

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

A COMPRESSION ALGORITHM FOR
FIELD PROGRAMMABLE GATE ARRAYS IN THE

SPACE ENVIRONMENT

by

Caleb J. Humberd

December 2011

 Thesis Advisor: Frank E. Kragh
 Thesis Co-Advisor: Herschel Loomis

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202–4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704–0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2011

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE A Compression Algorithm for Field Programmable
Gate Arrays in the Space Environment

5. FUNDING NUMBERS

6. AUTHOR(S) Caleb J. Humberd

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943–5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government. IRB Protocol number ______N.A.__________.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
 A

13. ABSTRACT (maximum 200 words)

The focus of this thesis is a lossy Fourier-transform-based compression algorithm for implementation on field
programmable gate arrays in the space environment. The algorithm computes the fast Fourier transform (FFT) of a
real input signal, determines the energy in user-defined time and frequency ranges of interest, and transmits only
those frequency domain portions of the signal that exceed the predefined thresholds. Error detection against single
event upsets for the FFT is implemented by comparing the sum of the squares of the input to the scaled sum of the
squares of the FFT output, which should be equal according to Parseval’s Theorem. Error correction is implemented
by duplicating the FFT calculation and error detection and choosing the output of the FFT that is not in error.

14. SUBJECT TERMS Fast Fourier Transform, Software Defined Radio, Field
Programmable Gate Array, Compression, Lossy Data Compression, Fault Tolerant, Single
Event Upset

15. NUMBER OF
PAGES

111

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540–01–280–5500 Standard Form 298 (Rev. 2–89)
 Prescribed by ANSI Std. 239–18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

A COMPRESSION ALGORITHM FOR
FIELD PROGRAMMABLE GATE ARRAYS IN THE SPACE ENVIRONMENT

Caleb J. Humberd
Lieutenant, United States Navy

B.S., United States Naval Academy, 2005

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 2011

Author: Caleb J. Humberd

Approved by: Frank E. Kragh
Thesis Advisor

Herschel H. Loomis, Jr.
Thesis Co-Advisor

Clark Robertson
Chair, Department of Electrical and Computer Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The focus of this thesis is a lossy Fourier-transform-based compression algorithm for

implementation on field programmable gate arrays in the space environment. The

algorithm computes the fast Fourier transform (FFT) of a real input signal, determines the

energy in user-defined time and frequency ranges of interest, and transmits only those

frequency domain portions of the signal that exceed the predefined thresholds. Error

detection against single event upsets for the FFT is implemented by comparing the sum

of the squares of the input to the scaled sum of the squares of the FFT output, which

should be equal according to Parseval’s Theorem. Error correction is implemented by

duplicating the FFT calculation and error detection and choosing the output of the FFT

that is not in error.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. OBJECTIVES ..2
B. DESIGN PROCESS ...2
C. THESIS ORGANIZATION ..3

II. BACKGROUND ..5
A. THE FOURIER TRANSFORM ...5

1. Fourier Analysis ...5
2. The Fast Fourier Transform ...8

B. COMPRESSION ..12
C. COMPUTING IN THE SPACE ENVIRONMENT13

1. Fault Detection ...14
2. Fault Correction ...14

D. TARGET FIELD PROGRAMMABLE GATE ARRAYS16
E. SUMMARY ..17

III. DEVELOPMENT ENVIRONMENT ..19
A. MATLAB / SIMULINK ..20
B. XILINX SYSTEM GENERATOR FOR DSP ...21
C. XILINX ISE ..25
D. MODELSIM ...26
E. XILINX CHIPSCOPE PRO ...27
F. XILINX XUP VIRTEX™-II PRO DEVELOPMENT BOARD29
G. SUMMARY ..30

IV. FAST FOURIER TRANSFORM COMPUTING ...33
A. FFT V4.1 ...33
B. FFT V1.0 ...36
C. FFT V3.2 ...38
D. SUMMARY ..43

V. ERROR DETECTION ..45
A. FFT ERROR DETECTION WITH PARSEVAL’S THEOREM45

1. Analysis of the Original Error Detection Algorithm45
2. Modification to FFT Error Detection ..49

B. MEMORY ERROR DETECTION USING PARITY54
C. SUMMARY ..57

VI. ERROR CORRECTION...59
A. INITIAL ERROR CORRECTION DEVELOPMENT59
B. MODIFICATION TO REDUCE RESOURCE REQUIREMENTS64

1. Eliminate Redundant Multiply-and-Accumulate Circuitry64
2. Modify Voter to Reduce Usage of Slice Logic67

C. PROTECTED FFT WITH THE COMPRESSION ALGORITHM71
D. SUMMARY ..74

 viii

VII. CONCLUSION ..75
A. SUMMARY ..75
B. CONCLUSIONS ..76
C. RECOMMENDED FUTURE WORK ...77

1. Test Error Correction FFT and Compression Algorithm77
2. Additional Error Correction Capabilities77
3. Develop a Comprehensive Test Set ..77
4. Conduct Comprehensive Functional Testing78
5. Implement In Hardware..78

APPENDIX. COMPUTER FILES ..79
A. REQUIRED FILES ...79
B. INSTRUCTIONS ...84

1. Examine System Generator Model...84
2. Execute Control Script and Run Simulation84
3. Generate ..84
4. Compile ...85
5. Conduct Behavioral Simulation with ModelSim85

LIST OF REFERENCES ..87

INITIAL DISTRIBUTION LIST ...89

 ix

LIST OF FIGURES

Figure 1. Fourier Theory (After [8]). ..7
Figure 2. Radix-2 FFT signal flow graph (a.) and shorthand notation (b.) (After [8]).9
Figure 3. Radix-4 FFT signal flow graph (a.) and shorthand notation (b.) (From [7],

[9])..10
Figure 4. Eight point constant geometry decimation in time (DIT) FFT (After [8]).11
Figure 5. Eight point normal order DIT FFT (After [8]) ...11
Figure 6. Compression (After [4]). ..12
Figure 7. Compression Algorithm Block Diagram (From [4]).13
Figure 8. Bitwise Majority Voter (After [14]). ...15
Figure 9. FPGA Design Process, and Associated Tools (After [6]).20
Figure 10. Example System Generator Design in Simulink ...22
Figure 11. System Generator Options. ..24
Figure 12. System Generator Resource Estimator. ...25
Figure 13. Compile HDL Simulation Libraries. ..27
Figure 14. ChipScope Pro Block Diagram (From [23]). ...28
Figure 15. Xilinx University Program Development Board. ..30
Figure 16. FFT v4.1 Configuration Options (After [5]). ...34
Figure 17. FFTv4.1 Output Signals (After [5]). ..35
Figure 18. Circuit for Timing Analysis of FFT v4.1 (After [5]).36
Figure 19. Circuit for Timing Analysis of FFT v1.0 (After [5]).37
Figure 20. FFT v1.0 Output Signals (After [5]). ...38
Figure 21. Circuit for Timing Analysis of FFT v3.2. ..39
Figure 22. FFT v3.2 Output Signals. ...41
Figure 23. FFT v3.2 ModelSim Simulation. ...42
Figure 24. Error Detection with Parseval’s Theorem (Conceptual) (After [5]).46
Figure 25. Error Detection applied to the FFTv4.1 IP block (After [5]).47
Figure 26. “Accum” Subsystem (From [4]). ...48
Figure 27. “Point Pwr” Subsystem (From [5]). ...48
Figure 28. Error Injection circuit (After [5]). ..49
Figure 29. “FFT Error Detection” Subsystem (From [5]). ..51
Figure 30. Error Detection Applied to the FFT v3.2 IP Block. ...53
Figure 31. Parity Generator (From [5]). ..55
Figure 32. Temporary Memory Subsystem with Parity Check (From [5]).56
Figure 33. Error Correction (Conceptual). ..59
Figure 34. FFT Error Correcting Circuit. ..61
Figure 35. Voter Subsystem. ...62
Figure 36. Error Correction of a Single Error ...63
Figure 37. Modification to Error Correction (Conceptual). ..64
Figure 38. Modification to FFT Error Correction. ..66
Figure 39. Error Correction of Single Error by the Modified Circuit67
Figure 40. Memory-Based Voter Circuit. ...69
Figure 41. Error Corrected by Memory-Based Voter. ..70

 x

Figure 42. Modified Error Correcting FFT. ..72
Figure 43. Modified Compression and Data Formatting Circuit (After [5]).73

 xi

LIST OF TABLES

Table 1. Target FPGAs. ...16
Table 2. FPGA Development Tools. ..31
Table 3. FFT v4.1 Resource Utilization on a Virtex™-II Pro xc2vp30–7ff896

(After [5]). ..36
Table 4. FFT v1.0 Resource Utilization on a Virtex™ xcv1000–6fg680 (After [5]). ...38
Table 5. FFT v3.2 Resource Utilization on a Virtex™-II xc2v3000–6fg676.42
Table 6. Resource Comparison of FFT v3.2 and v4.1 on a Virtex™-II Pro.43
Table 7. Resource Requirements for Compression Algorithm on Virtex™-II Pro

xc2vp30. ...52
Table 8. Resources Required for Modified Compression Algorithm on Virtex™-II

xc2v3000. ...52
Table 9. Truth Table for Error Correction Algorithm. ...60
Table 10. Resource Utilization for Error Correcting FFT on Virtex™-II xc2v3000–

6fg676. ...63
Table 11. Truth Table for Modified Correction Algorithm. ..65
Table 12. Resources Required for Modified Error Correction Circuit on Virtex™-II

xc2v3000. ...67
Table 13. Resources Required for Modified Voter Circuit on Virtex™-II xc2v3000.70
Table 14. Resources Required for Compression and Data Formatting Subsystems.74
Table 15. DVD directories. ..79
Table 16. Subdirectories of FFT_error_correct. ..80
Table 17. System Generator Models. ...81
Table 18. MCode files required for Compression and Error Detection Algorithms

(After [5]). ..82
Table 19. Supporting *.m files ...83

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ACRONYMS AND ABBREVIATIONS

ASIC Application Specific Integrated Circuit

BRAM Block Random Access Memory

CLB Configurable Logic Block

CPLD Complex Programmable Logic Device

COTS Commercial Off-the-Shelf

CW Continuous Wave

DFT Discrete Fourier Transform

DIF Decimation in Frequency

DIT Decimation in Time

DSP Digital Signal Processing

DTFT Discrete Time Fourier Transform

EDIF Electronic Data Interchange Format

FFT Fast Fourier Transform

FIFO First In First Out

FPGA Field Programmable Gate Array

GCLK Global Clock Buffer

GUI Graphical User Interface

HDL Hardware Description Language

IC Integrated Circuit

ICON Interface Control

IDFT Inverse Discrete Fourier Transform

IFFT Inverse Fast Fourier Transform

ILA Integrated Logic Analyzer

IO Input / Output

IOB Input / Output Block

I-Q In-phase and Quadrature

ISE Integrated Software Environment

JTAG Joint Test Action Group (IEEE 1149.1)

LUT Look-Up Table

MATLAB Matrix Laboratory

 xiv

MUX Multiplexer

ORS Operationally Responsive Space

RAM Random Access Memory

RF Radio Frequency

ROI Range(es) of Interest

RPR Reduced Precision Redundancy

SDR Software Defined Radio

SECDED Single Error Correction, Double Error Detection

SEU Single Event Upset

SOI Signal(s) of Interest

TCL Tool Control Language

TMR Triple Modular Redundancy

USB Universal Serial Bus

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

VIO Virtual Input / Output

XUP Xilinx University Program

 xv

EXECUTIVE SUMMARY

Because of their high cost and long lead-time of development, manufacture, and launch,

satellites are designed for a long service life in order to recoup investment. This means

that the technology aboard operational satellites lags behind the state-of-the-art

technology on the ground. In fact, a satellite may be rendered obsolete because the

technology onboard has been surpassed by the technology of the ground infrastructure.

In addition, the long lead-time results in delays in delivery of vital services to end-users.

The Office of Operationally Responsive Space (ORS) is charged with developing

strategies to mitigate these twin problems of obsolescence and untimeliness.

One of the methods for increasing the flexibility of communications satellites is

through the use of software defined radio (SDR). Because the function of the radio is

programmable, the satellite’s software can be updated to keep up with the pace of

technology on the ground. Field programmable gate arrays (FPGAs) are becoming the

design choice for including the processing required to implement an SDR because they

can approach the performance of application specific integrated circuits (ASICs) while

exceeding the flexibility of general purpose processors (GPPs).

