum 

of the squares of the input points to the transform is compared to the sum of the 

magnitudes squared of the output points scaled by the length of the FFT.  If these values 

are not equal to within a pre-defined tolerance, the calculation is determined to be in 

error.  This method of error detection was analyzed, and the algorithm was modified to be 

used with the FFT v3.2 block. 

The previously designed error detection algorithm was used as the basis for an 

error correction algorithm.  The error detection circuit was duplicated, and a voting 

circuit compared the error flags.  The output of the FFT not flagged as in error was 

passed to the ROI analysis and data formatting portions of the compression algorithm.  

Adjustments were made to the error correction algorithm to reduce the logic resources 

required for implementation in order to allow the algorithm to be implemented in a 

Virtex™-II FPGA.  Redundant sum-of-squares circuitry was removed from the input to 

the FFT blocks.  The voting circuit was redesigned to implement delays required for 

aligning data with control signals with random access memory (RAM) rather than logic 

resources. 

The error correcting circuit was tested by inserting a circuit into the output of one 

of the FFTs which after a set period of time would switch from the correctly calculated 

FFT points to an erroneous constant.  It was shown that before the error correcting 

circuitry, erroneous values were present at the output of the FFT.  After the error 

correcting circuitry, it was shown that the values present in the output were corrected.  

The process of iterative design of the error correcting and voting circuits to fit within the 

logic resources of the target FPGA validated the use of System Generator as a rapid 

prototyping, high-level design tool. 

Equation Chapter (Next) Section 1 
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I. INTRODUCTION 

Satellites are highly complex machines that have long acquisition lead times.  Due 

to the high costs of design, construction, and launch, satellites tend to have long design 

lives and are often pressed to continue service well beyond their intended life.  Satellites 

in service may be ten, fifteen, or even twenty years old; however, technology continues to 

advance. The technology aboard otherwise operational satellites may become obsolete 

because the ground infrastructure has progressed beyond the envisioned capabilities when 

the satellite was launched [1]. 

This is a concern for the Department of Defense because the long lead-time in 

designing, building, and launching spacecraft means that satellites are not available to 

respond to new demands from warfighters.  Operationally Responsive Space (ORS) is a 

strategy, presented in [1], to provide advanced space-based technology in a more timely 

manner.  ORS provides solutions in three categories: tier 1 involves the re-use of on-orbit 

assets, tier 2 comprises the rapid launch of existing spacecraft using commercial off-the-

shelf (COTS) parts, and tier 3 is the rapid development of new spacecraft designs.   

Flexibility of the payload is one design strategy to implement tier 1 solutions.  

Reconfigurable payloads also allow on-orbit troubleshooting and re-engineering in the 

event of spacecraft damage or design flaws, mitigating risk of spacecraft mission non-

completion.  On-board processing, specifically the signal processing and routing used in 

software defined radio (SDR) applications, provides the flexibility to keep pace with the 

advance of communication technology in ground-based systems without launching a new 

satellite [2], [3]. 

Wright described an FPGA-based SDR for space applications in [4].  His design 

consisted of a Fourier transform-based bandwidth reduction algorithm with user-defined 

time-frequency parameters for extraction of signals-of-interest (SOI) from a wide-

bandwidth front-end.  This design was further refined by Livingston in [5], making it 

more resource-efficient, splitting the design for a multiple field programmable gate array 

(FPGA) implementation as well as adding error detection.  In this research error 
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correction is added, building on the previously designed error detection as well as 

continuing development of the multiple FPGA design. 

A. OBJECTIVES 

The objectives of this research are twofold.  First is to continue progress on the 

existing design.  The previous design effort concluded with two algorithms: one that was 

designed for a three-FPGA implementation and one that incorporated error detection.  In 

this research, error correction, based on the previously designed error detection 

algorithm, was implemented.   

The second objective is to explore the design process for rapid code iteration of an 

FPGA design using available design tools to implement a signal processing application 

on an FPGA and utilizing fault-tolerant design principles. The single-chip design was 

implemented from graphical design and simulation through hardware description 

language (HDL) design and simulation, and ultimately to hardware implementation and 

verification.   

B. DESIGN PROCESS 

FPGA design generally takes place using high-level design tools such as block 

diagrams and schematics.  From this high-level concept, the design is developed in a 

HDL such as VHDL (very high speed integrated circuit [VHSIC] HDL) or Verilog.  

Unlike a high-level language for general-purpose processors, where commands are 

executed sequentially, an HDL specifies the interconnections between logic cells within 

the FPGA where logic level signals are processed in parallel.  This parallelism is what 

lends FPGAs to real-time signal processing applications; however, it also renders HDL 

designs more difficult to program and debug and even more difficult to decipher (if not 

well commented) than sequentially-executed computer software.  There are design tools 

to mitigate these drawbacks to HDL designs.  Code modularity is one such tool.  The 

Xilinx Integrated Software Environment (ISE) uses the terminology of “cores” to 

describe these pre-built modules that can be integrated into a design [6]. 
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High-level design tools have also begun to be used for industrial design.  By 

implementing design ideas at a more abstract level, the iterative process of improving and 

fielding the design can be accelerated while at the same time reducing the instance of 

syntax and code-level implementation errors.  Because this method of algorithm design is 

more abstract than design in an HDL, it is possible to build a design that cannot be 

implemented in hardware.  For this reason, it is a design tool that cannot be used alone  

[6]. 

The design was first modeled using the graphical method described in the 

previous paragraph in Simulink® using the System Generator plugin from Xilinx.  Once 

the design was working in the Simulink® environment, the design was compiled in 

VHDL.  This VHDL instantiation was then added to a Xilinx ISE project, where it was 

integrated with other VHDL modules and cores and targeted to a specific FPGA, in this 

case a Virtex™-II Pro.  The VHDL project was then simulated using ModelSim.  

Penultimately, the ISE project was compiled to bitcode, which defines the resulting 

FPGA configuration. This bitcode is finally loaded onto the target FPGA.  The target 

FPGA for this research is the Virtex™-II Pro XC2V30 on the Xilinx University Program 

(XUP) development board, with onboard universal serial bus (USB) Joint Testing Action 

Group (JTAG), codified as IEEE 1149.1.  JTAG is the industry-standard debugging 

interface for printed circuit boards and internal sub-blocks of integrated circuits (ICs) [6]. 

C. THESIS ORGANIZATION 

A presentation of Fourier analysis, including the development of the fast Fourier 

transform is given in Chapter II, as well as properties of Fourier transforms which are 

useful to the development of a compression algorithm.  The concept behind a data 

compression algorithm is presented.  Radiation effects, especially single-event upsets 

(SEUs), are presented, the special implications to FPGA designs are discussed, and 

strategies used implement fault tolerance, error detection, and error correction are 

presented. 

Chapter III, Development Environment, is an overview of the software tools used 

for this design.  The general design flow for the development of an FPGA application is 
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presented along with why each tool was chosen for each design process step.  The 

strengths of each tool are explained, and the limitations are discussed.  Also addressed are 

software setup and use for this design process. 

Chapter IV, Fast Fourier Transform (FFT) Computing, contains an investigation 

of the Xilinx FFT intellectual property (IP) blocks.  Previous analysis of FFT v4.1 and 

FFT v1.0 are reviewed, and FFT v3.2 is investigated as a replacement for FFT v4.1 for 

implementation on a Virtex™-II FPGA. 

Chapter V, Error Detection, is a review of the design work conducted in [5] to add 

an error detection circuit to the FFT IP blocks.  A modification to the design in which 

FFT v3.2 is substituted for FFT v4.1 is presented. 

A design that corrects errors produced by FFT IP blocks is presented in Chapter 

VI.  Several iterations of the design are presented, with a focus on logic resource 

minimization. 

Conclusions from this design work, as well as recommendations for future work 

to continue to refine both this design as well as the design process, are presented in 

Chapter VII. 

 
 
Equation Section (Next) 
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II. BACKGROUND 

The compression algorithm discussed in this thesis is based on the Fourier 

transform of the received signal.  It allows the user to define specific time and frequency 

ranges of interest in order to discard information deemed not important.  Fault tolerance 

is implemented using the principles of triple modular redundancy (TMR) as well as a 

property of Fourier transforms defined by Parseval’s theorem.  

A. THE FOURIER TRANSFORM 

1. Fourier Analysis 

The basis of the compression algorithm is the Fourier Transform.  After [5] the 

relationship between the time domain and frequency domain of a continuous signal is  

      2( ) j ftX f FT x t x t e dt






   , (II.1) 

where  X f  is the Fourier transform of  x t .  

The time domain signal is sampled by multiplying by an infinite series of impulse 

functions separated by the sample interval sT .  In the frequency domain this sampled 

signal is a convolution of the original signal with an infinite series of impulse functions 

separated by the sample frequency 1
sTsf  .  The sampled time domain signal is 

x n   x nTs  , where  n  is an integer.  The discrete time Fourier transform (DTFT) is 

defined in [8] as  

        2 sj fnTX f DTFT x n x n e 






  . (II.2) 

The time domain signal  x t  exists for all time, from   to  .  A time-limited signal 

is defined as the previous signal multiplied by a rectangle function 
/ 2

rect o

o

t T

T

 
 
 

.  The 

rect function is defined as 

 rect u   1 if  u  1
2

0 otherwise






. (II.3) 
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This multiplication in the time domain corresponds to convolving the frequency domain 
signal by the  0sinc fT  function.  The sinc function is defined as 

 sinc u  
1 if  u  0

sin u 
u

otherwise









. (II.4) 

The number of samples included in the time window /o sN T T  is an integer.  Limiting 

the transform to this time-limited window gives the Discrete Fourier Transform (DFT) 
[8], 

      
1

2 /

0

, 0,1,…, 1
N

jk N n

n

X k x n e k N






   , (II.5) 

where / sk fN f . 

A summary of Fourier Theory is shown in Figure 1. 

Properties of Fourier transforms that are of consideration for a compression 

algorithm are the properties of conjugate symmetry and the reversibility of the transform.  

Conjugate symmetry implies  

 X k   X N  k  (II.6) 

for real  x n  input.  The other property of use is that the inverse DFT (IDFT) 

 x n  
1

N
X k e jk 2 / N n ,k  1,2,..., N 1

k0

N1

  (II.7) 

can be calculated [8]. 

