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ABSTRACT 

The utilization of carbon nanotube arrays for field ionization in ion thrusters 

allows for a substantial reduction in thruster size and weight. The availability of 

miniature ion thrusters may enable the development of a suitable propulsion 

system for nano- and picosatellites, and can realize substantial weight, volume, 

and cost savings in existing satellite platforms.  

This research focuses on the design of a field ionization test chamber that 

can be used to determine a comprehensive performance metric for the carbon 

nanotube field ionization micro-ion thruster (CNT-FIMIT). Using the knowledge 

gathered from two previously employed test chamber designs, a third generation 

apparatus with higher precision and improved capabilities is constructed. This 

new design incorporates a mass flow controller for propellant flow rate 

measurements, a high-voltage source-measure unit for ionization current 

measurements, and a linear shift with position feedback for adjusting the 

distance between the carbon nanotubes and the counter electrode during field-

ionization. The design emphasizes user-friendly operation by simplifying the 

sample exchange and by reducing the chamber volume under vacuum for a 

faster turn-around time between experiments. The proposed design is highly 

modular, allowing for easy installation of additional analytic capabilities and other 

future upgrades. 
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I. INTRODUCTION  

A. ION THRUSTERS 

Ion thrusters (ITs) constitute a form of electric propulsion utilized for 

spacecraft propulsion. This form of propulsion, also known as electrostatic 

propulsion, utilizes Coulomb forces to accelerate ions in the direction of an 

applied electric field. Overall, they allow for much higher specific impulses1, as 

compared to chemical propulsion, and utilize significantly less mass. The 

generated thrust, however, is significantly less than that obtained from chemical 

propulsion. These facts make ITs perfectly suited for spacecraft applications. The 

limiting factors are the size of these thrusters, and the large power requirements 

necessary to operate them. A typical nanosatellite has a mass range of 1–10kg 

[1]. In comparison, the National Aeronautics and Space Administration (NASA) 

Solar Electric Propulsion Technology Application Readiness (NSTAR) 

electrostatic ion thruster, used on the Deep Space 1 spacecraft, has a mass of 

8.3kg [2]. Power requirements for electrostatic thrusters (Hall effect and ion 

thrusters) can range from 1–10kW (Figure 1). Due to their size restrictions, 

nanosatellites are unable to produce such high power levels. A potential 

utilization of ITs aboard nano- and picosatellite platforms therefore requires a 

new approach to thruster design that lowers power and mass requirements, and 

allows for substantial reduction in IT size. 

1. Theory of Operation 

Similar to chemical propulsion, electrostatic propulsion accelerates 

spacecraft through the principle of conservation of momentum. However, instead 

of accelerating the propellant by differential pressures or through combustion, 

electrostatic propulsion utilizes Coulomb forces to accelerate the propellant. 

                                            
1 Specific Impulse (Is) is defined as the total impulse per unit weight of propellant. It is 

calculated by: ( )s oI F m g= ⋅& , where F is thrust, m& is the mass flow rate of the propellant, and 
go is the standard acceleration due to gravity at sea level [1]. It provides a measure of 
performance between different propulsion systems. 
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According to Coulomb’s law, the magnitude of the electrostatic forces 

between two point charges is directly proportional to the product of the charges, 

and inversely proportional to the square of their distance [3]. If point charges are 

of the same sign, they will repel each other; if they are of opposite signs, they will 

attract. It also follows that both electrons and ions can be used for propulsion. 

However, since the mass of an ion is orders of magnitude greater than the mass 

of an electron, unipolar ions are used as they provide significantly greater 

momentum to impart on the spacecraft. 

 

Figure 1 Power requirements for spacecraft propulsion (From [4]) 

Figure 2 shows an illustration of the NSTAR IT used on the Deep Space 1 

spacecraft. Propellant is ionized by means of electron bombardment. A heated 

cathode at the entrance of the ionization chamber supplies electrons. These 

electrons are guided by magnetic fields to impact the propellant, causing it to 

ionize. All electrons (including those newly formed and those used for 

bombarding the propellant) are attracted to the positively charged grid electrode 
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(anode), where they are collected. To take advantage of Coulomb’s Law, this 

thruster uses grid electrodes at different electric potentials to accelerate the 

ions [4]. 