Computing in space has special considerations due to radiation effects. High

energy radiation causes several degradations to computational hardware. Single-event

upsets (SEUs) are caused when a high-energy particle deposits enough charge in a

memory element to change its state. This has special significance to FPGAs used for

onboard processing since the configuration of the calculation being conducted is stored in

memory. FPGA applications must be designed to detect and correct errors caused by

SEUs.

The traditional method to implement error correction is through triple modular

redundancy (TMR), where the digital circuit is triplicated and a voter circuit decides the

correct calculation based on a majority vote. In order to reduce the logic resources

required for error correction, reduced precision redundancy (RPR) can be used to protect

arithmetic calculations. In RPR, one full-precision result is calculated along with lower-

 xvi

precision upper and lower bounds. The full precision calculation is deemed correct if it is

between the bounds, otherwise the result returned is a lower-precision average of the two

bounds.

Design for FPGA applications differs from writing programs for execution by

GPPs. The focus of this thesis is the design flow of FPGA design, from high-level design

entry and simulation through low-level functional simulation to hardware

implementation. Xilinx System Generator, a high-level graphical design and simulation

tool for use within The MathWorks’ Simulink® environment, was used to design and test

the algorithm. Once the design was behaving as desired, very high speed integrated

circuit hardware description language (VHDL) code was generated by System Generator.

This code was imported into the Xilinx integrated software environment (ISE) design

suite for syntax checking and compilation. Mentor Graphics’ ModelSim software was

used with ISE for simulating the function of the algorithm defined by the HDL code.

The design of a lossy Fourier-transform-based compression algorithm for

implementation on a FPGA-based SDR in the space environment is the focus of this

thesis. The compression algorithm was designed by Wright and further refined by

Livingston, both students at the Naval Postgraduate School. The algorithm computes the

fast Fourier transform (FFT) of a wideband signal, divides it into user-defined time-

frequency ranges of interest (ROI), and calculates the energy in those ROIs. If the energy

exceeds the user-defined threshold, then the signal within that ROI is forwarded for

downlink.

The FFT calculation that comprises the first stage of the compression algorithm is

implemented using Xilinx FFT intellectual property (IP) blocks. The original algorithm

designed by Wright uses the FFT v4.1 block and was targeted for the Virtex™-II Pro. In

order to implement the algorithm on a Virtex™ FPGA, Livingston modified the

algorithm to use the FFT v1.0 block. The performance of these FFT algorithms is

examined and compared to the performance of the FFT v3.2 block, which is supported

for implementation on Virtex™-II FPGAs.

 xvii

The FFT used in the compression algorithm is a Xilinx, Inc. IP black box. TMR

or RPR cannot be implemented directly within the FFT. Livingston implemented error

detection by making use of Parseval’s Theorem. Parseval’s theorem states that the

energy prior to the Fourier transform is equal to the energy after the transform. The sum

of the squares of the input points to the transform is compared to the sum of the

magnitudes squared of the output points scaled by the length of the FFT. If these values

are not equal to within a pre-defined tolerance, the calculation is determined to be in

error. This method of error detection was analyzed, and the algorithm was modified to be

used with the FFT v3.2 block.

The previously designed error detection algorithm was used as the basis for an

error correction algorithm. The error detection circuit was duplicated, and a voting

circuit compared the error flags. The output of the FFT not flagged as in error was

passed to the ROI analysis and data formatting portions of the compression algorithm.

Adjustments were made to the error correction algorithm to reduce the logic resources

required for implementation in order to allow the algorithm to be implemented in a

Virtex™-II FPGA. Redundant sum-of-squares circuitry was removed from the input to

the FFT blocks. The voting circuit was redesigned to implement delays required for

aligning data with control signals with random access memory (RAM) rather than logic

resources.

The error correcting circuit was tested by inserting a circuit into the output of one

of the FFTs which after a set period of time would switch from the correctly calculated

FFT points to an erroneous constant. It was shown that before the error correcting

circuitry, erroneous values were present at the output of the FFT. After the error

correcting circuitry, it was shown that the values present in the output were corrected.

The process of iterative design of the error correcting and voting circuits to fit within the

logic resources of the target FPGA validated the use of System Generator as a rapid

prototyping, high-level design tool.

Equation Chapter (Next) Section 1

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 xix

ACKNOWLEDGMENTS

There are so many to whom I owe a debt of gratitude for the help and support you

lent me during my research and writing of this thesis:

To Professor Frank Kragh, for introducing me to the world of software radio.

Thanks especially for your encouragement during the final push to get this thesis written.

To Professor Hersch Loomis, for your help with understanding reconfigurable

processors and fault tolerant computing.

To Donna Miller and Ron Aikins, for your help in the Communications Research

Lab, and with my numerous computer questions on both sides of the campus.

To my fellow Space Systems Engineering students, for helping me through a

course of study including mechanics, structures, thermodynamics, and a whole host of

subjects foreign to me.

To my parents, Mary and Charlie, for inspiring in me from a young age (and still

to this day) a sense of curiosity and love of learning.

To my loving fiancé wife, Nichole, for putting up with the nights and weekends I

spent on this thesis – and still marrying me!

 xx

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

Satellites are highly complex machines that have long acquisition lead times. Due

to the high costs of design, construction, and launch, satellites tend to have long design

lives and are often pressed to continue service well beyond their intended life. Satellites

in service may be ten, fifteen, or even twenty years old; however, technology continues to

advance. The technology aboard otherwise operational satellites may become obsolete

because the ground infrastructure has progressed beyond the envisioned capabilities when

the satellite was launched [1].

This is a concern for the Department of Defense because the long lead-time in

designing, building, and launching spacecraft means that satellites are not available to

respond to new demands from warfighters. Operationally Responsive Space (ORS) is a

strategy, presented in [1], to provide advanced space-based technology in a more timely

manner. ORS provides solutions in three categories: tier 1 involves the re-use of on-orbit

assets, tier 2 comprises the rapid launch of existing spacecraft using commercial off-the-

shelf (COTS) parts, and tier 3 is the rapid development of new spacecraft designs.

Flexibility of the payload is one design strategy to implement tier 1 solutions.

Reconfigurable payloads also allow on-orbit troubleshooting and re-engineering in the

event of spacecraft damage or design flaws, mitigating risk of spacecraft mission non-

completion. On-board processing, specifically the signal processing and routing used in

software defined radio (SDR) applications, provides the flexibility to keep pace with the

advance of communication technology in ground-based systems without launching a new

satellite [2], [3].

Wright described an FPGA-based SDR for space applications in [4]. His design

consisted of a Fourier transform-based bandwidth reduction algorithm with user-defined

time-frequency parameters for extraction of signals-of-interest (SOI) from a wide-

bandwidth front-end. This design was further refined by Livingston in [5], making it

more resource-efficient, splitting the design for a multiple field programmable gate array

(FPGA) implementation as well as adding error detection. In this research error

 2

correction is added, building on the previously designed error detection as well as

continuing development of the multiple FPGA design.

A. OBJECTIVES

The objectives of this research are twofold. First is to continue progress on the

existing design. The previous design effort concluded with two algorithms: one that was

designed for a three-FPGA implementation and one that incorporated error detection. In

this research, error correction, based on the previously designed error detection

algorithm, was implemented.

The second objective is to explore the design process for rapid code iteration of an

FPGA design using available design tools to implement a signal processing application

on an FPGA and utilizing fault-tolerant design principles. The single-chip design was

implemented from graphical design and simulation through hardware description

language (HDL) design and simulation, and ultimately to hardware implementation and

verification.

B. DESIGN PROCESS

FPGA design generally takes place using high-level design tools such as block

diagrams and schematics. From this high-level concept, the design is developed in a

HDL such as VHDL (very high speed integrated circuit [VHSIC] HDL) or Verilog.

Unlike a high-level language for general-purpose processors, where commands are

executed sequentially, an HDL specifies the interconnections between logic cells within

the FPGA where logic level signals are processed in parallel. This parallelism is what

lends FPGAs to real-time signal processing applications; however, it also renders HDL

designs more difficult to program and debug and even more difficult to decipher (if not

well commented) than sequentially-executed computer software. There are design tools

to mitigate these drawbacks to HDL designs. Code modularity is one such tool. The

Xilinx Integrated Software Environment (ISE) uses the terminology of “cores” to

describe these pre-built modules that can be integrated into a design [6].

 3

High-level design tools have also begun to be used for industrial design. By

implementing design ideas at a more abstract level, the iterative process of improving and

fielding the design can be accelerated while at the same time reducing the instance of

syntax and code-level implementation errors. Because this method of algorithm design is

more abstract than design in an HDL, it is possible to build a design that cannot be

implemented in hardware. For this reason, it is a design tool that cannot be used alone

[6].

The design was first modeled using the graphical method described in the

previous paragraph in Simulink® using the System Generator plugin from Xilinx. Once

the design was working in the Simulink® environment, the design was compiled in

VHDL. This VHDL instantiation was then added to a Xilinx ISE project, where it was

integrated with other VHDL modules and cores and targeted to a specific FPGA, in this

case a Virtex™-II Pro. The VHDL project was then simulated using ModelSim.

Penultimately, the ISE project was compiled to bitcode, which defines the resulting

FPGA configuration. This bitcode is finally loaded onto the target FPGA. The target

FPGA for this research is the Virtex™-II Pro XC2V30 on the Xilinx University Program

(XUP) development board, with onboard universal serial bus (USB) Joint Testing Action

Group (JTAG), codified as IEEE 1149.1. JTAG is the industry-standard debugging

interface for printed circuit boards and internal sub-blocks of integrated circuits (ICs) [6].

C. THESIS ORGANIZATION

A presentation of Fourier analysis, including the development of the fast Fourier

transform is given in Chapter II, as well as properties of Fourier transforms which are

useful to the development of a compression algorithm. The concept behind a data

compression algorithm is presented. Radiation effects, especially single-event upsets

(SEUs), are presented, the special implications to FPGA designs are discussed, and

strategies used implement fault tolerance, error detection, and error correction are

presented.

Chapter III, Development Environment, is an overview of the software tools used

for this design. The general design flow for the development of an FPGA application is

 4

presented along with why each tool was chosen for each design process step. The

strengths of each tool are explained, and the limitations are discussed. Also addressed are

software setup and use for this design process.

Chapter IV, Fast Fourier Transform (FFT) Computing, contains an investigation

of the Xilinx FFT intellectual property (IP) blocks. Previous analysis of FFT v4.1 and

FFT v1.0 are reviewed, and FFT v3.2 is investigated as a replacement for FFT v4.1 for

implementation on a Virtex™-II FPGA.

Chapter V, Error Detection, is a review of the design work conducted in [5] to add

an error detection circuit to the FFT IP blocks. A modification to the design in which

FFT v3.2 is substituted for FFT v4.1 is presented.

A design that corrects errors produced by FFT IP blocks is presented in Chapter

VI. Several iterations of the design are presented, with a focus on logic resource

minimization.

Conclusions from this design work, as well as recommendations for future work

to continue to refine both this design as well as the design process, are presented in

Chapter VII.

Equation Section (Next)

 5

II. BACKGROUND

The compression algorithm discussed in this thesis is based on the Fourier

transform of the received signal. It allows the user to define specific time and frequency

ranges of interest in order to discard information deemed not important. Fault tolerance

is implemented using the principles of triple modular redundancy (TMR) as well as a

property of Fourier transforms defined by Parseval’s theorem.

A. THE FOURIER TRANSFORM

1. Fourier Analysis

The basis of the compression algorithm is the Fourier Transform. After [5] the

relationship between the time domain and frequency domain of a continuous signal is

      2() j ftX f FT x t x t e dt






   , (II.1)

where  X f is the Fourier transform of  x t .

The time domain signal is sampled by multiplying by an infinite series of impulse

functions separated by the sample interval sT . In the frequency domain this sampled

signal is a convolution of the original signal with an infinite series of impulse functions

separated by the sample frequency 1
sTsf  . The sampled time domain signal is

x n   x nTs  , where n is an integer. The discrete time Fourier transform (DTFT) is

defined in [8] as

        2 sj fnTX f DTFT x n x n e 






  . (II.2)

The time domain signal  x t exists for all time, from  to  . A time-limited signal

is defined as the previous signal multiplied by a rectangle function
/ 2

rect o

o

t T

T

 
 
 

. The

rect function is defined as

 rect u   1 if u  1
2

0 otherwise






. (II.3)

 6

This multiplication in the time domain corresponds to convolving the frequency domain
signal by the  0sinc fT function. The sinc function is defined as

 sinc u  
1 if u  0

sin u 
u

otherwise









. (II.4)

The number of samples included in the time window /o sN T T is an integer. Limiting

the transform to this time-limited window gives the Discrete Fourier Transform (DFT)
[8],

      
1

2 /

0

, 0,1,…, 1
N

jk N n

n

X k x n e k N






   , (II.5)

where / sk fN f .