One property that can cause an undesirable effect is the fact that multiplication in 

the frequency domain transforms to circular convolution in the time domain, 

        *X k Y k x n y n


. (II.8) 

This property must be considered during bin analysis since the frequencies of interest are 

selected by multiplying by a rectangle function.  During decompression this 

multiplication is transformed into a periodic convolution with a sinc function, which 

causes distortion of the data if not compensated for [5], [8]. 
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Figure 1.   Fourier Theory (After [8]). 
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One other property of Fourier transforms that can be used to implement error 

detection is the inner product property, also known as Parseval’s theorem [5]: 

        
1 1

0 0

1N N

n k

x n y n X k Y k
N

 
 

 

  . (II.9) 

From this equation we see that the energy of the signal prior to the transform is equal to 

the energy of the signal after the transform scaled by the factor 1/ N .  By using this 

property of Fourier transforms, we can relate the input and output of a transform in a less 

computationally intensive manner.  In [5], Equation II.9 is manipulated into the form 

         
22

1 /2 1
2

0 0

Re Im1
Re 2

N N

n k

X k X k
x n

N N N

 

 

   
       

   
   (II.10) 

which can be implemented computationally. 

2. The Fast Fourier Transform 

The DFT is a discrete input, discrete output function and is suitable for 

computation.  As discussed in [7], direct computation of the DFT requires  2O N  

computations.  By taking advantage of symmetries within the DFT, we can reduce the 

number of required computations to  2logO N N  with a class of algorithms known as 

fast Fourier transforms (FFT). 

To simplify notation when discussing the DFT and FFT, the phase factor, or 

“twiddle factor,” is written 

  2 /j N
Nw e  .  (II.11) 

The DFT has symmetry about / 2N  such that 

 /2k N k
N Nw w   . (II.12) 

The DFT also has periodicity of N  such that 

 k k N
N Nw w  . (II.13) 

For 2N   and substituting the phase factor given by Equation (II.11) into the 

DFT given by Equation (II.5) we get 
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 X k   x n w2
nk  x 0 w2

0k  x 1 w2
1k

n0

1

  (II.14) 

where 

 w2  e j 2 /2   e j  1, (II.15) 

  00
2 1 1kw    , (II.16) 

and 

  1
2 1

kkw   . (II.17) 

For 0...1k  , the resulting DFT points are 

 
X 0   x 0  x 1 
X 1   x 0   x 1 

. (II.18) 

The signal flow graph, or “butterfly” operator, shown in Figure 2 represent the resulting 

operation. 

 

Figure 2.   Radix-2 FFT signal flow graph (a.) and shorthand notation (b.) (After 
[8]). 

Similarly, as discussed in [7], the radix-4 FFT can be calculated by dividing the 

input into four summations.  The radix-4 FFT achieves a 25 percent reduction in the 

number of complex multiplies required over the radix-2 FFT.  The signal flow graph of a 

radix-4 FFT is shown in Figure 3. 
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Figure 3.   Radix-4 FFT signal flow graph (a.) and shorthand notation (b.) (From 
[7], [9]). 

The FFT algorithm can be used for any signal with a length that is a power of two.  

To do so, the butterflies are cascaded.  An eight-point, radix-2, decimation in time (DIT) 

FFT is shown in the signal flow graph in Figure 4. 

When implementing the FFT in software or in an FPGA, the algorithm can be 

initiated with either in-place addressing or constant geometry.  For constant geometry 

addressing, shown in Figure 4, the output of the butterfly is written into the same memory 

locations that the input was read from.  This results in either the input or output points’ 

memory locations being out of order in memory.  In normal order addressing, shown in 

Figure 5, the input and output values are in order in memory.  However, since the 

butterfly operators cannot write to the same memory locations from which they read their 

input values, this geometry requires additional memory resources to implement  [5], [8]. 
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Figure 4.   Eight point constant geometry decimation in time (DIT) FFT (After 
[8]). 

 

Figure 5.   Eight point normal order DIT FFT (After [8]) 
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B. COMPRESSION 

The bandwidth of a SOI may be much less than the passband of the radio 

frequency (RF) front-end of a wideband digitizing SDR.  In addition, the signal-of-

interest may not be a continuous wave (CW) signal but pulsed or otherwise interrupted 

periodically such that there are periods of silence in the SOI.  Therefore, the SOI can be 

represented by fewer bits than if the entire passband is digitized.  In order to achieve this 

reduction in the downlink data rate, the received and digitized signal is divided into user-

defined time and frequency ranges of interest, referred to as “bins.”  The energy present 

in each bin is compared against an operator-specified threshold, and the points 

representing the signal of interest are only downlinked when bin energy exceeds the 

threshold.  This method for reducing downlink data rate was presented in [4], and a 

conceptual representation of this is illustrated in Figure 6.  Shown in the first plot is a 

time-varying signal.  The colored contours represent the energy contained in the signal as 

a function of time and frequency.  In the second plot, the red boxes denote the user 

defined time-frequency ranges of interest (ROI) overlaid on the signal.  The third plot 

shows the signal that would be included in the downlink in the red boxes, while the blue 

box indicates a bin of interest in which the energy did not meet the required threshold and 

no data is downlinked. 

 

Figure 6.   Compression (After [4]). 

The algorithm developed by Wright and presented in [4] to conduct this 

compression is illustrated in Figure 7.  The FFT of the time domain signal is calculated, 

and the frequency domain points are passed to the bin energy calculation and bin energy 
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threshold algorithms.  The data management block then reads the FFT points in the bins 

meeting the energy threshold and formats the data points for downlink.  There are four 

bins available with user defined time and frequency ROI. 

 

Figure 7.   Compression Algorithm Block Diagram (From [4]). 

C. COMPUTING IN THE SPACE ENVIRONMENT 

As discussed in [10], choices for implementing onboard processing include 

general-purpose processors (GPPs), application-specific integrated circuits (ASICs), and 

FPGAs.  For performing the same calculations on streams of data, such as real-time 

digital signal processing (DSP), an ASIC provides the most performance to power 

consumption of these alternatives.  Their downside is that they require extensive 

development before they are produced, and they cannot be modified beyond their 

intended purpose. GPPs are the most flexible option; however, their strength lies in 

sequential operations in which the calculations performed on the data differ from one 

operation to the next.  Their throughput for performing the same calculation on streaming 

data is lower than ASICs for the same clock speed.  FPGAs offer the capability to process 

streaming data as efficiently as an ASIC with the ability to modify the application for 

which they are being used  [10]. 
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1. Fault Detection 

FPGAs come at the cost of higher power consumption as well as being 

susceptible to their programming being altered by single-event upsets (SEU) due to high-

energy particles present in the space environment.  FPGA application design for space 

applications must take these issues into consideration. A SEU occurs whenever a high-

energy particle impacts the semiconductor material and deposits enough charge to change 

the state of a single bit.  The effect of this unintended state change depends on whether 

the affected bit is in data memory is a data bit in the midst of the calculation circuitry or 

is part of the FPGA configuration memory  [10]. 

Parseval’s theorem states that the energy into the DFT must equal the energy out.  

Because of this property, it is possible to detect whether or not the calculation of the DFT 

contains an error.  In [5], Livingston implemented error detection for a FFT through 

application of Equation (II.10).  In this application the accumulated (summed) squared 

input points to the DFT are compared to the accumulated squares of the output points, 

scaled by 1/ N .  If the input to the DFT is limited to a real, as opposed to in-phase and 

quadrature (I-Q) signal, then the output only has to accumulate squares of the first half of 

the output points and scale by 2 / N .  This saves memory requirements as well as latency 

in the error detection. 

2. Fault Correction 

Electronics in the space environment must be designed to tolerate high-energy 

particle radiation as discussed in [11].  Some of this tolerance must be implemented at the 

physical level: shielding is used to reduce the incidence of radiation on the electronics, 

and specialized semiconductor design techniques are used to mitigate the long- and short-

term effects of radiation on the electronics.  Beyond these methods, the algorithm 

implementation in software and hardware must also be made radiation tolerant.  

Errors in data memory are usually checked and corrected using a parity scheme, 

such as a single error correction, double error detection (SECDED) Hamming code.  

When data is read into memory, parity check bits are calculated and stored in a separate 

memory location.  When the data is read out, parity is calculated again and compared 
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against the original parity bits.  If the parity check bits are not equal, an error occurred, 

and if a single error, the check bits can be decoded to point to the location of the error  

[12], [13]. 

Configuration errors must be detected and corrected by a circuit which itself may 

be in error.  This has been done traditionally through triple modular redundancy (TMR). 

In TMR, the calculation is performed three times, the results are compared, and any 

erroneous result is discarded.  The price of TMR is more than three times the required 

logic resources, since the calculation circuitry must be triplicated, and a voting circuit is 

required to check the results.  The voting circuit shown in Figure 8 compares the result of 

each bit from each of the three calculations.  This circuit can correct any one error from 

the inputs and can detect when the voting circuit itself is in error  [12]. 

IN A

IN B

IN C

ERR

Z

 

Figure 8.   Bitwise Majority Voter (After [14]). 

A method of redundancy requiring fewer resources, Reduced Precision 

Redundancy (RPR), was discovered by Snodgrass and presented in [12], and expanded 

upon by Sullivan in [14].  In RPR the full precision result is calculated once, while a 

lower-precision upper and lower bound are calculated.  If the full precision calculation is 

outside of the calculated bounds, it is assumed to be in error and the reduced precision 

bound is returned.  This technique results in lower logic resource use and power 
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consumption at the cost of a more complex voting circuit as well as a less precise result 

when the full precision calculation is found to be in error.  Reduced precision redundancy 

is also limited to arithmetic processes.  Logic control operations must be protected using 

TMR. 

D. TARGET FIELD PROGRAMMABLE GATE ARRAYS 

This algorithm is targeted for the Virtex™ family of FPGAs manufactured by 

Xilinx.  A summary of the devices considered is shown in Table 1.  These devices are 

fully described in [15], [16], [17], and [18]. 

Table 1.   Target FPGAs. 