  

 

Figure 2 NSTAR electrostatic ion thruster used on Deep Space 1 (From [5]) 

The grid electrodes are of opposite signs to generate an electric field. The 

first grid electrode (positive) will repel the newly formed positive ions, while the 

“downstream” grid electrode(s) will attract it. This will accelerate the ions out of 

the thruster, and thus, by conservation of momentum, accelerate the spacecraft 

in the opposite direction. To prevent charging of the spacecraft from the 

positively charged ion beam exhaust, the IT will have an electron emitter outside 

of the thruster that will supply electrons to neutralize the ions [6]. 
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2. Ion Thruster Design  

The primary components of electrostatic thrusters are a propellant source, 

several forms of electric power, an ionizing chamber, an accelerator region, and 

a means of neutralizing the exhaust. The propellant source provides the ions. 

These are obtained by either ionizing a gas, or by “extracting” ions from a liquid 

metal. The electric power sources provide the voltages to create the electric field 

to accelerate the ions, as well as to power other required components of the 

thruster (i.e., for electrical heating of cathodes to provide electrons for ionization 

and/or exhaust beam neutralization, and to power magnetic field generators to 

contain electron paths for ionization). The ionization chamber generates the ions. 

The accelerator region contains the means by which to accelerate the ions (i.e., 

using grid electrodes or a negatively charged electron cloud). A neutralizer is 

used to neutralize the positively charged exhaust beam so the ions cannot return 

to the spacecraft and cause electrostatic damage or corrosion [4]. 

3. Ionization Methods  

Ionization occurs in ITs by one of the following methods: Electron 

bombardment, field emission (FE), or Hall effect. For electron bombardment, 

positive ions are produced by “bombarding” a gas or vapor with electrons usually 

emitted from a heated cathode [4]. The electrons are accelerated by either the 

electric field generated between the cathode and anode (DC ionization), or by the 

oscillating electric field induced by an alternating magnetic field of a coil (RF 

ionization) [6]. The ions are accelerated by grids with opposing potentials (Figure 

3).  

In Field Emission Electric Propulsion (FEEP), ions are obtained from a 

liquid metal source (either Cesium or Indium) flowing through a capillary tube [4]. 

Once the liquid metal reaches the end of the tube, an electric field applied 

between the emitter and the accelerator ring ionizes the liquid, causing the 

surface to deform and emit positive ions [7]. The ions are then accelerated by the 

same electric field applied between the emitter and the accelerator (Figure 4). 
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Figure 3 Schematic of electron bombardment ion thruster (From [4]) 

 

Figure 4 Schematic of FEEP thruster (From [8]) 

Hall effect thrusters improve upon the concept of electron bombardment. 

Instead of using grid electrodes to accelerate ions, the Hall effect thruster uses 

magnets to generate and maintain a negatively charged plasma cloud at the exit 

of the thruster (Figure 5). This generates the negative potential to accelerate the 

ions. Collisions with other particles and walls, as well as electrostatic fluctuations, 

allow some of the electrons to be freed from the magnetic field, causing them to 
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drift towards the anode [6]. These electrons are used to ionize the propellant. 

This design is more compact than electron bombardment, but higher in mass 

because of the more powerful magnets that are required to contain the electron 

cloud. 

 

Figure 5 Hall effect thruster (From [4]) 

4. Current Design Limitations  

Current IT designs are impractical for use on nano- and picosatellites. 

Since the minimum IT chamber size is dictated by the space requirements of the 

various thruster components needed for ionization (e.g., cathodes, magnets), 

chamber sizes of current IT technologies are larger than nanosatellites, as a 

whole2 (Figure 6). 

