

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

A FRAMEWORK FOR COLLABORATIVE
QUADROTOR – GROUND ROBOT MISSIONS

by

Georgios Milionis

December 2011

 Thesis Advisor: Oleg Yakimenko
 Thesis Co-Advisor: Richard Harkins

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington,
VA22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) WashingtonDC20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2011

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE A Framework for Collaborative Quadrotor – Ground
Robot Missions

5. FUNDING NUMBERS

6. AUTHOR(S) Georgios Milionis

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government. IRB Protocol number ______N/A______.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
The thesis proposes a real-time control algorithm for the cooperation of a joint team consisting of a Quadrotor and a
Ground robot for coordinated ISR missions. The intended application focuses on indoor environments, where Global
Positioning System signals are unreliable or simply unavailable so that the control algorithms must rely on local
sensor information. The thesis describes the appropriate set up of the lab and includes simulations using a full
dynamic model of the quadrotor and robot, demonstrating the suitability of the implemented and the proposed control
scheme into a waypoint navigation scenario.
The implemented controller uses the Linear Quadratic Regulator method imposed into five different channels; pitch,
roll, yaw, x-y position and height, configured to the appropriate gains for smoother following of the trajectory. The
proposed control scheme incorporates three key aspects of autonomy; trajectory planning, trajectory following and
collaboration of the two vehicles. Using the differentially-flat dynamics property of the system, the trajectory
optimization is posed as a non-linear constrained optimization within the output space in the virtual domain, not
explicitly related to the time domain. A suitable parameterization using a virtual argument as opposed to time is
applied, which ensures initial and terminal constraint satisfaction. The speed profile is optimized independently,
followed by the mapping to the time domain achieved using a speed factor.

14. SUBJECT TERMS Quadrotor, Ground Robot, Cooperation, Localization System, Quanser,
Optitrack cameras, linearization, LQR, Waypoint Navigation, Direct method, Trajectory Generator,
Trajectory Following, Optimization, Inverse Dynamics.

15. NUMBER OF
PAGES

173
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

A FRAMEWORK FOR COLLABORATIVE
QUADROTOR – GROUND ROBOT MISSIONS

Georgios Milionis

Lieutenant, Hellenic Navy
B.S., Greek Naval Academy, 2002

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN
APPLIED PHYSICS AND MECHANICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 2011

Author: Georgios Milionis

Approved by: Oleg Yakimenko
Thesis Advisor

Richard Harkins
Thesis Co-Advisor

Knox Millsaps
Chair, Department of Mechanical Engineering

Andres Larraza
Chair, Department of Physics

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The thesis proposes a real-time control algorithm for the cooperation of a joint team

consisting of a Quadrotor and a Ground robot for coordinated ISR missions. The intended

application focuses on indoor environments, where Global Positioning System signals are

unreliable or simply unavailable so that the control algorithms must rely on local sensor

information. The thesis describes the appropriate set up of the lab and includes

simulations using a full dynamic model of the quadrotor and robot, demonstrating the

suitability of the implemented and the proposed control scheme into a waypoint

navigation scenario.

The implemented controller uses the Linear Quadratic Regulator method imposed

into five different channels; pitch, roll, yaw, x-y position and height, configured to the

appropriate gains for smoother following of the trajectory. The proposed control scheme

incorporates three key aspects of autonomy; trajectory planning, trajectory following and

collaboration of the two vehicles. Using the differentially-flat dynamics property of the

system, the trajectory optimization is posed as a non-linear constrained optimization

within the output space in the virtual domain, not explicitly related to the time domain. A

suitable parameterization using a virtual argument as opposed to time is applied, which

ensures initial and terminal constraint satisfaction. The speed profile is optimized

independently, followed by the mapping to the time domain achieved using a speed

factor.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. GENERAL ..1
B. MISSIONS ..2
C. QUADROTOR TOWARD OTHER UAVS ..4
D. RELATED WORK – RECENT DEVELOPMENTS6
E. LITERATURE REVIEW ...11
F. THESIS OBJECTIVES - MOTIVATIONS ..14
G. OUTLINE ...15

II. QUANSER LABORATORY SETUP ..17
A. INTRODUCTION..17
B. QUANSER REAL-TIME CONTROL (QUARC) SOFTWARE18
C. GROUND CONTROL STATION..20
D. HIQ –GUMSTIX EMBEDDED COMPUTER ...20
E. LOCALIZATION SYSTEM...22
F. QUANSER QUADROTOR QBALL-X4 ...25

1. Introduction ..25
2. X4 Diagram...26
3. Main Components ..27

a. Qball-X4 Protective Cage and Frame.27
b. QUARC Data Acquisition Card (HiQ DAQ) - Gumstix

Computer. ..27
c. Qball-X4 Power - LiPo Batteries – Switches – Connectors ...29
d. Motors, Propellers (10x4.7) and Speed controllers (ESCs) ...29

4. System Set up..31
a. Wireless Connection ...31
b. Qball-X4 Vehicle Setup ...31
c. Quanser Real-Time Control (QuaRC) Software

Configuration ..32
d. Qball-X4 Sensors Associated with QuaRC Blocks33

G. QUANSER QBOT GROUND VEHICLE ...34
1. Introduction ..34
2. Main Components Description ...36

a. The iRobot Create® ..36
b. Qbot DAC ..37
c. Gumstix Computer ..37
d. The Printed Circuit Board (PCB) ...37
e. Digital Input/Output Pins (DIO #) ...38
f. SW/nSW and INT/EXT Jumpers ...38
g. USB Camera ..38
h. Battery..39
i. Infrared Sensors - Sonar Sensors ..39

3. System Setup...40

 viii

a. Setting up the Qbot ..40
b. Establishing Wireless Connection ..40
c. Quanser Real-Time Control (QuaRC) Configuration40
d. Qbot Sensors Associated with QuaRC Blocks41

H. TOWARD UNIFIED CONTROL ARCHITECTURE42

III. MODELLING OF QUADROTOR AND GROUND ROBOT45
A. MODELLING OF QUADROTOR QBALL-X4 ...45

1. Coordinate Frames ..45
a. Earth-Fixed Inertial Frame U ..45
b. Body- Fixed Frame B ...46

2. Modeling Assumptions ..46
3. Vehicle State Variables ..47
4. Transformation Matrices ..48
5. Kinematic Equations ...50
6. Dynamic Equations ..51
7. Forces Calculation ...54

a. Gravity Force...54
b. Drag Force ..55
c. Thrust forces ...56
d. Total Force ..56

8. Moments (Torques) Calculation ...57
9. Moments of Inertia Calculations ..57

a. Moment of Inertia along x ..57
b. Moment of Inertia along x ..59
c. Moment of Inertia about z-axis ..59

10. Final Equations of Motion...60
B. MODELLING OF GROUND ROBOT QBOT ...62

1. Differential Drive Kinematics ...62
2. Forward Kinematics ..69

a. Robot's Position Relative to ICC Location.............................69
b. Robot's Position Relative to its Initial Position......................70

C. CONTROL ARCHITECTURE OF THE TWO MODELS.......................72

IV. CONTROL STRATEGY ..75
B. IMPLEMENTED CONTROLLERS ...75

1. Control Inputs ..75
2. Waypoint Navigation ...76
3. Linearization of Qball-X4 Control ..77
4. LQR Controllers / Channels Description ..79

a. Rotor (Actuator) Dynamics ...79
b. Roll and Pitch Models ...79
c. Height Dynamics Model ..82
d. X- Y Position Model ..83
e. Yaw Model ...84
f. Motor Inputs ..85

5. Qbot Inverse Kinematics Procedure ..87

 ix

C. DIRECT METHOD BASED CONTROLLERS ...88
1. Introduction ..88
2. Formulation of the LQR Problem ..90
3. Stability Analysis ..91
4. Reference Trajectory ...93
5. Time and Space Decoupling ..97
6. Qball-X4 Inverse Dynamics ..99

a. Differential Flatness ...99
b. Quadrotor’s Inverse Dynamics ...99

7. Discretization ..103
8. Trajectory Optimization ...105

a. Problem Formulation in the Control Space.........................105
b. Cost Function ..105
c. Problem Formulation in the Output Space106
d. Parameterization ...107

V. SIMULATION ...109
A. QUADROTOR MAIN INTERFACE ..109

1. Positions Commands Subsystem ..109
2. Mode Control Subsystem ..110
3. Calculate Roll Pitch Heading Height Subsystem111
4. HiQ Subsystem ...112
5. Joystick from Host Subsystem ..113

B. QBALL X4 WAYPOINT NAVIGATION ...114
1. Waypoints Input...114
2. Waypoint State Machine ...115
3. Waypoint Tracking ..116
4. Plots ...118

B. QBOT WAYPOINT NAVIGATION ...123
1. Waypoints Input...123

C. QBOT – QBALL COOPERATION WAYPOINT NAVIGATION127

VI. CONCLUSIONS – FUTURE WORK ..131
A. CONTRIBUTIONS..131
B. CONCLUSIONS ..132
C. FUTURE WORK ...132

APPENDIX MATLAB / SIMULINK DOCUMENTATION135

LIST OF REFERENCES ..145

INITIAL DISTRIBUTION LIST ...151

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. Draganflyer. After [1]. ...6
Figure 2. Vanderbilt University’s Embedded Computing Platform. After [3].7
Figure 3. STARMAC II quad-rotor UAV. After [8]. ..7
Figure 4. OS4 Test Bench. After [9]. ..8
Figure 5. RAVEN Project. After [11]. ..8
Figure 6. Concordia NAVL Project. After [5]. ...9
Figure 7. Virginia Tech University’s team of MUVs. After [11].9
Figure 8. “Bender” (left) and “AGB” (right) NPS Autonomous Ground Vehicles.

After [13]. ..10
Figure 9. Implemented Laboratory illustration. ..18
Figure 10. HiQ embedded avionics data acquisition card. After [55].21
Figure 11. Natural Point OptiTrack camera, adapted from [55].22
Figure 12. Optihubs Setup with Optitrack Cameras. After [55].23
Figure 13. Communication Hierarchy. After [51]. ..26
Figure 14. Qball-X4 axes and sign convention. After [51]. ..26
Figure 15. Qball-X4 cage and frame. After [51] ...27
Figure 16. HiQ cover. After [51]. ..28
Figure 17. Battery switch and connector. After [51]. ..29
Figure 18. Motor and propeller–ESCs and batteries. After [51].30
Figure 19. Optional sonar and sonar mount. After [51]. ...30
Figure 20. Wireless USB adapter settings ...31
Figure 21. Batteries secured with velcro straps. After [51]. ...32
Figure 22. The Quanser Qbot – front (Left) and top (Right) view. After [54].34
Figure 23. Communication Hierarchy. After [54]. ..35
Figure 24. Anatomy of Qbot, showing various components and body axes. After

[54]. ..36
Figure 25. Buttons on the Qbot Frame. After [54]. ...36
Figure 26. Qbot PCB showing available pins for the PWM output, Digital

Input/Output and Analog Input pins, and jumpers for INT/EXT power.
After [54]. ..37

Figure 27. Logitech Quickcam Pro 9000 USB Camera. After [54].38
Figure 28. The Qbot the Advanced Power System Battery (Left picture) - Battery

location highlighted in the Bottom view of the Qbot. After [54].39
Figure 29. SHARP GP2D12 IR Sensor (Left) - LV-MaxSonar-EZ0 Sonar Range

Finder (Right). After [54]. ...39
Figure 30. Ground Robot QBot Architecture ..42
Figure 31. Earth Fixed Inertial Frame U ...45
Figure 32. Body-fixed Frame B ..46
Figure 33. Quadrotor Configuration Scheme ..47
Figure 34. Moments of inertia about x, y and z-axis. ..57
Figure 35. Kinematics of the differential drive robot, iRobot Create.62
Figure 36. Top View of the Robot ..64

 xii

Figure 37. The wheel angles (Positive in a counterclockwisedirection from one
(arbitrarily chosen) side of the mobile robot). After [58].65

Figure 38. Kinematics of differential robots. After [58]. ..68
Figure 39. Forward kinematics relative to ICC. After [58]. ..70
Figure 40. Control Architecture ..72
Figure 41. Quadrotor QBall-X4 Dynamics Plant ..73
Figure 42. Ground Robot Qbot Kinematics Representation ...74
Figure 43. Pitch – Roll LQR controller ...81
Figure 44. Height LQR controller ...82
Figure 45. X-Y Position LQR controller ...84
Figure 46. Yaw LQR controller ..85
Figure 47. Control Mixing Block ..86
Figure 48. 86
Figure 50. Direct Method Optimization Flow Procedure ..92
Figure 51. Variation of the parameter of the reference functions, varf  95

Figure 52. Excluding Time and Converting Back to Time. After [71]103
Figure 53. Simulink Representation of Qball-X4 Controller ..109
Figure 54. Positions Commands Subsystem ...110
Figure 55. Mode Control Subsystem ...111
Figure 56. Calculate Roll Pitch Heading Height Subsystem ...111
Figure 57. HiQ Subsystem ..112
Figure 58. Joystick from Host Subsystem ...113
Figure 59. Save Data Subsystem ...114
Figure 60. Waypoints Input Diagram ..114
Figure 61. Waypoint State Machine ..115
Figure 62. QBall Actual Trajectories (With Full battery and low battery)117
Figure 63. PWM Input for each motor ..118
Figure 64. Gyroscopes measurements ...119
Figure 65. Accelerometers measurements ...119
Figure 66. Magnetometer measurements ..119
Figure 67. Observable and magnetic heading ...120
Figure 68. Battery voltage and height-heading-position mode (auto=1)120
Figure 69. X- Y position comparisons ..121
Figure 70. Height position comparison ...121
Figure 71. Roll comparison ..122
Figure 72. Pitch comparison ..122
Figure 73. Compass Model ...123
Figure 74. Qbot_magnetometer_calib model ..123
Figure 75. Calibrated Magnetometer X, Y Measurements ...124
Figure 76. Waypoints Input ...124
Figure 77. Motion Planner Simulink Representation ..125
Figure 78. Qbot Actual Trajectory ..126
Figure 79. Qbot x, y, theta plots ..126
Figure 80. Qbot heading and distances plots ...127
Figure 81. “Stream to Qball” subsystem ...127

 xiii

Figure 82. Qball Waypoint State Machine ..128
Figure 83. Host Qbot Localization ..128
Figure 84. Host Qball Localization ...129
Figure 85. Host Qbot - Qball Localization (Modification) ...129
Figure 86. “Optitrack Measurements” Subsystem ..130

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

LIST OF TABLES

Table 1. Mission for Unmanned Vehicles ...3
Table 2. VTOL Concept comparison (1=Bad, 4= Very Good). After [1].5
Table 3. Servo Output Channel ..28
Table 4. Description of Qball’s main components. After [51].30
Table 5. Qbot Model Parameters and System Specifications. From [54]35
Table 6. Comparison of the two vehicles sensors ..43
Table 7. Thrust parameters ...79

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

LIST OF ACRONYMS AND ABBREVIATIONS

ISR Intelligence, Surveillance and Reconnaissance

MIO Maritime Interdiction Operations

UAV Unmanned Air Vehicles

UGV Unmanned Ground Vehicles

UMV Unmanned Maritime Vehicles

USV Unmanned Surface Vehicles

UUV Unmanned Underwater Vehicles

UV Unmanned Vehicle

LQR Linear Quadratic Regulator

QuarC Quanser Real-time Control

DAC Data Acquisition Card

PID Proportional and Integral Derivative

IMU Inertial Measurement Unit

ESC Electronic Speed Controller

GPS Global Positioning System

QCM Quanser Controller Module

HIL Hardware In the Loop

IR/EO InfraRed/ Electoroptical

PWM Pulse Width Modulation

ICC Instantaneous Center of Curvature

IDVD Inverse Dynamics in Virtual Domain

FL Feedback Linearization

USB Universal Serial Bus

PCB Printed Circuit Board

DOF Degrees Of Freedom

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 xix

ACKNOWLEDGMENTS

I would like to thank my advisors Dr. Oleg Yakimenko and S.L. Richard Harkins

for their continuous help, support and meaningful advice throughout the whole thesis

research.

 xx

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. GENERAL

An Unmanned Vehicle (UV) is a power driven vehicle that can be autonomously

or remotely operated and controlled. Normally, it can be deployed or recovered

repeatedly with various types of payload. Unmanned Vehicles are often divided in three

major categories, (1) Air (Unmanned Air Vehicles-UAVs), (2) Ground (Unmanned

Ground Vehicles-UGVs) and (3) Maritime (Unmanned Maritime Vehicles- UMVs). The

Maritime category can be divided into Surface (Unmanned Surface Vehicles-USVs) and

Underwater (Unmanned Underwater Vehicles-UUV) functional areas. There are more

divisions depending on whether the UVs are military or commercial oriented. If military,

the branch and missions dictate the functional role, of which, Intelligence, Surveillance

and Reconnaissance (ISR) missions are the most common. Many UVs are also used as

force-multipliers. First wave strikes, aerial refueling, Maritime Interdiction Operations

(MIO), autonomous payload recovery, search and rescue operations and medical

purposes come to mind.

Autonomous cooperation of multiple unmanned vehicles is a major concern for

several of those functional roles. Various advantages are observed concerning different

types of vehicles and missions. For example, two or more UAVs cooperating together in

order to identify a moving target on the ground; UAVs and ground robots conducting

ISR, with the UAV as a leader and the robot assisting as a follower or inversely.

The dynamic modeling and control of these vehicles is the focus of this thesis.

Rigorous analysis of the dynamics and kinematics has been done in order to set up the

models for designing the controllers. The model of the ground robot is extracted from the

forward and inverse kinematics of the vehicle. Using multiple sensors, there was an effort

to apply several techniques for the control of the UVs. The optimization methods include

the Linear Quadratic Regulator (LQR) and the use of differential flatness property of the

vehicle’s dynamics, for the trajectory planning and optimization in the output space.

 2

In real applications, like the dynamic environment of use ISR missions, quasi-

optimal trajectories proved to be more effective, by achieving full autonomous control

with trajectory planning and path following.

B. MISSIONS

There are many recent developments that concern unmanned systems. Most of

them are used for dangerous and “dirty” human jobs. Facts reveal that a wide range of

requirements and capabilities have been developed and fulfilled toward various warfare

specifications, material requirements and interoperability.

Since UVs can continuously meet the operator’s requirements and needs during or

before the battle, it is expected in the near future that the unmanned systems will be an

indispensable support element in a wide area of missions. Most of those listed for any

category of UVs is in the Table 1. It is quite noticeable that some types of mission can be

conducted by a certain type of unmanned vehicle and some others by all of them, within

its capabilities.

It is often more effective and desirable for a combination of multiple vehicles to

be used in a mission. However, there is a challenge. How can this cooperation of two or

more vehicles could be achieved successfully in real-time operations? Also, the question

of which vehicles should be chosen for a specific operation, especially for the UAVs,

since there are a lot of candidates? Observing the characteristics of the quadrotor

helicopter, it seems right to compare it with some of the already developed unmanned air

vehicles in order to prove how useful it can be toward the ISR missions and show the

advantages of our choice.

 3

UAV UGV UUV/USV

Reconnaissance Reconnaissance ISR

Precision Target Location and

Designation

Precision Target Location and

Designation

Communication /

Navigation Network

Node

Signals Intelligence CBRNE Reconnaissance
Inspection /

Identification

Special Operation Forces (SOF)

Team Resupply

Mine detection /

Countermeasures

Open Ocean Anti-

Submarine Warfare

(ASW)

Battle Management Weaponization / Strike Payload Delivery

Communication / Data Relay Battle Management CBRNE Reconnaissance

CBRNE Reconnaissance Communication / Data Relay SOF Resupply

Combat Search and Rescue Signals Intelligence Strike

Weaponization / Strike Covert Sensor Insertion Littoral Surface Warfare

Electronic Warfare Littoral Warfare
Mine Countermeasures

(MCM)

Mine detection /

Countermeasures
Counter CCD Camera Information Operations

Information Warfare Time Critical Strike

Digital Mapping Digital Mapping

Covert Sensor Insertion Oceanography

Decoy / Pathfinder Decoy Pathfinder

GPS Pseudolite Bottom Topography

Littoral Undersea Warfare

Table 1. Mission for Unmanned Vehicles

 4

C. QUADROTOR TOWARD OTHER UAVs

a. The limitations of fixed-wing unmanned aircrafts, as far as ISR missions

are concerned (the inability to hover or fly at low speeds), have motivated the researchers

to look at the use of Rotary-wing unmanned vehicles. Additionally, the ability to hover

over an assigned position creates the opportunity to use various sensors, common or

experimental ones, attached to the platform. They can be used to collect data, conducting

surveillance for ISR missions. Moreover, the ability of the rotary wing UAVs for vertical

takeoffs and landings can reduce the launch and recover footprint and eliminate the need

of launching mechanisms like catapults and rails that is most common in any fixed-wing

UAVs.

b. However, the large mechanical complexity of the helicopter is major

concern. A complex hub in the main rotor is needed for lift and for pitch alterations.

Also, the vertical tail rotor is used to compensate for the reaction torque on the fuselage,

comes from the main rotor. The quadrotor, however, consists of a pair of counter rotating

rotors, so a tail rotor, is not only required but it offers better mobility and increases the

payload capability. The rotor is also surrounding by a protective frame, so additional

safety can be enhanced.

c. It will be useful to compare the different configurations and mechanisms

in UAVs that already were used for research purposes. Each of them present advantages

and drawbacks as far as maneuverability, compactness, mechanics and aerodynamics

complexity, payload capability and survivability is concerned. In Table 2, a small

comparison between those different VTOL vehicle concepts is described. It is noticeable

that the quadrotor turns out to be the best configuration among them all.

d. However, there are some disadvantages. The quadrotor experiences

dynamic instabilities and has higher sensitivity to disturbances. These facts increase

difficulty to the control implementation. Also, the extra motors it carries, gives the ability

to carry larger payload, but results in the increase of energy consumption.

 5

H VTOL VEHICLE

CONCEPT

Single

Rotor

(A.V. de

Rostyne)

Axial Rotor

(Maryland

University)

Coaxial

Rotors

(ETHZ)

Tandem

Rotors

(Heudiasyc)

Quad

Rotor

(ETHZ)

Blimp

(EPFL)

Bird Like

(Caltech)

Insect

Like

(UC

Berkeley)

Power Cost 2 2 2 2 1 4 3 3

Control Cost 1 1 4 2 3 3 2 1

Payload

Volume
2 2 4 3 3 1 2 1

Maneuverability 4 2 2 3 3 1 3 3

Mechanics

Simplicity
1 3 3 1 4 4 1 1

Aerodynamics

Complexity
1 1 1 1 4 3 1 1

Low Speed

Flight
4 3 4 3 4 4 2 2

High Speed

Flight
2 4 1 2 3 1 3 3

Miniaturization 2 3 4 2 3 1 2 4

Survivability 1 3 3 1 1 3 2 3

Stationary

Flight
4 4 4 4 4 3 1 2

Total 24 28 32 24 33 28 22 24

Table 2. VTOL Concept comparison (1=Bad, 4= Very Good). After [1].