Family Device Configurable 

Logic Blocks 

Multipliers Block RAM 

Virtex™ xcv1000 6144 0 32 (512 Byte) 

Virtex™-II xc2v3000 3584 96 96 (18 kB) 

Virtex™-II Pro xc2vp30 3424 136 136 (18 kB) 

Virtex™-4 xc4vlx25 2688 48 (Xtreme 

DSP blocks) 

72 (18 kB) 

 

The devices considered include the older Virtex™ and Virtex™-II devices, which 

are in use on legacy space platforms.  The newer Virtex™-4 device is considered because 

it is also available in a radiation hardened version.  The Virtex™-II Pro device is 

included for comparison since that device was the one available for this research.   

The oldest device, the xcv1000, has the most configurable logic blocks (CLBs).  

This device does not include the embedded multipliers, which degrades its ability to 

perform DSP calculations such as the FFT.  This device can conduct algorithms that 

require multiplication; however, the multipliers must be constructed from the available  
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CLBs. Also, this device has the least amount of available block random access memory 

(RAM), which significantly limits the amount of data that can be processed at one time  

[15]. 

The newer devices all contain fewer CLBs but include embedded 18x18 bit 

multipliers, reducing the demand for CLBs.  These devices also include significantly 

more RAM than the Virtex™.  This increased on-chip RAM allows faster processing 

since algorithms do not need to make as many off-chip data accesses.  The Virtex™-4 

has the fewest number of embedded multipliers; however, they are arranged in 

XtremeDSP blocks in which the 18x18 bit multiplier is followed by a 48-bit accumulator. 

The Virtex™-II Pro includes a PowerPC® core, which was not used in this research  [16], 

[17], [18]. 

E. SUMMARY 

Several high level concepts that support the development of a Fourier transform-

based, fault tolerant compression algorithm were introduced in this chapter.  A summary 

of Fourier analysis was discussed, and the development of the fast Fourier transform was 

presented.  Challenges associated with spaceborne computing were discussed, and the 

Triple Modular Redundancy and Reduced Precision Redundancy methods for correcting 

errors caused by single event upsets were presented.  A number of design tools that 

enable the designer to develop the design at a high level, and then remove the layers of 

abstraction down to implementing the compression algorithm in hardware are introduced 

in the next chapter. 
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III. DEVELOPMENT ENVIRONMENT 

Design for FPGAs is quite different and distinct from writing a sequential 

computer program.  The tools used for development of FPGA applications are designed 

to allow the designer to control the sequential and parallel behavior of the logic.  A 

design to be implemented on an FPGA is mapped out by the designer as a block diagram, 

flow chart, or schematic.  From this high-level abstraction of the desired behavior of the 

design, the designer develops components of the circuit in an HDL.  Design in an HDL 

allows full control over the hardware-level behavior of the algorithm while still allowing 

abstractions that aid the designer, such as human-readable variable names.  This control 

at the hardware level comes at the price of a more difficult to understand design.  Unless 

the HDL files are well documented, anyone other than the original designer may never be 

able to understand the purpose of the design  [6]. 

To increase the ease and speed with which a design can be developed and altered, 

high-level design tools have become popular.  With these tools, HDL components and 

their interconnections are represented graphically.  As discussed in the introduction to 

[6], abstracting away the complexities of an HDL allows the designer to focus on the 

function of the design.  The analogy is that a programmer writing a DSP algorithm will 

code most of the algorithm in a high-level language and only code portions with strict 

performance requirements in assembly code.  In the same fashion, once the behavioral 

design is complete, the high-level design tool outputs a lower-level instantiation of the 

design for functional development, simulation, and eventual implementation in hardware.  

At each step in the design process, results of the verification are used to refine the initial 

design.  This design flow, from high level algorithm development, HDL-level 

implementation, and hardware implementation is illustrated in Figure 9, along with the 

design tool used in that step.   

This chapter is an overview of the design tools used for this research.  An 

overview of the software packages, their features, and their operation are presented.  Also 

discussed are the relative advantages as well as the potential pitfalls of each software 

package. The design tools discussed are summarized in Table 2 at the end of the chapter. 
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Figure 9.   FPGA Design Process, and Associated Tools (After [6]). 

A. MATLAB / SIMULINK 

MATLAB (Matrix Laboratory) is a high-level numerical analysis oriented 

programming language developed by The Math Works®.  Simulink® is a graphical 

modeling and simulation application which works within the MATLAB environment. 

The primary use of MATLAB for this design was the generation of input signals 

and the analysis and display of the output.  MATLAB is designed for numerical analysis 

and the manipulation of large arrays of numbers.  MATLAB scripts, or M-files, were the 

primary means for setting up environment variables.  The plotting tools were used for 

generating displays of input and output.  In multiple FPGA instantiations of the 
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algorithm, M-files were also used to script the execution of the separate models and 

control the routing of signals from one module to the next, simulating the function of the 

common backplane in hardware  [5]. 

Models built in Simulink® are useful for investigating the behavior of 

applications destined for FPGA implementation; however, the timing of signals through 

the model is not accurate.  Simulink® allows models to be run in discrete or continuous 

time; however, this design process made use of only discrete time modeling, where each 

time step represents one clock cycle of the FPGA. 

B. XILINX SYSTEM GENERATOR FOR DSP 

Xilinx System Generator is a plugin for Simulink, which adds the functionality to 

develop applications for Xilinx FPGAs using the high-level, graphical modeling and 

simulation environment of Simulink.  The modeling environment uses Simulink® and 

MATLAB to generate input signals, pass the signals into the System Generator model, 

and collect output signals for post-processing and display [19]. 

An example System Generator design is shown in Figure 10.  The plain white 

blocks are standard Simulink® blocks, while the blocks with the Xilinx “X” logo are 

System Generator blocks.  The Gateway In and Gateway Out blocks represent bonded 

Input / Output Blocks (IOB) on the FPGA, and all blocks between the input and output 

represent functional segments of the user’s choice of HDL.  The stand-alone System 

Generator block controls the instantiation and compilation of the block diagram into HDL  

[19]. 
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Figure 10.   Example System Generator Design in Simulink 

Simulation of applications for FPGA implementation using System Generator is 

more faithful to the actual behavior of the algorithm than a simulation using just 

Simulink.  The reason is that the System Generator blocks represent segments of HDL 

code with the attendant constraints.  System Generator outputs HDL which can then be 

modified and compiled with FPGA synthesis tools  [19]. 

The version of System Generator used is version 10.1 because this is the last 

version that supports the original Virtex™ devices which are still in use in certain 

applications.  As discussed in [20], this version of System Generator requires MATLAB 

R2007a / Simulink®6.6 or MATLAB R2007b / Simulink® 7.0.  This version also 

requires Xilinx ISE version 10.1. 

System Generator for DSP contains many blocks that are specific functions for 

DSP.  The blocks under consideration for this design were the FFT v1.0, FFT v4.1, and 

FFT v3.2 blocks, discussed in Chapter IV.  These pre-built blocks take advantage of 

specific on-chip DSP-specific logic resources (such as the XtremeDSP slices in the 

Virtex™-4).  These blocks make use of Xilinx intellectual property (IP) core generation 

algorithms to optimize the performance of the design for the chosen FPGA [19]. 
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If the desired function block does not exist, the MCode block may be used to 

implement the desired function.  MCode blocks allow the insertion of a MATLAB M-file 

into a System Generator design to allow scripting and control of signal flow.  This gives 

the designer a higher-level way to implement control over the logic, rather than designing 

a state machine from individual gates, allowing for increased flexibility of the control of 

the design.  However, as discussed in [20], MATLAB algorithms, such as the MATLAB 

fft()function, cannot be implemented using this method.  This design uses MCode 

blocks to implement state machines based on control signals generated by the logic 

circuitry to control the flow of signals within the design. 

The System Generator block contains the synthesis and generation options 

available for the design.  Shown in Figure 11, the user can specify the compilation target, 

the type of generation, and various design constraints.  The Part menu allows selection of 

the FPGA on which the design is to be implemented with additional options for speed 

grade and pinout of the device.  The Compilation menu allows the designer to select the 

output type.  HDL Netlist outputs a VHDL or Verilog file along with a pre-populated 

Xilinx ISE project file, which was the output type used for this research.  Other options 

available are the NGC Netlist wrapper file, which is the Xilinx proprietary format 

analogous to the industry standard electronic data interchange format (EDIF), 

compilation directly to bitstream for direct implementation on an FPGA, and hardware 

cosimulation  [19], [20].  

Hardware cosimulation uses a JTAG-configurable target device to load the 

generated bitcode of the current System Generator model to speed simulation and provide 

a check on whether the hardware implementation of the design matches the software 

simulation.  Under the hardware cosimulation option in the Compilation menu is a list of 

all devices for which hardware cosimulation is supported.  Instructions for adding the 

XUP development board are given in [21].  Generation produces a single System 

Generator block with inputs and outputs corresponding to the GATEWAY IN and 

GATEWAY OUT blocks of the source design.  When the model is simulated, the new  
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block causes System Generator to connect to the target device through the selected JTAG 

interface, upload the bitfile to the FPGA, insert the input waveforms, and read the output 

waveforms. 

 

 

Figure 11.   System Generator Options. 

Another useful feature of System Generator is its ability to estimate the resources 

required to implement the design.  The Resource Estimator block, shown in Figure 12, 

can be placed into the System Generator design to compile an estimate of the number of 

slices and other embedded logic resources required to implement the design.  This 

function is useful for the designer to get an early estimate of the logic resources required 
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for the design; however, the estimator is somewhat device agnostic.  Conflicts in logic 

allocations can arise that make a design require more logic resources than the estimator 

indicates  [20]. 

 

Figure 12.   System Generator Resource Estimator. 

Another feature of System Generator used in this design was the HDL Testbench 

generation feature.  As noted in [19] when this option is selected, in addition to the usual 

files, System Generator also produces a file <design>_tb.vhd, as well as data 

vectors and scripts which ModelSim uses for HDL simulation.  The data vectors are 

produced using the data passed from Simulink® to System Generator through the 

GATEWAY IN blocks.   