A summary of Fourier Theory is shown in Figure 1.

Properties of Fourier transforms that are of consideration for a compression

algorithm are the properties of conjugate symmetry and the reversibility of the transform.

Conjugate symmetry implies

 X k   X N  k  (II.6)

for real  x n input. The other property of use is that the inverse DFT (IDFT)

 x n  
1

N
X k e jk 2 / N n ,k  1,2,..., N 1

k0

N1

 (II.7)

can be calculated [8].

One property that can cause an undesirable effect is the fact that multiplication in

the frequency domain transforms to circular convolution in the time domain,

        *X k Y k x n y n


. (II.8)

This property must be considered during bin analysis since the frequencies of interest are

selected by multiplying by a rectangle function. During decompression this

multiplication is transformed into a periodic convolution with a sinc function, which

causes distortion of the data if not compensated for [5], [8].

 7

Figure 1. Fourier Theory (After [8]).

~U\T

2u

Iii
-::1~

I .l l[I I
00 -1 -50 50 00 l

. _...

x(z) = /.IT {X (f)}= J'~ X (f) ej~-" df X(f)= rr{x(t)} = J.: x(t)e-i~J· dt

Multiply by rect(t - Ta) Convolve by sinc(fT11)

•
-1co -so 50 100

-100 -50 0 50 100

Sample at h = Yr..
Multiply by c5(t- nT..)

X(f) =FT{x(t)} = J:~x(r)e-i"""-'dt

Convolve by 8(/ - rif .J
10 -------------------

5

.1tt111 f 1,1f.l1 .. I • • .: w~::·~·~ ; ~.::zm;;:,"a,-;:.,, ·
-10

x[n]= IDTFT{x(r)} = L:' X(f')ei~-"1 " df

10 ,----------------­

s +--,Hr.~--~~---

-300 - 200 -100 0 100 200 300

·-X{J')= DTFT{x[n]}= L x[n]e-i2rf"" -
x(J) = x(f'J:)

~ ,....-----------------­

~ ~--------------~

··--1 40

N- l

x (k] = DFT{.:f [n]} = I,x(n]e-jZK~TIIN
h,(J

20 ~----~~~----~

0 ~~~~~~~~~

-15-12 -9 -6 -3 0 3 6 9 12 15

x[n] = ID.fT{ x[k]} =.!.. l::x[k]ej2~rt,,N
N A=U

 8

One other property of Fourier transforms that can be used to implement error

detection is the inner product property, also known as Parseval’s theorem [5]:

        
1 1

0 0

1N N

n k

x n y n X k Y k
N

 
 

 

  . (II.9)

From this equation we see that the energy of the signal prior to the transform is equal to

the energy of the signal after the transform scaled by the factor 1/ N . By using this

property of Fourier transforms, we can relate the input and output of a transform in a less

computationally intensive manner. In [5], Equation II.9 is manipulated into the form

         
22

1 /2 1
2

0 0

Re Im1
Re 2

N N

n k

X k X k
x n

N N N

 

 

   
       

   
  (II.10)

which can be implemented computationally.

2. The Fast Fourier Transform

The DFT is a discrete input, discrete output function and is suitable for

computation. As discussed in [7], direct computation of the DFT requires  2O N

computations. By taking advantage of symmetries within the DFT, we can reduce the

number of required computations to  2logO N N with a class of algorithms known as

fast Fourier transforms (FFT).

To simplify notation when discussing the DFT and FFT, the phase factor, or

“twiddle factor,” is written

  2 /j N
Nw e  . (II.11)

The DFT has symmetry about / 2N such that

 /2k N k
N Nw w   . (II.12)

The DFT also has periodicity of N such that

 k k N
N Nw w  . (II.13)

For 2N  and substituting the phase factor given by Equation (II.11) into the

DFT given by Equation (II.5) we get

 9

 X k   x n w2
nk  x 0 w2

0k  x 1 w2
1k

n0

1

 (II.14)

where

 w2  e j 2 /2   e j  1, (II.15)

  00
2 1 1kw    , (II.16)

and

  1
2 1

kkw   . (II.17)

For 0...1k  , the resulting DFT points are

X 0   x 0  x 1 
X 1   x 0   x 1 

. (II.18)

The signal flow graph, or “butterfly” operator, shown in Figure 2 represent the resulting

operation.

Figure 2. Radix-2 FFT signal flow graph (a.) and shorthand notation (b.) (After
[8]).

Similarly, as discussed in [7], the radix-4 FFT can be calculated by dividing the

input into four summations. The radix-4 FFT achieves a 25 percent reduction in the

number of complex multiplies required over the radix-2 FFT. The signal flow graph of a

radix-4 FFT is shown in Figure 3.

 10

Figure 3. Radix-4 FFT signal flow graph (a.) and shorthand notation (b.) (From
[7], [9]).

The FFT algorithm can be used for any signal with a length that is a power of two.

To do so, the butterflies are cascaded. An eight-point, radix-2, decimation in time (DIT)

FFT is shown in the signal flow graph in Figure 4.

When implementing the FFT in software or in an FPGA, the algorithm can be

initiated with either in-place addressing or constant geometry. For constant geometry

addressing, shown in Figure 4, the output of the butterfly is written into the same memory

locations that the input was read from. This results in either the input or output points’

memory locations being out of order in memory. In normal order addressing, shown in

Figure 5, the input and output values are in order in memory. However, since the

butterfly operators cannot write to the same memory locations from which they read their

input values, this geometry requires additional memory resources to implement [5], [8].

 11

Figure 4. Eight point constant geometry decimation in time (DIT) FFT (After
[8]).

Figure 5. Eight point normal order DIT FFT (After [8])

 12

B. COMPRESSION

The bandwidth of a SOI may be much less than the passband of the radio

frequency (RF) front-end of a wideband digitizing SDR. In addition, the signal-of-

interest may not be a continuous wave (CW) signal but pulsed or otherwise interrupted

periodically such that there are periods of silence in the SOI. Therefore, the SOI can be

represented by fewer bits than if the entire passband is digitized. In order to achieve this

reduction in the downlink data rate, the received and digitized signal is divided into user-

defined time and frequency ranges of interest, referred to as “bins.” The energy present

in each bin is compared against an operator-specified threshold, and the points

representing the signal of interest are only downlinked when bin energy exceeds the

threshold. This method for reducing downlink data rate was presented in [4], and a

conceptual representation of this is illustrated in Figure 6. Shown in the first plot is a

time-varying signal. The colored contours represent the energy contained in the signal as

a function of time and frequency. In the second plot, the red boxes denote the user

defined time-frequency ranges of interest (ROI) overlaid on the signal. The third plot

shows the signal that would be included in the downlink in the red boxes, while the blue

box indicates a bin of interest in which the energy did not meet the required threshold and

no data is downlinked.

Figure 6. Compression (After [4]).

The algorithm developed by Wright and presented in [4] to conduct this

compression is illustrated in Figure 7. The FFT of the time domain signal is calculated,

and the frequency domain points are passed to the bin energy calculation and bin energy

 13

threshold algorithms. The data management block then reads the FFT points in the bins

meeting the energy threshold and formats the data points for downlink. There are four

bins available with user defined time and frequency ROI.

Figure 7. Compression Algorithm Block Diagram (From [4]).

C. COMPUTING IN THE SPACE ENVIRONMENT

As discussed in [10], choices for implementing onboard processing include

general-purpose processors (GPPs), application-specific integrated circuits (ASICs), and

FPGAs. For performing the same calculations on streams of data, such as real-time

digital signal processing (DSP), an ASIC provides the most performance to power

consumption of these alternatives. Their downside is that they require extensive

development before they are produced, and they cannot be modified beyond their

intended purpose. GPPs are the most flexible option; however, their strength lies in

sequential operations in which the calculations performed on the data differ from one

operation to the next. Their throughput for performing the same calculation on streaming

data is lower than ASICs for the same clock speed. FPGAs offer the capability to process

streaming data as efficiently as an ASIC with the ability to modify the application for

which they are being used [10].

 14

1. Fault Detection

FPGAs come at the cost of higher power consumption as well as being

susceptible to their programming being altered by single-event upsets (SEU) due to high-

energy particles present in the space environment. FPGA application design for space

applications must take these issues into consideration. A SEU occurs whenever a high-

energy particle impacts the semiconductor material and deposits enough charge to change

the state of a single bit. The effect of this unintended state change depends on whether

the affected bit is in data memory is a data bit in the midst of the calculation circuitry or

is part of the FPGA configuration memory [10].

Parseval’s theorem states that the energy into the DFT must equal the energy out.

Because of this property, it is possible to detect whether or not the calculation of the DFT

contains an error. In [5], Livingston implemented error detection for a FFT through

application of Equation (II.10). In this application the accumulated (summed) squared

input points to the DFT are compared to the accumulated squares of the output points,

scaled by 1/ N . If the input to the DFT is limited to a real, as opposed to in-phase and

quadrature (I-Q) signal, then the output only has to accumulate squares of the first half of

the output points and scale by 2 / N . This saves memory requirements as well as latency

in the error detection.

2. Fault Correction

Electronics in the space environment must be designed to tolerate high-energy

particle radiation as discussed in [11]. Some of this tolerance must be implemented at the

physical level: shielding is used to reduce the incidence of radiation on the electronics,

and specialized semiconductor design techniques are used to mitigate the long- and short-

term effects of radiation on the electronics. Beyond these methods, the algorithm

implementation in software and hardware must also be made radiation tolerant.

Errors in data memory are usually checked and corrected using a parity scheme,

such as a single error correction, double error detection (SECDED) Hamming code.

When data is read into memory, parity check bits are calculated and stored in a separate

memory location. When the data is read out, parity is calculated again and compared

 15

against the original parity bits. If the parity check bits are not equal, an error occurred,

and if a single error, the check bits can be decoded to point to the location of the error

[12], [13].

Configuration errors must be detected and corrected by a circuit which itself may

be in error. This has been done traditionally through triple modular redundancy (TMR).

In TMR, the calculation is performed three times, the results are compared, and any

erroneous result is discarded. The price of TMR is more than three times the required

logic resources, since the calculation circuitry must be triplicated, and a voting circuit is

required to check the results. The voting circuit shown in Figure 8 compares the result of

each bit from each of the three calculations. This circuit can correct any one error from

the inputs and can detect when the voting circuit itself is in error [12].

IN A

IN B

IN C

ERR

Z

Figure 8. Bitwise Majority Voter (After [14]).

A method of redundancy requiring fewer resources, Reduced Precision

Redundancy (RPR), was discovered by Snodgrass and presented in [12], and expanded

upon by Sullivan in [14]. In RPR the full precision result is calculated once, while a

lower-precision upper and lower bound are calculated. If the full precision calculation is

outside of the calculated bounds, it is assumed to be in error and the reduced precision

bound is returned. This technique results in lower logic resource use and power

 16

consumption at the cost of a more complex voting circuit as well as a less precise result

when the full precision calculation is found to be in error. Reduced precision redundancy

is also limited to arithmetic processes. Logic control operations must be protected using

TMR.

D. TARGET FIELD PROGRAMMABLE GATE ARRAYS

This algorithm is targeted for the Virtex™ family of FPGAs manufactured by

Xilinx. A summary of the devices considered is shown in Table 1. These devices are

fully described in [15], [16], [17], and [18].

Table 1. Target FPGAs.

Family Device Configurable

Logic Blocks

Multipliers Block RAM

Virtex™ xcv1000 6144 0 32 (512 Byte)

Virtex™-II xc2v3000 3584 96 96 (18 kB)

Virtex™-II Pro xc2vp30 3424 136 136 (18 kB)

Virtex™-4 xc4vlx25 2688 48 (Xtreme

DSP blocks)

72 (18 kB)

The devices considered include the older Virtex™ and Virtex™-II devices, which

are in use on legacy space platforms. The newer Virtex™-4 device is considered because

it is also available in a radiation hardened version. The Virtex™-II Pro device is

included for comparison since that device was the one available for this research.

The oldest device, the xcv1000, has the most configurable logic blocks (CLBs).