 6

D. RELATED WORK – RECENT DEVELOPMENTS

Today, a lot of universities are focusing their research projects on quadrotor

UAVs. At the same time, many companies have designed commercial quadrotors in a

very efficient and effective way. Draganfly Innovations Inc. in Canada is one of the

companies, they have produced many great products, like the quadrotor helicopter

Draganflyer X4 (Figure 1) and the six-rotor helicopter Draganflyer X6 and Draganflyer

RC helicopters.

The Draganflyer X4 is a stable UAV platform [2] equipped with multiple sensors

including gyroscopes, magnetometers, accelerometers, barometric pressure sensors and

wireless video camera. It is used by many universities, such as the Massachusetts

Institute of Technology (MIT) [3], Boeing Research and Technology [4], Vanderbilt

University [5], and Concordia University in Canada [6].

Figure 1. Draganflyer. After [1].

Draganflyer RC helicopters were used in developing an autonomous Control

System (VECPAV) shown in Figure 2 [4] by Vanderbilt University. They controlled the

helicopter by receiving and processing position and motion data from a sensor and

sending various control commands through a radio transmitter. As reported in [7] and [8],

Draganflyer X6 helicopter is being widely used for police actions, too. Mesa County

 7

Sheriff is the first Public Safety Agency to receive an FAA Certificate of Authorization

(COA) to operate the Draganflyer X6 helicopter for law enforcement use in over a 3,300

square mile area. May Regina’s police force, investigating a homicide, used the

Draganflyer X6 UAV helicopter to obtain aerial pictures and video of the crime scene.

Figure 2. Vanderbilt University’s Embedded Computing Platform. After [3].

Stanford university created a quadrotor helicopter platform (Stanford Testbed of

Autonomous Rotorcraft for Multi-Agent Control II - STARMAC II), shown in Figure 3,

and applied a PID controller for attitude/altitude control in outside environment where

disturbances are unpredicted. The first efforts were not successful since the control of the

vehicle flight was not accurate,. Further improvements of the controller are already

considered [9].

Figure 3. STARMAC II quad-rotor UAV. After [8].

 8

In Ecole Polytechnique Federale De Lausanne (EPFL), a quadrotor helicopter

called Omni-directional Stationary Flying Outstretched Robot (OS4) was designed for

fully autonomous operation using many different control methods. Using the Lyapunov

theory, linear controllers like Proportional and Integral Derivative (PID) and Linear

Quadratic Regulator (LQR), backstepping and sliding mode methods, their research

proved successful by using Integral backstepping where autonomous hovering with

altitude control and autonomous take-off and landing were established [1].

Figure 4. OS4 Test Bench. After [9].

Moreover, Massachusetts Institute of Technology (MIT) developed a Real-time

indoor Autonomous Vehicle test Environment (RAVEN) shown in Figure 5, consisting of

ground UVs and UAV and a motion capture system for tracking in order to conduct

autonomously multi-vehicle missions. It was a successfully developed and tested system

where pilot’s assigned tasks can be performed in real-time by a single or multiple

vehicles. The vehicles followed waypoints created through a trajectory generation

algorithm. RAVEN allows an operator to control up to ten UVs simultaneously [10].

Figure 5. RAVEN Project. After [11].

 9

From 2007 the Networked Autonomous Vehicles Lab. (NAVL) of Concordia

University used different quadrotor UAVs such as Draganflyer X4 and X-Qball from

Quanser Innovations INC Company, as well as several wheeled robots as shown in

Figure 6. They used various control techniques, focusing mostly on fault-tolerant

cooperative control of these vehicles [6].

Figure 6. Concordia NAVL Project. After [5].

Research has been done by Virginia Tech University [11], only for cooperation of

UGVs whereas team of mini ground heterogeneous autonomous vehicles (MUVs) were

developed for urban search and rescue in both indoor and outdoor environments by

utilizing onboard computers and multiple sensors. Autonomous navigation, search,

tracking, localization and mapping (STLAM) as well as obstacle avoidance accomplished

through various experiments and participation in competitions as MAGIC2010. Figure 6

depicts the team of those UGVs and the sensors that are used in each vehicle.

Figure 7. Virginia Tech University’s team of MUVs. After [11].

 10

Various Naval Postgraduate School (NPS) departments have conducted research

for autonomous ground vehicles through the years. Small Robot Technology (SMART)

program in NPS Physics department AXV LAB many prototype robotic platforms or

military applications. One of all the platforms being developed, was called “Bender” and

was equipped with a web-cam and several ultrasound sensors so as to move to designated

destinations autonomously via waypoint navigation, controlled by a commercial BL2000

microcontroller, which was programmed by Dynamic C language [12]. Another UGV,

called “AGB” was a wheeled vehicle, created by MAJ Ben Miller U.S. Army, that

utilized an acoustic and IR (infrared) detectors to detect motion, obtaining the capability

to report images to remote monitoring stations via a web camera, in order to assist in the

interdiction of IED placement [12]. Figure 8 shows these two vehicles.

Figure 8. “Bender” (left) and “AGB” (right) NPS Autonomous Ground Vehicles.
After [13].

 11

E. LITERATURE REVIEW

Quadrotors have proved to be quite complex vehicles, but present many

advantages for research, including the improvement of their control performance for

different flight conditions and through different control techniques and objectives,

described in the following reviews [1], [13-16].

One very common technique, used for more than two centuries is the Proportional

(P), Integral (I), and Derivative (D) (PID) control method, where the proportional control is

used to settle the output signal in direct proportion to the controller input, the integral is used

to eliminate any steady state error, and the derivative reduces the overshoot of the system.

PID techniques aiming to fault tolerant control of quadrotors have been presented in the

following papers [1], [17-20].

Another technique, the feedback linearization (FL) were used by Altug et al. [21]

for altitude and Euler angles stabilization when Lee et al. [22] implemented an output

feedback (OFB) controller with an observer to a nonlinear system so as to obtain an

estimate for the vehicle’s velocities. Furthermore, Tayebi et al. [23] used a PD2

(proportional and twice derivative) feedback structure in order to improve the transient

performance and remove the disturbances, caused by the feedback linearization of the

model. Benallegue et al. [24] showed a way to provide with insensitivity to the

uncertainties by combining the FL method with the high-order sliding mode observer

which acted also as an estimator of the disturbances.

The stability of the system was always a problem, so Kanellakopoulos et al.

introduced the backstepping method [25] so as to hold the nonlinear system [26] for the

controller implementation. This technique became very popular through its variations.

So, Madani and Benallegue [27] used the backstepping method to control three of the

outputs and later combined it with the sliding mode control [28] to solve the chattering

phenomenon successfully, while Mian et al. [29] stabilized the altitude simply by adding

an integrator.

Several quadrotor vehicles were controlled with Lyapunov theory [30], [31],

linear quadratic regulator (LQR) control method [32] and sliding mode control [33].

 12

Castillo et al. [31] presented a controller design based on Lyapunov analysis using a

nested saturation algorithm for stabilization of the altitude and the yaw. Real time

experiments with autonomous take-off, hovering, and landing. The dynamic model of the

quadrotor was obtained with a Lagrange approach while Bouabdallah et al. [1], [30]

described the modeling of the OS4 quadrotor with both Langrange and Euler-Newton

method and provided results for altitude and attitude control from all of the mentioned

techniques, proving that the integral backstepping method was indeed more successful

and efficient for his model.

However, this literature mentions control techniques for test benches or quadrotor

platforms in a laboratory environment or outside environment with limited disturbances

and thus normal flight conditions. There is a possibility that various faults could happen

during flight, like actuators and sensors outage (zero output), transient fault and bias

failure and control surface defect. This will reduce the safety of the vehicle. Thus

nonlinear control schemes should be considered and fault tolerant control (FTC)

techniques are to be proposed. Based on FTC methods for aircrafts presented in [34], [35]

thirty years ago, Zhang et al. [5] have presented various papers for FTC, with the most

comprehensive one, from Zhang and Jiang [36] where they analyzed the background and

different control schemes for fault detection and diagnosis (FDD), presenting also the

current research activities and future challenges.

Qi et al. [37] used Kalman filter to estimate the states and the parameters of the

fault-tolerant control while Zhang and Jiang [38] introduced a two-stage adaptive Kalman

filter for the observation of the potential faults and use of the extracted data for

reconfiguration of the controller.

Many simulation and experimental work has been done in Concordia University in

Canada, using the same quadrotor platform. In his thesis[39], Zhang addressed a FTC

design technique based on Lyapunov based nonlinear control techniques in order to

produce acceptable performance for potential faults in the quadrotor, while Bilhim, in his

own thesis[40] described a gain-scheduled PID controller for fault tolerant control of the

quad-rotor.

 13

Another concern toward the control of the quadrotor is the ability to conduct

various tasks in real time. Yakimenko et al. [41], brought Prof. Taranenko’s ideas (direct

method of calculus of variations in flight dynamics problems with constraints on states and

controls) to a new level and developed algorithms for real-time onboard calculation of quasi-

optimal trajectories [42,] [43], [44]. Various tests in combat vehicles and missiles using these

algorithms were performed onboard 5th-generation aircraft [45]. Kaminer et al. [46] used this

method in 2006 to generate trajectories for landing approach of UAVs and assure flight

deconfliction at maneuvering.

Nowadays, more recent researchers are focused on this method, posing the

trajectory planning as a nonlinear constrained optimization problem and separately the

trajectory (path) following as different problem in order fully autonomy to be achieved.

Using the differential flatness property of the equations of motions, this control method

uses the optimization in the computation of a new feasible trajectory that meet the

dynamic constrains and requirements for the maneuver of the vehicle characterizing by a

given performance index. In 2005 Yang et al. [47] addressed a time optimal control of a

hovering quadrotor helicopter, where genetic algorithms were adopted. In 2006, Cowling

et al. [48], proposed a complete real-time controller for autonomous control of a

quadrotor UAV, while Bouktir et al. in 2008 [49] presented a simple direct method for

trajectory planning of the quadrotor vehicle. Finally, the same year, Hoffmann et al. [50]

in Stanford University, developed an autonomous vehicle trajectory tracking algorithm

for the STARMAC platform.

 14

F. THESIS OBJECTIVES - MOTIVATIONS

 Judging from the existed literature, the researchers have succeeded in achieving a

quite acceptable performance by applying different control techniques either with linear

or nonlinear control theory. The limited experiments of real-time optimal techniques with

inverse dynamics for quadrotor vehicles were the motivation to choose this quadrotor

UAV for analysis and controller implementation. The importance of the cooperation of

two or more vehicles for the successful completion of ISR missions was another urge for

this thesis. The thesis begins with the analysis of the dynamic model of the two vehicles,

a quadrotor and a ground robot, follows the derivation of the equations of motion in order

to set up the state model that will be used for the controllers. Finally, the controller

implementation takes place separately for each vehicle. For the quadrotor, it addresses

LQR control technique for the four controller models that will be used for the path

following of the trajectories that will be generated from a trajectory generator in real

time. The trajectory generator will use quasi optimal solution for the generation of the

trajectories through parameterization with fifth order polynomials. For the ground robot

through forward and inverse kinematics an LQR controller will be used to set up the

vehicle as a leader. where after The specific objectives are as follows:

 Derive a mathematical model of the quadrotor UAV, according to its
particular physical structure and dynamics;

 Derive a mathematical model of the ground robot, according to forward
and inverse kinematics;

 Derive a unified control architecture that enables control of multiple
heterogeneous UAV/UGV teams;

 Develop a LQR controller for its vehicle without fault consideration;

 Design a Trajectory Generator for the quadrotor;

 Implement the two models in Matlab – Simulink integrated with Quarc
software for the real-time operation of the vehicles , Qball-X4 quadrotor
UAV and Qbot ground vehicle

 Finally, perform simulations for the individual control of the vehicles and
the cooperation control to analyze the performance of the design
technique.

 15

G. OUTLINE

Having introduced the concept and the objectives of the thesis in the first chapter,

the second chapter will address the setup of Quanser control lab, consisting of the

experiment platforms UAV QBall X-4 and UGV Qbot and describes their sensors and

elements and the whole set up needed for the completion of the experiment.

Chapter III is devoted to modeling two types vehicles. It describes the quadrotor’s

physical structure and dynamics, and derives its six degree-of-freedom nonlinear

mathematical model. The same procedure is described for the ground robot through its

forward and inverse kinematics for the derivation of the equation of motion.

Chapter IV addresses the existing and proposed control architecture within the

Quanser lab.

The architecture and the simulation process for the cooperation of the two UVs

and results of the lab experiments are shown in order to show the effectiveness of the

thesis work.

Finally, Chapter VI highlights the conclusion and recommendations for future

work.

 16

THIS PAGE INTENTIONALLY LEFT BLANK

 17

II. QUANSER LABORATORY SETUP

A. INTRODUCTION

The laboratory, where the experiments was carried out, is designed in such way,

as to give the opportunity to any researcher to perform research in an indoor, safe

environment that can easily controlled and / or reconfigured depending on the different

demands. It is an open-architecture environment that consists of Quanser’s unmanned

vehicles, the quadrotor UAV QBall-X4 [51] and the ground robot, Qbot [52], a single

ground station and a localization system containing ten cameras, required for tracking the

positions of vehicles in the lab space, since no GPS reception is available indoors.

Every component of the lab can be operated from ground station computer, which

is equipped with the required research software, including MATLAB / Simulink with

real-time control software QuaRC installed and the OptiTrack Tracking Tools program

for managing fully integrated with QuaRC, OptiTrack camera system. In addition,

wireless communications are achieved through a wireless network adapter, inserted to the

ground control station computer while a USB 2.0 port is used for connecting the

OptiTrack indoor localization system.

The Quanser, embedded avionics data acquisition card, HiQ on each vehicle,

provides high-resolution inertial measurement sensors and motor outputs; while the

controllers created from the operator in the host PC can be downloaded and executed on

their embedded Gumstix Verdex target computer [53]. A laboratory illustration with a

collage of various photographs of the camera set up is shown in Figure 9.

 18

Figure 9. Implemented Laboratory illustration.

B. QUANSER REAL-TIME CONTROL (QuaRC) SOFTWARE

Quanser Real-time control (QuaRC) software [52] is a rapid control software for

teaching and research applications, created in the paths of its predecessor WinCon, the

first real-time software to run Simulink-generated code under Windows. QuaRC is

compatible and integrated with Simulink and real-time workshop and gives the

opportunity to the operator to design controllers, generate code and execute it avoiding

low level programming and pure code writing.

 19

QuaRC runs under Windows XP or Vista and is targeting either the host computer

or a remote computer running either Windows or the QNX RTOS. For embedded

computers on unmanned vehicles, QuaRC runs under QNX and the Quanser’s computer

Gumstix Verdex.

So, one or multiple controllers designed in Simulink are able to be converted into

real time code through QuaRC and run on different target processors even on different

chipsets running different operating systems. QuaRC also provides the operators with the

ability to tune the control parameters while the model is running, allowing for rapid

design and test iterations, with little to no recompilation required.

The host and target components referred to as QuaRC Host and QuaRC Target in

QuaRC software are designed to communicate even via Internet, in order the user to

download a controller anywhere and control it from a remote location, tune and configure

the control parameters while the controller runs, plot real-time data and save it inside

MATLAB.

Low level programming is eliminated by utilizing the QuaRC control software

tool, since the number of Simulink blocks to be learned, are reduced. So the controller

design becomes the priority avoiding interfacing issues and extreme code-writing.

QuaRC blocks/tools are quite extensible for more systems and commands to be

added and even allow a Simulink model to communicate with third party devices, while

they provide the mathematical framework for controlling the various devices. The most

important ones are:

 Communication blocks for the supported communication protocols, like
TCP/IP, UDP, Serial port and Shared memory.

 Hardware-In-the-Loop (HIL) block set, an extensible hardware in-the-loop
API used to interface with over 50 data acquisition cards.

 the Vehicle Abstraction Layer (VAL) block set, consisting of a series of
blocks that provide a group of high-level primitive commands to the
operator, while the VAL deals with the vehicle hardware communication.

 Through the use of the Virtual Reality Toolbox in Simulink and QuaRC,
an interactive 3D environment with haptic feedback can be created, allows
for simulation or training applications.

 20

C. GROUND CONTROL STATION

The ground control station is comprised of a PC which is equipped with the

required research software, including MATLAB / Simulink with real-time control

software QuaRC and the OptiTrack Tracking Tools program the OptiTrack camera

system. In addition, wireless communications are achieved through a wireless network

adapter, inserted to the ground control station computer while a USB 2.0 port is used for

connecting the OptiTrack indoor localization system. The distributed control structure

allows the real-time code to be generated from the host controller, wirelessly be sent

through QuaRC to any vehicle where it would be compiled and executed on-board it. The

ground control station can operate with several vehicle controllers at the same time.

 The researcher is able to perform several tasks through the ground control station

computer:

 Developing controllers for the navigation of the unmanned vehicles,

 using the OptiTrack Tracking Tools program to calibrate the localization
system, in order to provide wireless localization data,

 view Simulink Scopes and several display tools to monitor the vehicles
and their status during mission carrying out,

 tune and update the various controller parameters to improve performance
during runtime

 log and monitor the mission runtime data.

 conduct vision and image processing

D. HiQ –GUMSTIX EMBEDDED COMPUTER

The HiQ embedded avionics data acquisition card, shown in Figure 10, developed

by Quanser company was integrated with the small form-factor, lightweight Gumstix

Verdex embedded computer [53] with wireless communications capabilities that runs a

Linux-based operating system in order to achieve measuring the behavior of the

unmanned systems being controlled and be able to run generated simulink models

designed with QuaRC software.

 21

The Gumstix computer has been configured as a QuaRC target system to create

the designed controllers in the ground station computer and download and execute them

on the QuaRC target computer without requiring embedded programming. HiQ card

provides high-resolution inertial measurement sensors and motor outputs, and is

responsible for the reading and writing to vehicle hardware. QuaRC’s Hardware-In-the-

Loop (HIL) tools give directly access to the Input / Output (I/O) for any supported DAC,

including the HiQ.

Figure 10. HiQ embedded avionics data acquisition card. After [55].

The Input / Output of the HiQ card, as it stated in [55] consists of:

 10 PWM outputs (servo motor outputs)

 3-axis gyroscope, range configurable for ±75˚/s, ±150˚/s, or ±300˚/s,

resolution

 0.01832˚/s/LSB at a range setting of ±75˚/s

 3-axis accelerometer, resolution 2.522 mg/LSB

 10 analog inputs, 12-bit, +3.3V

 3-axis magnetometer, 0.76923 mGa/LSB

 4 Maxbotix sonar inputs, 1 inch resolution

 Serial GPS input

 8 channel RF receiver input

 USB input for on-board camera (up to 9fps)

 2 pressure sensors, absolute and relative pressure

 Input power 10-20V

 22

E. LOCALIZATION SYSTEM

Indoor laboratories have to utilize alternative localization systems in order to

track vehicle positions in the area of the operations, since no access to GPS exists. The

OptiTrack Tracking Tools system, used in this laboratory, is created by Natural Point

company and designed for indoor applications. It is a camera-based localization and

tracking system integrated with QuaRC and consists of a series of at least six motion

tracking OptiTrack cameras connected to the ground station computer. The quantity of

the cameras depends on the complexity of the environment; with the increase of the

quantity to reduce the tracking loss possibility. The QuaRC OptiTrack block set allows

operators to track multiple reflective markers simultaneously in 3-D space and/or fixed

patterns of markers (rigid bodies) in 6-DOF position and orientation. The features of the

OptiTrack vision system as stated in [55] are listed below:

 Up to 16 cameras (Figure 12) can be connected and configured for single
or multiple capture volumes, for the experiment ten cameras were chosen.

 Capture volumes up to 400 square feet

 Single point tracking for up to 80 markers, or 10 rigid-body objects

 Typical calibration time is under 5 minutes

 Position accuracy on the order of mm under typical conditions

 USB 2.0 connectivity to ground station PC

 Up to 100 fps tracking

Figure 11. Natural Point OptiTrack camera, adapted from [55].

 23

More specifically, the ten cameras were chosen to be in the position shown in

Figure 9 in order to eliminate the blind areas for every possible scenario that it will be

taken place. The connection should have implemented through the right configuration

since the data from the cameras can be transferred successfully if the cables are up to 5

meters, that’s why three different hubs had to be used in specific location to fulfill that

requirement. Each hub had to be connected to computer with uplink USB cables. Since

those hubs are quite far away from each other, extension cables were used. Each hub can

also connect with up to 6 cameras with high speed USB cables, although we used three or

four only ports. The camera and the documented required configuration for the setup is

shown in Figure 12.

Figure 12. Optihubs Setup with Optitrack Cameras. After [55].

 24

After installing and power the whole system calibration of the cameras is needed.

This procedure will be executed through the Optitrack Tracking Tools program, which is

designed by the Optitrack Company and allows the operator to watch and adjust all the

cameras’ position into the laboratory and the view coming from each of them. This

program is compatible with Quarc software, needed for controlling the vehicles. The

calibration procedure is actually very easy and basically two tools are needed, a trident

and a Γ-shape (gamma-shape) zero point instrument.

Firstly, the operator starts the “tracking tools” program. He has then to conduct

two visual checks; checking that each camera is shown inside the program so that the

connection is successful and that there is no reflection coming from the laboratory space.

Then, he starts moving the trident in a figurate pattern (wanding process), whose edges

have reflectors on the top, within the whole space trying to cover every possible view

angle of each of the cameras He continues doing so until the tracking tools program

indicates that all the cameras have calibrated successfully. Next, the zero point has to be

adjusted with the Γ-shape instrument, where it shows the two axes, x and y. It is

advisable that the vehicle has to be placed at this point in the beginning before the

movement starts. Finally, since the calibration has completed, the calibration file has to

be saved in order to be used in each Simulink vehicle model.

In order to localize the vehicles, this exact file has to be used inside the Quarc’s

software and especially the “Optitrack Point Cloud” Simulink block, a block that gives

the position of the vehicle markers tracked by the Optitrack camera system. After that

every model is ready to be used for any operation. Through that block you can always

check how many markers are shown and if they are tracked successfully and in the event

of an additional marker, thus unwanted reflection, to stop the operation and conduct

another calibration after eliminating the issue. The cameras inside the laboratory are

mounted accordingly and once adjusted, remain stable so that there is no need for

continuous calibration.