C. XILINX ISE 

Xilinx ISE is the integrated development environment for developing applications 

for Xilinx FPGAs.  Although in Xilinx ISE the designer has the option to start a FPGA 

design project from scratch, System Generator includes a pre-configured ISE project file 

among the generated files, named <design>_cw.ise.  This is the starting point for 

modifying the design in ISE after generation with System Generator.  [6] 
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The primary use of Xilinx ISE for this design was synthesizing the design to 

determine actual logic resource utilization of the various designs.  Xilinx ISE was also 

used as the interface with ModelSim for behavioral simulation of the design as well as 

generating the bitstream, which contains the configuration information for the target 

FPGA, for hardware implementation [6]. 

D. MODELSIM 

ModelSim, by Mentor Graphics, is a simulation environment for testing the 

functional behavior of an application in HDL.  It is a separate program from Xilinx ISE 

that provides an alternate environment for testing and verifying the behavior of HDL 

designs.  The simulation passes stimuli into the HDL file and displays the output.  It is 

also possible to script the input / output process to speed the simulation process as well as 

increase testing flexibility  [22]. 

In order to use ModelSim with Xilinx ISE, the Xilinx HDL simulation libraries 

must be compiled.  This can be performed using a command line argument, as discussed 

in [5], or it can be done using menu options.  On the left side of the screen, under 

“Sources,” select the top-level file for the project.  Under “Processes,” expand the 

“Design Utilities” option and double-click “Compile HDL Simulation Libraries.”  These 

menu options are shown in Figure 13.  If the libraries were compiled during installation, 

the user does not need to complete this step. 
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Figure 13.   Compile HDL Simulation Libraries. 

ModelSim uses Tool Control Language (TCL) based testbench files to control 

stimulus into the design under test.  The System Generator option to automatically 

generate these testbench files was the primary method used to create the input waveforms 

for the model.  Another option, described in [22], is to use the Waveform Editor to 

generate stimulus signals. 

E. XILINX CHIPSCOPE PRO 

Xilinx ChipScope Pro is a software package that works with Xilinx FPGAs and 

CPLDs to conduct hardware level test and debugging.  As described in [23], ChipScope 

consists of three main components: the Xilinx CORE Generator™ tool, the core inserter, 

and the analyzer.  The ICON (interface control) core controls the logic analyzer cores and 

provides a communications path to the JTAG boundary scan port.  The integrated logic 

analyzer (ILA) core is used to monitor and analyze logic within the chip.  The virtual 

input / output (VIO) core provides access to internal FPGA signals without requiring on-

chip RAM.  The relationship between the cores, the device under test, and the analyzer 

software is illustrated in Figure 14. 
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Figure 14.   ChipScope Pro Block Diagram (From [23]). 

ChipScope Cores are inserted into a design, providing access to in-chip signals.  

With System Generator, inserting cores is as simple as including the appropriate 

ChipScope block in the design.  The limitation to this method is that only one ChipScope 

Core can be inserted in this manner, and it cannot be used at the same time as JTAG 

hardware co-simulation, which is discussed in the next section [19].  ChipScope Cores 

can also be generated with the CORE Generator and included in HDL source files from 

within Xilinx ISE.  Finally, cores can be inserted into a finished design using the 

ChipScope Pro Core Inserter tool  [23]. 

ChipScope Analyzer is two pieces of software used to interact with the inserted 

cores when the design is implemented in hardware.  The server is a command line 

application that connects to the target device via JTAG.  It is run automatically if the 

target device is connected to the local computer, which is the method used for this 

research.  It is also possible to use the server application to connect to a target device over 

a network.  The client application is the graphical user interface (GUI) used to debug the 

design on the target device.  It is used to set data collection triggers and to display 

collected waveforms [23]. 
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F. XILINX XUP VIRTEX™-II PRO DEVELOPMENT BOARD 

The Xilinx XUP (Xilinx University Program) Virtex™-II Pro development board, 

shown in Figure 15, was used as the hardware target during this design process.  It was 

used during two parts of the design process: first, during System Generator design with 

the hardware cosimulation option, and second after design implementation with Xilinx 

ISE with the hardware implementation of the bitcode  [19], [21]. 

The XUP development board features a Xilinx Virtex™-II Pro xc2vp30–7ff896 

FPGA.  The development board uses the USB JTAG interface to provide access from the 

development software to configure the FPGA.  When the device is connected and 

powered on, the device drivers are automatically uploaded from firmware on the board 

over USB to the host computer.  Local administrator access is required to allow the 

drivers to be installed.  The board can be powered either through a single 4.5–5.5V power 

supply through the center-positive barrel jack (J26) or through individual 1.5V, 2.5V, and 

3.3V external power supplies.  A single power supply was used for this application 

because the power requirements for this research were low.  The preceding features of the 

XUP development board were the ones used for this research.  The full range of features 

of the XUP development board is listed in [21].   
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Figure 15.   Xilinx University Program Development Board. 

G. SUMMARY 

The software tools discussed in this section were used to take the compression 

algorithm from concept through high-level design and all the way to hardware 

implementation.  At each step in the design, the algorithm was tested, first for function, 

then for behavior, and finally for execution at the hardware level.  In following chapters, 

the use of these design tools, to continue the development of the algorithm, is discussed. 
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Table 2.   FPGA Development Tools. 

Design Tool Version Purpose 

MATLAB / 
Simulink 

7.4.0 
(R2007a) 

 Generate input data 
 Analyze output data 
 Configure the model 

Xilinx System 
Generator 

10.1  High-level design of the algorithm 
 Simulation of the algorithm at the functional 

level 
 Generate VHDL instantiation of the algorithm 

Xilinx ISE 10.1  Configure VHDL files 
 Insert UCF (constraint) files 
 Syntax check the VHDL files 
 Compile the VHDL file to FPGA bitcode 

ModelSim 6.3g  Simulate and troubleshoot the VHDL file at the 
behavioral level 

ChipScope Pro 10.1  Configure the target device with the compiled 
bitcode 

 Troubleshoot the design at the physical layer 
level 

XUP Virtex™-II 
Pro development 
board 

xc2vp30–
7ff896 

 Development board including FPGA and USB 
JTAG interface 

Equation Chapter (Next) Section 1Equation Section 4 
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IV. FAST FOURIER TRANSFORM COMPUTING 

The System Generator FFT IP Blocks were introduced in Chapter III.  In this 

chapter, the analysis conducted on FFT v4.1 and FFT v1.0 in Wright’s thesis [4] and 

Livingston’s thesis [5] is reviewed.  A new IP Block, the FFT v3.2 is introduced and 

analyzed to facilitate migration of the algorithm to implementation on Virtex™-II 

FPGAs.  The configuration and timing differences between the FFT IP Blocks are 

examined, and the implications to the rest of the design are discussed. 

A. FFT V4.1 

The original SDR design presented in [4] made use of the FFT v4.1 Xilinx IP 

block.  This version of the FFT allows for streaming input and output (IO) and calculates 

an FFT of length N  2 k  ,  3 k 16 , where k is an integer.  Other options, shown in 

Figure 16, include selecting natural order output, unscaled output, and phase factors with 

24-bit precision.  Natural order output was chosen for ease of use with the remainder of 

the algorithm at a cost of more required block random access memory (BRAM), as 

discussed in [24].  The highest precision phase factor and the most allowed BRAM were 

chosen.  

The output signals from the FFTv4.1 block, when the input is a constant 1.010 

(base-10) and configured for 102 1024N   , is shown in Figure 17.  In the top plot, the 

real and imaginary outputs are shown, along with the output index, which increments 

from 0..1023.  As shown, the ready for data (rfd) signal is asserted after the first clock 

cycle at (a).  The input index, xn_index increments from 0 to 1023 and reaches its final 

value at 1025t  .  The FFT calculation begins at 518t  , indicated by the busy signal 

(b).  The e_done signal, asserted 1 clock cycle before the FFT calculation is complete, is 

asserted at 2162t  , (c). The valid signal, indicating valid output data, is asserted at 

2163t  , (d), along with the first point of the calculated FFT, (e).  The next e_done 

signal (f) is asserted at 3186t  , and the first point of the next calculated FFT (g) is 

output at 3187t  .  Both signals are asserted 1024 clock cycles after the preceding 

signal, indicating streaming IO.  The total latency of the FFT v4.1 IP block, from the time 
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the first input point is accepted at 2t   to the time the first point of the calculated FFT is 

output at t  2163, is 2163 2  2161. 

 

 

Figure 16.   FFT v4.1 Configuration Options (After [5]). 

The calculated FFT shown in Figure 17 is  

 X k  
1023 j0 k  0

0 k  1..1023






, (IV.1) 

which is consistent with Equation (II.5).   

The FFT v4.1 test circuit shown in Figure 18 was implemented for a Virtex™-II 

Pro xc2vp30.  The required logic resources are shown in Table 3.  All circuits and 

supporting computer files presented in this thesis are listed in the Appendix. 
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Figure 17.   FFTv4.1 Output Signals (After [5]). 
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Figure 18.   Circuit for Timing Analysis of FFT v4.1 (After [5]). 

 

Table 3.   FFT v4.1 Resource Utilization on a Virtex™-II Pro xc2vp30–7ff896 
(After [5]). 

Resource Used Available Percent 

Slices 3448 13696 25% 

Flip-Flops 5945 27392 21% 

4-input LUTs 4312 27392 15% 

Bonded IOBs 81 556 14% 

BRAMs 12 136 8% 

MULT18x18s 32 136 23% 

GCLKs 1 16 6% 
 

B. FFT V1.0 

The modified SDR presented in [5] made use of the Xilinx IP block FFT v1.0.  

This version of the FFT is the only FFT IP block supported by the Virtex™ family of 

devices.  This version of FFT accepts streaming input on each clock cycle but only 

outputs calculated FFT points for N out of every 4N clock cycles.  As noted in [25], the 

circuit precision is fixed at 16-bit 2’s complement numbers for input and output.  The 

timing of the FFT v1.0 IP block was tested using the circuit shown in Figure 19.   
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Figure 19.   Circuit for Timing Analysis of FFT v1.0 (After [5]). 