As stated above, Hall effect thrusters are smaller in size, as compared to 

electron bombardment thrusters, but higher in mass because of the magnets 

needed to contain the negatively charged plasma cloud used as the cathode. 

The primary factor that constrains reduction in size is the need for magnets. 

Scaling to low-power requires a decrease in the thruster channel size, and an 

increase in the magnetic field strength. An increase in the magnetic field can 

 

 

                                            
2 A 1U CubeSat has dimensions of 10cm x 10cm x 10cm [9]. 
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result in saturation of the miniaturized inner components of the magnetic circuit, 

and scaling down the magnetic circuit does not leave enough room for magnetic 

pole pieces and heat shields [10]. 

 

Figure 6 Comparison of Hall effect (left) and electron bombardment (middle, 
right) chamber sizes (from [11]) 

In addition to their sizes, the power required to heat the cathodes for 

electron production, and to power the magnets for electron path containment, far 

exceed what can be produced by nanosatellites. Thus, reducing the size and 

power requirement of today’s ITs is the goal to using them on nanosatellites. 

B. FIELD EMISSION AND FIELD IONIZATION 

1. Field Emission 

FE is defined as the emission of electrons from the surface of a 

condensed phase into another phase, usually a vacuum, in the presence of high 

electrostatic fields [12]. It is accomplished by applying a high enough electric field 

across a metal surface, resulting in electrons being “pulled” out of the metal.3 The 

                                            
3 This “pulling” of electrons out of the metal is commonly referred to as “tunneling.”  
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magnitude of the electric field required for emission depends on the Fermi level 

(Ef) and the work function (φ ) of the metal in use. 

The Fermi level is the energy region of a metal atom in which free electron 

theory prevails. In this region, valence electrons form an electron “cloud” and are 

free to move about the metal’s lattice (Figure 7). This property gives rise to the 

conductivity of metals, and determines its electrical and thermal properties. Since 

these electrons have a weak attraction to the nucleus, it is possible to create a 

state by which the electrons will move out of the lattice. Means by which to emit 

electrons include photoemission (using light), thermionic emission (TE) (using 

heat), and FE (using electric fields). The energy required for the electron to 

escape the pull of the nuclei is known as the work function of the metal. 

 

Figure 7 Potential energy of an electron near the surface of a metal (After [13]) 

In 1928, R.H. Fowler and L. Nordheim developed an expression that 

described the local current (I) generated from the internal electron states in the 

conduction band of a bulk metal [14]. This expression is a function of the work 

function (φ ) of the metal, and the magnitude of the local field (F) at the emitter: 
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3
2

2 expA BI F
F
φ

φ
⎛ ⎞− ⋅

= ⋅ ⎜ ⎟⎜ ⎟
⎝ ⎠ ,

 

Equation 1: Fowler-Nordheim equation for field emission (I-V form) 

where A and B are constants, equaling 1.541E-6 2

A eV
V
⋅

 and 6.831E9 3
2

V
eV m⋅

, 

respectively. 

By taking the natural logarithm of Equation 1, we obtain:  

( ) ( )3
2 21ln ln AI B F

F
φ

φ
⎛ ⎞⎛ ⎞= − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ .
 

Equation 2: Plottable form of fowler-nordheim equation 

Also, the local electric field can be related to the applied voltage (Va) by: 

aF Vβ= ⋅ , 

Equation 3: Geometric field enhancement factor relation 

where β  represents the geometric field enhancement factor. This value gives a 

measure of how effectively the needle-tip emitter is amplifying the applied 

field/voltage, and yields a means to compare various emitter configurations. If the 

F2 term is moved to the left side of Equation 1, and Equation 3 is substituted, the 

new equation is: 

3
2

2 2

1ln ln
a a

I B A
V V

φ
β φ β

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞− ⋅
= +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⋅⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ .

 

Equation 4: Plottable form of Fowler-Nordheim equation (corrected) 

At first, Fowler and Nordheim noted that the plot of ( )ln I  vs. 1ln
aV

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

should yield a straight line whenever the experimental conditions are sufficiently 

stable [14]. In 1929, however, T.E. Stern, B.S. Gossling, and Fowler determined 
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that the relation between 2ln
a

I
V
⎛ ⎞
⎜ ⎟
⎝ ⎠

 and 
1

aV
⎛ ⎞
⎜ ⎟
⎝ ⎠

 should be more accurately linear 

than the relation between ( )ln I  and 
1

aV
⎛ ⎞
⎜ ⎟
⎝ ⎠

 [15]. Using Equation 4, with φ  known, 

and I and Va measured directly, β  can be calculated directly from the slope of 

the plot 2ln
a

I
V
⎛ ⎞
⎜ ⎟
⎝ ⎠

 vs. 1

aV
⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

In most literature, the 2β  term is omitted. This is acceptable because it 

only affects the plot by shifting it along the y-axis; it does not affect the slope. 

Thus, β  can be determined accurately without the inclusion of the 2β  term. 

2. Field Ionization 

Field ionization (FI) is effectively FE in reverse. It involves the tunneling of 

electrons from an atom into the tip of an ionizer [12]. The two key factors in FI are 

the magnitude of the applied field and the geometry of the ionizer [12]. Much like 

work functions in FE, ionization potentials define the energy level required to pull 

electrons out of gas molecules. The geometry of the ionizer impacts to what 

degree the local field is enhanced. This enhancement is known as the geometric 

enhancement factor, defined in Equation 3. According to Equation 3, the sharper 

the tip of the ionizer, the greater the increase in the local electric field. Figure 8 

illustrates the impact an ionizer has on a gas molecule. 

 

Figure 8 Trajectory of gas molecule passing by field ionization tip (From [16]) 
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For this illustration, the ionizer tip is modeled as a sphere with radius R. 

The impact parameter b represents the initial energy state, with respect to the 

ionizer. rmin is the closest point of approach for the molecule. There is a critical 

value b*, such that, if b > b*, the molecule will not be ionized: 

2 2
0

0

2 V Rb
E

α∗ ⎛ ⎞⋅ ⋅ ⋅
= ⎜ ⎟
⎝ ⎠ .

 

Equation 5: Critical impact parameter (From [16]) 

Equation 5 shows that the potential, Vo, is inversely proportional to the size of the 

ionizer. Thus, the sharper/smaller the ionizer, the greater the local electric field at 

the tip. 

A means of measuring the performance of the ionizer is by measuring the 

current generated by the ionized gas ( measuredI ), and comparing this number to the 

maximum theoretical current that should be generated. The maximum theoretical 

ion current is calculated using Equation 6: 

max
eI m
μ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
&

,
 

Equation 6: Maximum theoretical current of field ionizer (From [4]) 

where m&  is the mass flow rate of the propellant through the ionizer, e  is the 

electrical charge of the singly ionized mass (1.602E-19 C), and μ  is the mass of 

the charged particle (molecular mass of the particle times the mass of a proton, 

1.673E-27 kg). This equation assumes all of the propellant passing through the 

ionizer is singly charged. The ratio of measuredI  to maxI  yields a mass utilization 

factor (MUF) for the ionizer, which is the percentage of the propellant being 

ionized. 

maxI  can also be used to calculate the ideal thrust of an IT (Equation 7): 
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max
2 accVF I

e
μ⋅ ⋅

=
,
 

Equation 7: Ideal thrust of IT (From [4]) 

where accV  is the voltage across the grid electrodes used to accelerate the ions 

(i.e., the applied voltage). The ideal thrust can also be calculated using Equation 

8: 

2
2

acc
DF B V
d

⎛ ⎞= ⋅ ⎜ ⎟
⎝ ⎠ ,

 