This device does not include the embedded multipliers, which degrades its ability to

perform DSP calculations such as the FFT. This device can conduct algorithms that

require multiplication; however, the multipliers must be constructed from the available

 17

CLBs. Also, this device has the least amount of available block random access memory

(RAM), which significantly limits the amount of data that can be processed at one time

[15].

The newer devices all contain fewer CLBs but include embedded 18x18 bit

multipliers, reducing the demand for CLBs. These devices also include significantly

more RAM than the Virtex™. This increased on-chip RAM allows faster processing

since algorithms do not need to make as many off-chip data accesses. The Virtex™-4

has the fewest number of embedded multipliers; however, they are arranged in

XtremeDSP blocks in which the 18x18 bit multiplier is followed by a 48-bit accumulator.

The Virtex™-II Pro includes a PowerPC® core, which was not used in this research [16],

[17], [18].

E. SUMMARY

Several high level concepts that support the development of a Fourier transform-

based, fault tolerant compression algorithm were introduced in this chapter. A summary

of Fourier analysis was discussed, and the development of the fast Fourier transform was

presented. Challenges associated with spaceborne computing were discussed, and the

Triple Modular Redundancy and Reduced Precision Redundancy methods for correcting

errors caused by single event upsets were presented. A number of design tools that

enable the designer to develop the design at a high level, and then remove the layers of

abstraction down to implementing the compression algorithm in hardware are introduced

in the next chapter.

 18

Equation Section (Next)THIS PAGE INTENTIONALLY LEFT BLANK

 19

III. DEVELOPMENT ENVIRONMENT

Design for FPGAs is quite different and distinct from writing a sequential

computer program. The tools used for development of FPGA applications are designed

to allow the designer to control the sequential and parallel behavior of the logic. A

design to be implemented on an FPGA is mapped out by the designer as a block diagram,

flow chart, or schematic. From this high-level abstraction of the desired behavior of the

design, the designer develops components of the circuit in an HDL. Design in an HDL

allows full control over the hardware-level behavior of the algorithm while still allowing

abstractions that aid the designer, such as human-readable variable names. This control

at the hardware level comes at the price of a more difficult to understand design. Unless

the HDL files are well documented, anyone other than the original designer may never be

able to understand the purpose of the design [6].

To increase the ease and speed with which a design can be developed and altered,

high-level design tools have become popular. With these tools, HDL components and

their interconnections are represented graphically. As discussed in the introduction to

[6], abstracting away the complexities of an HDL allows the designer to focus on the

function of the design. The analogy is that a programmer writing a DSP algorithm will

code most of the algorithm in a high-level language and only code portions with strict

performance requirements in assembly code. In the same fashion, once the behavioral

design is complete, the high-level design tool outputs a lower-level instantiation of the

design for functional development, simulation, and eventual implementation in hardware.

At each step in the design process, results of the verification are used to refine the initial

design. This design flow, from high level algorithm development, HDL-level

implementation, and hardware implementation is illustrated in Figure 9, along with the

design tool used in that step.

This chapter is an overview of the design tools used for this research. An

overview of the software packages, their features, and their operation are presented. Also

discussed are the relative advantages as well as the potential pitfalls of each software

package. The design tools discussed are summarized in Table 2 at the end of the chapter.

 20

Figure 9. FPGA Design Process, and Associated Tools (After [6]).

A. MATLAB / SIMULINK

MATLAB (Matrix Laboratory) is a high-level numerical analysis oriented

programming language developed by The Math Works®. Simulink® is a graphical

modeling and simulation application which works within the MATLAB environment.

The primary use of MATLAB for this design was the generation of input signals

and the analysis and display of the output. MATLAB is designed for numerical analysis

and the manipulation of large arrays of numbers. MATLAB scripts, or M-files, were the

primary means for setting up environment variables. The plotting tools were used for

generating displays of input and output. In multiple FPGA instantiations of the

 21

algorithm, M-files were also used to script the execution of the separate models and

control the routing of signals from one module to the next, simulating the function of the

common backplane in hardware [5].

Models built in Simulink® are useful for investigating the behavior of

applications destined for FPGA implementation; however, the timing of signals through

the model is not accurate. Simulink® allows models to be run in discrete or continuous

time; however, this design process made use of only discrete time modeling, where each

time step represents one clock cycle of the FPGA.

B. XILINX SYSTEM GENERATOR FOR DSP

Xilinx System Generator is a plugin for Simulink, which adds the functionality to

develop applications for Xilinx FPGAs using the high-level, graphical modeling and

simulation environment of Simulink. The modeling environment uses Simulink® and

MATLAB to generate input signals, pass the signals into the System Generator model,

and collect output signals for post-processing and display [19].

An example System Generator design is shown in Figure 10. The plain white

blocks are standard Simulink® blocks, while the blocks with the Xilinx “X” logo are

System Generator blocks. The Gateway In and Gateway Out blocks represent bonded

Input / Output Blocks (IOB) on the FPGA, and all blocks between the input and output

represent functional segments of the user’s choice of HDL. The stand-alone System

Generator block controls the instantiation and compilation of the block diagram into HDL

[19].

 22

Figure 10. Example System Generator Design in Simulink

Simulation of applications for FPGA implementation using System Generator is

more faithful to the actual behavior of the algorithm than a simulation using just

Simulink. The reason is that the System Generator blocks represent segments of HDL

code with the attendant constraints. System Generator outputs HDL which can then be

modified and compiled with FPGA synthesis tools [19].

The version of System Generator used is version 10.1 because this is the last

version that supports the original Virtex™ devices which are still in use in certain

applications. As discussed in [20], this version of System Generator requires MATLAB

R2007a / Simulink®6.6 or MATLAB R2007b / Simulink® 7.0. This version also

requires Xilinx ISE version 10.1.

System Generator for DSP contains many blocks that are specific functions for

DSP. The blocks under consideration for this design were the FFT v1.0, FFT v4.1, and

FFT v3.2 blocks, discussed in Chapter IV. These pre-built blocks take advantage of

specific on-chip DSP-specific logic resources (such as the XtremeDSP slices in the

Virtex™-4). These blocks make use of Xilinx intellectual property (IP) core generation

algorithms to optimize the performance of the design for the chosen FPGA [19].

 23

If the desired function block does not exist, the MCode block may be used to

implement the desired function. MCode blocks allow the insertion of a MATLAB M-file

into a System Generator design to allow scripting and control of signal flow. This gives

the designer a higher-level way to implement control over the logic, rather than designing

a state machine from individual gates, allowing for increased flexibility of the control of

the design. However, as discussed in [20], MATLAB algorithms, such as the MATLAB

fft()function, cannot be implemented using this method. This design uses MCode

blocks to implement state machines based on control signals generated by the logic

circuitry to control the flow of signals within the design.

The System Generator block contains the synthesis and generation options

available for the design. Shown in Figure 11, the user can specify the compilation target,

the type of generation, and various design constraints. The Part menu allows selection of

the FPGA on which the design is to be implemented with additional options for speed

grade and pinout of the device. The Compilation menu allows the designer to select the

output type. HDL Netlist outputs a VHDL or Verilog file along with a pre-populated

Xilinx ISE project file, which was the output type used for this research. Other options

available are the NGC Netlist wrapper file, which is the Xilinx proprietary format

analogous to the industry standard electronic data interchange format (EDIF),

compilation directly to bitstream for direct implementation on an FPGA, and hardware

cosimulation [19], [20].

Hardware cosimulation uses a JTAG-configurable target device to load the

generated bitcode of the current System Generator model to speed simulation and provide

a check on whether the hardware implementation of the design matches the software

simulation. Under the hardware cosimulation option in the Compilation menu is a list of

all devices for which hardware cosimulation is supported. Instructions for adding the

XUP development board are given in [21]. Generation produces a single System

Generator block with inputs and outputs corresponding to the GATEWAY IN and

GATEWAY OUT blocks of the source design. When the model is simulated, the new

 24

block causes System Generator to connect to the target device through the selected JTAG

interface, upload the bitfile to the FPGA, insert the input waveforms, and read the output

waveforms.

Figure 11. System Generator Options.

Another useful feature of System Generator is its ability to estimate the resources

required to implement the design. The Resource Estimator block, shown in Figure 12,

can be placed into the System Generator design to compile an estimate of the number of

slices and other embedded logic resources required to implement the design. This

function is useful for the designer to get an early estimate of the logic resources required

 25

for the design; however, the estimator is somewhat device agnostic. Conflicts in logic

allocations can arise that make a design require more logic resources than the estimator

indicates [20].

Figure 12. System Generator Resource Estimator.

Another feature of System Generator used in this design was the HDL Testbench

generation feature. As noted in [19] when this option is selected, in addition to the usual

files, System Generator also produces a file <design>_tb.vhd, as well as data

vectors and scripts which ModelSim uses for HDL simulation. The data vectors are

produced using the data passed from Simulink® to System Generator through the

GATEWAY IN blocks.

C. XILINX ISE

Xilinx ISE is the integrated development environment for developing applications

for Xilinx FPGAs. Although in Xilinx ISE the designer has the option to start a FPGA

design project from scratch, System Generator includes a pre-configured ISE project file

among the generated files, named <design>_cw.ise. This is the starting point for

modifying the design in ISE after generation with System Generator. [6]

 26

The primary use of Xilinx ISE for this design was synthesizing the design to

determine actual logic resource utilization of the various designs. Xilinx ISE was also

used as the interface with ModelSim for behavioral simulation of the design as well as

generating the bitstream, which contains the configuration information for the target

FPGA, for hardware implementation [6].

D. MODELSIM

ModelSim, by Mentor Graphics, is a simulation environment for testing the

functional behavior of an application in HDL. It is a separate program from Xilinx ISE

that provides an alternate environment for testing and verifying the behavior of HDL

designs. The simulation passes stimuli into the HDL file and displays the output. It is

also possible to script the input / output process to speed the simulation process as well as

increase testing flexibility [22].

In order to use ModelSim with Xilinx ISE, the Xilinx HDL simulation libraries

must be compiled. This can be performed using a command line argument, as discussed

in [5], or it can be done using menu options. On the left side of the screen, under

“Sources,” select the top-level file for the project. Under “Processes,” expand the

“Design Utilities” option and double-click “Compile HDL Simulation Libraries.” These

menu options are shown in Figure 13. If the libraries were compiled during installation,

the user does not need to complete this step.

 27

Figure 13. Compile HDL Simulation Libraries.

ModelSim uses Tool Control Language (TCL) based testbench files to control

stimulus into the design under test. The System Generator option to automatically

generate these testbench files was the primary method used to create the input waveforms

for the model. Another option, described in [22], is to use the Waveform Editor to

generate stimulus signals.

E. XILINX CHIPSCOPE PRO

Xilinx ChipScope Pro is a software package that works with Xilinx FPGAs and

CPLDs to conduct hardware level test and debugging. As described in [23], ChipScope

consists of three main components: the Xilinx CORE Generator™ tool, the core inserter,

and the analyzer. The ICON (interface control) core controls the logic analyzer cores and

provides a communications path to the JTAG boundary scan port. The integrated logic

analyzer (ILA) core is used to monitor and analyze logic within the chip. The virtual

input / output (VIO) core provides access to internal FPGA signals without requiring on-

chip RAM. The relationship between the cores, the device under test, and the analyzer

software is illustrated in Figure 14.

 28

Figure 14. ChipScope Pro Block Diagram (From [23]).

ChipScope Cores are inserted into a design, providing access to in-chip signals.

With System Generator, inserting cores is as simple as including the appropriate

ChipScope block in the design. The limitation to this method is that only one ChipScope

Core can be inserted in this manner, and it cannot be used at the same time as JTAG

hardware co-simulation, which is discussed in the next section [19]. ChipScope Cores

can also be generated with the CORE Generator and included in HDL source files from

within Xilinx ISE. Finally, cores can be inserted into a finished design using the

ChipScope Pro Core Inserter tool [23].

ChipScope Analyzer is two pieces of software used to interact with the inserted

cores when the design is implemented in hardware. The server is a command line

application that connects to the target device via JTAG. It is run automatically if the

target device is connected to the local computer, which is the method used for this

research. It is also possible to use the server application to connect to a target device over

a network. The client application is the graphical user interface (GUI) used to debug the

design on the target device. It is used to set data collection triggers and to display

collected waveforms [23].