As shown in Figure 20, the circuit produces a valid output for 1024 cycles out of 

every 4096.  The vin signal and real data begin at t  1.  The circuit asserts the ready 

signal at 1t  , and it remains asserted during the entire operation, indicating the FFT is 

accepting streaming input data.  At 8247t  , the done signal is asserted for one clock 

cycle at (a) and the calculated FFT points are output at (b) from t  8247  until 9270t  .  

The next set of data is ready for output at t  12343, at (c).  The total latency of the FFT 

v1.0 circuit is 8247. 

The input to the test circuit is a constant 0.510.  From Equation (II.5), the output 

should be   

 X k  
512  j0 k  0

0 k  1..1023






. (IV.2) 

This inconsistency is because the precision of FFT v1.0 is fixed at 16 bits, so the output is 

scaled by 1 / N  after each stage.  If Equation (II.5) is scaled by 1 / N , the results are 

consistent. 

The FFT v1.0 was implemented for a Virtex™ xcv1000 FPGA.  The required 

logic resources are shown in Table 4. 
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Figure 20.   FFT v1.0 Output Signals (After [5]). 

Table 4.   FFT v1.0 Resource Utilization on a Virtex™ xcv1000–6fg680 (After 
[5]). 

Resource Used Available Percent 

Slices 1285 12288 10% 

Flip-Flops 2570 24576 10% 

4-input LUTs 2247 24576 9% 

Bonded IOBs 70 512 13% 

BRAMs 16 32 50% 

GCLKs 1 4 25% 
 

C. FFT V3.2 

As discussed in [24], the Xilinx FFT v4.1 IP block is not supported for the 

Virtex™-II family of FPGAs.  In order to implement this algorithm on a Virtex™-II, the 



 39

FFT v3.2 IP block, described in [26] has to be used.  As with the FFT v4.1, this version 

of the FFT allows for streaming IO and calculates an FFT of length N  2 k  ,  3 k 16 , 

where k is an integer. 

In order to investigate the timing constraints for this block, the circuit shown in 

Figure 21 was used.  The input signal for investigating the timing was a constant DC 

input of 0.5 for all real inputs and 0 for all imaginary inputs.  The start signal was held 

high for the entire analysis, and the inverse signal was held low. 

 

Figure 21.   Circuit for Timing Analysis of FFT v3.2. 

The output signals from the FFT v3.2 block, when the input is a constant 1.010 and 

configured for 102 1024N   , is shown in Figure 22.  In the top plot, the real and 

imaginary outputs are shown, along with the output index, which increments from 

0..1023 .  As shown, the rfd signal is asserted after the first clock cycle at (a).  The input 

index, xn_index increments from 0 to 1023 and reaches its final value at 1025t  .  The 

FFT calculation begins at 518t  , indicated by the busy signal (b).  The e_done signal, 

asserted 1 clock cycle before the FFT calculation is complete, is asserted at 2146t  , (c). 

The valid signal, indicating valid output data, is asserted at 2148t  , (d), along with the 

first point of the calculated FFT, (e).  The next e_done signal (f) is asserted at 3170t  , 

and the first point of the next calculated FFT (g) is output at 3172t  .  Both signals are 

asserted 1024 clock cycles after the preceding signal, indicating streaming IO.  The total 
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latency of the FFT v3.2 IP block, from the time the first input point is accepted at 2t   to 

the time the first point of the calculated FFT is output at t  2148, is 2148 2 2146  . 

The calculated FFT shown in Figure 22 is  

 X k  
1023 j0 k  0

0 k  1..1023






, (IV.3) 

which is consistent with Equation (II.5).   

The FFT v3.2 test circuit was generated for a Virtex™-II xc2v3000.  The 

resulting VHDL was compiled using ISE and simulated using ModelSim.  The logic 

resource utilization is shown in Table 5.   

The ModelSim waveform is shown in Figure 23. The edone signal is asserted on 

output index 0x3FE of the previous output, the done signal is asserted on output index 

0x3FF, and the first point of the new computed FFT 0x0FFC00 is output with index 

0x000. 
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Figure 22.   FFT v3.2 Output Signals. 
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Table 5.   FFT v3.2 Resource Utilization on a Virtex™-II xc2v3000–6fg676. 

Resource Used Available Percent 

Slices 3274 14336 22% 

Flip-Flops 5520 28672 19% 

4-input LUTs 4037 28672 14% 

Bonded IOBs 81 484 16% 

BRAMs 12 96 12% 

MULT18x18s 32 96 33% 

GCLKs 1 16 6% 

 

 

Figure 23.   FFT v3.2 ModelSim Simulation. 

Because the timing of this IP block is similar to the timing of the FFT v4.1 IP 

block, the logic resource requirements for both were compared for a Virtex™-II Pro 

xc2v30, the results of which are shown in Table 6.  In a side-by-side comparison, the FFT 

v4.1 used slightly more resources, due mainly to requiring more 4-input LUTs for signal 

routing.  Because this algorithm was designed to be backward compatible with the 

Virtex™-II FPGA, implementation with FFT v3.2 was desirable since this FFT IP is 

compatible with both the Virtex-II and Virtex-II Pro [26].  If the design is to be forward 

compatible with the Virtex™-4 or -5 FPGAs, the FFT v4.1 is desirable due to its 

compatibility with the DSP48 logic primitives available on those devices [24]. 
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D. SUMMARY 

The performance of the FFT v4.1 IP block was verified.  The FFT v4.1 was 

shown to accept streaming input and produce streaming output.  The performance of the 

FFT v1.0 IP block was verified.  It was shown that the FFT v1.0 IP block accepts 

streaming input but does not produce streaming output.  The performance of the FFT v3.2 

IP block was investigated.  It was shown to behave similarly to the FFT v4.1 block, 

accepting streaming input and output.  Timing differences between the FFT v4.1 and v3.2 

and the implications to further design work were discussed.  In the following chapter, a 

method of applying error detection to the FFT v4.1 block is analyzed, and modifications 

are made to use the FFT v3.2 block. 

Table 6.  Resource Comparison of FFT v3.2 and v4.1 on a Virtex™-II Pro. 

Resource Available v3.2 
Used 

v3.2 
Percent 

v4.1 
Used 

v4.1 
Percent 

Slices 13696 3298 24% 3448 25% 

Flip-Flops 27392 5520 20% 5945 21% 

4-input LUTs 27392 4043 14% 4312 15% 

Bonded IOBs 556 81 14% 81 14% 

BRAMs 136 12 8% 12 8% 

MULT18x18s 136 32 23% 32 23% 

GCLKs 16 1 6% 1 6% 

 

Equation Section (Next) 
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V. ERROR DETECTION 

As discussed in Chapter II, computing in space requires attention to detection and 

correction of errors caused by SEUs.  In this chapter, the development of error detection 

for the compression algorithm presented in [5] is reviewed.  Errors in the computation of 

the FFT are detected by comparing the energy in with the energy out using Parseval’s 

theorem.  Errors in Temporary Memory are detected by calculating and comparing data 

parity before and after storage. 

A. FFT ERROR DETECTION WITH PARSEVAL’S THEOREM 

In [5], Livingston presents a version of the compression algorithm that can detect 

whether the output is in error.  As discussed in [11], the probability of an SEU is 

proportional to the area of the semiconductor.  The two portions of the algorithm with the 

highest resource allocation and, hence, the biggest area are the FFT calculation and the 

temporary storage memory.  The error detection applied to the FFT block was designed 

to check that the transform was computed successfully.  The error detection applied to the 

temporary storage memory was to check that the computed time-frequency bins were not 

corrupted. 

1. Analysis of the Original Error Detection Algorithm 

As discussed in Chapter II, Parseval’s theorem states that the energy into a 

Fourier transform must equal the energy out of the transform.  The algorithm presented in 

[5] makes use of this property to determine if the FFT output is correct.  The conceptual 

block diagram illustrating this setup is shown in Figure 24.  The squares of the input 

points are summed.  After the FFT is computed, the squares of the magnitude of the 

complex output are summed and scaled by 1/ N .  If the FFT calculation is correct, the 

two sums will be equal to within a threshold determined by the precision of the sum-of-

squares of the input points, and the error flag is set to 0.  If the FFT calculation is not 

correct, the two sums will differ by more than the threshold, and the FFT output will be 

flagged as in error. 
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Figure 24.   Error Detection with Parseval’s Theorem (Conceptual) (After [5]). 

The error checking in the algorithm presented in [5] has components in two 

blocks, the FFTv4.1 block and the Windowing Algorithm block.  This is because the 

squaring function on the output is used twice in the Windowing Algorithm: to calculate 

the energy for comparison to the input for error detection and to calculate the energy for 

time-frequency bin energy calculation.  For the purposes of analysis, the FFT and the 

error detection components were copied from the algorithm in SDR1024Mod8C.mdl 

and placed together in a single System Generator model, shown in Figure 25. 

The left side of Equation (II.10) is computed using a Mult block, the Accum 

subsystem, and a Scale block.  The input to the compression algorithm is assumed to be 

real, so the squaring is accomplished using a single Mult block.  These values are input 

into the Accum subsystem, shown in Figure 26, and originally developed in [4].  This 

subsystem contains two Accumulator blocks, controlled by a MCode state machine. 

The output of the Accum block is scaled by 1/ N  using the Scale block and 

delayed to match the output of the FFT.  The output is already delayed by the Point Pwr 

subsystem, and only the first 1 / N  points are used in the error analysis.  The required 

delay is therefore given by the expression given in [5] as 

 FFT Latency   Point Pwr Latency  N / 2. (V.1) 

The right side of Equation (II.10) is calculated using Scale blocks, the Point Pwr 

subsystem, and the FFT Error Detection subsystem.  The real and imaginary outputs of 

the FFT block are scaled by 1/ N .  The square and sum of the result are completed by the 

Point Pwr subsystem, shown in Figure 27. 
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Figure 25.   Error Detection applied to the FFTv4.1 IP block (After [5]). 
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Figure 26.   “Accum” Subsystem (From [4]). 

 

Figure 27.   “Point Pwr” Subsystem (From [5]). 

The FFT Error Detection subsystem, shown in Figure 29, contains another Accum 

to sum the squares.  This subsystem is set to accept input for half the period of the FFT, 

effectively summing from 0k   to / 2 1N  .  Due to conjugate symmetry this is 

sufficient, since the sum of the magnitudes squared of the first half of the FFT are equal 

to those of the second half  [5]. 