 25

F. QUANSER QUADROTOR Qball-X4

1. Introduction

The Qball-X4 quadrotor helicopter designed and constructed by the Quanser

Company, is a rotary wing vehicle platform enclosed within a protective carbon fiber

cage that is propelled by four motors fitted with 10-inch propellers. The particular design

ensures safe operation in an indoor laboratory environment usually surrounded with

various close range obstacles or other vehicles and it can be used in a wide variety of

UAV research applications.

Qball-X4 utilizes Quanser's onboard avionics data acquisition card (DAQ), called

HiQ that cooperates with an embedded computer by Gumstix in order to read the on-

board sensors of the vehicle and drive the motors. The QBall-X4 is an open-architecture

UAV, allowing operators to rapidly create and deploy unmanned vehicle controllers

ranging from low-level flight dynamics stabilization to advanced multi-agent guidance,

navigation and control algorithms. Other specifications of the QBall-X4 include:

 Diameter 0.7m – height 0.6m

 2 LiPo batteries, 2500mAh, 3-cell

 15 minute flight time per charge

 (740Kv) motors fitted with 10 inch propellers

 Protective cage made from carbon fiber enclosing the quadrotor

 USB camera up to 9 frames per sec color images

 Wireless communications capability

QUARC, Quanser's real-time control software, allows the operator to rapidly

develop and test controllers on the host computer through a MATLAB Simulink

interface, whereas these models can be generated and executed on the Gumstix embedded

computer automatically in real time. At the same time operator can observe sensor

measurements and tune the various parameters from the host ground station computer

(PC or laptop).

 26

The communication hierarchy for the operation of Qball-X4 is shown in Figure

13.

Figure 13. Communication Hierarchy. After [51].

 2. X4 Diagram

The basic diagram of the Qball-X4 quadrotor with the axes and angles is shown in

Figure 14, with the X axis aligned with the front of the vehicle. It is very common the tail

or back of the vehicle, marked with colored tape, to point toward the operator and the

positive X axis away from him when the vehicle operates.

Figure 14. Qball-X4 axes and sign convention. After [51].

 27

3. Main Components

The main components of Qball-X4 are described below [51]:

a. Qball-X4 Protective Cage and Frame.

Qball-X4 quadrotor rests inside a protective frame (Figure 2.4) which is a

crossbeam structure to which the Qball-X4 components are mounted. The Qball-X4's

protective cage is a carbon fiber structure designed to protect the frame, motors,

propellers, embedded control module (HiQ and Gumstix) and speed controllers during

minor collisions, since it is not intended to withstand large impacts or drops from heights

greater than 2 meters. That’s why in order to move or lift it, someone has to carry it from

the ends of the frame from both sides as it is shown in figure 15.

Figure 15. Qball-X4 cage and frame. After [51]

b. QUARC Data Acquisition Card (HiQ DAQ) - Gumstix Computer.

The HiQ DAQ shown in Figure 2.6 is a high-resolution inertial

measurement unit (IMU) and avionics input/output (I/O) data acquisition card that

cooperating with the Gumstix embedded computer controls the vehicle by having inputs

from the sensors on board and sending the motor commands. Each motor speed controller

is connected in a specific order to one of the ten PWM servo output channels that are

available on the HiQ, in order for the associated controllers to be operated. An optional

daughterboard that contains additional I/O such as receiver or sonar inputs or a TTL

serial input used for a GPS receiver. The standard servo output channels associated with

every motor and the most common channel associated with sonar in the daughterboard

are shown in Table 3.

 28

Figure 7: HiQ DAQ-HiQ daughterboard with optional receiver inputs. After [51].

Main Board

Motor Servo Output Channel

Back 0

Front 1

Left 2

Right 3

Daughterboard

Sonar 0

Table 3. Servo Output Channel

Figure 16. HiQ cover. After [51].

 29

c. Qball-X4 Power - LiPo Batteries – Switches – Connectors

The power to the Quadrotor (HiQ and motors) is provided by two 3-cell

2500mAh LiPo batteries (#14 in Figure 17) which should be secured tightly in a vertical

position with velcro straps on the bottom side of the frame. After connecting the batteries

with the battery connectors, the power is turned on by using two switches (one for each

battery) (#12 in Figure 17). Because of the fact that these batteries will be damaged and

turned to no use if they are discharged below 10 V, they should be fully charged when

they reach 10.6 V or less.

Figure 17. Battery switch and connector. After [51].

d. Motors, Propellers (10x4.7) and Speed controllers (ESCs)

The motors used in the quadrotor are four E-Flite Park 400 (740 Kv)

motors (Figure 18) fitted with paired counter-rotating APC 10x4.7 propellers [4] (#16 in

Figure 18), mounted and connected with the four electronic speed controllers (ESCs) [5],

along the X and Y axes of the frame.

The motors and propellers are configured so that the front and back motors

spin clockwise and the left and right motors spin counterclockwise. The ESCs receive

commands from the HiQ in the form of PWM outputs from 1ms (minimum throttle) to

2ms (maximum throttle) or can be configured to set the throttle range, but always with

initial PWM outputs to the minimum throttle value of 0.05.

 30

Figure 18. Motor and propeller–ESCs and batteries. After [51].

Figure 19. Optional sonar and sonar mount. After [51].

Table 4. Description of Qball’s main components. After [51].

 31

4. System Set up

a. Wireless Connection

The quadrotor communicates with the host computer and the ground robot

by utilizing an ad-hoc peer-to-peer wireless TCP/IP connection through a USB wireless

adapter. The network established is called GSAH and is an unsecured one, with the

following settings / properties:

IP address: 182.168.1.xxx (any unused number)
Subnet mask: 255.255.255.0
Default gateway: 182.168.1.xxx (same as IP)

Figure 20. Wireless USB adapter settings

b. Qball-X4 Vehicle Setup

After checking that the motors, propellers are firmly secured to the frame

regularly (after every 2 hours of flight), the batteries must be installed and connected to

the battery connectors in the way described above and is shown in Figure 21.

 32

Figure 21. Batteries secured with velcro straps. After [51].

To power on the Qball-X4, the two power switches connected to the

battery cables (#11 in Figure 8) must be turned on, initiating the Gumstix wireless

module one minute after. Then if connected to the GSAH ad-hoc network on the host PC,

the quadrotor is ready to be navigated.

c. Quanser Real-Time Control (QuaRC) Software Configuration

After installing QuaRQ software, a new item will be added in Simulink

menu. Some configurations must be done to be able to run any QuaRC model on the

target vehicle.

First of all, the target's Gumstix IP address must be specified. So, the

operator has to setup the default target IP address for all targets, inside theQuaRC menu

through the Preferences option (e.g., “tcpip://182.168.1.200:17001”).

Moreover, “External” simulation mode must be selected instead of

“Normal” to run the model on the target machine (Gumstix), otherwise only a simulation

will be run on the host machine.

Finally, the building of the model (QuaRC/Build) only remains in order to

begin the code generation and compiling steps on the target vehicle. QUARC console

will show when the compilation will be finished (usually this process takes some

minutes).

 33

d. Qball-X4 Sensors Associated with QuaRC Blocks

QuaRC's open-architecture hardware and extensive Simulink block set

provides users with powerful controls development tools. Several of these blocks of the

QuaRQ software have to be used in order to read the sensors attached in the quadrotor

and provided the data in Simulink models. The most important are the Hardware-In-the-

Loop (HIL) block for communication with HiQ board. The HIL Initialize block for

initialization the HiQ and setup the I/O parameters and the HIL Read Write block for

reading and writing from the HiQ to the model.

The quadrotor’s commands for the four motors are associated with the

PWM outputs 0 to 3. The range of the PWM output values is between 0.05 (zero throttle)

which corresponds to a 1ms pulse (5% of a 20ms duty cycle) and 0.10 (full throttle),

equivalent to 2ms pulse (10% of a 20ms duty cycle).

To control the flight of the quadrotor several measurements are required

from the IMU. The input from the magnetometer, functioning as a digital compass is used

to measure the heading (corresponding yaw angle) while the 3-axis gyroscope and

accelerometer inputs are used to measure the quadrotor dynamics and orientation (roll,

pitch and yaw angles).

As already noted, the LiPo batteries should be charged at 10.6V, otherwise

the batteries will be destroyed. The block “Show Message on Host” allows the operator

to check the battery capacity by displaying a low battery warning message on the host

PC. The operating capacity input measures the battery value as a percentage (0-1%) of

the quadrotor’s input voltage range from the minimum value of 10V to the maximum one

of 20V (10.6V is equivalent to 0.06 or 6%).

 34

G. QUANSER QBOT GROUND VEHICLE

1. Introduction

The Quanser Qbot (Figure 22) is an autonomous ground robot vehicle consists of

the iRobot Create platform widely used in robot applications with four infrared and three

sonar sensors and a Logitech Quickcam Pro 9000 USB camera mounted on the vehicle,

and the embedded Quanser Controller Module (QCM) utilizing a Gumstix computer so as

to run QuaRC, Quanser's real-time control software and the Qbot data acquisition card

(DAC). So, in other words, Quanser has taken the iRobot Create platform and augmented

its sensor capabilities by adding [54]:

 8 PWM outputs for servo motors

 7 reconfigurable digital I/O, plus 1 digital output LED

 7 analog inputs, 12-bit, +5V inputs, resolution 6.2 mV

 5 infra-red (IR) sensors up to 150cm

 3 sonar sensors 15cm to 6.45m, 1-inch resolution

 3-axis magnetometer, resolution of 0.77 milli-Gauss

 USB camera up to 9fps color images

 Wireless communications



Figure 22. The Quanser Qbot – front (Left) and top (Right) view. After [54].

The QCM interface is a MATLAB Simulink with QuaRC as in the quadrotor. The

Qbot is accessible through three different block sets: the Roomba block set to drive the

 35

vehicle, the HIL block set to read from sensors and/or write to servo outputs, and finally

the OpenCV block set to access the camera. The controllers are developed in Simulink

with QuaRC on the host computer, and these models are downloaded and compiled into

executables on the target [54] seamlessly. A diagram of this configuration is shown in

Figure 23 and the characteristics of the Qbot vehicle is shown in Table 5.

Figure 23. Communication Hierarchy. After [54].

Qbot Specifications

Symbol Description Value Unit

D Diameter 0.34 m

H
Height

(With Camera Attachment)
0.19 m

Vmax Maximum speed 0.5 m/sec

M Total mass 2.92 Kg

Table 5. Qbot Model Parameters and System Specifications. From [54]

 36

2. Main Components Description

The main components of the Qbot are described in the next section [54].

a. The iRobot Create®

The Qbot uses an iRobot Create® frame (Figure 24). The Qbot body

frame axes are the Quanser standard, where the x-axis is in the forward direction, the y-

axis is to the left, and the z-axis is up. The iRobot Create® has a bumper sensor and an

omni-directional infrared receiver. The QCM is capable to read these sensors and

receiving their data. Two differential drive wheels drive the vehicle of diameter of 34 cm

and height (without camera attachment) of 7 cm.

Figure 24. Anatomy of Qbot, showing various components and body axes.
After [54].

The Qbot is turned on by pressing the power button. Built-in demos for the

vehicle are also available through the Play and Advance buttons (Figure25).

Figure 25. Buttons on the Qbot Frame. After [54].

 37

b. Qbot DAC

The Qbot DAC is a data acquisition board, located underneath the black

cover of the Qbot, existed for receiving analog inputs and sonar inputs or any other input

from different optional sensors. It is also capable of writing PWM outputs for possible

servo actuators.

c. Gumstix Computer

The Gumstix is a small-scale, fully functional, open source computer at

where the MATLAB/ Simulink models are directly downloaded, compiled, and executed

through the QuaRC software. The Gumstix motherboard is connected directly to the Qbot

DAC. Wifi attachment board to allow wireless connection between the target Gumstix

and the host computer and/or other vehicles is also available.

d. The Printed Circuit Board (PCB)

The wiring and circuitry for the Qbot in the printed circuit board (PCB)

that is located on the black cover of the Qbot over the Gumstix computer and the DAC.

The sensors and the webcam are also mounted on the PCB. Figure 26 shows the

accessible pins for the user. In particular, the DIO, PWM output, and analog input pins

have been labeled for clarity.

Figure 26. Qbot PCB showing available pins for the PWM output,
Digital Input/Output and Analog Input pins, and jumpers for INT/EXT

power. After [54].

 38

e. Digital Input/Output Pins (DIO #)

The DIO channels (0 to 6) are set as inputs by default. With the HIL

Initialize block, the operator can configure the DIO channels either as inputs or outputs

(not both). There is also a fixed output indicated by a LED labeled DIO7 associated with

a final digital channel (7).

f. SW/nSW and INT/EXT Jumpers

The operator can switch between internal power from the iRobot Create

battery (INT) and an external battery power supply (EXT) with the power source jumper

INT/EXT jumper. To power the Qbot, the jumper should be placed in the INT position

and then the SW/nSW jumper will indicate if the iRobot Create must be switched on

(SW) for the Qbot to receive power, or whether the Qbot should always draw power even

when the iRobot Create is off (nSW).

g. USB Camera

The camera is mounted on top of the Qbot (Figure 27). The QuaRC block

set that uses the Open Source Computer Vision library giving the opportunity to the

operator to capture and display images in real time, process them, and even save them.

The image Logitech Quickcam Pro 9000 USB resolution though is low.

Figure 27. Logitech Quickcam Pro 9000 USB Camera. After [54].

 39

h. Battery

The Qbot is powered by the Advanced Power System (APS) Battery

(Figure 28-Left) provided by iRobot and placed in specific location under the Qbot

(Figure 28-Right). If the battery is fully charged, is able to last continuously for about 2

hours. The power level of the battery is designated by the power light (green for fully

charged / red for discharged batteries) on the Qbot platform. The battery takes about 3

hours to fully charge.

Figure 28. The Qbot the Advanced Power System Battery (Left picture) -
Battery location highlighted in the Bottom view of the Qbot.

After [54].

i. Infrared Sensors - Sonar Sensors

Qbot has five SHARP 2Y0A02 low cost infrared range sensors (20-150

cm) (Figure 29-Left) and three MaxSonar-EZ0, very short to long range detection and

ranging, sonar sensors (Figure 29-Right), that are connected to the analog input channels

of the Qbot DAC. Readings of those sensors can be taken through the HIL Read Write

block of the QUARC software. The sonar provides detection range between 0 and 254-

inches (6.45 meters) while the information provided covers range from 6-inches out to

254-inches with resolution of 1 inch.

Figure 29. SHARP GP2D12 IR Sensor (Left) - LV-MaxSonar-EZ0 Sonar Range
Finder (Right). After [54].

 40

3. System Setup

a. Setting up the Qbot

To set up the Qbot the operator has to follow two steps:

 (1) Insert the battery under the Qbot to the designated area.

(2) Press the power button to turn on both the robot and Qbot

DAC/Gumstix.

b. Establishing Wireless Connection

The Qbot communicates with the host computer and the quadoror by

utilizing an ad-hoc peer-to-peer wireless TCP/IP connection through a USB wireless

adapter. The network established is the same GSAH one, with the settings / properties

described before for the quadrotor.

c. Quanser Real-Time Control (QuaRC) Configuration

Having installed QUARQ software, the same configurations with the

quadrotor have to be done for the Qbot as well, so as to be able to run any QUARC

model on the target vehicle.

First of all, the target's Gumstix IP address must be specified. So, the

operator has to setup the default target IP address for all targets, inside the QUARC menu

through the Preferences option (e.g., “tcpip://182.168.1.200:17001”).

Moreover, “External” simulation mode must be selected instead of

“Normal”, so as to run the model on the target machine (Gumstix), otherwise only a

simulation will be run on the host machine.

Next, the building of the model (QUARC/Build) only remains in order to

begin the code generation and compiling steps on the target vehicle. QUARC console

will show when the compilation will be finished (usually this process takes some

minutes).

 41

d. Qbot Sensors Associated with QuaRC Blocks

Several blocks of the QUARQ software have to be used in order to read

the sensors attached in the Qbot and provided the data in Simulink models. The most

important are described below [54]:

(1) The Roomba Initialize block located in the Simulink

Library Browser, under QuaRC Targets / Devices / Third-Party / iRobot / Roomba /

Interfacing, is required for the Gumstix computer to communicate with the Qbot. The

operator must change the local host from the default 2 to 1.

(2) The HIL Initialize block located in the Simulink Library

Browser, under QuaRC Targets / Data Acquisition / Generic / Configuration, is required

to communicate with the Qbot DAC. When model runs, the board type "qbot" must be

selected in order to target the Qbot.

(3) The HIL Read Write block located in the Simulink Library

Browser, under QuaRC Targets / Data Acquisition / Generic / Immediate I/O is required

to read infrared sensor (analog) and sonar measurements from Qbot.

(4) The blocks located in the Simulink Library Browser, under

QuaRC Targets Beta / Image Processing / Open Source Computer Vision are required to

use the on-board Logitech camera for image processing.

 42

H. TOWARD UNIFIED CONTROL ARCHITECTURE

From the standpoint of controls QBall and QBot are shown in Figures 30 and 31,

respectively. On the left the control inputs that affect vehicles dynamics and kinematics

are introduced. On the right the available output signals are shown. The position feedback

is provided by the motion capture cameras. While both systems are capable to operate

autonomously, the communication with the control station is provided via a wireless

connection. Multiple systems can talk to each other directly as well.

Quadrotor QBall-X4 Architecture

Figure 30. Ground Robot QBot Architecture

Table 6 shows sensors available on both vehicles side by side.

QBot

QBall

STATES: X, dotX, Y, dotY, Z, dotZ

STATES: φ, dotφ, θ,dotθ, ψ, dotψ

Magnetometer Output

Accelerometer Output

Sonar Output

Wireless Connection to
the control station

X, Y, Z Position
Through Motion Capture Cameras

X, Y Position
Through Motion Capture Cameras

Visual Camera Output

IR Cameras Output

Sonars Output

Bumper Output

STATES: X, dotX, Y dotY, θ, dotθ

Wireless Connection to
the control station

Vright

Vleft

U1=Total Thrust

U2=Pitch Moment

U3=Roll Moment

U4=Yaw Moment

 43

 Vehicles

 Sensors
QBall – X4 QBot

IR Camera - +

Visual Camera - +

Sonar + +

Bumper - +

Accelerometer + -

Magnetometer + -

Table 6. Comparison of the two vehicles sensors

QBall can also be equipped with the IR/EO camera. In terms of performance,

 QBall has a large velocity compare o that of QBot which opportunity leads
to the fast accomplishment of mission.

 The higher height of QBall operation results in larger view of the field of
operation and better operation coverage.

 QBot has a larger payload / sensor capability and therefore better obstacle
avoidance and identification of the target capability.

Hence these two vehicles complement each other, and that’s why their

cooperation could improve the chances of mission success.

 44

THIS PAGE INTENTIONALLY LEFT BLANK

 45

III. MODELLING OF QUADROTOR AND GROUND ROBOT

In this chapter, the dynamic and kinematics modeling of the quadrotor and the

ground robot will be presented to the extent of deriving the final equations describing the

vehicles and that they will be used for the design of the controllers. The general dynamic

model of the quadrotor has been presented in many papers and can be derived through

two different approaches, the Euler – Newton and the Euler - Lagrange formalisms, see

[1]. The modeling of a ground robot is modeled with the forward and the inverse

kinematics; see [56] and [57].

A. MODELLING OF QUADROTOR QBALL-X4

In order to start modeling the quadrotor, the coordinate frames that were used,

have to be presented, described and defined.

1. Coordinate Frames

a. Earth-Fixed Inertial Frame U

The inertial frame is established by the direction of the Earth’s rotation.

The coordinate frame to be used is the North-East-Up, with the origin UO generally at an

arbitrary ground point, here chosen to be at the quadrotor take-off point. As shown in

figure 32, the unit vector ‘x’ points toward North, the unit vector ‘y’ toward East and ‘z’

toward the opposite direction of the center of the Earth.

Figure 31. Earth Fixed Inertial Frame U

UZ

(Up)

UY

(East)

UX

(North)

Origin UO

(QTOP)

x̂ ŷ

ẑ

 46

b. Body- Fixed Frame B

The body frame is rigidly attached to and defined within the vehicle and

exists to specify quadrotor’s orientation. The definition for this frame has the x-axis along

the two opposing propellers axis, the y axis pointed along the other two opposing

propellers and the z-axis upward, forming the right hand set. This frame is shown below

in figure 33 and Roll, Pitch and Yaw are defined as the angles of rotation φ, θ and ψ

about x, y and z axis, respectively. The origin of the body frame is at the center of the

mass of the quadrotor.

Figure 32. Body-fixed Frame B

2. Modeling Assumptions

At this point several reasonable assumptions concerning the modeling of the

quadrotor must also be made:

 The Earth is flat, non-rotating, and an approximate inertial reference
frame.

 The acceleration of gravity is constant and perpendicular to the surface of
the Earth.

 The design is symmetrical with respect to the axis.

 The quadrotor body as well as the propellers will be treated as rigid body,
so that the Newton- Euler Formulas can be used.

 Since, it is an indoor experiment, and the speed is considered to be low,
the air friction will be ignored, gyroscopic effects and the aerodynamic
torques can be cancelled.

 No swash plate exists for each rotor.

Origin BO

(CM)

BY

(Out)
Pitch θ

BX

(Along VLA)
Roll φ

BZ

(Up)
Yaw ψ

x̂ ŷ

ẑ

 47

3. Vehicle State Variables

The quadrotor QBALL X-4 is an unmanned helicopter with four rotors combined

with a cross scheme. The quadrotor generates its lift by these four rotors. The two

opposing rotors form one pair, where the first pair (#1 and #3) is set on the x-axis and is

rotated counter clockwise while the second one (#2 and #4) is set on the y-axis, rotated

counterclockwise as shown in Figure 34.

Figure 33. Quadrotor Configuration Scheme

The earth-fixed inertial frame (Xu, Yu, Zu) shown, specify the location of the

vehicle, while the body frame (Xb, Yb, Zb) specify the vehicle orientation, together with

angles of rotation, roll (ф), pith (θ), and yaw (ψ).

Let the mass of the quadrotor be m that represents the whole structure mass of the

quadrotor, as it stated in the assumption (d) in the previous section.