 29

F. XILINX XUP VIRTEX™-II PRO DEVELOPMENT BOARD

The Xilinx XUP (Xilinx University Program) Virtex™-II Pro development board,

shown in Figure 15, was used as the hardware target during this design process. It was

used during two parts of the design process: first, during System Generator design with

the hardware cosimulation option, and second after design implementation with Xilinx

ISE with the hardware implementation of the bitcode [19], [21].

The XUP development board features a Xilinx Virtex™-II Pro xc2vp30–7ff896

FPGA. The development board uses the USB JTAG interface to provide access from the

development software to configure the FPGA. When the device is connected and

powered on, the device drivers are automatically uploaded from firmware on the board

over USB to the host computer. Local administrator access is required to allow the

drivers to be installed. The board can be powered either through a single 4.5–5.5V power

supply through the center-positive barrel jack (J26) or through individual 1.5V, 2.5V, and

3.3V external power supplies. A single power supply was used for this application

because the power requirements for this research were low. The preceding features of the

XUP development board were the ones used for this research. The full range of features

of the XUP development board is listed in [21].

 30

Figure 15. Xilinx University Program Development Board.

G. SUMMARY

The software tools discussed in this section were used to take the compression

algorithm from concept through high-level design and all the way to hardware

implementation. At each step in the design, the algorithm was tested, first for function,

then for behavior, and finally for execution at the hardware level. In following chapters,

the use of these design tools, to continue the development of the algorithm, is discussed.

 31

Table 2. FPGA Development Tools.

Design Tool Version Purpose

MATLAB /
Simulink

7.4.0
(R2007a)

 Generate input data
 Analyze output data
 Configure the model

Xilinx System
Generator

10.1  High-level design of the algorithm
 Simulation of the algorithm at the functional

level
 Generate VHDL instantiation of the algorithm

Xilinx ISE 10.1  Configure VHDL files
 Insert UCF (constraint) files
 Syntax check the VHDL files
 Compile the VHDL file to FPGA bitcode

ModelSim 6.3g  Simulate and troubleshoot the VHDL file at the
behavioral level

ChipScope Pro 10.1  Configure the target device with the compiled
bitcode

 Troubleshoot the design at the physical layer
level

XUP Virtex™-II
Pro development
board

xc2vp30–
7ff896

 Development board including FPGA and USB
JTAG interface

Equation Chapter (Next) Section 1Equation Section 4

 32

THIS PAGE INTENTIONALLY LEFT BLANK

 33

IV. FAST FOURIER TRANSFORM COMPUTING

The System Generator FFT IP Blocks were introduced in Chapter III. In this

chapter, the analysis conducted on FFT v4.1 and FFT v1.0 in Wright’s thesis [4] and

Livingston’s thesis [5] is reviewed. A new IP Block, the FFT v3.2 is introduced and

analyzed to facilitate migration of the algorithm to implementation on Virtex™-II

FPGAs. The configuration and timing differences between the FFT IP Blocks are

examined, and the implications to the rest of the design are discussed.

A. FFT V4.1

The original SDR design presented in [4] made use of the FFT v4.1 Xilinx IP

block. This version of the FFT allows for streaming input and output (IO) and calculates

an FFT of length N  2 k  , 3 k 16 , where k is an integer. Other options, shown in

Figure 16, include selecting natural order output, unscaled output, and phase factors with

24-bit precision. Natural order output was chosen for ease of use with the remainder of

the algorithm at a cost of more required block random access memory (BRAM), as

discussed in [24]. The highest precision phase factor and the most allowed BRAM were

chosen.

The output signals from the FFTv4.1 block, when the input is a constant 1.010

(base-10) and configured for 102 1024N   , is shown in Figure 17. In the top plot, the

real and imaginary outputs are shown, along with the output index, which increments

from 0..1023. As shown, the ready for data (rfd) signal is asserted after the first clock

cycle at (a). The input index, xn_index increments from 0 to 1023 and reaches its final

value at 1025t  . The FFT calculation begins at 518t  , indicated by the busy signal

(b). The e_done signal, asserted 1 clock cycle before the FFT calculation is complete, is

asserted at 2162t  , (c). The valid signal, indicating valid output data, is asserted at

2163t  , (d), along with the first point of the calculated FFT, (e). The next e_done

signal (f) is asserted at 3186t  , and the first point of the next calculated FFT (g) is

output at 3187t  . Both signals are asserted 1024 clock cycles after the preceding

signal, indicating streaming IO. The total latency of the FFT v4.1 IP block, from the time

 34

the first input point is accepted at 2t  to the time the first point of the calculated FFT is

output at t  2163, is 2163 2  2161.

Figure 16. FFT v4.1 Configuration Options (After [5]).

The calculated FFT shown in Figure 17 is

 X k  
1023 j0 k  0

0 k  1..1023






, (IV.1)

which is consistent with Equation (II.5).

The FFT v4.1 test circuit shown in Figure 18 was implemented for a Virtex™-II

Pro xc2vp30. The required logic resources are shown in Table 3. All circuits and

supporting computer files presented in this thesis are listed in the Appendix.

 35

Figure 17. FFTv4.1 Output Signals (After [5]).

 36

Figure 18. Circuit for Timing Analysis of FFT v4.1 (After [5]).

Table 3. FFT v4.1 Resource Utilization on a Virtex™-II Pro xc2vp30–7ff896
(After [5]).

Resource Used Available Percent

Slices 3448 13696 25%

Flip-Flops 5945 27392 21%

4-input LUTs 4312 27392 15%

Bonded IOBs 81 556 14%

BRAMs 12 136 8%

MULT18x18s 32 136 23%

GCLKs 1 16 6%

B. FFT V1.0

The modified SDR presented in [5] made use of the Xilinx IP block FFT v1.0.

This version of the FFT is the only FFT IP block supported by the Virtex™ family of

devices. This version of FFT accepts streaming input on each clock cycle but only

outputs calculated FFT points for N out of every 4N clock cycles. As noted in [25], the

circuit precision is fixed at 16-bit 2’s complement numbers for input and output. The

timing of the FFT v1.0 IP block was tested using the circuit shown in Figure 19.

 37

Figure 19. Circuit for Timing Analysis of FFT v1.0 (After [5]).

As shown in Figure 20, the circuit produces a valid output for 1024 cycles out of

every 4096. The vin signal and real data begin at t  1. The circuit asserts the ready

signal at 1t  , and it remains asserted during the entire operation, indicating the FFT is

accepting streaming input data. At 8247t  , the done signal is asserted for one clock

cycle at (a) and the calculated FFT points are output at (b) from t  8247 until 9270t  .

The next set of data is ready for output at t  12343, at (c). The total latency of the FFT

v1.0 circuit is 8247.

The input to the test circuit is a constant 0.510. From Equation (II.5), the output

should be

 X k  
512  j0 k  0

0 k  1..1023






. (IV.2)

This inconsistency is because the precision of FFT v1.0 is fixed at 16 bits, so the output is

scaled by 1 / N after each stage. If Equation (II.5) is scaled by 1 / N , the results are

consistent.

The FFT v1.0 was implemented for a Virtex™ xcv1000 FPGA. The required

logic resources are shown in Table 4.

 38

Figure 20. FFT v1.0 Output Signals (After [5]).

Table 4. FFT v1.0 Resource Utilization on a Virtex™ xcv1000–6fg680 (After
[5]).

Resource Used Available Percent

Slices 1285 12288 10%

Flip-Flops 2570 24576 10%

4-input LUTs 2247 24576 9%

Bonded IOBs 70 512 13%

BRAMs 16 32 50%

GCLKs 1 4 25%

C. FFT V3.2

As discussed in [24], the Xilinx FFT v4.1 IP block is not supported for the

Virtex™-II family of FPGAs. In order to implement this algorithm on a Virtex™-II, the

 39

FFT v3.2 IP block, described in [26] has to be used. As with the FFT v4.1, this version

of the FFT allows for streaming IO and calculates an FFT of length N  2 k  , 3 k 16 ,

where k is an integer.

In order to investigate the timing constraints for this block, the circuit shown in

Figure 21 was used. The input signal for investigating the timing was a constant DC

input of 0.5 for all real inputs and 0 for all imaginary inputs. The start signal was held

high for the entire analysis, and the inverse signal was held low.

Figure 21. Circuit for Timing Analysis of FFT v3.2.

The output signals from the FFT v3.2 block, when the input is a constant 1.010 and

configured for 102 1024N   , is shown in Figure 22. In the top plot, the real and

imaginary outputs are shown, along with the output index, which increments from

0..1023 . As shown, the rfd signal is asserted after the first clock cycle at (a). The input

index, xn_index increments from 0 to 1023 and reaches its final value at 1025t  . The

FFT calculation begins at 518t  , indicated by the busy signal (b). The e_done signal,

asserted 1 clock cycle before the FFT calculation is complete, is asserted at 2146t  , (c).

The valid signal, indicating valid output data, is asserted at 2148t  , (d), along with the

first point of the calculated FFT, (e). The next e_done signal (f) is asserted at 3170t  ,

and the first point of the next calculated FFT (g) is output at 3172t  . Both signals are

asserted 1024 clock cycles after the preceding signal, indicating streaming IO. The total

 40

latency of the FFT v3.2 IP block, from the time the first input point is accepted at 2t  to

the time the first point of the calculated FFT is output at t  2148, is 2148 2 2146  .

The calculated FFT shown in Figure 22 is

 X k  
1023 j0 k  0

0 k  1..1023






, (IV.3)

which is consistent with Equation (II.5).

The FFT v3.2 test circuit was generated for a Virtex™-II xc2v3000. The

resulting VHDL was compiled using ISE and simulated using ModelSim. The logic

resource utilization is shown in Table 5.

The ModelSim waveform is shown in Figure 23. The edone signal is asserted on

output index 0x3FE of the previous output, the done signal is asserted on output index

0x3FF, and the first point of the new computed FFT 0x0FFC00 is output with index

0x000.

 41

Figure 22. FFT v3.2 Output Signals.

 42

Table 5. FFT v3.2 Resource Utilization on a Virtex™-II xc2v3000–6fg676.

Resource Used Available Percent

Slices 3274 14336 22%

Flip-Flops 5520 28672 19%

4-input LUTs 4037 28672 14%

Bonded IOBs 81 484 16%

BRAMs 12 96 12%

MULT18x18s 32 96 33%

GCLKs 1 16 6%

Figure 23. FFT v3.2 ModelSim Simulation.

Because the timing of this IP block is similar to the timing of the FFT v4.1 IP

block, the logic resource requirements for both were compared for a Virtex™-II Pro

xc2v30, the results of which are shown in Table 6. In a side-by-side comparison, the FFT

v4.1 used slightly more resources, due mainly to requiring more 4-input LUTs for signal

routing. Because this algorithm was designed to be backward compatible with the

Virtex™-II FPGA, implementation with FFT v3.2 was desirable since this FFT IP is

compatible with both the Virtex-II and Virtex-II Pro [26]. If the design is to be forward

compatible with the Virtex™-4 or -5 FPGAs, the FFT v4.1 is desirable due to its

compatibility with the DSP48 logic primitives available on those devices [24].

 43

D. SUMMARY

The performance of the FFT v4.1 IP block was verified. The FFT v4.1 was

shown to accept streaming input and produce streaming output. The performance of the

FFT v1.0 IP block was verified. It was shown that the FFT v1.0 IP block accepts

streaming input but does not produce streaming output. The performance of the FFT v3.2

IP block was investigated. It was shown to behave similarly to the FFT v4.1 block,

accepting streaming input and output. Timing differences between the FFT v4.1 and v3.2

and the implications to further design work were discussed. In the following chapter, a

method of applying error detection to the FFT v4.1 block is analyzed, and modifications

are made to use the FFT v3.2 block.

Table 6. Resource Comparison of FFT v3.2 and v4.1 on a Virtex™-II Pro.

Resource Available v3.2
Used

v3.2
Percent

v4.1
Used

v4.1
Percent

Slices 13696 3298 24% 3448 25%

Flip-Flops 27392 5520 20% 5945 21%

4-input LUTs 27392 4043 14% 4312 15%

Bonded IOBs 556 81 14% 81 14%

BRAMs 136 12 8% 12 8%

MULT18x18s 136 32 23% 32 23%

GCLKs 16 1 6% 1 6%

Equation Section (Next)

 44

THIS PAGE INTENTIONALLY LEFT BLANK

 45

V. ERROR DETECTION

As discussed in Chapter II, computing in space requires attention to detection and

correction of errors caused by SEUs. In this chapter, the development of error detection

for the compression algorithm presented in [5] is reviewed. Errors in the computation of

the FFT are detected by comparing the energy in with the energy out using Parseval’s

theorem. Errors in Temporary Memory are detected by calculating and comparing data

parity before and after storage.