The two sides of Equation (II.10) are compared by subtracting the two values and 

comparing against a threshold.  In this implementation, the threshold is set such that a 

correct output is declared when  

 12 122 2a b     , (V.2) 
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which was determined experimentally by Livingston in [5].  This threshold is required 

since the precision of the sum-of-squares calculations for either side of Equation (II.10) 

are different. 

In order to test the circuit, an error injection circuit was implemented in [5] using 

a counter and a MUX (multiplexer), shown in Figure 28.  The input is the real values 

from the FFT block.  These actual values are passed through the MUX until the 

freerunning counter exceeds the given threshold.  Once that occurs, the output becomes 

the entered constant, in this case 26 . 

 

Figure 28.   Error Injection circuit (After [5]). 

The FFT v4.1 with error correcting circuit in Figure 25 was generated for a 

Virtex™-II Pro xc2vp30.  The resources required are shown in Table 7. 

2. Modification to FFT Error Detection 

The error detection method developed in [5] was built around a compression 

algorithm based on the FFT v4.1.  In order to support this algorithm on a Virtex™-II, the 

FFT v3.2 block must be used.  As mentioned in Chapter IV, the latency of the two FFT 

versions is different, requiring modification to the circuit to use the block. 

The FFT v3.2 block was inserted as shown in Figure 30.  The delay after the 

accumulator was adjusted according to Equation (V.1), resulting in a new delay of 1631.  

This new compression algorithm was tested in the same manner as the original algorithm.  

The results were the same, with the output indices shifted by the latency difference 

between the FFT v3.2 and FFT v4.1.  
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The circuit in Figure 30 was generated for a Virtex™-II xc2v3000.  The required 

resources are shown in Table 8. 
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Figure 29.   “FFT Error Detection” Subsystem (From [5]). 
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Table 7.   Resource Requirements for Compression Algorithm on Virtex™-II 
Pro xc2vp30. 

Resource Used Available Percent 

Slices 9297 13696 67% 

Flip-Flops 14924 27392 54% 

4-input LUTs 14207 27392 51% 

Bonded IOBs 96 556 17% 

BRAMs 57 136 41% 

MULT18x18s 61 136 44% 

GCLKs 1 16 6% 

 

 

Table 8.   Resources Required for Modified Compression Algorithm on 
Virtex™-II xc2v3000. 

Resource Used Available Percent 

Slices 7442 14336 51% 

Flip-Flops 11356 28672 39% 

4-input LUTs 11343 28672 39% 

Bonded IOBs 270 484 55% 

BRAMs 15 96 15% 

MULT18x18s 36 96 37% 

GCLKs 1 16 6% 
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Figure 30.   Error Detection Applied to the FFT v3.2 IP Block. 
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B. MEMORY ERROR DETECTION USING PARITY 

The section of the compression algorithm with the second highest probability of 

SEU after the FFT is the Temporary Memory where calculated FFT points are stored 

after time and frequency bin calculations have been conducted.  In order to detect 

whether the contents of the Temporary Memory have been corrupted, Livingston added a 

parity check feature to the algorithm presented in [5]. 

The temporary storage subsystem developed in [4] consists of two dual port RAM 

blocks for storing the real and imaginary FFT points while the bin energy is calculated.  

The values stored in memory are 35 bits, so the parity bit is calculated with the 

expression 

         XOR Bit 34 ,Bit 33 ,...,Bit 1 ,Bit 0P  . (V.3) 

Equation (V.3) is implemented with a string of XOR gates and Bit Basher blocks, as 

shown in Figure 31.  As discussed in [5], the string of Bit Basher blocks are used to 

separate each 35-bit value into 35 one-bit values, and the string of XOR gates is used to 

calculate a single parity bit. 

The calculated parity bits are stored in a separate Dual Port RAM block using the 

same addressing signals from the data Dual Port RAM block.  When the data is read out, 

the parity is calculated using another parity generator as shown in Figure 32, and this 

parity bit is compared to the previously calculated parity bit using an XOR gate.  If the 

parity bits are not equal, an error flag is sent to the parity flag generation subsystem, 

which is described in [5]. 
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Figure 31.   Parity Generator (From [5]). 
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Figure 32.   Temporary Memory Subsystem with Parity Check (From [5]). 
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C. SUMMARY 

Methods for detecting errors in the calculation of an FFT when the designer does 

not have access to the internal circuitry of the FFT block were introduced in this chapter.  

The design and performance of an error detection circuit applied to the FFT v4.1 block 

was analyzed and the error detection was verified.  The error detection circuit was 

modified for use with the FFT v3.2 block, and the error detection was verified.  A method 

of checking memory for error using parity check bits was also analyzed, and the detection 

of errors verified. The error detection method discussed in this chapter is used in the next 

chapter to implement error correction for the FFT computation circuits. 
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VI. ERROR CORRECTION 

The compression algorithm development described thus far has resulted in a 

design that can detect when the FFT calculation is in error.  This design can be 

implemented in a Virtex™-II Pro FPGA.  The goals of this design work were to make 

use of the error detection to implement error correction and implement the resulting 

design in a multiple-FPGA implementation using Virtex™-II FPGAs. 

A. INITIAL ERROR CORRECTION DEVELOPMENT 

The error detection developed in [5] set a flag if the output of the FFT block was 

in error.  In order to use this feature to implement error correction, the FFT calculation 

block was duplicated, and a voter decides which FFT is correct, as shown in Figure 33. 

 

Figure 33.   Error Correction (Conceptual). 

In this implementation, the energy in each FFT is calculated separately.  If the 

sums-of-squares are equal, it is assumed that there was no error in calculating the FFT.  If 

they are not equal, it is assumed that the FFT calculated is in error and the other FFT 

output is chosen.  Again, the assumption is that there is an SEU in only one subsystem in 
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each calculation cycle.  The relationship between the block containing the error and 

which FFT values are chosen for  X k  are shown in Table 9. 

Table 9.   Truth Table for Error Correction Algorithm. 

Error in 
Block: 

|a-b| 
<thresh

|c-d| 
<thresh

X[k] X[k] 
correct 

Σ(a) 0 1 FFT B 1 
Σ(b) 0 1 FFT B 1 
FFT A 0 1 FFT B 1 
Σ(c) 1 0 FFT A 1 
Σ(d) 1 0 FFT A 1 
FFT b 1 0 FFT A 1 

The error correcting circuit is the System Generator model shown in Figure 34.  

The circuit consists of two subsystems, each containing an FFT v3.1 IP Block, as well as 

the error detection circuitry described in Chapter V.  One of these subsystems contains 

the error injection circuit, also described in Chapter V.  Each of these blocks computes 

the FFT of the input signal independently and checks whether the computation was in 

error.  These values are passed to the new Voter subsystem.  

The Voter subsystem, shown in Figure 35, consists of MUXs that act as switches 

to select output from either of the FFT computation subsystems.  The VoterCtl block 

implements a state machine controlling which data the MUXs select for output.  Inputs to 

the VoterCtl block are the error calculations from each of the FFT error detection circuits 

and the x_error_valid signal, which indicates when a new error calculation is ready.  The 

voter also detects whether both FFTs are reporting an error, in which case the voter_error 

signal is asserted. 
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Figure 34.   FFT Error Correcting Circuit. 
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Figure 35.   Voter Subsystem. 

The error correction circuit was tested by injecting an error into the output of one 

of the FFTs.  In the first plot of Figure 36, the error is shown where the real input 

transitions from the correct value of 0 to 62  at time 13924t  .  The second plot shows 

that the circuit masks the error when the output_side signal transitions from 0 to 1.  Note 

that the output signal is delayed one FFT period of 1024N   due to latency in 

calculating the error.  

This error correction algorithm was implemented for a Virtex™-II xc2v3000.  

The required resources are shown in Table 10.  This shows that this algorithm requires 

4109 more slices than are available on the target device, implying that it cannot be 

implemented on this device. 
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Figure 36.   Error Correction of a Single Error 

Table 10.   Resource Utilization for Error Correcting FFT on Virtex™-II 
xc2v3000–6fg676. 

Resource Used Available Percent 

Slices 18445 14336 128% 

Flip-Flops 32250 28672 112% 

4-input LUTs 32517 28672 113% 

Bonded IOBs 131 484 27% 

BRAMs 30 96 31% 

MULT18x18s 72 96 75% 

GCLKs 1 16 6% 
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B. MODIFICATION TO REDUCE RESOURCE REQUIREMENTS 

1. Eliminate Redundant Multiply-and-Accumulate Circuitry 

In order to implement error correction on a single Virtex™-II xc2v3000, an 

implementation using fewer resources was necessary.  The first error correction algorithm 

had a redundant sum-and-accumulate circuit on the input.  By eliminating this redundant 

circuitry, as shown in Figure 37, fewer resources would be required. 

 

Figure 37.   Modification to Error Correction (Conceptual). 

The truth table in Table 11 shows that this configuration will also mask any single 

error.  Even if the error occurs in the reference sum-and-accumulate circuit, the voter will 

recognize that when there are two apparent errors the error is not occurring within one of 

the FFTs. 

The modified error correcting circuit was implemented as shown in Figure 38.  In 

this modified error correction circuit, the multiply and accumulate circuitry was removed 

from the FFT subsystems, and one copy of it computes the energy of the input signal.  

This single calculation is routed into the error detection circuits in both FFT subsystems.  
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Table 11.   Truth Table for Modified Correction Algorithm. 

Error in 
Block: 

|a-b| 
<thresh

|c-d| 
<thresh

X[k] X[k] 
correct 

Σ(ref) 0 0 FFT A 1 
Σ(a) 0 1 FFT B 1 
Σ(b) 1 0 FFT A 1 
FFT A 0 1 FFT B 1 
FFT B 1 0 FFT A 1 

 

The circuit was tested in the same manner as the original error correction 

algorithm.  Shown in the first plot of Figure 39, the error is injected into the real part of 

the FFT at time 13924t  .  The second plot shows that this error is masked when the 

error is detected and the output_side signal transitions from 0 to 1 at time 14950t  , one 

FFT cycle after the error was injected.  This switches the source data from the error FFT 

to the correct FFT. 