Equation 8: Alternate calculation of ideal thrust of IT (From [4]) 

where B equals 2
9 oπε⎛ ⎞

⎜ ⎟
⎝ ⎠

, or 6.18E-12 C
V m⋅

, D is the exhaust beam emitter 

diameter, and d is the electrode grid spacing, or gap distance. An expression for 

( )max , ,accI V D d  can be made by equating Equation 7 and Equation 8: 

2

max 2
accV eDI B

d μ
⋅⎛ ⎞= ⋅⎜ ⎟ ⋅⎝ ⎠

 

Equation 9: Maximum theoretical current as a function of applied voltage, electrode gap 
distance, and exhaust beam emitter diameter 

 
Equation 9 shows that the maximum theoretical current is inversely proportional 

to the electrode gap distance. 

C. CARBON NANOTUBES 

The material requirements for effective field emitters and field ionizers are 

high strength, high thermal conductivity, and high electrical conductivity. Carbon 

Nanotubes (CNTs) display all of these properties. In addition, their extremely 

small sizes allow for miniaturization of current FE and FI applications. These 

characteristics make CNTs an ideal candidate for use as field emitters and field 

ionizers for spacecraft propulsion. 
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1. Structure 

CNTs can be pictured as cylindrical, hollow tubes made up of one-atom-

thick sheets of carbon, called graphene. CNTs are generally characterized into 

single-wall CNT (SWCNT), which consist of only one graphene wall, and multi-

walled CNT (MWCNT), which consist of multiple, concentric walls of graphene 

(Figure 9). One of the most unique features of CNTs is their extremely high 

aspect ratio (length-to-diameter ratio). SWCNTs have diameters on the order of 

one nanometer (nm), but reach lengths up to the centimeter range, giving it 

aspect ratios of up to 1011 [17]. 

 

   

Figure 9 Single-wall (left) and multi-wall (right) CNTs (From [18,19]) 

2. Properties 

CNTs have very desirable strength, electrical, and thermal properties. 

Compared to SAE-1090 carbon steel’s ultimate strength of 841 MPa [20], CNTs 

currently have the highest strength known to man, with an ultimate strength of up 

to 63,000 MPa [21]. Dependent upon its structure, CNTs can exhibit metallic or 

semiconducting properties. In theory, metallic CNTs can carry an electric current 

density of ~4E9 2

A
cm

, which is more than 1000 times greater than that of highly 

conducting metals, such as copper [22]. CNTs are also great thermal conductors 
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along their axes, and good insulators along the tube’s radius. The theoretical 

thermal conductivity of SWCNT along the tube’s axis is ~3500 W
m K⋅

 [23]; 

compare this to copper, a metal well known for its good thermal conductivity, 

which transmits 401 W
m K⋅

 [24]. 

3. Field Emission Applications 

The electrical properties of CNTs make them the perfect choice for FE 

applications. As stated before, they can generate a very high electric current 

density with minimal to no heat generation.4 Their extremely small size also 

allows for the possibility of miniaturizing a lot of today’s FE applications. 

Some of the areas where CNTs are being used as FE sources are 

vacuum microelectronics, field emission displays (FEDs), and x-ray technology. 

Vacuum electronics is based on the controlled progression of electrons in a 

vacuum to obtain a signal gain [25]. An example of this is the classic vacuum 

tube. Because they do not release heat during emission, and because they can 

be miniaturized, CNTs can replace the thermionic emitter in vacuum tubes. In 

another application, NASA’s Jet Propulsion Laboratory in Pasadena, California, 

is currently using CNTs as electron current sources for the actuation of logic 

gates. Their Inverse Majority Gate consists of three gates and an anode (Figure 

10). By controlling the electron emission from the CNTs to either the anode, or 

one, two, or all three gate electrodes, logic operation of a 2-input Negated-AND 

gate and a 2-input Negated-OR gate can be realized from a single device [26]. 

Because of their high temperature tolerance, and resistance to radiation, this 

device is aptly suited to space applications. 