UX

UZ

UY

m

Pitch Roll

Yaw

 48

Let BV the velocity vector of the vehicle and B the rate of change of the angle

(angular velocity) in body frame, respectively, u x the position of the vehicle in the

inertial system

 B

u

V ui v j wk v

w

 
      
  

   
 (1)

 B

p

pi q j rk q

r


 
      
  

  
 (2)

 u

x

x xi yj zk y

z

 
      
  

 
 (3)

Also, the Euler angles of the vehicle which rotates around the XYZ Body frame

axis are represented as





 
    
  

 (4)

4. Transformation Matrices

In order to transform the state vectors from {U} frame to the {B} frame, a

transformation matrix must be used. This matrix according to the convention of rotate

first around x-axis, then around y axis and finally by the z axis as described in [1] can be

found by the following equation:

 , , ,* *B
u x y zR R R R   (5)

where , , ,, ,x y zR R R   are the rotation matrices around each axis, respectively, as

follows:

 49

 Rotation around x-axis: ,

1 0 0

0 cos sin

0 sin cos
xR   

 

 
   
  

 (6)

 with yaw angle ,
2 2

     
 

 Rotation around y-axis: ,

cos 0 sin

0 1 0

sin 0 cos
yR 

 

 

 
   
  

 (7)

 with pitch angle ,
2 2

     
 

 Rotation around z-axis: ,

cos sin 0

sin cos 0

0 0 1
zR 

 
 

 
   
  

 (8)

 with roll angle ,
2 2

     
 

So, if we use the Eq. 6, 7 and 8 in Eq. 3.5, the final form of the transformation

matrix can be derived:

, , ,* *B
u x y zR R R R   

cos cos sin cos sin

sin sin cos cos sin sin sin sin cos cos sin cos

cos sin cos sin sin cos sin sin sin cos cos cos

    
           
           

 
    
   

 (9)

The transformation matrix from {B} to the {U} coordinate frame is:

cos cos cos sin sin sin sin sin cos sin cos

cos sin cos cos sin sin sin sin cos cos sin sin

sin sin cos cos cos

u
B

sin

R

           
           
    

   
     
  

 (10)

 50

5. Kinematic Equations

Having defined the transformation matrices, we can now find the velocity of the

vehicle in the inertial frame instead of the Body coordinate frame and it can be given by:

 u u B u
B B

x u

x y R V R v

z w

   
         
      


 



(cos cos) (cos sin sin sin sin) (sin cos sin cos)

(cos sin) (cos cos sin sin sin) (sin cos cos sin sin) (3.11)

(sin) (sin cos) (cos cos)

u v sin w

u v w

u v w

           
           

    

     
       
   

Moreover, the rate of change of the Euler angles of the vehicle as stated in [1] can

be found by:

 1() BQ


 




 
     
  





 (12)

where the matrix Q(Λ) and its inverse one, 1()Q  are given by the equation:

1 0 sin

() 0 cos sin cos

0 sin cos cos

Q


  
  

 
    
  

 (13)

 1

1 sin tan cos tan

() 0 cos sin

0 sin / cos cos / cos

Q

   
 

   



 
    
  

 (14)

So, using the Eq. 2 in Eq. 12 the following equation can be derived:

1 sin tan cos tan

0 cos sin

0 sin / cos cos / cos

p

q

r

    
  
    

     
           
         





 (15)

The last equation and Eq. 11 are the kinematic equations of the quadrotor.

 51

6. Dynamic Equations

According to Newton’s second law in the {U} orientation frame, the following

equation represents the applied force u F and the acceleration of the vehicle u x in the

{U} frame:

 ()
x

u u
y

z

F x
d d

F F mV m V m x m y
dt dt

F z

   
          
      




 


 (16)

If we multiply by both sides the transformation matrix B
u R of Eq. 9, Eq. 16 will be

transformed to: B u B B u B
u u u

x

R F F Rm x m R y

z

 
     
  

 


 


 (17)

()B B u
u

d
F m R x

dt
   (18)

Continuing the math:

() () ()

() ([()])

B B u B B u B u B B u B B u B
u B u B B u B u B

B B B u B B B u B B
u B u B

d
F m R R V m R R V R V m R R V R R V

dt

F m V R R V m V R RS V

     

     





   

  

 (()))B B B BF m V S V    (19)

Since ()B u B
u BR RS  , where ()BS  is a skew symmetric matrix. The term

()B BS V  is the Coriolis term and can be written as:

 ()B B B B

qw rv

S V V ru pw

pv qu

 
 

      
  

 
 (20)

 52

If we substitute the derivative of Eq. 1 and the Eq. 20 into Eq. 19 and rearrange

the terms, then:

1
()

x
B

y

z

u qw rv F u qw rv

F m v ru pw F v ru pw
m

w pv qu F w pv qu

          
                         
                   


 
 
 

1

x

y

z

u F qw rv

v F ru pw
m

w F pv qu

     
             
          





 (21)

 where , ,x y zF F F are the forces in the body coordinate frame in each axis, , ,u v w

and , ,u v w   are the velocity and the acceleration components in the body frame,

respectively, in each axis and , ,p q r are the angular velocity components in the body

frame in each axis.

 Using the Euler’s Law, the momentum 0

uM in the inertia frame will be given by:

0 () ()u u u B
B B

u B u B u B
B B B B B B

d d
M A RJ

dt dt

RJ RJ RJ



  

  

 


 

    0

0

()

[()] []

u B B u B
B B B B

B u B u B B B u B
u u B B u B B

R J RJ

R M R R J R RJ

  

  

   

    

  

  

 0 ()B B B B
B B

L

M M J J

N

  
 
      
  

    ` (22)

 where L, M, and N rolling, pitching and yawing moments, respectively, in the

body coordinate system, B A


 the angular momentum in the Body frame and BJ is the

Inertia Tensor of the quadrotor in the B coordination frame (3 3 0BJ  ):

xx xy xz

B yz yy yz

zx zy zz

J J J

J J J J

J J J

 
 

  
 
 

 (23)

 53

Then, the angular acceleration will be given by the equation:

 1
0[()]B B B B

B BJ M J       (24)

where 1

1
0 0

1
0 0

1
0 0

xx

B
yy

zz

J

J
J

J



 
 
 
 

  
 
 
 
  

 (25)

since 0xy yz xz zx yx zyJ J J J J J      because the quadrotor is symmetric about all

three axes.

If we take the derivative of the angular velocity in Eq. 2:

 B

p

q

r


 
   
  


 


 (26)

And combine Eq. 2 with Eq. 23 to take the external product, we will have:

() ()

() ()

() ()

xx xy xz
B B

B yx yy yz

zx zy zz

yx yy yz zx zy zz

xx xy xz zx zy zz

xx xy xz yx yy yz

p J p J q J r

J q J p J q J r

r J p J q J r

r J p J q J r q J p J q J r

r J p J q J r p J p J q J r

q J p J q J r p J p J q J r

 
   
          
        

        
       
        

 

 (27)

Finally, if we substitute Eq. 3.31 and Eq.3.33 in equation 3.30 we will have:

1

() ()

(() ())

() ()

yx yy yz zx zy zz
B

B xx xy xz zx zy zz

xx xy xz yx yy yz

p L r J p J q J r q J p J q J r

q J M r J p J q J r p J p J q J r

r N q J p J q J r p J p J q J r

 

           
                 
                


 



 54

()

()

()

zz yy
xx xx

xx zz
yy yy

yy xx
zz zz

L qr
J J

J J
p

M pr
q J J

J J
r

N pq
J J

J J

   
   

                          
   
      





 (28)

The last equation together and the Eq. 21 are the dynamic equations of the

quadrotor. Combining the kinematic and the dynamic equations of the quadrotor you end

up with the nonlinear differential equations of motion of a rigid body with six degrees of

freedom.

 7. Forces Calculation

a. Gravity Force

Gravity GF is the main force acting on the quadrotor in the earth fixed

frame along z-axis toward the ground, which is given by the total mass of the quadrotor

multiplied by the acceleration of the gravity as follows:

0

0u
GF

mg

 
   
  

 (29)

where m is the total mass of the vehicle, g is the acceleration of the gravity.

Consequently, Eq. 29 will be transformed in the body coordination frame using the

transformation matrix B
u R from Eq. 9:

0 sin

0 sin cos

cos cos

Gx
B B

G u Gy

Gz

mg F

F R mg F

mg mg F


 
 

     
            
          

 (30)

where B
GF is the gravitational force in the body frame and 1 2 3, ,G G GF F F are the

components of the gravity force in the x, y , and z direction, respectively.

 55

b. Drag Force

The second force acting on the quadrotor is the drag force that opposes the

movement of the quadrotor and is equal to the coefficient of drag multiplied by the

square of the velocity in every axis. In the inertial frame the drag force is given by the

equation:

2

2

2

1

2
1

2
1

2

u
Dx c x

u u
D Dy c y

u
Dz c z

C A V

F C A V

C A V







 
 
 
   
 
 
  

 (31)

where A is the cross-sectional area,  is the air density, , ,x y zV V V are the body frame

velocity components in the x, y, and z axis, respectively. , ,Dx Dy DzC C C are the drag

coefficients in each axis. In order to get the drag force components in the x,

y, and z direction in the body frame, we will also use the matrix B
u R from Eq. 9.

2

2

2

1

2
1

2
1

2

Dx c

Dx
B B u

D u D Dy c Dy

Dz

Dz c

C A x
F

F R F C A y F

F
C A z







 
 

  
       
    

 
  







 (32)

However, the velocity regime in which the quadrotor operates is at slow

airspeeds. Avoiding the complex calculation of computational fluid dynamics and using

the same considerations as in [1], where the coefficients of drag varies with the object’s

shape about (1.12Dx Dy DzC C C  ) and the cross-sectional area facing each axis and

the combined surface area of the cross-frame with batteries and motors, are considered,

then cA is found to be about 0.16m for the x and y axis and 0.4m for the z-axis,

respectively. Also, by using as the common air density value of 977.2 3/Kg m , the

resulting drag force components are found to be around

5 2 5 2 4 28.756*10 * / , 8.756*10 * / , 5.289*10 * /Dx Dy DzF x Kg m F y Kg m F z Kg m       .

This is quite negligible and thus can be ignored.

, ,Dx Dy DzF F F

 56

c. Thrust forces

The quadrotor’s motion is only controlled by varying independently the

speed of the four rotors. Each rotor produces both a thrust and a torque (moment) about

its center of rotation. Let _T iF be the thrust for its rotor, respectively, and l the distance

of each rotor from the center of the quadrotor’s mass. The quadrotor’s motion is affected

by the four propellers only in the z-direction so we have that:

1 2 3 4

0

0
Tx

T Ty

T T T T Tz

F

F F

F F F F F

   
       
        

 (33)

where 1 2 3 4, , ,T T T TF F F F are the thrusts that the 1st, 2nd, 3rd and 4th rotor produces,

respectively, and , ,Tx Ty TzF F F are the total thrust force in each direction in body frame.

d. Total Force

 The total force is the sum of the gravity, drag and thrust forces:

2

2

1 2 3 4
2

1

2sin 0
1

sin cos 0
2

cos cos 1

2

Dx Tx Gx
B

Dy Ty Gy

Dz Tz Gz

Dx c

Dy c

T T T T

Dz c

F F F

F F F F

F F F

C A x
mg

mg C A y

mg F F F F
C A z




  
 



  
     
   

 
 

    
           
         

 
  









2

2

2
1 2 3 4

1
sin

2
1

sin cos
2

1
cos cos ()

2

Dx c

x

y Dy c

z

Dz c T T T T

mg C A x
F

F mg C A y

F
mg C A z F F F F

 

  

  

   
   
        
    

     
  







 (34)

 57

8. Moments (Torques) Calculation

Let i be the torque generated by each propeller. The rolling moment ()rollL  is

produced by varying the right (#2) and the left (#4) rotor speeds

2 4 2 42 4 () ()roll T T T T right leftL F l F l F F l F F l          

Similarly the pitching moment ()pitchM  (torque) is produced by varying the front

(#1) and the back rotor (#3) speeds

1 3 1 31 3 () ()pitch T T T T front backM F l F l F F l F F l          

Due to the third Newton’s law, the drag of the propellers produces a yawing

moment (torque) on the body of the quadrotor. Therefore, the total yawing moment is

obtained from all the rotor speeds (clockwise and counterclockwise), is in opposite

direction of the motion of the propellers and is given by

1 3 2 4

() ()yaw T T T T right left front backN F F F F d F F F F d        

where d is the force to moment scaling factor calculated to be d=4N.m.

9. Moments of Inertia Calculations

a. Moment of Inertia along x

If the two motors (#1 and #3) along x axis and the main, central body of

the quadrotor considered cylindrical in shape with mass 1 3, cm m and m , radius

1 3, cR R and R and height 1 3, ch h and h , respectively, as shown in Figure 34.

Figure 34. Moments of inertia about x, y and z-axis.

Pitch θ

Roll φ

Yaw ψ
z-axis

x-axis

y-axis

 58

Only the rolling motion is considered. So, the moment of inertia about the

x axis would be due to the main body and the motors #1 and #3 motion about x-axis and

due the motion of the other two motors (#2 and #4) about x axis

 1 3 2,4xx cJ J J J J    (38)

The moment of inertia of a cylinder about an axis perpendicular to its

body, as specified in Halliday- Resnick-Walker [57], thus the moment of inertia due to

main body and the two motors are

2 2

, 4 12
c c c c

c x

m r m h
J

 
  (39)

2 2

1 1 1 1
1, 4 12x

m r m h
J

 
  (40)

2 2

3 3 3 3
3, 4 12x

m r m h
J

 
  (41)

The moment of inertia of two identical spheres connected together by a

horizontal arm, and rotating about a vertical axis, which is passing through the center of

the arm and is perpendicular to it, as also specified in [57], thus the moment of inertia

due to motors #2 and #4 rotating about x-axis approximated to be

 2
2 4, 2x rJ m l  (42)

Since the motors are identical:

1 3 2 4 1 3 2 4 1 3 2 4,r r rm m m m m r r r r r and h h h h h           

Finally, the total inertia about x axis by substituting Eq. 39 to 42 in Eq. 38

is

2 22 2

22
2 6 4 12

o c o cr r
xx r

m r m hmr mh
J m l     (43)

 59

b. Moment of Inertia along x

Similarly, because the quadrotor structure is symmetrical and the motors

are identical the moment of inertia about y-axis would be exactly the same:

2 22 2

22
2 6 4 12

o c o cr r
yy r

m r m hmr mh
J m l     (44)

c. Moment of Inertia about z-axis

The moment of inertia about z-axis, will be due to main body and due to

all the motors. The moment of inertia due to the main body is found in [57] to be:

2

, 2
c c

c z

m r
J  (45)

The moment of inertia due to all the motors #1 to #4 is approximated to

be:

 2
1 2 3 4, 4z rJ m l    (46)

Therefore, the total inertia about z-axis is:

2

24
2
c c

zz r

m r
J m l 

 (47)

All the above moments of inertia were calculated for the quadrotor and

found to be as follows:

2

2

2

0.03

0.03

0.04

xx

yy

zz

J Kgm

J Kgm

J Kgm







. (48)

 60

10. Final Equations of Motion

Combining the Eq.34 with the dynamic Eq. 21 we can get:

1 2 3 4

2

2

2

1
sin

2
1 1

sin cos
2

1
cos cos ()

2

Dx c

Dy c

Dz c T T T T

mg C A x
u qw rv

v mg C A y ru pw
m

w pv qu
mg C A z F F F F

 

  

  

   
    

             
       

     
  



 




1 2 3 4

2

2

2

1
sin ()

2
1

sin cos ()
2

1 1
cos cos ()

2

Dx c

Dy c

Dz c T T T T

g C A x rv qw
mu

v g C A y pw ru
m

w
g C A z F F F F qu pv

m m

 

  

  

     
   
         
    

       
  



 




 (49)

If we neglect the drag force then the equation takes the form:

1 2 3 4

sin ()

sin cos ()

1
cos cos ()T T T T

u g rv qw

v g pw ru

w
g F F F F qu pv

m


 

 

 
    
       
          
 





 (50)

Similarly as before, if Eq. 17 is combined with Eq.34 and the transformation

matrix in Eq. 9 is applied, then:

 61

2

2

2

1

1

20
1 1 1

0
2
1

2

x x
B B u

y u B y

z z

Dx c

u B u
B u B Dy c

Dz c

F x x F

F F Rm y y R F
m

F z z F

C A x

R R R C A y
m m

mg
C A z







       
                  
              

 
 

   
      
    

 
  


 
 
 






1 2 3 4

1 2 3 4

0

0
1

0

0 0
1

0 0

1
()

u
B

T T T T

u
B

T T T T

R
m

F F F F

x

y R
m

z g
F F F F

m



 
 

  
    

 
    
          
          
 





1 2 3 4

1 2 3 4

1 2 3 4

1
()(cos sin cos sin cos)

1
()(sin cos cos sin sin)

1
() cos cos

T T T T

T T T T

T T T T

F F F F
mx

y F F F F
m

z
F F F F g

m

    

    

 

     
   
           
    

    
  





 (51)

Substituting Eqs. 35, 36 and 37 in Eq. 28 becomes:

2 4

1 3

1 3 2 4 1 3 2 4

2 4

1 3

()
()()

()
() ()

() ()
()

T T
zz yyzz yy

xx xxxx xx

T T
xx zz xx zz

yy yy yy yy

T T T T T T T T
yy xx

zz zz zz

F F l qrqr J JJ J
J JJ J

p
F F lpr pr

q J J J J
J J J J

r
F F F F d F F F F dpq pq

J J
J J J

 

 

      
                              





()yy xx
zz

J J
J

 
 
 
 
 
 
 
   

(52)

Equations 15, 51 and 52 form the dynamical model of the quadrotor that will be

used for the design of the controller. Although some approximations and assumptions

already were made, some more simplifications have to be done for the better

implementation of the control scheme.

 62

B. MODELLING OF GROUND ROBOT QBOT

1. Differential Drive Kinematics

The notation and a mathematical model for the kinematics of a wheeled mobile

robot will be developed in this section complying with references [56]-[61]. Wheeled

robots have some simplifying features that make them easier to be modeled than real

vehicles, since the operation field is on 2-D space environment. In particular, these robots

have two independently driven, coaxial wheels. The speed difference between the two

wheels causes a rotation of the robot about the center of the axis while the wheels

produce motion in the forward or reverse direction. It is known that real vehicle

dynamics, at high velocities, cause a vertical motion which is compensated for by

applying suspension to their design. However, because these robots operate in very low

speeds the vertical motion is almost negligible and no suspension is required.

 Since the robot is moving on a horizontal plane, the degrees of freedom are three

(3 DOF), the x and y positions along the axis of the differential drive and the rotation

around z-axis:

B

B

B

x

P y



 
   
  

 (53)

The following figure 34 depicts the kinematics of the iRobot Create, where the

distance between the two wheels’ centers is L=0.34m.

Figure 35. Kinematics of the differential drive robot, iRobot Create.

 63

 As described before, in the case of the quadrotor, the motion has to be

transformed from the body (robot here) frame to the inertial frame. The transformation

matrix of Eq.9 will be “rotation around the z-axis” since we are dealing only with a 2-D

frame:

cos sin 0

sin cos 0

0 0 1

u
B zR

 
 

 
   
  

So, Eq.53 becomes:

cos sin 0

sin cos 0

0 0 1

u

u u B u
B z

u

x x

P R P y y

 
 

 

     
              
         

cos sin

sin cos

u

u

u

x x y

y x y

 
 

 

   
          
     

cos sin

sin cos

u

u

u

x x y

y x y

 

 

 

  


   
 

 (54)

If the position of its wheels’ centers are iC , 1, 2i  for right and left

wheel, respectively, the longitudinal component of velocity is ,long iv and in lateral

direction is ,lat iv , by differentiating Eq. 53the velocity of iC can be obtained in the body

frame (2x1 vector):

 ,

,

B B
long iB

i B B
lat i

v x
v

v y

   
    

  




 (55)

 64

From body frame to the inertia frame:

 u u B u
B z B

x u
x R v R

y v

   
     
   






 , ,

, ,

cos sin 0

sin cos 0

0 0 1

u B
long i long i

u B
lat i lat i

v x v

v y v

 
 

 
                     




 , ,,

, ,,

cos sin

sin cos

B Bu
long i lat ilong i

B Bu
long i lat ilat i

v vv

v vv

 
 

   
          

 ,

,

cos sin

sin cos

u
long i

u
lat i

v x y

v x y

 
 

   
       

 
 

 (56)

Consider the rolling wheel with a point of contact P with the ground.

Figure 36. Top View of the Robot

Because it is rolling, the velocity of point P is zero. Suppose the wheel

rolls along the y axis on the y-z plane given by x = 0. If we recall from physics [57] that

the velocities of two points A and B on a rigid body with angular velocity ω, are related

by the equation:

 B Av v AB  


 65

Then the velocity of the center iC can be obtained from the previous

equation:

 ,C i P i iv v PC  


 (57)

 If , 1,2i i  each wheel’s speed, respectively, then the velocity of the center iC

will be (ˆˆ ˆ, ,i j k the unit vectors along x, y, z axis, respectively):

 ,
ˆˆ ˆ

C i i i i iv r i r k r j         (58)

Since the robot cannot slide in a lateral direction, the velocity of the point

iC must be along the longitudinal, thus the velocity of the point iC in the lateral direction

must be zero:

 , 0 sin cos 0lat i i iv x y      

After rearranging terms:

 sin cos tani i i ix y x y        (59)

Then the Eq. 65 will be equal to:

 ,long i iv r  

(60)

 , 0lat iv 

Next, i is measured in a counterclockwise direction from one arbitrarily

chosen side of the robot as shown in Figure 36.

Figure 37. The wheel angles (Positive in a counterclockwisedirection from one
(arbitrarily chosen) side of the mobile robot). After [58].

longV
Vlat

 66

Now consider the coordinates of the center of the axle (x, y) which is

clearlyhalf way between 1C and 2C :

1 2

1 2

2

2

x x
x

y y
y







 (61)

The velocity of the point iC is given by:

1 2

,
1 2

2

2

C i

x x
x

v
y y y

 
  

        
  

 

  

 (62)

 The longitudinal velocity component if we combine Eq.56, 60 and 62will

become:

 ,1 ,21 1 2 2
,

cos sin cos sin
cos sin

2 2 2
C C

long i

v vx y x y
v x y

    
 

     
    

 1 2
, 2long i

r r
v

 
  

 
 (63)

Now if we consider the two points 1 2C and C which are rigidly

attached to theaxle and the robot, like Eq. 57, the velocities of these two points are related

by theequation:

2 1 1 2

ˆ
C Cv v k C C  

 (64)

 That can be transformed to:

 1 2
2 1 1 2

r r
r r L L r r

L

        
        

       (65)

 If the velocities of the left and right wheel are denoted as:

 1 2right leftand       

1 2C right C leftv v and v v 

 67

 we have the two equations that relate the robot velocities tothe the wheels’ speeds:

 , 2
right left

long i

r r
v

 
 

 
 (66)

 right leftr r

L

 




  (67)

If we substitute Eq.59into Eq.57:

2 2 2

,

sin cos sin
cos tan sin (cos) (

coslong iv x x x x
     



       

1

,

)
cos

coslong ix v






  (68)

,sin tan coslong iAlso ce y x v    sin

cos




, sinlong iy v 



 
 (69)

Finally, if we substitute the Eq.63 into the state equations of Eq.54, they can be written in

the inertia frame as:

()
cos cos cos cos

2 2 2 2
()

sin sin sin
2 2 2 2

() ()

right left right left

right left right left

right left right left

v v r r r

x
v v r r r

P y sin

v v r r

L L

 
   

 
   

  

    
     

    
               

          
      

 


  


 

right

left

r

L L




 
 
          
 
  


 70)

The velocities of the wheels are bounded such that:

max maxleftv v v   and max maxrightv v v   (71)

where max 0.5 /v m s

The robot will move forward when 0right leftv v  , left when 0left rightv v  and

will spin in place when left rightv v , and not equal to zero.