This new design was implemented for a Virtex™-II xc2v3000.  As shown in 

Table 12, this modified error correction algorithm uses fewer slices but still requires 2564 

more than are available, implying that it cannot be implemented on this device. 
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Figure 38.   Modification to FFT Error Correction.
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Figure 39.   Error Correction of Single Error by the Modified Circuit 

Table 12.   Resources Required for Modified Error Correction Circuit on 
Virtex™-II xc2v3000. 

Resource Used Available Percent 

Slices 16900 14336 117% 

Flip-Flops 29335 28672 102% 

4-input LUTs 29494 28672 102% 

Bonded IOBs 132 484 27% 

BRAMs 30 96 31% 

MULT18x18s 68 96 70% 

GCLKs 1 16 6% 

2. Modify Voter to Reduce Usage of Slice Logic  

As seen in Table 12, the number of flip-flops required to implement the error 

correcting algorithm exceeds the number available on the target FPGA.  The device 
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utilization summary generated by Xilinx ISE during synthesis stated that 17033 of the 

LUTs were used as shift registers, which is how delay blocks are implemented.  Since the 

Voter subsystem contains six delays of length 1024, eliminating these delays would 

significantly reduce the requirement for LUTs.  Since this algorithm only used 31% of 

the available BRAM, the decision was made to modify the voter to use memory rather 

than logic to implement the delay. 

The updated Voter subsystem is shown in Figure 40.  The delay blocks have been 

replaced by Single Port RAM blocks.  The depth is set to 210  1024, so each value from 

the FFT can be read in.  The address is provided by the xk_index signal.  The Single Port 

RAM has been set to read before write, so that the value from the previous FFT period is 

read out before the new value is read in.  The VoterCtl MCode block remains the same. 

This Voter successfully masks all single-source errors.  As shown in the first plot 

in Figure 41, the error is injected into the real output of the FFT at time 13924t  .  The 

corrected output is shown in the second plot, where the Voter circuit switches the output 

from the FFT in error to the FFT computed correctly. 

This implementation of error correction was generated for a Virtex™-II xc2v3000 

FPGA.  As shown by the resource requirements listed in Table 13, this new voter 

implementation is now within the resource limitations of the target FPGA.   
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Figure 40.   Memory-Based Voter Circuit. 
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Figure 41.   Error Corrected by Memory-Based Voter. 

Table 13.   Resources Required for Modified Voter Circuit on Virtex™-II 
xc2v3000. 

Resource Used Available Percent 

Slices 11952 14336 83% 

Flip-Flops 19575 28672 68% 

4-input LUTs 19724 28672 68% 

Bonded IOBs 131 484 27% 

BRAMs 38 96 39% 

MULT18x18s 68 96 70% 

GCLKs 1 16 6% 

 



 71

C. PROTECTED FFT WITH THE COMPRESSION ALGORITHM 

The protected algorithm was used as the input for the windowing and data 

formatting subsystems.  This is a two-FPGA implementation.  The FFT circuit used was 

the one developed in the previous section, modified as shown in Figure 42 to provide the 

required output signals.   

The compression and data format subsystems from [5] were modified as shown in 

Figure 43.  In this implementation, the FFT circuit has been removed and replaced by the 

input signals generated by the error correcting FFT.  The error detection circuit has been 

removed from the Windowing Algorithm, and the ErrorFlagCtl MCode block has been 

moved outside of the Windowing Algorithm.  The output of the ErrorFlagCtl block is 

required for the Format Output Subsystem.  In the previous algorithm, this block counted 

the number of errors per time bin.  In this algorithm, it performs the same task but is 

counting errors in the voter rather than errors in the FFT calculation.   

The Windowing Algorithm retains the Point Pwr circuit for calculating FFT point 

energy.  This is redundant to the Point Pwr circuit in the error correction circuit; however, 

the resources required for its implementation are available.  The Temporary Storage 

subsystem retains the parity check system described in [5] and Chapter V.  

The compression and data format model was generated for a Virtex™-II 

xc2v3000 FPGA.  The resources required are shown in Table 14.  Because this circuit 

uses so few resources, it would be possible to add some measure of redundancy to the 

circuit.  The required number of BRAM is greater than a third of the available memory so 

directly implementing TMR would not be possible. 
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Figure 42.   Modified Error Correcting FFT. 
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Figure 43.   Modified Compression and Data Formatting Circuit (After [5]). 
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Table 14.   Resources Required for Compression and Data Formatting 
Subsystems. 

Resource Used Available Percent 

Slices 1262 14336 8% 

Flip-Flops 625 28672 2% 

4-input LUTs 2194 28672 7% 

Bonded IOBs 145 484 29% 

BRAMs 36 96 37% 

MULT18x18s 9 96 9% 

GCLKs 1 16 6% 

D. SUMMARY 

Methods for implementing error correction for the FFT v3.2 IP block using the 

error correction method developed in Chapter V were introduced in this chapter.  The 

initial error correction design duplicated the error detection circuitry and used a voter to 

decide which FFT was computed correctly.  This method resulted in errors being 

corrected and reduced the required resources; however, it required more logic resources 

than were available on the target FPGA.  The next design iteration eliminated one of the 

redundant input power computation circuits.  This design also corrected errors and 

reduced the required resources, but still required more logic resources than were 

available.  The final design iteration modified the voter circuit to reduce its logic resource 

requirement by implementing delays using BRAM rather than slice logic.  This design 

successfully corrected errors and could be implemented on the target FPGA.  The error 

correcting FFT circuit was then integrated with the existing compression and data 

formatting subsystems, and the function was verified. 
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VII. CONCLUSION 

In this chapter, the conclusions drawn from analysis of the original compression 

algorithm and the modification and design of an error-correcting FFT algorithm are 

presented.  In addition, recommendations for continuation of the design are discussed. 

A. SUMMARY 

Several high level concepts that support the development of a Fourier transform-

based, fault tolerant compression algorithm were presented.  Relevant elements of 

Fourier analysis were discussed, and the development of the fast Fourier transform was 

presented.  Challenges associated with spaceborne computing were discussed, and the 

Triple Modular Redundancy and Reduced Precision Redundancy methods for correcting 

errors caused by single event upsets were presented.   

The software tools used for development of the compression algorithm were 

introduced, and the design process from concept, through high-level design, all the way 

to hardware implementation was presented.  Capabilities and limitations of each software 

package were discussed, and some software setup notes were highlighted. 

The performances of the FFT v4.1 and FFT v1.0 IP blocks used in the algorithms 

presented in [5] were verified. The performance of the FFT v3.2 IP block was 

investigated.  It was shown to behave similarly to the FFT v4.1 block, accepting 

streaming input and output.  Timing differences between the FFT v4.1 and v3.2 and the 

implications to further design work were discussed.   

Methods for detecting errors in the calculation of an FFT when the designer does 

not have access to the internal circuitry of the FFT block were presented.  The design and 

performance of an error detection circuit applied to the FFT v4.1 block were analyzed, 

and the error detection was verified.  The error detection circuit was modified for use 

with the FFT v3.2 block, and the error detection was verified.  A method of checking 

memory for error using parity check bits, presented in [5], was also analyzed, and its 

detection of errors verified.   
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An error correction scheme for the FFT v3.2 IP block was developed using the 

error correction method discussed in Chapter V.  The initial error correction design 

duplicated the error detection circuitry and used a voter to decide which FFT was 

computed correctly.  The algorithm proceeded through several design iterations to reduce 

the resource requirements to allow implementation on the target FPGA. The final design 

was shown to successfully correct single errors and was implementable on the Virtex™-

II xc2v3000 FPGA.  The final error correcting FFT circuit was then integrated with the 

existing compression and data formatting subsystems. 

B. CONCLUSIONS 

Use of high-level design tools makes rapid design iterations easier; however, they 

can mask some underlying problems.  System Generator makes adjusting designs, adding 

or modifying components, and displaying output or intermediate signals convenient.  Not 

all designs built and tested within the System Generator environment can be implemented 

in hardware.  Some System Generator components behave differently or have different 

configuration options than their HDL instantiations.  Use of this design tool greatly 

speeds the design entry – behavioral simulation iterative design loop; however, it does 

not replace thorough testing at the HDL and hardware levels. 

Logic resources on an FFT have to be managed.  In this design, delays of 35-bit 

wide busses for thousands of clock cycles were implemented using register-based delays.  

While this implementation functioned, it exceeded the logic resources available on the 

target FPGA.  By implementing delays using memory rather than registers, it was 

possible to fit the algorithm on the intended platform. 

It is possible to protect an IP FFT using Parseval’s theorem.  By using the error 

detection algorithm developed in [5], error correction was implemented using a duplicate-

and-check methodology.  Errors injected into the output of one of the FFTs were 

successfully detected, and the output of the uncorrupted FFT was used to provide an 

error-free calculation. 
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C. RECOMMENDED FUTURE WORK 

The design work conducted for this thesis focused on implementing error 

correction for the FFT in the algorithm presented in [4] and further developed in [5].  To 

further develop this algorithm into a practical design, the following are suggestions for 

additional work. 

1. Test Error Correction FFT and Compression Algorithm 

The two-FPGA algorithm presented at the end of Chapter VI was tested for 

functionality; however, a thorough investigation of proper operation under all input signal 

conditions is required. 

2. Additional Error Correction Capabilities 

The final circuit presented in Chapter VI made use of the error correcting FFT 

circuit.  While the FFT circuit is the most likely point at which an SEU would cause an 

error, an error at any other point in the circuit would likely also cause an error in the 

output.  Error correction could be implemented in the remaining subsystems.  The 

Temporary Memory subsystem in this implementation employs a single parity bit check, 

which could detect a single error.  This parity could be upgraded to a SECDED Hamming 

code generator and check in order to be able to correct single errors.  The Windowing and 

Window Analysis subsystems, as well as the Format Output subsystem, could benefit 

from application of TMR.  Use of the Xilinx TMRTool, an IP tool for implementing 

TMR into an FPGA design, is one possible avenue for future research. 

3. Develop a Comprehensive Test Set 

As discussed in [5], the signals used for testing the compression algorithm only 

serve to illustrate that the circuit functions.  Development of a signal set that tests the 

compression algorithm’s limits are required to ensure the algorithm is a robust design.  