Much like cathode ray tube (CRT) displays, FEDs are based on the 

controlled bombardment of electrons on a phosphor film to locally induce light 

                                            
4 This type of emitter is referred to as a Cold Field Emitter, or CFE. 
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emission [25].5 The difference between CRTs and FEDs is the fact that while a 

CRT uses a single electron source that scans the display, FEDs use an electron 

source for each pixel of the display (Figure 11). Brightness is controlled by 

varying the current on the phosphor element. Since the length of the CNTs can 

be controlled during growth, they can be placed very close to the phosphor 

element, resulting in a very thin display. 

 

Figure 10 Tri-grid Inverse Majority Gate design (From [26]) 

 
Figure 11 Cross Sections of a CRT and FED (From [25]) 

                                            
5 The phosphor converts energy of an incident electron beam into light. 
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X-ray tubes are the primary components of x-ray source technologies. 

These tubes allow for the controlled emission of x-rays by bombarding a metallic 

target with high-energy electrons [25]. The electrons are created through thermal 

emission (Figure 12). These emitters do not allow for miniaturization due to the 

generated heat, which reduces their efficiencies below acceptable levels. CNT 

field emitters can satisfy the needs of miniature x-ray tubes because they do not 

require heat for the emission of electrons. They also produce high current 

densities with low applied fields and minimal resistive heating. 

 

Figure 12 X-ray tube with thermionic source (From [25]) 

Researchers at the University of North Carolina at Chapel Hill are 

developing a CNT Field Emission Multipixel X-ray Array Source for 

microradiotherapy (micro-RT) cancer research (Figure 13). Their goal is to 

develop a system, based on CNTs, that has high spatial and temporal resolution, 

that is image-guided, and is capable of delivering radiation treatment similar to 

human radiotherapy, but at “mouse” scales. Instead of a single radiation source 

design, their multipixel x-ray tube contains 50 individually controlled CNT 

cathodes, each producing a pixel x-ray beam via a multipixel x-ray beam array 

collimator [27]. This design has two key advantages: the source can be turned 

on/off instantaneously, yielding a temporal resolution on the order of 

milliseconds, and each pixel can be controlled individually, enabling the micro-RT 

to vary irradiation patterns and intensity. 
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Figure 13 (a) 5 X 10 pixel cathode chip; (b) Structure of CNT cathode; (c) 
Scanning electron microscope (SEM) image of CNTs (From [27]) 

4. Field Ionization Applications 

The structural array of CNTs is the most important contributor to FI. With 

diameters as small as nanometers, the tips of CNTs are extremely “sharp.” This 

results in a significant enhancement of the electric field at the tips of the CNTs 

(several thousand times) [28]. 

One application of FI via CNTs is for mass spectrometry (MS). MS 

measures the mass-to-charge ratio of charged particles [29]. This is 

accomplished by ionizing a sample/molecule, then measuring its mass-to-charge 

ratio. From this, the composition of the sample/molecule can be determined, as 

well as its mass. Uses for MS with CNTs are gas detectors and partial pressure 

gauges [30]. 

D. CARBON NANOTUBE BASED ION THRUSTERS 

As shown in the previous section, CNTs can be used to miniaturize FE 

and FI systems and reduce their power requirements. For current IT designs, FE 
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via CNTs can replace the cathodes used to supply electrons for electron 

bombardment ionization and to neutralize the exhaust beam. Present cathodes 

use TE to generate electrons. Certain cathodes require extra propellant mass to 

be carried on satellites to provide the source of electrons for TE. This mass is not 

used for generating thrust. Also, these cathodes have high power requirements, 

and give off waste heat that is not used during TE. These inefficiencies can be 

improved, if not eliminated, by using FE via CNTs. 

CNTs can serve as the source of electrons, eliminating the need for extra 

propellant. The field enhancement capability of CNTs can reduce power 

requirements for extracting electrons by decreasing the input voltage required to 

achieve emission. At the same time, the FE process does not create excessive 

heat. Thus, CNTs can serve as an excellent replacement for thermionic emitters 

in spacecraft. 