 68

 Returning to the definition of a two wheel differential drive robot, it has two drive

wheels mounted on a common axis and each wheel is controlled by a different motor.

Therefore, each wheel is able to be driven at different velocities either forward or

backward. As it is already reported before, by varying the velocity of each wheel, rolling

motion can be achieved and the robot will rotate about a point that lies along the common

left and right wheel axis. This point is widely known as the ICC - Instantaneous Center of

Curvature [58] (See Figure 37).

Figure 38. Kinematics of differential robots. After [58].

The trajectory of the robot can be controlled by varying the velocities of the

wheels. The rate of rotation  about the ICC must be the same for both wheels. Hence,

the following equations establish a relation between the motion parameters of a

differential drive mobile robot.

 ()
2right

L
v R  (72)

 ()
2left

L
v R  (73)

where L is the distance between the centers of the two wheels, ,right leftv v are the right and

left wheel velocities along the ground , and R is the signed distance from the ICC to the

midpoint between the wheels.

L

ICC

 69

The Eq.72 and 73 can be solved at any instance of time for R and  as follows:

()

2()
right left

right left

L v v
R

v v





 (74)

 right leftv v

L



 (75)

Figure 37 assumes that the robot is at some position (x, y) and is heading in a

direction making an anglewith the X axis. Knowing velocity ,right leftv v , and using

Eq.74, 75, the ICC location ((,)x yICC ICC is determined as:

()

sin sin
2()

right left
x

right left

L v v
ICC x R x

v v
 


   


 (76)

()
cos cos

2()
right left

y
right left

L v v
ICC y R y

v v
 


   


 (77)

2. Forward Kinematics

The forward kinematics problem of a mobile robot for given wheel velocities and

initial robot's configuration 0(, ,)tx y   is the determination of the robot's position

(, ,)tx y  at any other time t [56].

a. Robot's Position Relative to ICC Location

If non-varying velocities ,right leftv v are given, the ICC location

(,)x yICC ICC will be a fixed position. Hence, the robot’s state at time t t can be

expressed via its state at time t as follows:

' cos() sin() 0

' sin() cos() 0

' 0 0 1

x x

y y

x t t x ICC ICC

y t t y ICC ICC

t

   
   

   

          
                  
              

 (78)

 70

where (, ,)x y  and (', ', ')x y  are the robot's positions at time t and t t , respectively.

This equation describes the motion of a robot rotating about its ICC with a radius of

curvature R and an angular velocity  (see Figure 40).

Figure 39. Forward kinematics relative to ICC. After [58].

b. Robot's Position Relative to its Initial Position

General motion equations of the robot capable of moving is in a particular

direction ()t at a given velocity ()v t are described as follows:

0

0

0

() () cos[()]

() ()sin[()]

() ()

t

t

t

x t v t t dt

y t v t t dt

t t dt





 













 (79)

For a differential drive robot, such as the Qbot, Eq. 79 becomes:

0

0

0

1
() [() ()]cos[()]

2

1
() [() ()]sin[()]

2

1
() [() ()]

t

right left

t

right left

t

right left

x t v t v t t dt

y t v t v t t dt

t v t v t dt
L







 

 

 







 (80)

If the Eq.79 is simplified, the robot's position at time t t will be:

 71

' cos[()]

' sin[()]

'

x x v t t

y y v t t

t

 
 

  

   
       
      

 (81)

Similarly, the Eq. 80 will become:

1
[() ()]cos[()]

2'
1

' [() ()] in[()]
2

' 1
[() ()]

right left

right left

right left

x v t v t t t
x

y y v t v t s t t

v t v t t
L

 

 


 

   
   
        
    

  
  

 (82)

For the special cases of right leftv v v  and right leftv v v   in Eq.81, we

will have

' cos

' sin

'

x x v t

y y v t




 

   
       
      

 (83)

'

'

' 1
2

x x

y y

v t
L

  

 
  
      
     
 

 , (84)

respectively.

 72

C. CONTROL ARCHITECTURE OF THE TWO MODELS

Now that kinematics / dynamics for both vehicles have been developed, we can

elaborate on Figures 30 and 31 and present overall feedback control architecture (Figure

41).

Figure 40. Control Architecture

Figures 42 and 43 provide more details about the robot plant models and explain

graphically the derivation of the equations of motion and how it will be implemented in

the Simulink development environment.

X, Y, THETA

 73

Figure 41. Quadrotor QBall-X4 Dynamics Plant

 74

Figure 42. Ground Robot Qbot Kinematics Representation

 75

IV. CONTROL STRATEGY

A. INTRODUCTION

The dynamic model of the quadrotor has been presented in many papers, so with

some small variations, concerning the different assumptions to be done or the

environment, it will be the same. However, the control schemes can be different,

choosing from feedback linearization control, backstepping control, visual control and

direct methods with inverse dynamics. In this chapter, the general control scheme will be

presented. The first controller is the implemented one with the Linear Quadratic

Regulator method imposed in five different channels, roll, pitch, x-y position, yaw and

height. Although, the modeling took place for a nonlinear model, the nature of the

experiments (laboratory – slow speeds) allows us to use a linearized model for the

quadrotor control. Secondly, another controller is proposed using inverse dynamics in

Virtual domain (IDVD) control technique for achieving a quasi-optimal solution in real

time (tenths of second). This controller requires creating a trajectory generator with

certain characteristics that will be described below and follows the quadrotor dynamics.

Unfortunately, this controller was not implemented and tested for this model but it

provides the steps and so far implementation for future work within the students already

or starting working in this project.

B. IMPLEMENTED CONTROLLERS

 1. Control Inputs

The quadrotor is controlled by independently varying the speed of the four rotors.

For every attitude change the angular velocity of motors is changed, but the total thrust of

all the four motors is constant in order to maintain the height. So, in order to produce a

roll angle () along the axis ,the angular velocity of the motor #2 is increased and the

angular velocity of motor #4 must be decreased. Likewise, in order to produce a pitch

angle (θ) along the axis , the angular velocity of the motors #3 must be increased, and

the angular velocity of motor #1 must be decreased while at the same time the thrust

 BX

BY

 76

must be kept constant. It can be understood that yaw motion along the Z-axis of the body

frame will be implemented by increasing total angular velocity of motors (1, 3) and

decreasing the angular velocity of opposite rotation motors (2, 4). The rotors of quadrotor

are located six inches from the end point of the aluminum rods and is the length

between the rotational axis of each rotor and the center of gravity of the quadrotor. So we

can assign the following control inputs, iU :

 (85)

where and are, respectively, the normalized thrust force from each () rotor and

d is the force to moment scaling factor coefficient depending on the blade’s Reynolds

Number, Mach number and angle of attack.

 2. Waypoint Navigation

Waypoint navigation for the quadrotor will take place in two different ways. The

Qball-X4 quadrotor will follow the position of the Qbot, which acts as the leader.

 a. Qbot’s waypoint navigation via the Qbot model, an autonomous

waypoint navigation program that moves Qbot through a series of predetermined

waypoints chosen by the user.

 b. The quadrotor navigates by following the waypoints taken from

the Qbot through the stream client of the real-time workshop. So, Qbot’s Tx, Ty

coordinates, are taken as inputs so a waypoint state machine can be built with the

following states:

 Initialize

 Takeoff

 Follow waypoint

 Land

l

1 3 2 4

2 4

1 3

1 3 2 4

1

2

3

4 ()

T T T T

T T

T T

T T T T

F F F F
U

m
U F F

U F F

U F F F F d

  


 

 

   

TiF d ith

 77

 The waypoint state machine will allow quadrotor to follow the

Qbot’s position through its controllers. Alternatively, a trajectory generator with inverse

dynamics can be used to generate new quasi-optimal trajectories for following the

waypoints.

 3. Linearization of Qball-X4 Control

Since the drag forces are negligible and the angles of the orientations are very

small for hover flights [1], small angle approximation are invoiced:

:

0.1 sin() 0,cos() 1

0.1 sin() 0,cos() 1

  
  

  
  




 (86)

So the kinematic Eq. 15, can be simplified to:

1 0 0

0 1 0

0 0 1

p

q

r





     
          
         





 (87)

If we take the derivatives of the previous equations and apply Eq.28 , then:

 (88)

If Coriolis term is ignored, the simplified equations of motions can be derived as:

2 ()zz yy
xx xx

U l qr
p J J

J J
     

3 ()xx zz
yy yy

U l pr
q J J

J J
     

4 ()yy xx
zz zz

U pq
r J J

J J
     

 78

 (89)

Eq. 56 can be written with the controls as follows:

1

1

1

(sin sin cos sin cos)

(sin cos cos sin sin)

cos cos

x U

y U

z U g

    
    

 

    
        
      





 (90)

Hence, a simplified model can be presented with the state equation, that can be

used for both controllers, the implemented and the proposed one:

1

1

1

2

3

4

(cos sin cos sin cos)

(sin cos cos sin sin)

cos cos

xx

yy

zz

x

y
x

z
y

U
z

U
x

U g
y

zd
X

dt

U l

J

U l

J

U l

J

    
    

 












 
 
  
  
     
   
     
  
      
  
  
  
  
  
  
  
   

 






 
 








(,) (91)f X U






where (92)

and (93)

2

xx

U l
p

J
   

3

yy

U l
q

J
   

4

zz

U
r

J
   

[, , , , , , , , , , ,] [, , , , , , , , , , ,]T TX x y z u v w p q r x y z x y z              

1 2 3 4[, , ,]TU U U U U

 79

 4. LQR Controllers / Channels Description

a. Rotor (Actuator) Dynamics

The thrust that is generated by each propeller is modeled by the first order

system equation: (93)

where is the PWM input of the actuator, ω is the actuator bandwidth and K is a positive

gain. Those parameters are already calculated through experimental studies in Quanser

[51], and they are given in Table 7.

Parameter Explanation Value Unit

K
PWM input

of the actuator
120 N

ω Actuator Bandwidth 15 rad/sec

Table 7. Thrust parameters

 A state variable will be used to represent actuator

dynamics, which is defined as follows:

 (94)

b. Roll and Pitch Models

Assuming that rotations about the x and y axes are decoupled, two

propellers contribute to roll/pitch axis already modeled and discussed in the previous

chapter. The rotation around the center of gravity is produced by the difference in the

generated thrusts. If we set u the same for pitch and roll, the moments of inertia are

found to be the same xx yyJ J J 
 since the quadrotor already considered symmetric, the

models can be formulated as also stated in [51]:

_T i iF K u
s







iu

iv

i iv K u
s







 80

2

3

xx xx

yy yy

U l l
p K u

J J s

U l l
q K u

J J s







   


   


 

 
 (95)

 1 3 2 4u u u or u u u     

If we combine these last three equations and the actuator dynamics the

following state-space equations can be derived:

0 1 0
0

0 0 0

0 0

Kl
u

J
v v

 
 



                                 


 


 (96)

0 1 0
0

0 0 0

0 0

Kl
u

J
v v

 
 



                                 


 


 (97)

To facilitate the use of an integrator in the feedback structure a fourth state

can be added to the state vector, which is defined as: s  or s  and augment this

state to the state vector, the final roll and pitch models will be:

0 1 0 0
0

00 0 0

0 0 0
0

1 0 0 0

Kl
u A B uJ

v vv

s ss

 
 



                                                         


 




 (98)

0 1 0 0
0

00 0 0

0 0 0
0

1 0 0 0

Kl
u A B uJ

v vv

s ss

 
 



                                                         


 




 (99)

 81

 So the state space model has the same state and input matrices A and B

and so the angles will be the same and only one computation should be done for the

Gains in LQR problem. The LQR model for the pitch and roll controller is shown in

Figure 44. The gains ,ph piK i K i are the outputs of the Roll - Pitch LQR Controller m-file

shown in the Appendix A.

Figure 43. Pitch – Roll LQR controller

 82

c. Height Dynamics Model

The motion of the Qball-X4 in the vertical direction (along the Z axis) is

affected by all the four propellers. Assuming that the same force thus PWM input is given

for every propeller so the dynamic model of the Qball-X4 in this case can be written as:

4

cos cosTF
Z g where F Kv

m
    (100)

As expressed in this equation, if the roll and pitch angular rates are

nonzero the overall thrust vector will not be perpendicular to the ground. Assuming that

roll and pitch angles are close to zero, using again the Eq (94) for the state variable v and

a fourth state for the use of an integrator in the feedback structure, the dynamic equations

can be linearized to the following state space form:

0 1 0 0
0 0

4
00 0 0

0
0 0 0

0 0
1 0 0 0

ZZ
K

Z gZ
um

vv

ss



                                                      







 (101)

The LQR model for the Height controller is shown in Figure 44. The gains

hK i are the output of the Height LQR Controller m-file shown in the Appendix A.

Figure 44. Height LQR controller

 83

d. X- Y Position Model

The motions of the Qball-X4 along the X and Y axes are caused by the

total thrust and by changes of the roll/pitch angles. Assuming that the yaw angle is zero,

the dynamics of motion in X and Y axes can be written as:

4
(cos sin cos sin cos)

F
x

m
     

 (102)

4
(sin cos cos sin sin)

F
y

m
      

Assuming that the roll and pitch angle rates are close to zero, the

following linear state-space equations can be derived for X and Y positions.

4 4
sin

K K
x v v

m m
   and

4 4

(sin)
K K

y v v
m m

    

0 1 0 0
0

4
00 0 0

0 0 0
0

1 0 0 0

XX
K

XX
um

vv

ss




                                        







 (103)

0 1 0 0
0

4
00 0 0

0 0 0
0

1 0 0 0

YY
K

YY
um

vv

ss




                                        







 (104)

The LQR model for the X-Y Position controller is shown in Figure 46.

The gains ,x yK i K i are the outputs of the X-Y Position LQR Controller m-file shown in

the Appendix A.

 84

Figure 45. X-Y Position LQR controller

e. Yaw Model

As derived in the previous chapter the motion in the yaw axis is caused by

the difference between the torques exerted by the two clockwise and the two

counterclockwise rotating props. The motion in the yaw axis can be modeled by:

4

1 3 2 4

yaw

zz zz

KU
r u

J J

u u u u u

    

    

 
 (105)

 85

The yaw axis dynamics can be rewritten in the state-space form as:

0
0 1

0 0 yaw

zz

K u

J

 
 

 
                        


  (106)

The LQR model for the yaw controller is shown in Figure 47. The gains

yawK i are the output of the Yaw LQR Controller m-file shown in the Appendix A.

Figure 46. Yaw LQR controller

f. Motor Inputs

The main goal of the controller is to accomplish an algorithm of quadrotor

control and provides decoupling of control channels in steady state. Thus the control

inputs from the controller about each axis , ,v v v   , together with the throttle command

for each rotor are combined to generate the control inputs 1 2 3 4, , ,u u u u that are given as

follows:

1

2

3

4

th

th

th

th

u u v v

u u v v

u u v v

u u v v

 

 

 

 

  

  

  

  

 86

This control mixing that take place in Figure 48 can be proved to

be valid within the following derivations, showing that every control achieves the desired

movement in each associated axis:

1 1 2 3 4

1 4
th th th th

th

U u u u u u v v u v v u v v u v v

U u
                       

 

2 1 3

2

()

2
th thU u u u v v u v v

U v
   



        

 

4 1 3 2 4

4

()

2
th th th thU u u u u u v v u v v u v v u v v

U v
       



                

 

Figure 47. Control Mixing Block

Figure 48.

3 2 4

3

()

2
th thU u u u v v u v v

U v
   



        

 

 87

 5. Qbot Inverse Kinematics Procedure

The model of the Qbot described in the previous chapter was described with the

forward kinematics. The controller that the robot will use is introducing the inverse

kinematics problem. The inverse kinematics problem of a mobile robot with initial

configuration is the achievement of robot’s target configuration . If

0(, ,) (0,0,0)tx y    , then solving the Eq.89, we will have:

[() ()]
() sin[(() ())]

2(() ())

[() ()] [() ()]
() cos[(() ())]

2(() ()) 2(() ())

[
()

right left
right left

right left

right left right left
right left

right left right left

r

L v t v t t
x t v t v t

v t v t L

L v t v t L v t v tt
y t v t v t

v t v t L v t v t

L v
t


 



 
  

 


() ()]

2(() ())
ight left

right left

t v t

v t v t





 (107)

For a known time t and a target position (x, y), the last Eq. 107 will be solved for

. Eqs. 83 and 84 provide a simpler strategy to drive a robot to a target position

 where the robot can be rotated in place until it will be aimed toward , then

driven forward until it will be at , and finally rotated in place until the required

target orientation is met. From the first two equations of Eq. 80 we obtain

 2 22right leftV V x y    (108)

Also, form the same two equations we obtain tan
y

arc
x

    
 




(109)

Differentiating Eq.110 yields

2 2

yx xy

x y
 



 
 

 (110)

From the other hand, the third equation of Eq.80 reads right leftV V

L



 (111)

 Hence,
2 2right left

yx xy
V V L

x y


 


  
 

 (112)

 Eq.108 and 112 resolved for Vright and Vleft yield the controls required to follow

a predetermined trajectory y(x).

0(, ,)tx y   (, ,)tx y 

,right leftv v

(, ,)tx y  (,)x y

(,)x y



 88

C. DIRECT METHOD BASED CONTROLLERS

1. Introduction

The classical indirect methods cannot handle complicated problems in real time.

There is a need for different techniques that simplify the problem or use numerical

algorithms to provide near-optimal rather than optimal solutions in real time. The

proposed controller introduces one of the direct methods already worked in real time. It is

quite easy to program and provides effective optimization with feasible solutions. Taking

Prof. Taranenko’s ideas in early 60s as motivation, the computer’s rapid development

helped several engineers develop algorithms for real-time on-board calculation of quasi-

optimal trajectories ([41]-[43]) for combat vehicles and missiles. There were successful

tests within the Pilot’s Associate program onboard 5th-generation aircraft [44]. This

direct method can be used for unmanned air vehicles (UAVs) to generate approach

trajectories.

The direct method’s simplicity gives one the opportunity to develop the theory,

and eventually test a real-time trajectory optimization scheme for the quadrotor. In the

following sections the general architecture of the proposed controller will be developed,

consisting of the trajectory generator and the trajectory follower. Using the parameters

and dynamics of the already working controller we will introduce the trajectory generator

which will generate optimal or quasi optimal feasible trajectories so that follow the

waypoint pattern of the ground robot. This real time capability provides regeneration of

each trajectory during the mission through feedback from the sensors. It allows for

changing the objectives for any disturbances. To accomplish this task, a reference

trajectory and the controls have to be found, so that even with LQR controller, the

following of the path will be also accomplished. Also, an interpolator must be used to

provide samples of the reference trajectory at the desired (high frequency) rate. The

proposed scheme is shown in Figure 49. This control scheme differs from the previous

one in the fact that in order to achieve a solution, the trajectory generator and the

controller both need to follow the reference trajectory.

 89

Figure 49. General Architecture of Joint Quadrotor – Robot Controller

GROUND
STATION-
MISSION

SCENARIO

CONTROLLER

TRAJECTORY
GENERATOR

(QUADROTOR)

QBOT
MOTION PLANNER

(INVERSE
KINEMATICS)

CONTROLLER

SENSORS

SENSORS

Xref

X(t)

Uref(t)

Uref(t)

X(t)

Constraint
FunctionΩ

X(t)

Xo, Xf

0.01 – 0.1Hz 1-100Hz

Mission
Performance

Index Φ

-

LEADER

Xref

FOLLOWER

QBot

QBall

- kc

 90

2. Formulation of the LQR Problem

The objective is to find a controller that provides the best possible performance

with respect to the given criterion. The requirements of the controller are:

 Optimality

 Stability of the closed loop system

 Desirable gain and phase margin

 Robustness with respect to unmodelled dynamics of the plant and
environmental uncertainties

For a linear state-space model of the system dynamics:

 (113)

With an assumption of availability of measurements of full state the matrix gain

 of the optimal control input must be determined:

 (114)

So as to minimize the performance criterion or the cost function

 (115)

where Q and R, are positive definite Hermitean or real symmetric weight matrices. In fact

Q must be positive semi definite.

Bryson’s Rule defines an initial choice of matrices Q and R

 (116)

which corresponds to the following criteria

 (117)

() () ()X t AX t BU t 

cK

() ()cU t K X t 

0

()T TJ X QX U RU dt


 





2

2

1
, 1,2...,

max _ _ _

1
, 1,2...,

max _ _ _

ii
i

jj
j

Q i n
acceptable value of X

R j n
acceptable value of U

 

 

2 2

1 10

(() ())
n n

LQR ii i jj jJ Q X t R U t dt


  

 91

For a time dependent reference trajectory , the LQR control can be applied

as a trajectory follower to minimize small errors between the measured state x and the

reference state refX , and the control algorithm will become:

 (118)

We have to compute the gain matrix using a linearized quadrotor’s model and

then apply this control the non-linear model.

 3. Stability Analysis

Since the linearization of the quadrotor plant is already taken place at hover

condition, the control gains cK were designed with the weighting matrices as follows:

 and ,

if it is sure that the actuator constraints are maintained as stated in [62]. However,

following the generated trajectory the hover condition will be sometimes violated. That’s

why a specific envelope where the operation will be stable has to be determined. As

already derived in [63] a linearized stability set representing a circumference of a circle

with a radius of 48 degrees can be practical enough:

So if an extra constraint added to the optimization, that maintains angles and

within this stability set within the trajectory generator the linearized time-invariant

stability will be assured.