Also, development of a signal set that emulates real-world SOI against a noisy 

background will allow analysis of the performance of the algorithm under anticipated 

operating conditions. 
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4. Conduct Comprehensive Functional Testing 

System Generator creates a ModelSim testbench for individual designs.  In order 

to use ModelSim to simulate designs implemented on multiple FPGAs, an HDL wrapper 

file needs to be created which serves to route signals between the individual VHDL files 

created by System Generator.  A testbench which feeds input signals into the wrapper file 

and collects output signals also has to be generated.  Existing multiple-FPGA systems 

have an associated HDL wrapper and testbench, so the algorithm could be tested using 

these existing files. 

5. Implement In Hardware 

Ultimately, the algorithm must be implemented in hardware in order to be used in 

the real world.  Further investigation into implementing the algorithm in the target 

FPGAs as well as using ChipScope to analyze in-circuit performance of the algorithm is 

required. 
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APPENDIX.  COMPUTER FILES 

Lists of files used in the design of the algorithms discussed in this thesis are 

contained in this Appendix.  Instructions for simulating and synthesizing the designs are 

provided. 

A. REQUIRED FILES 

The following tables contain lists of files and directories contained on the software 
DVD.  A copy of the DVD can be requested from the director of the 

Communications Research Laboratory.  The directory structure of the DVD is listed 
in Table 15 and Table 16.  The System Generator models used for the simulations 
discussed in Chapters IV, V, and VI are listed in Table 17.  The required MCode 

files are listed in  

 

Table 18.  Supporting MATLAB script files are listed in Table 19. 

Table 15.   DVD directories. 

Directory Name Purpose 

DurkeInit Contains the files from [4]. 

DurkeInit\Mods Contains the files from [5]. 

FFT_test Contains the files from Chapter IV of this thesis used for timing 

analysis of FFT v4.1, FFT v1.0, and FFT v3.2. 

FFT_error_correct Contains the files from Chapters V and VI of this thesis used in 

analysis of the error detection algorithm from [5], as well as the 

development of the error correction algorithm. 
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Table 16.   Subdirectories of FFT_error_correct. 

Subdirectory Name Purpose 

err_chk Contains the System Generator models and supporting MCode 
files for the FFT error detection algorithms only presented in 
Chapter V. 

FFT_Err_Corr_mod1 Contains the System Generator model and supporting MCode 
files for the error correction algorithm presented in Chapter VI, 
Section A. 

FFT_Err_Corr_mod2 Contains the System Generator model and supporting MCode 
files for the error correction algorithm presented in Chapter VI, 
Section B. 

FFT_Err_Corr_mod3 Contains the System Generator model and supporting MCode 
files for the error correction algorithm presented in Chapter VI, 
Section C. 

Mod8C Contains the System Generator model and supporting MCode 
files for the error detection and compression algorithm presented 
in [5]. 

Mod9 An early attempt to insert FFT v3.2 into Mod8C. 

Mod10 Contains the System Generator model and supporting MCode 
files for a modification to the compression algorithm presented in 
[5], inserting FFT v3.2 in place of FFT v4.1. 

Mod11 Contains the System Generator models and supporting MCode 
files for the two-FPGA error correcting algorithm presented in 
Chapter VI, Section D. 
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Table 17.   System Generator Models. 

Model Name Chapter 
in Thesis 

Description 

fftv41_test.mdl IV.A Circuit for analyzing FFT v4.1. 

fftv10_test.mdl IV.B Circuit for analyzing FFT v1.0. 

fftv32_test.mdl IV.C Circuit for analyzing FFT v3.2. 

FFT_error_chk_only4_1.mdl V.A.1 Error detection circuit based on FFT v4.1. 

FFT_error_chk_only3_2.mdl V.A.2 Error detection circuit based on FFT v3.2. 

SDR1024Mod8C.mdl V.B  Error detecting compression algorithm 
from [5], based on FFT v4.1. 

SDR1024Mod10.mdl not 
discussed 

Error detecting compression algorithm 
based on SDR1024Mod8C, modified to use 
FFT v3.2. 

FFT_error_corr3_2mod1.mdl VI.A Error correcting circuit based on FFT v3.2. 

FFT_error_corr3_2mod2.mdl VI.B.1 Modification to FFT_error_corr3_2mod1 
to eliminate redundant square-and-
accumulate circuit. 

FFT_error_corr3_2mod3.mdl VI.B.2 Modification to FFT_error_corr3_2mod2 
to replace register-based delays in voting 
circuit with memory-based delays. 

FFT_error_corr3_2mod3A.mdl VI.C Modification to FFT_error_corr3_2mod3 
to include output signals required for 
integration with compression circuit. 

SDR1024Mod11B.mdl VI.C Compression circuit, based on 
SDR1024Mod10 which takes FFT input 
from FFT_error_corr3_2mod3A. 
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Table 18.   MCode files required for Compression and Error Detection 
Algorithms (After [5]). 

Algorithm File Name (*.m) Description 

accum_ctrl accum_ctrl_3_1 Controls Accum subsystem. 

ErrorFlagCtl ErrorFlagCtl Generates error codes. 

out_hdr out_hdrMod2 Generates downlink header, including 
FFT and parity error codes. 

OutputCtl OutputCtlMod0 Controls downlink buffer in Format 
Output subsystem. 

ParityFlagCtl ParityFlagCtl Generates parity error code from 
parity check circuit in Temp Storage 
subsystem. 

pwr_time pwr_time_MOD2 Manages Time Windowing 
subsystem. 

re_freq_wind re_freq_wind_Mod1 Manages signals and addressing for 
ROIs stored in memory in Window 
Analysis subsystem. 

re_tmp re_tmp_Mod1 Manages signals and addressing in 
Temp Storage subsystem. 

we_temp_fft we_temp_fft_Mod1 Manages signals and addressing in 
Temp Storage subsystem. 

we_time_win we_time_win_Mod1 Manages signals and addressing in 
Temp Storage subsystem. 

wind_anal wind_anal_Mod1 Manages signals in Bin Analysis 
subsystem within Window Analysis 
subsystem. 

VoterCtl VoterCtl Controls output of voter based on 
error flags generated by FFT Error 
Corr subsystems. 
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Table 19.   Supporting *.m files 

File Name Purpose 

fftv41_test_ctrl.m Generates signals for and displays output of 
fftv41_test.mdl 

fftv10_test_ctrl.m Generates signals for and displays output of 
fftv10_test.mdl 

fftv32_test_ctrl.m Generates signals for and displays output of 
fftv32_test.mdl 

ErrorCheck_testing_control.m Generates signals for and displays output of 
FFT_error_chk_only3_2.mdl and 
FFT_error_chk_only3_2.mdl 

fft_err_corr_mod1_test_ctrl.m Generates signals for and displays output of 
FFT_error_corr3_2mod1.mdl 

fft_err_corr_mod2_test_ctrl.m Generates signals for and displays output of 
FFT_error_corr3_2mod2.mdl 

fft_err_corr_mod3_test_ctrl.m Generates signals for and displays output of 
FFT_error_corr3_2mod3.mdl 

Mod11_control_testing.m Generates signals for and displays output of 
FFT_error_corr3_2mod3A.mdl and 
SDR1024Mod11B.mdl 

input_sig_gen.m Generates time and frequency-varying signal.  
Required function for all test control *.m files.  From 
[5] 

ROI_ctrl.m Generates ROI for Windowing Algorithm and 
Window Analysis subsystems in the compression 
algorithms.  Required function for 
Mod11_control_testing.m  From [5]. 
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B. INSTRUCTIONS 

The following instructions detail the method of executing the supporting *.m 

script files and running the simulations and are based on the instructions given in [5].  

The test_ctrl files use Cell Mode execution, detailed in the “Rapid Code Iteration 

Overview,” section of [27]. 

1. Examine System Generator Model 

Open the System Generator model.  Examine all MCode blocks and ensure the 

required MATLAB files are in the same directory as the System Generator Model. [5] 

2. Execute Control Script and Run Simulation 

Incrementally execute the test_ctrl.m file.  Cell Mode allows intermediate steps 

between execution of the code.  To run in Cell Mode, place the cursor in the desired cell 

and either choose the menu option “Cell  Evaluate Current Cell,” or type 

“Control+Enter.”  Once all environment variables have been set, run the simulation either 

by executing the cell containing the code sim(model_name,clks); or running the 

model within the Simulink® window.  Finally, execute the remaining cells to display the 

output signals.  The two-FPGA algorithm requires a data-reformatting step between 

running FFT_error_corr3_2mod3A.mdl and SDR1024Mod11B.mdl.  The required code is 

contained in the Mod11_control_testing.m file [5]. 

3. Generate 

System Generator will generate an HDL file and Xilinx ISE project file 

automatically, as detailed in Chapter III.  The options are in the dialog box opened by 

double-clicking the System Generator token.  Choose HDL Netlist under the 

“Compilation” menu and the desired FPGA under the “Part” menu.  It is recommended to 

set the target directory to a new subdirectory under the directory containing the System 

Generator and MATLAB files, since System Generator creates numerous supporting files 

during generation.  Select the “Create testbench” option to automatically generate a 

ModelSim testbench [5]. 
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4. Compile 

Open the generated ISE project file in Xilinx ISE.  Compilation can usually be 

accomplished by double-clicking the “Synthesize-XST” process in the “Processes” pane 

on the left side of the screen.  Multiple warnings may be generated during the compile 

process, however they do not impede the simulation process.  After compilation, a device 

utilization summary, showing a summary of logic resources, will be displayed in the 

main screen.  If compilation fails, error messages detailing the failure will be displayed. 

5. Conduct Behavioral Simulation with ModelSim 

After compilation, choose “Sources for Behavioral Simulation,” in the drop-down 

menu in the “Sources” pane.  In the “Processes” pane, expand the “ModelSim Simulator” 

item and double-click the “Simulate Behavioral Model” process.  This will launch 

ModelSim and begin the simulation using the signals contained in the generated 

testbench.  If the simulation fails due to the error “Library unisim not found,” 

then HDL simulation libraries must be compiled as described in Chapter III. 
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