The Georgia Tech Research Corporation has developed a CNT-based FE 

system for spacecraft propulsion using CNTs (Figure 14) [31]. This design 

utilizes CNTs grown on a conductive base layer. An insulating layer is then 

attached to the base layer, with a conductive gate layer attached to the insulating 

layer. The insulating layer and conductive gate layer are attached so as to allow 

a gap for the CNTs to emit electrons.6 The base and gate layers generate the 

field necessary to extract electrons. The base layer has a negative potential, 

while the gate layer has a positive potential. The results of their preliminary 

experiments show that units can generate current densities of at least 50 2

mA
cm

, 

with lifetimes exceeding 1500 hours [31]. 

At present, there is no published data reporting on the use of FI for ITs. A 

design being investigated at the Naval Postgraduate School (NPS) intends to 

employ CNTs as field ionizers (Figure 15). For this design, the CNTs will provide 

the electric fields necessary to ionize the propellant. The extracted electrons will 

                                            
6 The optional base layer is used if additional structural integrity is desired. 
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tunnel into the CNT tips, which also provide the initial positive potential to 

accelerate the ions, with the accelerator grids providing the subsequent negative 

potentials. 

 

Figure 14 Cold cathode for spacecraft applications using CNTs (From [31]) 

 

Figure 15 CNT-Based ion thruster (From [28]) 

The advantages of using CNT-based FI are similar to the benefits 

discussed in the case of CNT-based FE. The most significant advantages are the 

elimination of magnets for controlling and containing the electrons, and the ability 

to drastically reduce the size and weight of the system. This design can make the 

ionizer depth very compact, compared to Hall and electron bombardment 

thrusters. For Hall thrusters, the majority of the dry mass comes from the 

magnets employed, whereas for electron bombardment, the limiting factor is the 
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size of the ionization chamber needed to host both the cathodes for thermal 

emission and the magnetic coils. The proposed CNT-field ionization technology 

is highly complementary to the FE exhaust beam neutralizer developed by 

researchers at Georgia Tech, and both may be integrated together into a 

complete CNT-based miniature micro-ion thruster. 

E. FIELD IONIZATION TEST CHAMBER 

1. Generation 1 

 

Figure 16 Generation 1 FE/FI test chamber (From [19]) 

The Generation 1 (GEN1) FE/FI Chamber was designed and used by LT 

Troy Hicks (USN) during his thesis work at NPS (Figure 16) to test the 

performance of CNTs he grew at NASA Ames Research Center in California. 

This apparatus has the basic components needed to measure the performance 

of CNTs: a vacuum pump, power supply, and gap distance measurement and 

adjustment. The turbo pump is used to create a pressure differential for the flow 

of propellant, and to create a vacuum in the test chamber. This vacuum 
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simulates conditions experienced in space. The power supply provides the 

voltage put across the electrodes (CNT sample and accelerator grid electrodes). 

The micrometer adjusts the gap distance between the electrodes. 

With this apparatus, LT Hicks confirmed that CNTs correlated with Fowler-

Nordheim theory for FE, and measured field enhancement factors as high as 

1500. He also measured “turn-on”7 applied fields of 5.3 V
mμ

 and current densities 

greater than 10 2

mA
cm  

[19]. 

2. Generation 2 

 

Figure 17 Generation 2 FE/FI test chamber (After [28]) 

                                            
7 The “turn-on” field is the point at which CNTs field-emit electrons. 
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The Generation 2 (GEN2) FE/FI Chamber was designed and used by MAJ 

Bryan Shrank (USA) during his thesis work at NPS to test the performance of 

CNTs he grew at NASA Ames (Figure 17). The power leads and vacuum pump 

serve the same purposes as in the GEN1 design. However, the gap distance 

between electrodes was set using Kapton tape instead of a micrometer. The gap 

distance was adjusted by increasing/decreasing the number of layers of Kapton 

tape. The cathode rested directly on the tape (Figure 18). 