Now that we set up the problem, we can see the whole flow procedure within a

diagram, in order to visualize better the technique to be used. The direct method

optimization flow procedure is presented in the following chart, where each component

shown will be described in the following sections of the chapter:

()refX t

() () (() ())ref c refU t U t K X t X t  

cK

5
12 1210 xQ I 5 8 8 8(10 ,10 ,10 ,10)R diag 

 2 2 2() , : , 48s t r r       

 

 92

Choose reference function for
(), (), (), ()X Y Z   

Choose reference function for
 () 

Change argument
d

dt

 

Figure 50. Direct Method Optimization Flow Procedure

MetNot Met

Compute the coefficients
of reference function

Guess on initial values
of varied parameters

Compute the States

Compute penalties Compute a Cost function

Stop Tolerance

Change the values of the varied parameters

Set the
Boundary
Conditions

 93

4. Reference Trajectory

To approximate the Cartesian coordinates of a vehicle, its speed and its

acceleration (six states), we can use functions that will define the variety of accessible

trajectories and their choice will depend on the particular problem. In general, the more

terms those functions have, the more accurate (closer to the really optimal) solution can

be found. Once the Cartesian coordinates, speed and acceleration are defined using

reference functions, the remaining states and controls are determined using inverse

dynamics of original non-linear equations driving the system’s dynamics. By using the

direct method as Taranenko suggested in [63], a big advantage over the indirect method

sis obtained since we eliminate the issue of solving the Cauchy problem for determining

the trajectory with the given initial states and control time-histories, but instead,

introducing the desired trajectory from the beginning, time-histories for all the controls

are retrieved through the use of the inverse dynamics.

One modification of Taranenko’s method is to employ elementary polynomials

[44], [45], [62]-[64] as the reference functions. There are other alternatives, like

Chebyshev polynomials [65], [66] or Laguerre polynomials [67] and others. In order to

compute the coefficients, let us consider as reference function, algebraic polynomials of

degree “n” for x, y, z coordinates and use as argument the virtual arc “τ”, given as

follows (the exact same procedure will take place for the other coordinates, y and z):

0

1
'

1

'' 2

2

''' 3

3

(max(1, 2))!
()

!

(max(1, 2))!
()

(1)!

()

() (2)

kn

i ik
k

kn

i ik
k

n
k

i ik
k

n
k

i ik
k

k
x a

k

k
x a

k

x a

x k a





 

 

























 









 (119)

The degree “n” of these polynomials is chosen from the boundary conditions,

where they have to be specified accordingly so that all the coefficients ika will be

determined algebraically. The higher the maximum degree of the time derivative of a

 94

vehicle coordinate at initial and end points, the higher the degree of the polynomial. The

minimum degree of the polynomial to be chosen will be given by the equation:

 0 1fn d d   (120)

where 0 , fd d are the maximum orders of the time derivative of the coordinates at the

initial and end points, respectively. So that at the boundary values for the quadrotor

coordinates, the first and second time derivatives at both ends of the trajectory are

satisfied, fifth-order polynomials should be chosen since 0 2fd d  . Applying Eq. (85)

we define eighteen unknown coefficients.

Generally, the final part of the trajectories needs to be smoother, since the control

has to be more accurate while at landing or at rendezvous point. That’s why

3, ''' 0(1, 2,3)f ifd x i   is usually proposed.

In case of 0 2, 3fd d  , thus n = 6, where an additional optimization parameter

is applied, then 24 coefficients ika are obtained. Subsequently, if we add two parameters,

the coefficients will be 36.

Expressing the six coefficients (the same manner for and)

as a linear matrix equation, we will have [64]:

00

01

022 3 4 5

3

2 3 4 4

5
2 3

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

1 1 1 1
1

2 6 12 20
1 1 1

0 1
2 3 4

0 0 1

X

X

X

f f f f f
fX

fX
f f f f

fX

f f f

Xa

Xa

Xa

Xa

Xa

Xa

    

   

  

 
    
    
    
    
     
    
    
    
          







 (121)

, 0,1,...5Xka k  Yka Zka

 95

The reference functions provide us with the flexibility to increase the order of

approximation and derivatives at both ends using them as additional varied parameters. In

the previous case, the only varied parameter is f (since all coefficients are determined

from the boundary conditions), shown in Figure 54. The diagrams are produced very

easily if you calculate the equation 121 in Matlab.

Figure 51. Variation of the parameter of the reference functions, varf 

If 7th-order polynomials are used, the initial and final state, first and second

derivatives were used as constraints attempted to be satisfied and the third derivatives at

both ends of the trajectory became free variables along with the virtual arc length [64]:

''' 2 3 4
''' 3 4 5 6 7

'' 2 3 4 5
'' 2 3 4 5 6 7

' 2 3 4 5 6
' 1 2 3 4 5 6 7

0 1 2

() ()

1 1 1 1
() () (122)

2 3 4 5
1 1 1 1 1

() ()
2 6 12 20 30
1

() ()
2

i x i i i i i i

i x i i i i i i i

i x i i i i i i i i

i xi i i i

x P a a a a a

x P a a a a a a

x P a a a a a a a

x P a a a

     

      

       

  

     

      

       

    2 3 4 5 6 7
3 4 5 6 7

1 1 1 1 1

6 24 60 120 210i i i i ia a a a a         

-0.5 0 0.5 1 1.5
0

1

2

3

4

x
1

x 2 f
=var

d2x
1
/dt2|

0
=-0.4

0 0.5 1
0

1

2

3

4

x
1

x 2 f
=var

d2x
1
/dt2|

0
=-0.1

0 0.5 1 1.5
0

1

2

3

4

x
1

x 2 f
=var

d2x
1
/dt2|

0
=0.2

0 0.5 1 1.5 2
0

1

2

3

4

x
1

x 2 f
=var

d2x
1
/dt2|

0
=0.5

 96

The coefficients will be computed by solving the following system of linear

algebraic equations [64]:

0

1

2

2 3 4 5 6 7
3

4
2 3 4 5 6

5

6
2 3 4 5

2 3 4

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

1 1 1 1 1 1
1

2 6 24 60 120 210
1 1 1 1 1

0 1
2 6 12 20 30

1 1 1 1
0 0 1

2 3 4 5
0 0 0 1

i

i

i

if f f f f f f

i

f f f f f f i

i

f f f f f
i

f f f f

a

a

a

a

a

a

a

a

      

     

    

   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

0
'
0

''
0

'''
0

'

''

'''
7

(123)

i

i

i

i

if

if

if

if

x

x

x

x

x

x

x

x

  
  
  
  
  
      
  
  
  
  
     

If these equations are resolved for the coefficients ika in Matlab will yield [64]:

' '' '''
0 0 1 0 2 0 3 0

''' ''' '' '' ' '
0 0 0 0

4 2 3 4

''' ''' '' '' ' '
0 0 0

5 2 3 4

, , ,

4 16 60 120 360 480 840 840

30 60 420 600 2340 2700 5040 5040

i i i i i i i i

if i if i if i if i
i

f f f f

if i if i if i if i
i

f f f

a x a x a x a x

x x x x x x x x
a

x x x x x x x x
a

   

  

   

     
   

     
    0

5

''' ''' '' '' ' '
0 0 0 0

6 3 4 5 6

''' ''' '' '' ' '
0 0 0 0

7 4 5 6 7

(124)

60 80 780 900 4080 4320 8400 8400

35 35 420 420 2100 2100 4200 4200

f

if i if i if i if i
i

f f f f

if i if i if i if i
i

f f f f

x x x x x x x x
a

x x x x x x x x
a



   

   

     
   

     
   

and the final arc f becomes the first optimization and varied parameter.

 97

 5. Time and Space Decoupling

Since the speed is related to the Cartesian coordinates by the equation [71]:

we also specify a speed profile along the trajectory by using time t, as an

argument, ending to define the trajectory itself, too.

In order to decouple the trajectory from the speed profile we can utilize the

abstract argument which connects to time through the variable speed factor

 (125)

 By this way, we manage to vary the speed profile along the same trajectory by

changing the speed factor [71]:

 2 2 2() () '() '() '()V X Y Z        (126)

For the quadrotor’s case though, it is more useful to approximate the speed factor

with the same procedure as for the reference trajectory before in order to achieve

parameterizing the speed factor so as afterwards compute the speed profile.

So, if we assume that:

0

1
'

1

'' 2

2

''' 3

3

(max(1, 2))!
()

!

(max(1, 2))!
() (127)

(1)!

()

() (2)

kn

k
k

kn

k
k

n
k

k
k

n
k

k
k

k
a

k

k
a

k

a

k a









 

 

  

  

























 









2 2 2() () () ()V t X t Y t Z t    

()
d

dt

  

() 

 98

And for n=5:

5

1 2 3 4 5
0 1 2 3 4 5

0

() () k
k

k

P a a a a a a a      
        



        (128)

where coefficients are the solutions of:

00
'

01
''
022 3 4 5

3
'

2 3 4 4
''

5
2 3

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

1 1 1 1
1

2 6 12 20
1 1 1

0 1
2 3 4

0 0 1

f f f f f
f

f
f f f f

f

f f f

Va
Va

a
Va
Va

a














    

   


  

 
     
     
     
     
     
     
     
     
         

 (129)

Then, finally, the speed profile will be computed as:

 ' 2 ' 2 ' 2() () (()) (()) (())x y zV P P P P       (130)

 99

6. Qball-X4 Inverse Dynamics

a. Differential Flatness

Suppose the dynamics of a system are described by a set of ordinary non-

linear differential equations:

 (,)x f x u (131)

where () nx t X  , is the state vector and () nu t U  is the control vector, and f is

some vector function.

By definition from [68], “the differential flatness is the expression of the

state and control vectors in terms of some output vector, y.” (Without loss of generality

we assume y to be a subset of x, i.e. y Cx , where C is a k-by-n matrix, k < n). Also

from [69], “For a system to be differentially flat and therefore possess a flat output it

requires a set of variables () ky t Cx Y   such that:

 The components of y are not differentially related over Â ;

 Every state and control may be expressed as a function of the
output vector y and a finite number of their time derivatives, i.e.

1(, , , ,...)x h y y y y    and 2 (, , , ,...)u h y y y y   

which is essentially the inversion of the original system (,)x f x u with respect to the

output vector y Cx .”

b. Quadrotor’s Inverse Dynamics

Attempting to address the differential flatness property in quadrotor’s

dynamics, the output vector will consist by four components, since we have four controls.

These components will be the translational positions x, y, z, and the yaw angle , as it

can be dynamically decoupled from the other states [70] (in case the control input U is

used to set the yaw angle to zero).

So, the output vector Y can be defined as:

 (132)   3 3 3 5 3 3

1 5 1 3

0 0 0

0 0 1 0
T x x x

x x

I
Y x y z X CX

 
   

 

 100

Now, the control inputs can be expressed as a function of the states and their

derivatives as follows:

 (133)

We have to take the second derivative of the states ,  , the rotational part of the

state vector, in order to express all the control inputs toward output vector. So, in order to

express those states in terms of the output vector, we follow the procedure below:

If we take individually the three equations of Eq. 90 and by rearranging and

multiplying the third one with “tanθ” we have:

1 1

1 1

1

sin sin cos sin cos

sin cos cos sin sin

() tan cos sin

x U U

y U U

z g U

    
    
  

 
  
 





If we substitute the third equation to the other two, we get:

 (134)

2 2 2
1

2

3

4

()U x y g z

U

U

U






   






  





 

cos

1

1 sin

2
1

2
1

2

sin sin () tan cos

sin cos () tan cos

cos sin sin cos () tan cos

sin sin sin cos () tan sin

cos sin () tan cos (

x U g z

y U g z

x U g z

y U g z

x y g z g





   
   

     

     

   







   
    

    
    

     

 
 

 
 

    2

2 2

) tan sin

cos sin () tan (cos sin)

z

x y g z

 

        



  
1

cos sin
tan

x y

g z

  
 


 



cos sin
arctan

x y

g z

 
 

    

 


 101

With the same procedure if we multiply with the opposite way and subtract the

two equations we get:

 (135)

Having the state vector components expressed in terms of the output vector, we

proceed to do so for their derivatives also are:

 (136)

and

 

sin

1

1 cos

2
1

2
1

2
1 1

sin sin () tan cos

sin cos () tan cos

sin sin sin () tan sin cos

cos sin cos () tan sin cos

sin cos sin sin sin cos

x U g z

y U g z

x U g z

y U g z

x y U U





   
   

     

     

    







   
    

    
    

   

 
 

 
 

  2

2 2
1sin cos sin (cos sin)x y U



        
1

1

sin cos
sin

x y

U

  
 

 

2 2 2

sin cos
arcsin

()

x y

x y g z

 
 

   
     

 
  

   

 
   

2 2

2 2

(cos sin)() (cos sin)

cos sin

(cos sin)() (tan)

cos sin

x y g z x y z

g z x y

x y g z g z z

g z x y

   
 

  


 

   
 

  

   
 

  

    
 

    
 

 
   2 2

(cos sin tan)

cos sin

x y z g z

g z x y

  


 

  


  

   
 

 102

 (137)

The second order derivatives:

 (138)

Instead of using the exact values, we could also employ central difference

approximations

1 1
2

1
2

2

2

i i i
i

i i i
i

t

t

  

  

 



 



 







 (139)

(forward and backward approximations would be used then for the first and last

points).

Finally, we computed the states ,  in terms of the output vector components,

since 1U is already expressed in terms of x, y, z. When the vehicle is in free fall,

singularities may occur, since . One way to avoid it is by constraining the input

such that and the pitch and roll such that and as stated in [48].

The differential property of the system provides us with the opportunity to transfer the

optimization from the control space to the Output space.

 

 

1 1

22
1 1

1 1 1

22
1 1

(sin cos) (sin cos)

sin cos

(sin cos) sin

sin cos

x y U x y U

U U x y

x y U U U

U U x y

   
 

  
 

  
 

 

 
 

 

   
 

 
 

 
1

22
1

(sin cos) sin

sin cos

x y U

U x y

  
 

 
 

 

 
 

   
   2 2

(cos sin tan) 2 cos sin tan

cos sin

x y z z x y
g z z

g z x y

      
 

 

          
      

      
 

 
 

 
1 1 1

2222
11

(sin cos) sin sin sin cos

sin cossin

x y U U x y U

U x yU x ycos

      


  

          
  

    
  

g z 

1 1U  90   90  

 103

7. Discretization

As in any numerical method we will compute parameters of the systems in a finite

number of points N placed equidistantly along the virtual arc f (varied parameter), thus

by dividing the virtual arc into N–1 equal pieces as shown in Figure so as [71]:

 (1)f N    (140)

Figure 52. Excluding Time and Converting Back to Time. After [71]

We then have N equidistant nodes j = 1,..., N. All states and controls at the first

point j = 1 (corresponding to) are defined. For each of the subsequent N–1

nodes j = 2,.., N, the corresponding instants of time, however, need to be computed as

follows [71]:

 (1)
1

j
j j

j


       

 (141)

 1
1

2
j

j j

t


 



 

 (142)

 1 1j j jt t t   
 (143)

So, the mapping between the  and t domains are defined by the speed factor

profile P . We can now proceed with computing the states and controls in all nodes. We

compute the current value of three Cartesian coordinates and speed using the

f

1 0 0  

 104

corresponding polynomials: and . Then, using the Eq.

141 we compute the time passed since the last sample:

 (144)

The current time then from Eq.143 equals to , and

therefore the current value of the speed factor

 (145)

Next, we convert derivatives to time derivatives using chain rule relations:

'
' '' '()

()
dx dx d d x

x x and x x x
dt d dt dt

    


      , so that we finally have:

'

' ' ''

' 2 ' '' ' ' '' '''

'

' ' ''

' 2 ' '' ' ' '' '''

'

' ' ''

()

[() (3)]

()

[() (3)]

()

[(

j j j

j j j j j j

j j j j j j j j j j j

j j j

j j j j j j

j j j j j j j j j j j

j j j

j j j j j j

j j

x x

x x x

x x x x

y y

y y y

y y y y

z z

z z z

z



  

      



  

      



  

 



 

   



 

   



 



















 ' 2 ' '' ' ' '' '''

' ' ''
,

) (3)]

()

j j j j j j j j j

i j j j j j j

z z z    

   

  

 

To convert the initial conditions of the states from time derivatives to virtual arc

derivatives, we have to use the inverse of the above relations, so as to compute the

controls and the remaining states.

(), ()j X j j Y jX P Y P   ()j Z jZ P 

2 2 2
1 1 1

1
1

() () ()
2

()
j j j j j j

j
j j

X X Y Y Z Z
t

V V
  




   
 



1 1 1 0(0)j j jt t t t t     

1
j

jt










 105

8. Trajectory Optimization

We have already chosen the reference functions for the X, Y, Z, Ψ and λand

computed their coefficients, introduced the inverse dynamics to the system and set the

boundary conditions. The next step is to proceed with the trajectory optimization through

a specific optimization routine.

a. Problem Formulation in the Control Space

Normally, in order to determine the optimal trajectory, the optimization

procedure take place within the control space regarding the applied constraints like state

constraints, actuator (control) constraints and obstacle avoidance constraints within the

output space and the state space. The problem can be set up as [48]:

4()

min
U t U 

 for 0, ft t    such that

 0 0 0

(,) 0

(,) 0

(,) 0

(,) 0

f f f

Y Cg X U

Y Cg X U

Y Cg X U

C X U

 

 

 







 (145)

where (,)X U is the cost function, the initial and final constraints on the states are set

according to Eq.132 and Eq.88 at 0t  and ft t , respectfully, the dynamic inequality

constraints on the trajectory (for obstacle avoidance) and on the states and inputs (to

avoid singularities and to provide constraints on the control signals) are expressed

through the set of functions C(X,U).

b. Cost Function

The cost function, , is a quantitative measure of the optimality of the

trajectory and consists by the sum of two components, the running costs and the terminal

cost. If the running costs (battery consumption) are proportional to the average velocity,

the objective function can be defined as [48]:

 106

 2 2 2 2
1 1 1

0

1
(1) ()

ft

fw Px P y Pz dt w t T
t

          (146)

where 1, 2, 3,w P P P are the weighting factors (not necessarily equal to each other), and T is

the predetermined time of arrival. The minimum-time case takes place when w=1 and

T=0 and the minimum-fuel case when w=0 and 1 2 3P P P  . So, it is clear that the

mission scenario will determine what the cost function is and how many weighting

factors have to be adjusted.

Having proved through differential flatness that the state vector x and the

control vector u can be both expressed via the derivatives of the output vector y

 1 2(), ()X h Y U h Y  (147)

We can reformulate the optimization problem in the output space.

c. Problem Formulation in the Output Space

If optimization takes place within the output space (differential flatness

properties) as opposed to the control space, it would be very useful because the

constraints occurring for example from obstacle avoidance happens in the output space,

hence the computation time for constraint handling is reduced drastically. As opposed to

(145) the problem can now be reformulated as follows:

4()

min
U t U 

 for 0, ft t    such that:

*
0

*

*

((0)) 0

() 0

() 0

f f

Y g Y

Y g t

C Y

 

 






 (148)

where
*

1 2() (,) ((), ())g Y Cg X U Cg h Y h Y  *
1 2() (,) ((), ())C Y C X U C h Y h Y  come

from Eq. 147. With proper parameterization this problem can be solved in MATLAB

using the optimization toolbox function fmincon.

 107

d. Parameterization

In order to reduce the dimension of the problem to a finite amount, it is

suggested that the three translational outputs (x, y and z) be parameterized (the fourth

output, the yaw angle , is assumed to be zero).

Thus the equations derived so far will become:

 arctan
x

g z


 
   




 (149)

2 2 2

arcsin
()

y

x y g z


 
  

     


  

 (150)

The derivatives also are:

 2 2

() ()x g z x z

g z x
  


 

  


 or
 

 2 2

(tan)x z g z

g z x




 


 

  


 (151)

   
   

22 2

2 22 2 2

()y x y g z y xx yy z g z

x y g z x g z


       


      

       
   

 or

 1 1 1

2 2 2 2
1 1 1

sinyU yU y U

U U y U y

    
 

 

   
 

 (152)

The second order derivatives:

   
 2 2

(tan) 2 tanx z z x y
g z z

g z x

  
 

         
     

     


 (153)

 1 1 1

2 22 2
11

() sin siny U U y U

U yU y

  


          


  


 108

THIS PAGE INTENTIONALLY LEFT BLANK

 109

V. SIMULATION

A. QUADROTOR MAIN INTERFACE

The Quarc / Simulink top level realization of Quadrotor model and controllers

developed are shown in Figure 54. This the main screen you see when you open the

quadrotor model in Simulink. It was separated into different components for friendly use

by the operator.

Figure 53. Simulink Representation of Qball-X4 Controller

The system consists of the following subsystems blocks:

1. Positions Commands Subsystem

The Position Commands subsystem contains the waypoint state machine

described in the previous section, where its outputs are the throttle command, the x, y, z

position and the heading commands as shown below in the simulink diagram. The Y axis

is called Z inside the optitrack software. So, where Z is meant Y and where height is

meant Z.

 110

Figure 54. Positions Commands Subsystem

 As far as the heading command is concerned, a stable heading set up to 8 degrees

was used for the experiments. This eliminates the small disturbance of the heading when

the quadrotor takes off. I assume this phenomenon exists because of the metallic objects

inside the lab that cause some interference in the magnetometer measurements.

2. Mode Control Subsystem

The Mode Control Subsystem allows the operator to select height, position and

heading modes for autonomous or 4-channel joystick control as shown in Figure 56.

 111

Figure 55. Mode Control Subsystem

3. Calculate Roll Pitch Heading Height Subsystem

This subsystem computes the vehicle’s orientation through the calculation of roll,

pitch, magnetic heading and the x, y magnetometer components of the quadrotor.

Complementary filter was used to correct roll and pitch components.

Figure 56. Calculate Roll Pitch Heading Height Subsystem

 112

4. HiQ Subsystem

The HiQ subsystem consists of the Hardware- In-the-Loop (HIL) blocks used to

configure the HiQ acquisition card and read or edit the values. It contains the Motor /

PWM outputs that power the whole system and initialize the sensors to get the

measurements through the various selectors. The Gain simulink block enables or disables

the motors by multiplying the motor input signals by the value of 1 or 0, respectively.

Inside this subsystem you can also check the battery voltage.

Figure 57. HiQ Subsystem

 113

 5. Joystick from Host Subsystem

This subsystem is an alternative power system to the motors through the 4-

channel joystick. It receives streaming data from the host model. If the IP address is set

up properly for the ground station in the Stream Client URI, then the Qball is able to

connect to the host model. It gives the same commands as in the Position Commands

subsystem and receives the data packet from the optitrack system. For safety reasons, if

the communications from the host is interrupted for 1 consecutive second, the QBall is

ordered to land.

Figure 58. Joystick from Host Subsystem

 6. Save Data Subsystem

The “Save Data” subsystem saves all the data collected from every flight of the

quadrotor into a MAT file through the Quarc block “To Host file” for further processing

or plotting. Figure 60 shows how all the different signal outputs collected and saved.

 114

Figure 59. Save Data Subsystem

B. QBall X4 WAYPOINT NAVIGATION

1. Waypoints Input

The waypoints foe the vehicle’s navigation will be introduced through the script

“Initialize_Qball_Waypoints.m showing in Appendix A, where the user defines the

position of the waypoints in the operation X-Y area (again Y axis is represented in the

model as Z because of the optitrack system notation). The platform where the waypoints

are set is shown below:

Figure 60. Waypoints Input Diagram

1, 5

2

4

3

0, 6

Y (m)

 115

2. Waypoint State Machine

 The waypoints will be followed through the waypoint state machine shown in

Figure 62.