A. FFT ERROR DETECTION WITH PARSEVAL’S THEOREM

In [5], Livingston presents a version of the compression algorithm that can detect

whether the output is in error. As discussed in [11], the probability of an SEU is

proportional to the area of the semiconductor. The two portions of the algorithm with the

highest resource allocation and, hence, the biggest area are the FFT calculation and the

temporary storage memory. The error detection applied to the FFT block was designed

to check that the transform was computed successfully. The error detection applied to the

temporary storage memory was to check that the computed time-frequency bins were not

corrupted.

1. Analysis of the Original Error Detection Algorithm

As discussed in Chapter II, Parseval’s theorem states that the energy into a

Fourier transform must equal the energy out of the transform. The algorithm presented in

[5] makes use of this property to determine if the FFT output is correct. The conceptual

block diagram illustrating this setup is shown in Figure 24. The squares of the input

points are summed. After the FFT is computed, the squares of the magnitude of the

complex output are summed and scaled by 1/ N . If the FFT calculation is correct, the

two sums will be equal to within a threshold determined by the precision of the sum-of-

squares of the input points, and the error flag is set to 0. If the FFT calculation is not

correct, the two sums will differ by more than the threshold, and the FFT output will be

flagged as in error.

 46

Figure 24. Error Detection with Parseval’s Theorem (Conceptual) (After [5]).

The error checking in the algorithm presented in [5] has components in two

blocks, the FFTv4.1 block and the Windowing Algorithm block. This is because the

squaring function on the output is used twice in the Windowing Algorithm: to calculate

the energy for comparison to the input for error detection and to calculate the energy for

time-frequency bin energy calculation. For the purposes of analysis, the FFT and the

error detection components were copied from the algorithm in SDR1024Mod8C.mdl

and placed together in a single System Generator model, shown in Figure 25.

The left side of Equation (II.10) is computed using a Mult block, the Accum

subsystem, and a Scale block. The input to the compression algorithm is assumed to be

real, so the squaring is accomplished using a single Mult block. These values are input

into the Accum subsystem, shown in Figure 26, and originally developed in [4]. This

subsystem contains two Accumulator blocks, controlled by a MCode state machine.

The output of the Accum block is scaled by 1/ N using the Scale block and

delayed to match the output of the FFT. The output is already delayed by the Point Pwr

subsystem, and only the first 1 / N points are used in the error analysis. The required

delay is therefore given by the expression given in [5] as

 FFT Latency  Point Pwr Latency  N / 2. (V.1)

The right side of Equation (II.10) is calculated using Scale blocks, the Point Pwr

subsystem, and the FFT Error Detection subsystem. The real and imaginary outputs of

the FFT block are scaled by 1/ N . The square and sum of the result are completed by the

Point Pwr subsystem, shown in Figure 27.

 47

Figure 25. Error Detection applied to the FFTv4.1 IP block (After [5]).

 48

Figure 26. “Accum” Subsystem (From [4]).

Figure 27. “Point Pwr” Subsystem (From [5]).

The FFT Error Detection subsystem, shown in Figure 29, contains another Accum

to sum the squares. This subsystem is set to accept input for half the period of the FFT,

effectively summing from 0k  to / 2 1N  . Due to conjugate symmetry this is

sufficient, since the sum of the magnitudes squared of the first half of the FFT are equal

to those of the second half [5].

The two sides of Equation (II.10) are compared by subtracting the two values and

comparing against a threshold. In this implementation, the threshold is set such that a

correct output is declared when

 12 122 2a b     , (V.2)

 49

which was determined experimentally by Livingston in [5]. This threshold is required

since the precision of the sum-of-squares calculations for either side of Equation (II.10)

are different.

In order to test the circuit, an error injection circuit was implemented in [5] using

a counter and a MUX (multiplexer), shown in Figure 28. The input is the real values

from the FFT block. These actual values are passed through the MUX until the

freerunning counter exceeds the given threshold. Once that occurs, the output becomes

the entered constant, in this case 26 .

Figure 28. Error Injection circuit (After [5]).

The FFT v4.1 with error correcting circuit in Figure 25 was generated for a

Virtex™-II Pro xc2vp30. The resources required are shown in Table 7.

2. Modification to FFT Error Detection

The error detection method developed in [5] was built around a compression

algorithm based on the FFT v4.1. In order to support this algorithm on a Virtex™-II, the

FFT v3.2 block must be used. As mentioned in Chapter IV, the latency of the two FFT

versions is different, requiring modification to the circuit to use the block.

The FFT v3.2 block was inserted as shown in Figure 30. The delay after the

accumulator was adjusted according to Equation (V.1), resulting in a new delay of 1631.

This new compression algorithm was tested in the same manner as the original algorithm.

The results were the same, with the output indices shifted by the latency difference

between the FFT v3.2 and FFT v4.1.

 50

The circuit in Figure 30 was generated for a Virtex™-II xc2v3000. The required

resources are shown in Table 8.

 51

Figure 29. “FFT Error Detection” Subsystem (From [5]).

 52

Table 7. Resource Requirements for Compression Algorithm on Virtex™-II
Pro xc2vp30.

Resource Used Available Percent

Slices 9297 13696 67%

Flip-Flops 14924 27392 54%

4-input LUTs 14207 27392 51%

Bonded IOBs 96 556 17%

BRAMs 57 136 41%

MULT18x18s 61 136 44%

GCLKs 1 16 6%

Table 8. Resources Required for Modified Compression Algorithm on
Virtex™-II xc2v3000.

Resource Used Available Percent

Slices 7442 14336 51%

Flip-Flops 11356 28672 39%

4-input LUTs 11343 28672 39%

Bonded IOBs 270 484 55%

BRAMs 15 96 15%

MULT18x18s 36 96 37%

GCLKs 1 16 6%

 53

Figure 30. Error Detection Applied to the FFT v3.2 IP Block.

 54

B. MEMORY ERROR DETECTION USING PARITY

The section of the compression algorithm with the second highest probability of

SEU after the FFT is the Temporary Memory where calculated FFT points are stored

after time and frequency bin calculations have been conducted. In order to detect

whether the contents of the Temporary Memory have been corrupted, Livingston added a

parity check feature to the algorithm presented in [5].

The temporary storage subsystem developed in [4] consists of two dual port RAM

blocks for storing the real and imaginary FFT points while the bin energy is calculated.

The values stored in memory are 35 bits, so the parity bit is calculated with the

expression

         XOR Bit 34 ,Bit 33 ,...,Bit 1 ,Bit 0P  . (V.3)

Equation (V.3) is implemented with a string of XOR gates and Bit Basher blocks, as

shown in Figure 31. As discussed in [5], the string of Bit Basher blocks are used to

separate each 35-bit value into 35 one-bit values, and the string of XOR gates is used to

calculate a single parity bit.

The calculated parity bits are stored in a separate Dual Port RAM block using the

same addressing signals from the data Dual Port RAM block. When the data is read out,

the parity is calculated using another parity generator as shown in Figure 32, and this

parity bit is compared to the previously calculated parity bit using an XOR gate. If the

parity bits are not equal, an error flag is sent to the parity flag generation subsystem,

which is described in [5].

 55

Figure 31. Parity Generator (From [5]).

 56

Figure 32. Temporary Memory Subsystem with Parity Check (From [5]).

 57

C. SUMMARY

Methods for detecting errors in the calculation of an FFT when the designer does

not have access to the internal circuitry of the FFT block were introduced in this chapter.

The design and performance of an error detection circuit applied to the FFT v4.1 block

was analyzed and the error detection was verified. The error detection circuit was

modified for use with the FFT v3.2 block, and the error detection was verified. A method

of checking memory for error using parity check bits was also analyzed, and the detection

of errors verified. The error detection method discussed in this chapter is used in the next

chapter to implement error correction for the FFT computation circuits.

 58

THIS PAGE INTENTIONALLY LEFT BLANK

Equation Section (Next)

 59

VI. ERROR CORRECTION

The compression algorithm development described thus far has resulted in a

design that can detect when the FFT calculation is in error. This design can be

implemented in a Virtex™-II Pro FPGA. The goals of this design work were to make

use of the error detection to implement error correction and implement the resulting

design in a multiple-FPGA implementation using Virtex™-II FPGAs.

A. INITIAL ERROR CORRECTION DEVELOPMENT

The error detection developed in [5] set a flag if the output of the FFT block was

in error. In order to use this feature to implement error correction, the FFT calculation

block was duplicated, and a voter decides which FFT is correct, as shown in Figure 33.

Figure 33. Error Correction (Conceptual).

In this implementation, the energy in each FFT is calculated separately. If the

sums-of-squares are equal, it is assumed that there was no error in calculating the FFT. If

they are not equal, it is assumed that the FFT calculated is in error and the other FFT

output is chosen. Again, the assumption is that there is an SEU in only one subsystem in

 60

each calculation cycle. The relationship between the block containing the error and

which FFT values are chosen for  X k are shown in Table 9.

Table 9. Truth Table for Error Correction Algorithm.

Error in
Block:

|a-b|
<thresh

|c-d|
<thresh

X[k] X[k]
correct

Σ(a) 0 1 FFT B 1
Σ(b) 0 1 FFT B 1
FFT A 0 1 FFT B 1
Σ(c) 1 0 FFT A 1
Σ(d) 1 0 FFT A 1
FFT b 1 0 FFT A 1

The error correcting circuit is the System Generator model shown in Figure 34.

The circuit consists of two subsystems, each containing an FFT v3.1 IP Block, as well as

the error detection circuitry described in Chapter V. One of these subsystems contains

the error injection circuit, also described in Chapter V. Each of these blocks computes

the FFT of the input signal independently and checks whether the computation was in

error. These values are passed to the new Voter subsystem.

The Voter subsystem, shown in Figure 35, consists of MUXs that act as switches

to select output from either of the FFT computation subsystems. The VoterCtl block

implements a state machine controlling which data the MUXs select for output. Inputs to

the VoterCtl block are the error calculations from each of the FFT error detection circuits

and the x_error_valid signal, which indicates when a new error calculation is ready. The

voter also detects whether both FFTs are reporting an error, in which case the voter_error

signal is asserted.

 61

Figure 34. FFT Error Correcting Circuit.

 62

Figure 35. Voter Subsystem.

The error correction circuit was tested by injecting an error into the output of one

of the FFTs. In the first plot of Figure 36, the error is shown where the real input

transitions from the correct value of 0 to 62 at time 13924t  . The second plot shows

that the circuit masks the error when the output_side signal transitions from 0 to 1. Note

that the output signal is delayed one FFT period of 1024N  due to latency in

calculating the error.

This error correction algorithm was implemented for a Virtex™-II xc2v3000.

The required resources are shown in Table 10. This shows that this algorithm requires

4109 more slices than are available on the target device, implying that it cannot be

implemented on this device.

 63

Figure 36. Error Correction of a Single Error

Table 10. Resource Utilization for Error Correcting FFT on Virtex™-II
xc2v3000–6fg676.

Resource Used Available Percent

Slices 18445 14336 128%

Flip-Flops 32250 28672 112%

4-input LUTs 32517 28672 113%

Bonded IOBs 131 484 27%

BRAMs 30 96 31%

MULT18x18s 72 96 75%

GCLKs 1 16 6%

 64

B. MODIFICATION TO REDUCE RESOURCE REQUIREMENTS

1. Eliminate Redundant Multiply-and-Accumulate Circuitry

In order to implement error correction on a single Virtex™-II xc2v3000, an

implementation using fewer resources was necessary. The first error correction algorithm

had a redundant sum-and-accumulate circuit on the input. By eliminating this redundant

circuitry, as shown in Figure 37, fewer resources would be required.

Figure 37. Modification to Error Correction (Conceptual).

The truth table in Table 11 shows that this configuration will also mask any single

error. Even if the error occurs in the reference sum-and-accumulate circuit, the voter will

recognize that when there are two apparent errors the error is not occurring within one of

the FFTs.

The modified error correcting circuit was implemented as shown in Figure 38. In

this modified error correction circuit, the multiply and accumulate circuitry was removed

from the FFT subsystems, and one copy of it computes the energy of the input signal.

This single calculation is routed into the error detection circuits in both FFT subsystems.

 65

Table 11. Truth Table for Modified Correction Algorithm.

Error in
Block:

|a-b|
<thresh

|c-d|
<thresh

X[k] X[k]
correct

Σ(ref) 0 0 FFT A 1
Σ(a) 0 1 FFT B 1
Σ(b) 1 0 FFT A 1
FFT A 0 1 FFT B 1
FFT B 1 0 FFT A 1

The circuit was tested in the same manner as the original error correction

algorithm. Shown in the first plot of Figure 39, the error is injected into the real part of

the FFT at time 13924t  . The second plot shows that this error is masked when the

error is detected and the output_side signal transitions from 0 to 1 at time 14950t  , one

FFT cycle after the error was injected. This switches the source data from the error FFT

to the correct FFT.

This new design was implemented for a Virtex™-II xc2v3000. As shown in

Table 12, this modified error correction algorithm uses fewer slices but still requires 2564

more than are available, implying that it cannot be implemented on this device.

 66

Figure 38. Modification to FFT Error Correction.

 67

Figure 39. Error Correction of Single Error by the Modified Circuit

Table 12. Resources Required for Modified Error Correction Circuit on
Virtex™-II xc2v3000.

Resource Used Available Percent

Slices 16900 14336 117%

Flip-Flops 29335 28672 102%

4-input LUTs 29494 28672 102%

Bonded IOBs 132 484 27%

BRAMs 30 96 31%

MULT18x18s 68 96 70%

GCLKs 1 16 6%

2. Modify Voter to Reduce Usage of Slice Logic

As seen in Table 12, the number of flip-flops required to implement the error

correcting algorithm exceeds the number available on the target FPGA. The device

 68

utilization summary generated by Xilinx ISE during synthesis stated that 17033 of the

LUTs were used as shift registers, which is how delay blocks are implemented. Since the

Voter subsystem contains six delays of length 1024, eliminating these delays would

significantly reduce the requirement for LUTs. Since this algorithm only used 31% of

the available BRAM, the decision was made to modify the voter to use memory rather

than logic to implement the delay.

The updated Voter subsystem is shown in Figure 40. The delay blocks have been

replaced by Single Port RAM blocks. The depth is set to 210  1024, so each value from

the FFT can be read in. The address is provided by the xk_index signal. The Single Port

RAM has been set to read before write, so that the value from the previous FFT period is

read out before the new value is read in. The VoterCtl MCode block remains the same.

This Voter successfully masks all single-source errors. As shown in the first plot

in Figure 41, the error is injected into the real output of the FFT at time 13924t  . The

corrected output is shown in the second plot, where the Voter circuit switches the output

from the FFT in error to the FFT computed correctly.

This implementation of error correction was generated for a Virtex™-II xc2v3000

FPGA. As shown by the resource requirements listed in Table 13, this new voter

implementation is now within the resource limitations of the target FPGA.

 69

Figure 40. Memory-Based Voter Circuit.

 70

Figure 41. Error Corrected by Memory-Based Voter.

Table 13. Resources Required for Modified Voter Circuit on Virtex™-II
xc2v3000.

Resource Used Available Percent

Slices 11952 14336 83%

Flip-Flops 19575 28672 68%

4-input LUTs 19724 28672 68%

Bonded IOBs 131 484 27%

BRAMs 38 96 39%

MULT18x18s 68 96 70%

GCLKs 1 16 6%

 71

C. PROTECTED FFT WITH THE COMPRESSION ALGORITHM

The protected algorithm was used as the input for the windowing and data

formatting subsystems. This is a two-FPGA implementation. The FFT circuit used was

the one developed in the previous section, modified as shown in Figure 42 to provide the

required output signals.

The compression and data format subsystems from [5] were modified as shown in

Figure 43. In this implementation, the FFT circuit has been removed and replaced by the

input signals generated by the error correcting FFT. The error detection circuit has been

removed from the Windowing Algorithm, and the ErrorFlagCtl MCode block has been

moved outside of the Windowing Algorithm. The output of the ErrorFlagCtl block is

required for the Format Output Subsystem. In the previous algorithm, this block counted

the number of errors per time bin. In this algorithm, it performs the same task but is

counting errors in the voter rather than errors in the FFT calculation.

The Windowing Algorithm retains the Point Pwr circuit for calculating FFT point

energy. This is redundant to the Point Pwr circuit in the error correction circuit; however,

the resources required for its implementation are available. The Temporary Storage

subsystem retains the parity check system described in [5] and Chapter V.

The compression and data format model was generated for a Virtex™-II

xc2v3000 FPGA. The resources required are shown in Table 14. Because this circuit

uses so few resources, it would be possible to add some measure of redundancy to the

circuit. The required number of BRAM is greater than a third of the available memory so

directly implementing TMR would not be possible.

 72

Figure 42. Modified Error Correcting FFT.

 73

Figure 43. Modified Compression and Data Formatting Circuit (After [5]).

 74

Table 14. Resources Required for Compression and Data Formatting
Subsystems.

Resource Used Available Percent

Slices 1262 14336 8%

Flip-Flops 625 28672 2%

4-input LUTs 2194 28672 7%

Bonded IOBs 145 484 29%

BRAMs 36 96 37%

MULT18x18s 9 96 9%

GCLKs 1 16 6%

D. SUMMARY

Methods for implementing error correction for the FFT v3.2 IP block using the

error correction method developed in Chapter V were introduced in this chapter. The

initial error correction design duplicated the error detection circuitry and used a voter to

decide which FFT was computed correctly. This method resulted in errors being

corrected and reduced the required resources; however, it required more logic resources

than were available on the target FPGA. The next design iteration eliminated one of the

redundant input power computation circuits. This design also corrected errors and

reduced the required resources, but still required more logic resources than were

available. The final design iteration modified the voter circuit to reduce its logic resource

requirement by implementing delays using BRAM rather than slice logic. This design

successfully corrected errors and could be implemented on the target FPGA. The error

correcting FFT circuit was then integrated with the existing compression and data

formatting subsystems, and the function was verified.

 75

VII. CONCLUSION

In this chapter, the conclusions drawn from analysis of the original compression

algorithm and the modification and design of an error-correcting FFT algorithm are

presented. In addition, recommendations for continuation of the design are discussed.

A. SUMMARY

Several high level concepts that support the development of a Fourier transform-

based, fault tolerant compression algorithm were presented. Relevant elements of

Fourier analysis were discussed, and the development of the fast Fourier transform was

presented. Challenges associated with spaceborne computing were discussed, and the

Triple Modular Redundancy and Reduced Precision Redundancy methods for correcting

errors caused by single event upsets were presented.

The software tools used for development of the compression algorithm were

introduced, and the design process from concept, through high-level design, all the way

to hardware implementation was presented. Capabilities and limitations of each software

package were discussed, and some software setup notes were highlighted.

The performances of the FFT v4.1 and FFT v1.0 IP blocks used in the algorithms

presented in [5] were verified. The performance of the FFT v3.2 IP block was

investigated. It was shown to behave similarly to the FFT v4.1 block, accepting

streaming input and output. Timing differences between the FFT v4.1 and v3.2 and the

implications to further design work were discussed.

Methods for detecting errors in the calculation of an FFT when the designer does

not have access to the internal circuitry of the FFT block were presented. The design and

performance of an error detection circuit applied to the FFT v4.1 block were analyzed,

and the error detection was verified. The error detection circuit was modified for use

with the FFT v3.2 block, and the error detection was verified. A method of checking

memory for error using parity check bits, presented in [5], was also analyzed, and its

detection of errors verified.

 76

An error correction scheme for the FFT v3.2 IP block was developed using the

error correction method discussed in Chapter V. The initial error correction design

duplicated the error detection circuitry and used a voter to decide which FFT was

computed correctly. The algorithm proceeded through several design iterations to reduce

the resource requirements to allow implementation on the target FPGA. The final design

was shown to successfully correct single errors and was implementable on the Virtex™-

II xc2v3000 FPGA. The final error correcting FFT circuit was then integrated with the

existing compression and data formatting subsystems.

B. CONCLUSIONS

Use of high-level design tools makes rapid design iterations easier; however, they

can mask some underlying problems. System Generator makes adjusting designs, adding

or modifying components, and displaying output or intermediate signals convenient. Not

all designs built and tested within the System Generator environment can be implemented

in hardware. Some System Generator components behave differently or have different

configuration options than their HDL instantiations. Use of this design tool greatly

speeds the design entry – behavioral simulation iterative design loop; however, it does

not replace thorough testing at the HDL and hardware levels.

Logic resources on an FFT have to be managed. In this design, delays of 35-bit

wide busses for thousands of clock cycles were implemented using register-based delays.

While this implementation functioned, it exceeded the logic resources available on the

target FPGA. By implementing delays using memory rather than registers, it was

possible to fit the algorithm on the intended platform.

It is possible to protect an IP FFT using Parseval’s theorem. By using the error

detection algorithm developed in [5], error correction was implemented using a duplicate-

and-check methodology. Errors injected into the output of one of the FFTs were

successfully detected, and the output of the uncorrupted FFT was used to provide an

error-free calculation.

 77

C. RECOMMENDED FUTURE WORK

The design work conducted for this thesis focused on implementing error

correction for the FFT in the algorithm presented in [4] and further developed in [5]. To

further develop this algorithm into a practical design, the following are suggestions for

additional work.

1. Test Error Correction FFT and Compression Algorithm

The two-FPGA algorithm presented at the end of Chapter VI was tested for

functionality; however, a thorough investigation of proper operation under all input signal

conditions is required.

2. Additional Error Correction Capabilities

The final circuit presented in Chapter VI made use of the error correcting FFT

circuit. While the FFT circuit is the most likely point at which an SEU would cause an

error, an error at any other point in the circuit would likely also cause an error in the

output. Error correction could be implemented in the remaining subsystems. The

Temporary Memory subsystem in this implementation employs a single parity bit check,

which could detect a single error. This parity could be upgraded to a SECDED Hamming

code generator and check in order to be able to correct single errors. The Windowing and

Window Analysis subsystems, as well as the Format Output subsystem, could benefit

from application of TMR. Use of the Xilinx TMRTool, an IP tool for implementing

TMR into an FPGA design, is one possible avenue for future research.

3. Develop a Comprehensive Test Set

As discussed in [5], the signals used for testing the compression algorithm only

serve to illustrate that the circuit functions. Development of a signal set that tests the

compression algorithm’s limits are required to ensure the algorithm is a robust design.

Also, development of a signal set that emulates real-world SOI against a noisy

background will allow analysis of the performance of the algorithm under anticipated

operating conditions.

 78

4. Conduct Comprehensive Functional Testing

System Generator creates a ModelSim testbench for individual designs. In order

to use ModelSim to simulate designs implemented on multiple FPGAs, an HDL wrapper

file needs to be created which serves to route signals between the individual VHDL files

created by System Generator. A testbench which feeds input signals into the wrapper file

and collects output signals also has to be generated. Existing multiple-FPGA systems

have an associated HDL wrapper and testbench, so the algorithm could be tested using

these existing files.

5. Implement In Hardware

Ultimately, the algorithm must be implemented in hardware in order to be used in

the real world. Further investigation into implementing the algorithm in the target

FPGAs as well as using ChipScope to analyze in-circuit performance of the algorithm is

required.

 79

APPENDIX. COMPUTER FILES

Lists of files used in the design of the algorithms discussed in this thesis are

contained in this Appendix. Instructions for simulating and synthesizing the designs are

provided.

A. REQUIRED FILES

The following tables contain lists of files and directories contained on the software
DVD. A copy of the DVD can be requested from the director of the

Communications Research Laboratory. The directory structure of the DVD is listed
in Table 15 and Table 16. The System Generator models used for the simulations
discussed in Chapters IV, V, and VI are listed in Table 17. The required MCode

files are listed in

Table 18. Supporting MATLAB script files are listed in Table 19.

Table 15. DVD directories.

Directory Name Purpose

DurkeInit Contains the files from [4].

DurkeInit\Mods Contains the files from [5].

FFT_test Contains the files from Chapter IV of this thesis used for timing

analysis of FFT v4.1, FFT v1.0, and FFT v3.2.

FFT_error_correct Contains the files from Chapters V and VI of this thesis used in

analysis of the error detection algorithm from [5], as well as the

development of the error correction algorithm.

 80

Table 16. Subdirectories of FFT_error_correct.

Subdirectory Name Purpose

err_chk Contains the System Generator models and supporting MCode
files for the FFT error detection algorithms only presented in
Chapter V.

FFT_Err_Corr_mod1 Contains the System Generator model and supporting MCode
files for the error correction algorithm presented in Chapter VI,
Section A.