Figure 61. Waypoint State Machine

The height will be held constant at 0.6 m (hgt coordinate) through the sonar

controller. Tx and Tz are the coordinates taken from the previous section and represent

the coordinates of x- and y-axis, respectively (This representation came up from the

optitrack system set up). The function controls the machine is shown in Appendix A.

 116

3. Waypoint Tracking

The trajectory will be followed through the implemented LQR controller

described in the previous chapter and for specific weight factor matrices that will

improve the performance. The LQR gains are shown below:

Roll – Pitch Controller Weight Factors: Q= [100 0 22000 10] - R=3000

Output LQR Gains: k(1) = -20.047 + 0.000 i

k(2) = -5.618 + 6.128 i

k(3) = -5.618 - 6.128 i

k(4) = -0.316 + 0.000 i

X-Y Controller Weight factors: Q= [50 2 100 0.1] - R=50

Output LQR Gains: k(1) = 12.080 + 0.000 i

k(2) = -1.762 + 1.604 i

k(3) = 1.762 - 1.604 i

k(4) = -0.045 + 0.000 i

Height Controller Weight factors: Q = diag([1 0 50]) - R = 5000000

Output LQR Gains: k(1) = -0.517 + 0.890 i

k(2) = -0.517 - 0.890i

k(3) = -1.024 + 0.000 i

Yaw Controller Weight factors: Qy = diag([1 0.1]) - Ry = 1000

Output LQR Gains: k(1) = -3.762 + 1.287 i

k(2) = -3.762 -1.287 i

The representation of how accurate is the waypoint tracking is shown in figure 63

(two trajectories). The quadrotor takes off, stabilizes in the assigned altitude and then

follows the waypoints 1 to 6 added from the operator (shown in Figure 61), where the

starting point is the zero point (0, 0) of the localization system. When each waypoint is

 117

found, the quadrotor has to stay 5 sec. A little overshoot takes place because of the

acceleration, it has already gained. The smaller the distance the smaller the overshoot.

The second trajectory takes place with low battery. Through the experiments, it was

shown that as the battery goes off; the response of the quadrotor is degraded.

Figure 62. QBall Actual Trajectories (With Full battery and low battery)

Start
(0, 0)

1 2

3 4

5

0, 6

Y (m)

X (m)

0, 6

Start
(0, 0)

X (m)

Y (m)

3

2

4

1

5

 118

4. Plots

Several plots can be obtained using the Save data interface. Some of them can be

really useful for understanding the response of the vehicle and the controller; some others

just for testing purposes in order to check if we can obtain data from the quadrotor

sensors. The PWM input of every motor toward time is shown Figure 64. The initial

value is the 5% of the 20 ms, thus 1 ms that is the minimum throttle and it goes up to 9%

of the 20 ms, thus 1.8 ms (maximum throttle=2 ms).

Figure 63. PWM Input for each motor

The following figures depict the data from each sensor and can be used for testing

purposes. Figure 65 shows the gyroscope measurements in rad/s, where small variations

around zero take place. Figure 66 shows the accelerometer measurements in m/s. The Z

acceleration oscillates around -10, the value of the gravitational acceleration. Figure 67

shows the magnetometer measurements in Gauss, with the Z value to be the largest.

0 50100
0

0.05

Time, s

P
W

M
1,

%
 o

f
20

m
s

0 50100
0

0.05

Time, s

P
W

M
2,%

 o
f

20
m

s

0 50100
0

0.05

Time, s

P
W

M
3,

%
 o

f
20

m
s

0 50100
0

0.05

Time, s

P
W

M
4,

%
 o

f
20

m
s

 119

Figure 64. Gyroscopes measurements

Figure 65. Accelerometers measurements

Figure 66. Magnetometer measurements

0 50100
-0.5

0

0.5

1

Time, s

gy
ro

x,
ra

d/
s

0 50100

-0.5

0

0.5

Time, s

gy
ro

y,
ra

d/
s

0 50100

-0.2

0

0.2

Time, s

gy
ro

z,
ra

d/
s

0 50100

-2

0

2

4

Time, s

ac
c x,

m
/s

0 50100
-5

0

5

Time, s

ac
c y,

m
/s

0 50100

-30

-20

-10

Time, s
ac

c z,
m

/s

0 50100

0.05

0.1

0.15

Time, s

m
ag

x,
G

au
ss

0 50100

-0.15

-0.1

-0.05

Time, s

m
ag

y,
G

au
ss

0 50100

-0.3

-0.2

-0.1

Time, s

m
ag

z,
G

au
ss

 120

The observable and magnetic heading are shown in Figure 68. The magnetic

heading is the straight calculation of the atan2 (mag_y / mag_x), where mag_x, mag_y

are the measurements of the magnetometer. The observable heading is the corrected one

using feedback from the magnetic heading.

Figure 67. Observable and magnetic heading

The following plots present the battery voltage and the chosen modes for

autonomous navigation. If the mode is 0 the navigation is taking place through the 4

channel joystick, else if the mode is 1 then the navigation is autonomous. The battery

voltage drops from flight to flight. if the voltage goes under 10.6V then the battery

becomes useless.

Figure 68. Battery voltage and height-heading-position mode (auto=1)

0 50100
0

0.1

0.2

Time, s

he
ad

in
g ob

s,
ra

d

0 50100

0
0.1
0.2
0.3

Time, s
he

ad
in

g m
ag

,
ra

d

0 50100

11

11.2

Time, s

V
ba

t,
V

0 50 100

10.8

11

11.2

Time, s

V
ba

t,
V

0 50100
0

1

2

Time, s

he
ig

ht
m

od
e

0 50100
0

1

2

Time, s

he
ad

in
g m

od
e

0 50100
0

1

2

Time, s

po
si

tio
n m

od
e

 121

The following plots in figures show the comparison of the measured and the

commanded X, Y, Z data. The small differences shown is having to do with the

disturbances occurred during the flight as well as with the linear controller it was used.

The difference in height between measured and command Z is because the optitrack

system captures the reflector placed in the top of the quadrotor, thus 0.6 m from the

ground.

Figure 69. X- Y position comparisons

Figure 70. Height position comparison

The comparison of the measured and commanded roll and pitch data is shown

below. The difference actually in both roll and pitch response is quite small. The

measured roll and pitch values are already filtered, as it is noticed form the graphs. The

0 20 40 60 80 100 120
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Time, s

X
,

m

X command

X measured

0 20 40 60 80 100 120
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Time, s

Y
,

m

Y command

Y measured

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time, s

H
ei

gh
t,

 m

Z command

Z measured

 122

only distinct difference is happening in the first seconds when the takeoff takes place. It

is a phenomenon under investigation since the quadrotor tends to roll a little bit as it takes

off and climbing to the assigned height. The roll controller gains should be tested more in

order to eliminate this effect.

Figure 71. Roll comparison

Figure 72. Pitch comparison

0 10 20 30 40 50 60 70

-6

-4

-2

0

2

4

6

Time, s

R
ol

l,
de

g

roll measured

roll command

0 10 20 30 40 50 60 70

-6

-4

-2

0

2

4

6

Time, s

P
itc

h,
 d

eg

pitch measured

pitch command

 123

B. QBOT WAYPOINT NAVIGATION

1. Waypoints Input

The waypoints will be introduced through the script “Initialize_Qbot_Waypoints.m

showing below where the user defines the position of the waypoints in the operation area

(x-y area).

As we see in the m- file, there is a calibration file loaded, coming from a magnetic

calibration process that took place before the navigation process began, in order to set up

the compass to the environment of the laboratory taking into account the declination of

Monterey that is different from Toronto (Quanser company location) where the initial

calibration was done. The simulink model of the compass and the model that initiates the

calibration are shown in Figures 74 and 75, respectively.

Figure 73. Compass Model

Figure 74. Qbot_magnetometer_calib model

 124

The Calibrated magnetometer x (red), y(green) measurements are shown in Figure

76. The difference in time occurs because of the offset imposed for better representation.

The calibration is succeeded when the values come closer to the absolute 1, -1. So the

performed one is better for the y measurements.

Figure 75. Calibrated Magnetometer X, Y Measurements

The platform where the waypoints are set are shown in Figure 77. Six waypoints

are chosen. The Qbot is placed in the zero point of the localization system.

Figure 76. Waypoints Input

0 10 20 30 40 50 60
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Calibrated Magnetometer X, Y Measurements

0, 6

1, 5

2 3

4

Y (m)

 125

2. Waypoint Tracking

The waypoint tracking takes place through the motion planner which uses the

inverse kinematics. It takes as inputs initial and target position of the robot, the time step

and after implementing a feedback structure, computes the right and left velocity and the

distance to the target position.

Figure 77. Motion Planner Simulink Representation

3. Trajectory representation

The trajectory for the waypoint tracking is shown in Figure 79. The Qbot starts

from zero point and follows the assigned waypoints. The curves shown in each waypoint

is the rotation of the Qbot to the required heading and they are being shown because the

diagram tracks the velocity, too. The Qbot computes the right and left wheel velocities

required for following the trajectory from one waypoint to another through the inverse

kinematics, and with the forward kinematics moves toward each waypoint. It also takes

input from the compass and provides feedback. This is the alter to the initial trajectory

between waypoints 3 and 4.

 126

Figure 78. Qbot Actual Trajectory

4. Plots

 The following plots depict the actual x, y position components and the orientation

theta of the Qbot as well as the optitrack measurements of these components for the

waypoint pattern described earlier. The difference between the encoded data and the

optitrack data is having to do with the fact that the optitrack system captures the motion

of the reflector placed on the top of the camera and not the robot itself. The “topt’

diagram is so “messy” because the robot adjusts its position and orientation several times

till it finds itself within the limits of each waypoint.

Figure 79. Qbot x, y, theta plots

20 40 60
-0.5

0

0.5

Time, s

x en
c,

m

20 40 60
-0.5

0

0.5

Time, s

y en
c,

m

20 40 60

-100
0

100

Time, s

t en
c,

de
g

20 40 60
-0.5

0

0.5

Time, s

x op
t,

m

20 40 60
-0.5

0
0.5

Time, s

y op
t,

m

20 40 60

-100
0

100

Time, s

t op
t,

de
g

eg

2 3

4 1, 5

0, 6

Start
(0, 0)

Y (m)

X (m)

 127

 In order to find the final orientation theta that the robot will apply to go to each

waypoint, these components have to be measured. “Dist” is the wheel’s distance travelled

in a sample time, “Ang“ is the angle turned in a sample of time, “heading_abs” and

“θmag” are the absolute and magnetic heading measured from the compass model and

finally the Distance_t is the distance to the target measured.

Figure 80. Qbot heading and distances plots

C. QBot – Qball COOPERATION WAYPOINT NAVIGATION

The cooperation of the two vehicles will take place in the form of Leader(Qbot) –

Follower (QBall). The Qbot navigation will continue taking place as before with the

motion planner. In this model though, a real time Data Streamer has to be set in order to

send the actual position to the QBall and then the quadrotor starts his trajectory following

this positions.

Figure 81. “Stream to Qball” subsystem

, , ,

20 40 60
0
5

10
15

Time, s

D
is

t,
 m

m

20 40 60
-5
0
5

Time, s
A

ng
,

de
g

20 40 60

-100
0

100

Time, she
ad

in
g ab

s,
de

20 40 60

-100
0

100

Time, s

 m
ag

,
de

g

20 40 60
0

0.5
1

Time, s

D
is

ta
nc

e t,
m

 128

With the above streamer, the waypoint state machine will have as input the
coordinates of every waypoint instead of having defined by the user.

Figure 82. Qball Waypoint State Machine

The challenge is for the host localization model to recognize both models at the

same time and send the actual data to the two controllers. That’s why a modification in

the Qball and Qbot host localization files needed to be made for the cooperation. The

localization models for each vehicle and the modification for their cooperation are shown

below:

Figure 83. Host Qbot Localization

 129

Figure 84. Host Qball Localization

Figure 85. Host Qbot - Qball Localization (Modification)

 130

The “Optitrack Measurements”subsystem describes how the localization through

the optitrack motion cameras is done for the two models. The calibration file from the

cameras is saved in the “Optitrack Point Cloud“ Quarc block.

Figure 86. “Optitrack Measurements” Subsystem

The both vehicles experience the same response as operating alone since the

cooperation takes place with the same controllers and waypoint state machines/ motion

planners with the difference that the waypoint positions are sent from the Qbot and not

form the operator.

 131

VI. CONCLUSIONS – FUTURE WORK

A. CONTRIBUTIONS

This thesis focused on the design of a framework for achieving cooperation

between a quadrotor unmanned vehicle, controlled by a LQR controller, and a ground

robot applying inverse kinematics as a control strategy. Since not much work has been

done for a controller using inverse dynamics for quadrotors UAVs, a direct method for

this controller was also introduced.

The main contributions of this thesis are presented as follows:

 The successful set up of the laboratory environment is achieved. This
consisted of the localization system with ten motion capture cameras, the
ground station, four ground robots and four quadrotors. For this thesis,
only one quadrotor and one ground robot was used.

 Applying Newton’s laws, the six degree of freedom mathematical model
of a quadrotor is derived, including dynamic analysis and design of the
control inputs.

 A two dimensional mathematical model for a ground robot is also derived,
from the basic physics and robot kinematics.

 A LQR controller is designed for the position and attitude control of the
quadrotor, taking place in different decoupled channels and under various
flight tests for improvement of their performance.

 Applying forward and inverse kinematics, the control of the ground robot
is achieved. The successful data receiving from robot’s various sensors is
also tested (Camera, IR detectors, Bumper, Sonar detectors).

 A waypoint scenario for the navigation of the two vehicles individually or
simultaneously is implemented.

 A proposed controller utilizing direct method with inverse dynamics for
real-time control of the quadrotor UAV is partly designed focusing on
optimization over quasi optimal solution.

The ground robot’s camera is placed and tested onboard the quadotor as an
additional sensor, obtaining successful image.

 132

B. CONCLUSIONS

The following conclusions can be drawn based on the research of this thesis:

 Quadrotor UAV can be linearized and controlled through linear control
methods quite successfully if the flight tests are not far from the hover
conditions;

 The LQR controller works well enough when the waypoints distances are
not very close to each other (experiences higher overshoot) and not very
far away (the trajectory following becomes less precise).

 The LQR controller can be used as a path following controller together
with the quasi-optimal trajectory generator for real-time operations
achieving better performance toward any disturbances or for obstacle
avoidance.

 The quadrotor QBall experiences limitations of operation because of the
battery’s low capacity. Furthermore, the flight performance is degraded as
the battery capacity and life reduces.

 The ground robot’s very low speed is a disadvantage for the leader –
follower scenario of the two vehicles, forcing the operator to reduce the
quadrotor’s velocity in order to assist for the accomplishment of the
mission.

 The robot’s Logitech camera has a slow rate of response, even for the slow
velocities of the robot. It is not suggested to be used for faster vehicles like
quadrotors unless it is supposed to operate on a standoff basis

C. FUTURE WORK

The recommendations for future work are:

 Test to the whole length the direct method model and the trajectory
generator with LQR controller for different scenarios.

 Achieve the cooperation of two or more quadrotors or two or more ground
robots involving collision avoidance scenarios.

 Use multiple quadrotors to observe an object from different angles and all
of them arrive simultaneously to allow for military reconnaissance
mission, a search and rescue operation, or an industrial inspection routine.

 Implement different controllers for path following instead of LQR.
Integral backstepping, a combination of PID and backstepping was proved
the best solution for controlling a OS4 quadrotor in EFL’s research so it is
a possible solution.

 133

 Implement a controller for the non-linear dynamic model of the quadrotor,
to obtain the best performance.

 Develop a system for the ground vehicle that it will use a terrain map
provided by the quadrotor. The quadrotor can use a added camera or
different sensors for image processing in order to construct a map of the
terrain around the ground robot so as to navigate to a goal position.

 Finally, since the ground robot consists of a lot of free positions for other
sensors, test which other sensors widely used in experiments are
compatible with quanser computer, gumstix. This will allow to use these
sensors in the quadrotor as well.

 134

THIS PAGE INTENTIONALLY LEFT BLANK

 135

APPENDIX MATLAB / SIMULINK DOCUMENTATION

setup_qball_x4.M File

A MATLAB script that is run whenever the Qball controller model is opened. This script
runs several other scripts to initialize model and controller parameters.

% This file runs the calibration and initialization files for the
Qball.
% This file is run automatically when the model is loaded or can be run
% manually.

% Complimentary filter design for roll/pitch measurements.
filter_design;

% LQR gains and other controller parameters for the Qball.
controller_design;

filter_design.m File
A script containing the properties of the complementary filter used to estimate the Qball's
roll and pitch.

t=10;
s = tf('s');
Gg = t^2*s/(t*s+1)^2
Gi = (2*t*s+1)/(t*s+1)^2

controller_design.m File
A script used to compute the LQR controller gains used in stabilizing the Qball's
orientation and position. This file is run by the setup_qball_x4.m script.

LQR Pitch and Roll Controllers M-file

wnom = 15;
L = 0.2;
w = wnom;
K = 120;
J = 0.03;
Jyaw = 0.04;
CLimit = 0.025;
M = 1.4;
g = 9.8;

Am = [0 1 0
 0 0 2*K*L/J
 0 0 -w];
Bm = [0 0 w]';

 136

Aobs = Am' ;
Bobs = eye(3);
Qobs = diag([.001 10000 .01]);

Robs = diag([1 1 1])*1;
Kobs = lqr(Aobs,Bobs,Qobs,Robs)
Kobs = Kobs';
Aobs = Aobs'-Kobs*Bobs';
eig(Aobs)
Bobs = [Bm Kobs]
Cobs = eye(3)
Dobs = [0 0 0 0
 0 0 0 0
 0 0 0 0];
% augment with integrator
Ai = [Am [0 0 0]'
 1 0 0 0];
Bi = [Bm' 0]';
Ci = eye(4);
Di = [0 0 0 0]';
Q = diag([100 0 22000 10]);
R = 30000;
ki = lqr(Ai,Bi,Q,R);
rp_eig = eig(Ai-Bi*ki);
fprintf ('** \n');
fprintf('ROLL, PITCH DESIGN \n');
fprintf('P = %5.3f D = %5.3f Actuator = %5.3f I = %5.3f \n\n',ki(1),
ki(2),ki(3),ki(4));
for i = 1:4
fprintf(' %5.3f + %5.3f i \n ',real(rp_eig(i)), imag(rp_eig(i)));
end;

LQR Height Controller M-file

% Z axis

vlimith = 0.1;
Amh = [0 1
 0 0]
Bmh = [0 4*K/M]';
Cmh = [1 0];
Dmh = 0;

% augment with integrator
Aih = [Amh [0 0]'
 1 0 0];
Bih = [Bmh' 0]';

Cih = eye(3);
Dih = [0 0 0]';

Q = diag([1 0 50]);
R = 5000000;
kh = lqr(Aih,Bih,Q,R);

 137

h_eig = eig(Aih-Bih*kh);
fprintf ('** \n');
fprintf('Z DESIGN \n');
fprintf('P = %5.3f D = %5.3f I = %5.3f \n\n',kh(1), kh(2),kh(3));
for i = 1:3
fprintf(' %5.3f + %5.3f i \n ',real(h_eig(i)), imag(h_eig(i)));
end;
Kph = kh(1);
Kdh = kh(2);
Kwh = 0;
Kih = kh(3);

LQR Position Controller M-file

tlimit = 5*pi/180; %max pitch cmd radians
%tlimit = 15*pi/180; %max pitch cmd radians
vlimit = 0.3; % max speed cmd in m/sec
%vlimit = 0.5; % max speed cmd in m/sec
Tau_theta = 1/7; % closed loop time constant for pitch response
wt =1/Tau_theta; %closed loop theta bandwidth
kt = 1;
a = [0 1 0 0
 0 0 g 0
 0 0 -wt 0
 1 0 0 0];
b = [0 0 wt 0]';

q = diag([5 2 0 0.1]);
%q = diag([5 2 0 0.1]);
%r = 50;
r = 50;

k = lqr(a,b,q,r);

ac = a-b*k;
xy_eig = eig(a-b*k);
Kp = k(1);
Kd = k(2);
Ki = k(4);
Kw = k(3);
fprintf('\n\n X Y Design \n');
fprintf('P = %5.3f D = %5.3f Actuator = %5.3f I = %5.3f \n\n',k(1),
k(2),k(3),k(4));
for i = 1:4
fprintf(' %5.3f + %5.3f i \n ',real(xy_eig(i)), imag(xy_eig(i)));
end;

LQR Yaw Controller M-file
Ky = 4;
Jy = 0.032;

Amy = [0 1
 0 0];
Bmy = [0 4*Ky/Jy]';

 138

Cmy = eye(2);
Dmy = [0;0];

Qy = diag([1 0.1]);
Ry = 1000;
ky = lqr(Amy,Bmy,Qy,Ry);
h_eigy = eig(Amy-Bmy*ky);
Kpyaw = ky(1);
Kdyaw = ky(2);

Initialize Qball_Waypoints.m

% clear all
close all
clc

height = 301;
width = 301;
axs = [-1 1 -1 1]*0.5;

x = [axs(1),axs(2)];
y = zeros(1, length(x));

figure(1),
plot(x, y),hold on,plot(y, x),
xlabel('X (m)'), ylabel('Z (m)')
% axis([-round(width/2) round(width/2) -round(height/2)
round(height/2)])
axis(axs)
set(gca, 'Ydir', 'reverse')
set(gcf, 'Color', [1 1 1]);

Rx = 0;
Ry = 0;
Rt =0;

n = input('How many waypoints do you want to define? (max 10): ');
if n>10
 n = 10;
end

% X and Y waypoint coordinates
Tx = zeros(11, 1);
Tz = zeros(11, 1);

% Mission state
% 0 : do nothing, wait
% 1 : Goto waypoint
% 2 : Land
Task = ones(11, 1)*2; % Set all tasks to land initially.

for i=1:n
 name = strcat('Enter the coordinate of waypoint no. ', num2str(i));

 139

 title(name);
 [tx tz] = ginput(1); % in pix
 plot(tx, tz, 's', 'LineWidth', 2, 'MarkerEdgeColor','k',...
 'MarkerFaceColor','g',...
 'MarkerSize',10);
 text(tx+5, tz+15, strcat('Waypoint-', num2str(i)))

 Tx(i) = tx;
 Tz(i) = tz;
 Task(i) = 1;
 if i == n
 Tx(n+1:10) = tx;
 Tz(n+1:10) = tz;
 end
end

hold off

QBall Waypoint State Machine function

function [h_c, x_c, z_c, s, i] = fcn(x, z, y, Tx, Tz, Task, hgt, t)

% Constants
WP_TOL = 0.1; % Waypoint tolerance, must be less than this distance (m)
to arrive at waypoint.
HGT_TOL = 0.1;
WP_WAIT_TIME = 5; % Wait at waypoint for this many seconds.