FFT_Err_Corr_mod2 Contains the System Generator model and supporting MCode
files for the error correction algorithm presented in Chapter VI,
Section B.

FFT_Err_Corr_mod3 Contains the System Generator model and supporting MCode
files for the error correction algorithm presented in Chapter VI,
Section C.

Mod8C Contains the System Generator model and supporting MCode
files for the error detection and compression algorithm presented
in [5].

Mod9 An early attempt to insert FFT v3.2 into Mod8C.

Mod10 Contains the System Generator model and supporting MCode
files for a modification to the compression algorithm presented in
[5], inserting FFT v3.2 in place of FFT v4.1.

Mod11 Contains the System Generator models and supporting MCode
files for the two-FPGA error correcting algorithm presented in
Chapter VI, Section D.

 81

Table 17. System Generator Models.

Model Name Chapter
in Thesis

Description

fftv41_test.mdl IV.A Circuit for analyzing FFT v4.1.

fftv10_test.mdl IV.B Circuit for analyzing FFT v1.0.

fftv32_test.mdl IV.C Circuit for analyzing FFT v3.2.

FFT_error_chk_only4_1.mdl V.A.1 Error detection circuit based on FFT v4.1.

FFT_error_chk_only3_2.mdl V.A.2 Error detection circuit based on FFT v3.2.

SDR1024Mod8C.mdl V.B Error detecting compression algorithm
from [5], based on FFT v4.1.

SDR1024Mod10.mdl not
discussed

Error detecting compression algorithm
based on SDR1024Mod8C, modified to use
FFT v3.2.

FFT_error_corr3_2mod1.mdl VI.A Error correcting circuit based on FFT v3.2.

FFT_error_corr3_2mod2.mdl VI.B.1 Modification to FFT_error_corr3_2mod1
to eliminate redundant square-and-
accumulate circuit.

FFT_error_corr3_2mod3.mdl VI.B.2 Modification to FFT_error_corr3_2mod2
to replace register-based delays in voting
circuit with memory-based delays.

FFT_error_corr3_2mod3A.mdl VI.C Modification to FFT_error_corr3_2mod3
to include output signals required for
integration with compression circuit.

SDR1024Mod11B.mdl VI.C Compression circuit, based on
SDR1024Mod10 which takes FFT input
from FFT_error_corr3_2mod3A.

 82

Table 18. MCode files required for Compression and Error Detection
Algorithms (After [5]).

Algorithm File Name (*.m) Description

accum_ctrl accum_ctrl_3_1 Controls Accum subsystem.

ErrorFlagCtl ErrorFlagCtl Generates error codes.

out_hdr out_hdrMod2 Generates downlink header, including
FFT and parity error codes.

OutputCtl OutputCtlMod0 Controls downlink buffer in Format
Output subsystem.

ParityFlagCtl ParityFlagCtl Generates parity error code from
parity check circuit in Temp Storage
subsystem.

pwr_time pwr_time_MOD2 Manages Time Windowing
subsystem.

re_freq_wind re_freq_wind_Mod1 Manages signals and addressing for
ROIs stored in memory in Window
Analysis subsystem.

re_tmp re_tmp_Mod1 Manages signals and addressing in
Temp Storage subsystem.

we_temp_fft we_temp_fft_Mod1 Manages signals and addressing in
Temp Storage subsystem.

we_time_win we_time_win_Mod1 Manages signals and addressing in
Temp Storage subsystem.

wind_anal wind_anal_Mod1 Manages signals in Bin Analysis
subsystem within Window Analysis
subsystem.

VoterCtl VoterCtl Controls output of voter based on
error flags generated by FFT Error
Corr subsystems.

 83

Table 19. Supporting *.m files

File Name Purpose

fftv41_test_ctrl.m Generates signals for and displays output of
fftv41_test.mdl

fftv10_test_ctrl.m Generates signals for and displays output of
fftv10_test.mdl

fftv32_test_ctrl.m Generates signals for and displays output of
fftv32_test.mdl

ErrorCheck_testing_control.m Generates signals for and displays output of
FFT_error_chk_only3_2.mdl and
FFT_error_chk_only3_2.mdl

fft_err_corr_mod1_test_ctrl.m Generates signals for and displays output of
FFT_error_corr3_2mod1.mdl

fft_err_corr_mod2_test_ctrl.m Generates signals for and displays output of
FFT_error_corr3_2mod2.mdl

fft_err_corr_mod3_test_ctrl.m Generates signals for and displays output of
FFT_error_corr3_2mod3.mdl

Mod11_control_testing.m Generates signals for and displays output of
FFT_error_corr3_2mod3A.mdl and
SDR1024Mod11B.mdl

input_sig_gen.m Generates time and frequency-varying signal.
Required function for all test control *.m files. From
[5]

ROI_ctrl.m Generates ROI for Windowing Algorithm and
Window Analysis subsystems in the compression
algorithms. Required function for
Mod11_control_testing.m From [5].

 84

B. INSTRUCTIONS

The following instructions detail the method of executing the supporting *.m

script files and running the simulations and are based on the instructions given in [5].

The test_ctrl files use Cell Mode execution, detailed in the “Rapid Code Iteration

Overview,” section of [27].

1. Examine System Generator Model

Open the System Generator model. Examine all MCode blocks and ensure the

required MATLAB files are in the same directory as the System Generator Model. [5]

2. Execute Control Script and Run Simulation

Incrementally execute the test_ctrl.m file. Cell Mode allows intermediate steps

between execution of the code. To run in Cell Mode, place the cursor in the desired cell

and either choose the menu option “Cell  Evaluate Current Cell,” or type

“Control+Enter.” Once all environment variables have been set, run the simulation either

by executing the cell containing the code sim(model_name,clks); or running the

model within the Simulink® window. Finally, execute the remaining cells to display the

output signals. The two-FPGA algorithm requires a data-reformatting step between

running FFT_error_corr3_2mod3A.mdl and SDR1024Mod11B.mdl. The required code is

contained in the Mod11_control_testing.m file [5].

3. Generate

System Generator will generate an HDL file and Xilinx ISE project file

automatically, as detailed in Chapter III. The options are in the dialog box opened by

double-clicking the System Generator token. Choose HDL Netlist under the

“Compilation” menu and the desired FPGA under the “Part” menu. It is recommended to

set the target directory to a new subdirectory under the directory containing the System

Generator and MATLAB files, since System Generator creates numerous supporting files

during generation. Select the “Create testbench” option to automatically generate a

ModelSim testbench [5].

 85

4. Compile

Open the generated ISE project file in Xilinx ISE. Compilation can usually be

accomplished by double-clicking the “Synthesize-XST” process in the “Processes” pane

on the left side of the screen. Multiple warnings may be generated during the compile

process, however they do not impede the simulation process. After compilation, a device

utilization summary, showing a summary of logic resources, will be displayed in the

main screen. If compilation fails, error messages detailing the failure will be displayed.

5. Conduct Behavioral Simulation with ModelSim

After compilation, choose “Sources for Behavioral Simulation,” in the drop-down

menu in the “Sources” pane. In the “Processes” pane, expand the “ModelSim Simulator”

item and double-click the “Simulate Behavioral Model” process. This will launch

ModelSim and begin the simulation using the signals contained in the generated

testbench. If the simulation fails due to the error “Library unisim not found,”

then HDL simulation libraries must be compiled as described in Chapter III.

 86

THIS PAGE INTENTIONALLY LEFT BLANK

 87

LIST OF REFERENCES

[1] L. Doggrell, “Operationally responsive space – A vision for the future of military
space,” Air and Space Power Journal, vol. XX, no. 2, pp. 42-49, Summer 2006.

[2] A. A. Ghouwayel, Y. Louet, “FPGA implementation of a re-configurable FFT for
multi-standard systems in software radio context,” IEEE Transactions on
Consumer Electronics, vol. 55, no. 2, May 2009.

[3] F. Iacomacci et al., “A software defined radio architecture for a regenerative on-
board processor,” NASA/ESA Conference on Adaptive Hardware and Systems,
June 2008.

[4] D. Wright, “Field programmable gate array (FPGA) based software defined radio
design,” M.S. thesis, Naval Postgraduate School, Monterey, CA, 2009.

[5] J. V. Livingston, “A field programmable gate array based software defined radio
design for the space environment,” M.S. thesis, Naval Postgraduate School,
Monterey, CA, 2009.

[6] Programmable Logic Design: Quick Start Guide, Xilinx, Inc., UG500 (v1.0), 08
May 2008

[7] A. Gavros, “use of the reduced precision redundancy (RPR) method in a radix-4
FFT implementation,” M.S. thesis, Naval Postgraduate School, Monterey, CA,
2010.

[8] R. D. Strum and D. E. Kirk, First Principles of Discrete Systems and Digital
Signal Processing, Reading, MA: Addison-Wesley Publishing Company, 1989.

[9] CMLab DSP Research Group, Taiwan, “Fast Fourier Transform,”
http://www.cmlab.csie.ntu.edu.tw/cml/dsp/training/coding/transform/fft.html.
(accessed 15 December 2011).

[10] R. Tessier and W. Burleson, “Reconfigurable computing for digital signal
processing: a survey,” Journal of VLSI Signal Processing, vol. 28, pp. 7-27,
Kluwer Academic Publishers, The Netherlands, 2001.

[11] R. C. Olsen, Introduction to the Space Environment: PH2514 Course Notes,
Naval Postgraduate School, pp. 224–225, January 2005.

[12] J. Snodgrass, “Low-power fault tolerance for spacecraft FPGA-based numerical
computing,” Ph.D. dissertation, Naval Postgraduate School, Monterey, CA, 2006.

[13] R. W. Hamming, “Error detecting and error correcting codes,” Bell Systems
Technical Journal, vol. 29, pp. 147-160, April 1950.

 88

[14] M. A. Sullivan, “Reduced precision redundancy applied to arithmetic operations
in field programmable gate arrays for satellite control and sensor systems,” M.S.
thesis, Naval Postgraduate School, Monterey, CA, 2008.

[15] Virtex™ 2.5V Field Programmable Gate Arrays: Product Specification, Xilinx,
Inc., Xilinx Product Specification DS003–1 (v2.5), 02 April 2001.

[16] Virtex™-II Platform FPGAs: Complete Data Sheet, Xilinx, Inc., Xilinx Product
Specification DS031 (v3.5), 05 November 2007.

[17] Virtex™-II Pro and Virtex™-II Pro X Platform FPGAs: Complete Data Sheet,
Xilinx, Inc., Xilinx Product Specification DS083 (v5.0), 21 June 2011.

[18] Virtex™-4 Family Overview, Xilinx, Inc., Xilinx Product Specification DS112
(v3.1), 30 August 2010.

[19] System Generator for DSP, Release 10.1.1: User Guide, Xilinx, Inc., April 2008

[20] System Generator for DSP, Release 10.1.1: Getting Started Guide, Xilinx, Inc.,
April 2008.

[21] Xilinx University Program Virtex-II Pro Development System: Hardware
Reference Manual, Xilinx, Inc., UG069 (v1.0), 08 March 2005.

[22] ModelSim® SE User’s Manual: Software Version 6.3j, Mentor Graphics Corp.,
October 2008.

[23] ChipScope Pro 10.1 Software and Cores User Guide, Xilinx Inc., UG029 (v10.1)
24 March 2008.

[24] Fast Fourier Transform v4.1, Xilinx Inc., Xilinx LogiCore Product Specification
DS260, 02 April 2007.

[25] High Performance 1024-Point Complex FFT/IFFT v1.0. Xilinx, Inc., Xilinx
LogiCore Product Specification, 11 May 2001.

[26] Fast Fourier Transform v3.2, Xilinx Inc., Xilinx LogiCore Product Specification
DS260, 11 January 2006.

[27] MATLAB® 7: Desktop Tools and Development Environment, The MathWorks,
Inc., Natic, MA, September 2009, pp. 185-208.

 89

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Frank E. Kragh
 Naval Postgraduate School
 Monterey, California

4. Herschel Loomis
 Naval Postgraduate School
 Monterey, California

5. Donna Miller
 Naval Postgraduate School
 Monterey, California

6. Ron Aikins
 Naval Postgraduate School
 Monterey, California

7. Bieu Lu
 SPAWAR Systems Center
 San Diego, California

8. Shawn Kocis
 National Reconnaissance Office
 Chantilly, VA

9. Caleb J. Humberd
 SWOSCOLCOM
 Newport, Rhode Island