% Missions state
% 0 : initialize
% 1 : takeoff
% 2 : goto waypoint
% 3 : land
% 4 : wait at waypoint
persistent state;

persistent wp_index;
persistent to_x;
persistent to_z;
persistent t_start;
persistent t_end;

if isempty(state)
 state = 0;
end
if isempty(wp_index)
 wp_index = 1;
end
if isempty(to_x) || isempty(to_z)
 to_x = 0;
 to_z = 0;
end
if isempty(t_start) || isempty(t_end)
 t_start = 0;

 140

 t_end = 0;
end

s = state;
i = wp_index;

switch state
 case 0
 h_c = 0;
 x_c = 0;
 z_c = 0;
 if t >= 3
 to_x = x;
 to_z = z;
 state = 1;
 end

 case 1
 h_c = hgt;
 x_c = to_x;
 z_c = to_z;

 if abs(y - hgt) < HGT_TOL
 state = 2;
 end

 case 2
 h_c = hgt;
 x_c = Tx(wp_index);
 z_c = Tz(wp_index);
 if Task(wp_index) == 1
 if sqrt((x - x_c)^2 + (z - z_c)^2) < WP_TOL
 state = 4;
 t_end = t + WP_WAIT_TIME;
 %wp_index = wp_index + 1;
 end
 else
 to_x = Tx(wp_index);
 to_z = Tz(wp_index);
 state = 3;
 t_start = t;
 t_end = t + 3;
 end

 case 3
 if t >= t_end
 h_c = 0;
 else
 h_c = hgt;
 end
 x_c = to_x;
 z_c = to_z;

 case 4

 141

 h_c = hgt;
 x_c = Tx(wp_index);
 z_c = Tz(wp_index);
 if t >= t_end
 state = 2;
 wp_index = wp_index + 1;
 end

 otherwise
 state = 0;
 h_c = 0;
 x_c = 0;
 z_c = 0;
end

Initialize Qbot_Waypoints.m
close all
clc

load calibration_file

height = 301;
width = 301;
axs = [-1 1 -1 1]*0.6;

x = [axs(1),axs(2)];
y = zeros(1, length(x));

figure(1),
plot(x, y),hold on,plot(y, x),
xlabel('X (m)'), ylabel('Y (m)')
% axis([-round(width/2) round(width/2) -round(height/2)
round(height/2)])
axis(axs)
Rx = 0;
Ry = 0;
Rt =0;

n = input('How many waypoints do you want to define? (max 10): ');
if n>10
 n = 10;
end
Tx = zeros(10, 1);
Ty = zeros(10, 1);
for i=1:n
 name = strcat('Enter the coordinate of waypoint no. ', num2str(i));
 title(name);
 [tx ty] = ginput(1); % in pix
 plot(tx, ty, 's', 'LineWidth', 2, 'MarkerEdgeColor','k',...
 'MarkerFaceColor','g',...
 'MarkerSize',10);
 text(tx+5, ty+15, strcat('Waypoint-', num2str(i)))
 Tx(i) = tx;

 142

 Ty(i) = ty;
 if i == n
 Tx(n+1:10) = tx;
 Ty(n+1:10) = ty;
 end
end
hold off

Qbot Mission Planner function

function [right_vel, left_vel, target_distance, states] = ...
 motion_planner(target_list, robot_xyt, vlimit, ...
 err_th, delta_t, grid_size, enc_ang, ang_thr, tracking, pre_states)

% Initialize output variables
right_vel = int16(0);
left_vel = int16(0);
target_distance = -500;
states = pre_states;
if ~(abs(robot_xyt(1)) == 5000 || tracking==0)
% if tracking == 1
 rx = robot_xyt(1);
 ry = robot_xyt(2);
 rtheta = robot_xyt(3);
 target_xy = [rx ry];
 [n xy] = size(target_list);
 if n==2 && xy==1
 target_xy = [target_list(1,1) target_list(2,1)];
 n = 1;
 else
 for i=1:n
 if states(1) == i
 for j=1:xy
 target_xy(j) = target_list(i, j);
 end
 end
 end
 end
 tx = target_xy(1);
 ty = target_xy(2);

 target_distance = find_dist(rx, ry, tx, ty);
 if ((states(1) == n) && (target_distance <= err_th)) || states(1)
== -1
 if states(5) == 1
 rtheta = 0;
 end
 [ang_to_tar, states(3), states(4)]= find_theta(rx, ry, rtheta,
rx+100, ry, grid_size, ...
 enc_ang, ang_thr, states(3), states(4));
 if states(4) == 1 && states(5) == 0
 [right_vel, left_vel] = solve_inv_kin(0, ...
 ang_to_tar, vlimit, delta_t);
 else

 143

 right_vel = int16(0);
 left_vel = int16(0);
 states(5) = 1;
 end
 else
 if target_distance <= err_th
 states(1) = pre_states(1) + 1;
 else
 [ang_to_tar, states(3), states(4)]= find_theta(rx, ry,
rtheta, tx, ty, grid_size, ...
 enc_ang, ang_thr, states(3), states(4));
 [right_vel, left_vel] = solve_inv_kin(target_distance, ...
 ang_to_tar, vlimit, delta_t);
 end
 end
end
return;
%--
function [y] = check_angle(x)
y = x;
if x > pi
 y = x - 2*pi;
elseif x < -pi
 y = x + 2*pi;
end
return;
% ---
function dist = find_dist(rx, ry, tx, ty)
dist = sqrt((rx-tx)^2 + (ry-ty)^2);
return;
% ---
function [theta, ang_state, rotate_state]= find_theta(rx, ry, rtheta,
tx, ty, ...
 grid_size, enc_ang, ang_thr, pre_ang_state, pre_rotate_state)
X = round((tx - rx)/grid_size);
Y = round((ty - ry)/grid_size);
theta = atan2(Y, X);
if pre_rotate_state == 1
 theta = check_angle(theta - pre_ang_state);
else
 theta = check_angle(theta - check_angle(rtheta));
end
if abs(theta)>=ang_thr
 if pre_rotate_state == 0
 rotate_state = 1;
 ang_state = rtheta;
 else
 rotate_state = pre_rotate_state;
 ang_state = check_angle(pre_ang_state + enc_ang);
 end
else
 rotate_state = 0;
 ang_state = 0;
end
return;

 144

% ---
function [vr, vl] = solve_inv_kin(dist, theta, vlimit, delta_t)
d = 252.5;
vmax = vlimit;%(2);
wmax = (2*vmax)/d;
w = theta/delta_t;
w_sign = sign(w);
if abs(w) > wmax
 w = w_sign*wmax;
 vr = int16(round((d*w)/2));
 vl = int16(-vr);
else
 v = dist/delta_t;
 vr_tmp = (2*v + d*w)/2;
 vl_tmp = 2*v - vr_tmp;

 max_of_vrvl = abs(max(vr_tmp, vl_tmp));
 if max_of_vrvl > vmax
 vr_tmp = (vr_tmp/max_of_vrvl)*vmax;
 vl_tmp = (vl_tmp/max_of_vrvl)*vmax;
 end
 vr = int16(vr_tmp);
 vl = int16(vl_tmp);
end
return;
% ---

 145

LIST OF REFERENCES

[1] S. Bouabdallah, “Design and control of quadrotors with application to
Autonomous flying,” M.S. thesis, Aboubekr Belkaid University, Tlemcen,
Algeria, 2007

[2] http://www.draganfly.com/uav-helicopter/draganflyer-x4/index.php (accessed on
2011/09/11).

[3] http://vertol.mit.edu/index.html (accessed on 2011/09/11).

[4] http://www.draganfly.com/news/2007/11/20/vecpav-autonomous-uav-control-
systemdraganflyer-helicopters/ (accessed on 2011/09/12).

[5] D. J. Halaas, S. R. Bieniawski, P. Pigg, and J. Vian, "Control and management of
an indoor, health enabled, heterogenous fleet," Proc. of AIAA
Infotech@Aerospace Conference, Seattle, Washington, 6-9 April, 2009 (AIAA
2009–2036).

[6] http://users.encs.concordia.ca/~ymzhang/UAVs.htm(accessed on 2011/09/08).

[7] http://www.draganfly.com/news/2011/06/28/regina-police-department-uses-
draganflyer-x6-rc-helicopter-uav-in-homicide-investigation/(accessedon
2011/11/28)

[8] http://www.draganfly.com/news/2011/02/15/mesa-county-sheriff-colorado-
receives-faa-approval-to-operate-the-draganflyer-x6-helicopter-county-wide-2/
(accessed on 2011/11/28)

[9] G. Hoffmann, H. Haung, S. L. Waslander, and C. L. Tomlin, “Quadrotor
helicopter flight dynamics and control: Theory and experiment,” in Proceedings
of the AIAA Guidance, Navigation, and Control Conference and Exhibit, Hilton
Head, South Carolina, August 2007.

[10] http://vertol.mit.edu/, (accessed on 2011/09/16).

[11] http://cmsvt.org/node/19, (accessed on 2011/09/16)

[12] J. Herkamp. “Deployment of shaped charges by a semi-autonomous ground
vehicle.” M.S. thesis, Naval Postgraduate School, June 2007.

[13] P. Castillo, P. Albertos, P. Gracia, and R. Lozano, “Simple real-time attitude
stabilization of a quad-rotor aircraft with bounded signals,” in Proceedings of the
45th IEEE Conference on Decision & Control, San Diego, CA, USA, 2006, pp.
1533 -1538.

 146

[15] A. Soumelidis, P. Gaspar, P. Bauer, B. Lantos, and Z. Prohaszka, “Design of an
embedded microcomputer based mini quadrotor UAV,” in Proceedings of the
European Control Conference, Kos, Greece, 2007, pp. 2236–2241.

[16] G. Hoffmann, H. Haung, S. L. Waslander, and C. L. Tomlin, “Quadrotor
helicopter flight dynamics and control: Theory and experiment,” in Proceedings
of the AIAA Guidance, Navigation, and Control Conference and Exhibit, Hilton
Head, South Carolina, August 2007.

[17] I. Sadeghzadeh, A.Mehta, Y.Zhang, and C.-A. Rabbath (2011), “Fault-Tolerant
Trajectory Tracking Control of Quadrotor Helicopter Using Gain-Scheduled PID
and Model Reference Adaptive Control,” presented at the Annual Conference of
the Prognostics and Health Management Society 2011 (PHM2011), Sept. 25–29,
2011, Montreal, Quebec, Canada (Nominated as PHM2011 Best Paper).

[18] A. Bani Milhim, Y. M. Zhang, and C.-A. Rabbath (2010), “Gain Scheduling
Based PID Controller for Fault Tolerant Control of Quad-Rotor UAV,” presented
at AIAA Infotech@Aerospace 2010, Atlanta, Georgia, USA, 20-22 April 2010,
AIAA Paper 2010-3530.

[19] J. Zhao, W. Sun, Y. Song, and X. Wang, “Fault-tolerant PID controllers design
for unknown nonlinear systems based on support vector machine” in Proceedings
of the Control and Decision Conference (CCDC), 2010 Chinese, 2010.

[20] A.L. Salih, M. Moghavvemi, H.A.F. Mohamed, K.S. Gaeid, “Modelling and PID
controller design for a quadrotor unmanned air vehicle” in, Proceedings of the
2010 IEEE International Conference on Automation Quality and Testing Robotics
(AQTR), 2010, Vol.1, pp. 1–5.

[21] E. Altug, J. P. Ostrowski and R. Mahony, "Control of a quadrotor helicopter using
visual feedback," Proceedings of the 2002 IEEE International Conference on
Robotics and Automation, 2002, Vol. 1, pp. 72–77.

[22] D. Lee, T. C. Burg, B. Xian and D. M. Dawson, "Output feedback tracking
control of an underactuated quad-rotor UAV," Proceedings of the 2007 American
Control Conference, New York City, USA, July 11-13, 2007, pp. 1775–1780.

[23] A. Tayebi and S. McGilvary, “Attitude stabilization of a four-rotor aerial robot,”
in Proceedings of the 2004 IEEE Conference on Decision and Control, Atlantis,
Paradise Island, Bahamas, 2004, pp. 1216–1221.

[24] A. Benallegue, A. Mokhtari and L. Fridman, "Feedback linearization and high
order sliding mode observer for a quadrotor UAV," Proceedings of the 2006
International Workshop on Variable Structure Systems, Alghero, Italy, June 5-7,
2006, pp. 365–370.

 147

[25] I. Kanellakopoulos, P. V. Kokotovic and A. S. Morse, "Systematic design of
adaptive controllers for feedback linearizable systems," IEEE TRANSACTIONS
ON AUTOMATIC CONTROL, Vol. 36, No. 11, November 1991, pp. 1241–1253

[26] Khalil, H. K., Nonlinear Systems, Upper Saddle River, NJ: Prentice-Hall, Inc.,
2nd edition, 1996.

[21] T. Madani and A. Benallegue, "Backstepping control for a quadrotor helicopter,"
Proceedings of the 2006 IEEE/RSJ, International Conference on Intelligent
Robots and Systems, Beijing, China, Oct. 9-15, 2006, pp. 3255–3260.

[28] T. Madani and A. Benallegue, "Backstepping sliding mode control applied to a
miniature quadrotor flying robot," Proceedings of IEEE Conference on Industrial
Electronics, Paris, France, 2006, pp. 700–705.

[29] A. A. Mian, M. I. Ahmad and D. B. Wang, "Backstepping based nonlinear flight
control strategy for 6 DOF aerial robot," International Conference on Smart
Manufacturing Application, Kintex, Gyeonggi-do, Korea, April 9-11, 2008, pp.
146–151.

[30] S. Bouabdallah, P. Murrieri, and R. Siegwart, "Design and control of an indoor
micro quad-rotor," Proceedings of 2004 IEEE International Conference on
Robotics and Automation, New Orleans, USA, 2004, pp. 4393–4398.

[31] P. Castillo, A. Dzul and R. Lozano "Stabilization of a mini-rotorcraft having four
rotors," Proceedings of the 2004 IEEE International Conference on Industry
Technology, Sendai, Japan, 2004, Vol. 3, pp. 1543–1548.

[32] K. T. Oner, E. Cetinsoy, M. Unel, M. F. Aksit, I. Kandemir, and K. Gulez,
"Dynamic model and control of a new quad-rotor unmanned aerial vehicle with
tiltwing mechanism," Proceedings of World Academy of Science, Engineering
and Technology, November 2008, Vol. 35, pp. 58–63.

[33] R. Xu and U. Ozguner, "Sliding mode control of a quad-rotor helicopter,"
Proceedings of the 45th IEEE Conference on Decision & Control, Manchester
Grand Hyatt Hotel, San Diego, CA, USA, December 13–15, 2006, pp. 4957–
4962.

[34] P. Chandler, “Self-repairing flight control system reliability and maintainability -
Executive overview,” in Proceedings of the IEEE National Aerospace and
Electronics, Dayton, OH, 1984, pp. 586–590.

[35] J. S. Eterno, J. L. Weiss, D. P. Looze, and A. S. Willsky, “Design issues for fault
tolerant-restructurable aircraft control,” in Proceedings of the 24th IEEE
Conference on Decision and Control, Ft. Lauderdale, 1985, pp. 900–905.

 148

[36] Y. M. Zhang and J. Jiang, “Bibliographical review on reconfigurable fault-
tolerant control system,” IFAC Annual Review in Control, 2008, Vol. 32, No. 2,
pp. 229–252.

[37] J. T. Qi, Z. Jiang and X. G. Zhao, "Adaptive UKF and its application in fault
tolerant control of quadrotor UAV," AIAA Guidance, Navigation and Control
Conference and Exhibit, August 20–23, 2007, Hilton Head, South Carolina, pp.
1–15.

[38] Y. M. Zhang and J. Jiang, "Active Fault tolerant Control System against Partial
Actuator Failures," IEEE Proceedings - Control Theory and Applications, January
2002, Vol. 149, No. l, pp. 95–104.

[39] X. B. Zhang, “Lyapunov-based fault tolerant control of quadrotor unmanned
aerial vehicles,” M.S. thesis, Concordia University, Montreal, Quebec, Canada,
2010

[40] A. Bani-Milhim, “Modeling and fault tolerant PID control of a quad-rotor UAV,”
M.S. thesis, Concordia University, Montreal, Quebec, Canada, 2010

[41]O.A. Yakimenko, “Simplified Modification of the Direct Variational Method for
Onboard Solution of Optimization Boundary Problems for Flight Vehicle
Trajectories,” 1998, Journal of Computer and Systems Sciences International,
37(3), pp. 405–415.

[42] V.N. Dobrokhodov, O.A. Yakimenko, “Synthesis of Trajectorial Control
Algorithms at the Stage of Rendezvous of an Airplane with a Maneuvering
Object,” 1999, Journal of Computer and Systems Sciences International, 38(2),
pp. 262–277.

[43] D.V Alekhin, O.A. Yakimenko, “Synthesis of Optimization Algorithm for Route
Trajectory by the Direct Variational Method,” 1999, Journal of Computer
andSystems Sciences International, 38(4), pp. 650–666.

[44] O.A. Yakimenko, “Rapid Onboard Prototyping of Near-Optimal Spatial
Trajectories for Pilot’s Associate,” 2000, Proceedings of the 22nd International
Congress of Aeronautical Sciences, Harrogate, United Kingdom, August 27 –
September 1.

[45] O.A. Yakimenko, “Direct Method for Rapid Prototyping of Near-Optimal Aircraft
Trajectories,” 2000, AIAA Journal of Guidance, Control, and Dynamics, 23(5),
pp. 865–875.

[46] I.I. Kaminer, O.A. Yakimenko, A.M. Pascoal, “Coordinated Control of Multiple
UAVs for Time-critical Applications,” 2006, Proceedings of the 27th IEEE
Aerospace Conference, Big Sky, Montana, March 4- 11.

 149

[47] L.-C. Lai et al,“Time-Optimal Control of a Hovering Quad-Rotor Helicopter,”
Journal of Intelligent & Robotic Systems, 2006, Vol. 45, No. 2, pp. 115–135.

[48] I. D. Cowling, O. A. Yakimenko, and J. F. Whidborne. “A Prototype of an
Autonomous Controller for a Quadrotor UAV,” in European Control Conference,
2007.

[49] Y. Bouktir, M. Haddad, T. Chettibi, “Trajectory planning for a quadrotor
helicopter,” in 2008 16th Mediterranean Conference on Control & Automation,
25–27 June 2008, pp. 1258–1263.

[50] G. Hoffmann, H. Haung, S. L. Waslander, and C. L. Tomlin, “Quadrotor
Helicopter Flight Dynamics and Control: Theory and Experiment,” in
Proceedings of the AIAA Guidance, Navigation, and Control Conference and
Exhibit, Hilton Head, South Carolina, August 2007.

[51] QUANSER INNOVATE EDUCATE, "Quanser Qball-x4 user manual, Document
Number 829.

[52] www.quanser.com, accessed in September, 2011.

[53] www.Gumstix.com, accessed in September, 2011.

[54]QUANSER INNOVATE EDUCATE, "Quanser Qbot user manual, Document
Number 830.

[55] www.optitrack.com, accessed in September, 2011.

[56] QUANSER INNOVATE EDUCATE, "Qbot Experiment #01: Kinematics
Modeling, Document Number 831.

[57] D. Halidey, R. Resnik, J. Walker, Fundamentals of Physics, John Willey & Sons,
Inc, 2008

[58] G. Dudek, M. Jenkin, Computational Principles of Mobile Robotics, Cambridge:
Cambridge University Press, 2000.

[59] R. Murray, Z. Li, and S. Sastry. A Mathematical Introduction to
RoboticManipulation. Florida: CRC Press, 1994.

[60] N. Sarkar, V. Kumar, and X. Yun and. Control of mechanical systems withrolling
contacts: Applications to mobile robots. International Journal ofRobotics
Research, 13(1): 55–69, February 1994.

[61] Benson H. Tongue and Sheri D. Sheppard. Dynamics: Analysis and Designof
Systems in Motion. John Wiley and Sons, 2005.

 150

[62] M. J. Nieuwstadt and R. M. Murray, “Approximate trajectory generation for
differentially flat systems with zero dynamics,” in Proc. 34th IEEE Conf.
Decision Contr., New Orleans, LA, December 13–15, 1995.

[63] V. T. Taranenko, Experience on Application of Ritz’s, Poincare’s, andLyapunov’s
Methods in Solving of Flight Dynamics Problems. Moscow: Air Force
Engineering Academy Press, 1968 (in Russian).

[64] A. I. Neljubov, Mathematical Methods of Calculation of Combat, Takeoff/Climb,
and Landing Approach Manoeuvres for the Aircraft with 2-D Thrust Vectoring.
Flight Characteristics and Combat Maneuvering of Manned Vehicles. Moscow:
Air Force Engineering Academy Press, 1968 (in Russian).

[65] F. Fahroo and I. M. Ross, “Direct Trajectory Optimization by a Chebyshev
Pseudospectral Method,” Journal of Guidance, Control, and Dynamics, vol.25,
no.1, 2002, pp. 160–166.

[66] J. Vlassenbroeck, and R. Van Dooren, “A Chebyshev Technique for Solving
Nonlinear Optimal Control Problems,” IEEE Trans. Autom. Control, vol.33, no.4,
1988, pp. 333–340.

[67] M. Huzmezan, G. A. Dumont, W. A. Gough and S. Kovac, “Multivariable
Laguerre-based indirect adaptive predictive control a reliable practical solution
for process control,” in IASTED Modeling and Control Conf., Innsbruck, Austria,
February 18–21, 2001.

[68] M. Fleiss, J. Levine, Ph. Martin and P. Rouchon, “Sur les systèmes non linéarités
différentiellement plats,” in C.R. Acad. Sci., Paris, vol.315, série I, 1992, pp. 619–
624.

[69] A. Chelouah, “Extensions of differential flat fields and Liouvillian systems,”in
Proc. 36th IEEE Conf. Decision Contr., San Diego, CA, December 10–12,1997.

[70] P. Castillo, A. Dzul and R. Lozano, “Real-time stabilization and tracking of a
four-rotor mini rotorcraft,” IEEE Transactions on Control Systems Technology,
vol.12, no.4, 2004, pp. 510–516.

[71] O. Yakimenko. Notes for NPS ME4901(Direct Methods for Rapid Prototyping of
Optimal Maneuvers), Naval Postgraduate School, 2001, unpublished.

 151

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