 
Figure 18 GEN2 electrode setup (After [28]) 

Kapton was also used to electrically isolate the electrodes from each 

other. MAJ Shrank also determined a mass flow rate calculation for this 
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apparatus by determining the coefficient of drag of the pre-etched hole8 in the 

sample. From his experiments, MAJ Shrank measured field enhancement factors 

between 1428 to 5229, and recorded currents around 2.1E-5 A, with an applied 

voltage of 1000 V [28]. 

3. Limitations of Current Designs 

LT Hick’s and MAJ Shrank’s thesis work focused primarily on electrode 

fabrication and growth of CNTs. They therefore devoted less time to the 

development of a more practical test chamber that combines a user-friendly 

operation with the required capabilities. As a result, both GEN1 and GEN3 lacked 

some of the analytical tools needed to provide comprehensive metrics for the 

CNT FI electrodes. 

The issue with the GEN1 test chamber is that there is no parts list 

included in the thesis writeup from which to reconstruct the apparatus. Coupled 

with the fact the apparatus is no longer available, it is unknown as to how the 

sample and grids were mounted in the ionization chamber. This is because, 

along with the parts list, there are no diagrams illustrating how they were 

mounted. Also, there was no attempt to measure the mass flow rate of the 

sample. 

The main drawbacks of the GEN2 design are the uncertainty with respect 

to the gap distance of the electrodes, a complicated sample installation 

procedure, and the inability to accurately determine the mass flow of the gas 

through the CNT FI electrode. At first, MAJ Shrank used Kapton washers to set 

the gap distance. The thickness of the Kapton washers was confirmed using 

SEM images. However, due to the issues encountered in mounting the sample, 

he changed from using washers to using layers of Kapton tape applied directly to 

the substrate. The thickness of a single strip of Kapton tape was measured using 

a SEM and used for gap distances calculations. However, this technique is 

based on the assumption that the thickness of all Kapton layers is equal, and that 
                                            

8 The pre-etched hole was a 200 μm x 200 μm square hole. 
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the change in thickness under compression is negligible. Once the sample was 

mounted, and the ceramic screws tightened, the gap distance could not be 

confirmed. Considering the fact that gap distances are on the order of a few 

micrometers, the change in gap distance under compression of a polymeric 

material could have been significant. 

Furthermore, since the mount for the sample was attached to the 

apparatus, an assistant was needed to mount and demount the CNT samples 

(Figure 19). This was necessary to prevent damage to the samples, as well as 

prevent the shearing of the ceramic screws that held the sample in place.9 

Because of the extra effort and finesse required when mounting/demounting 

samples, the GEN2 apparatus proved not to be a user-friendly design. 

 

Figure 19 Affixing the test base to the GEN2 chamber (After [28]) 

 

 

 

                                            
9 Bryan noted when mounting samples: “It is very easy to brush up on, and therefore ruin, a 

sample. Additionally, an extra set of hands was very useful when mounting the test base back 
onto the chamber because it was easy for the mount to slip while mounting the screws, causing 
the heads of the ceramic screws to shear off [28].”  
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The mass flow rate was determined using pressure gradients and based 

upon the assumption that the gas flow operated under the theory of continuum 

flow. However, the experiments were conducted under vacuum, conditions at 

which continuum flow theory is not applicable, and free molecular flow equations 

apply. 

a. Comparison of Continuum and Free Molecular Flow 

Mass flow rate ( m& ) is the amount of mass passing through a given 

surface per unit time.10 It is calculated from the density of the gas ( ρ ), the cross 

sectional area through which the gas is flowing (A), and its velocity relative to the 

area of interest (V). If ρ  is constant, the practice is an average value is 

determined for V, yielding the following equation for m& [32]: 

avgAVm ρ=& . 

Equation 10: General Mass Flow Rate Equation (From [32]) 

Since ρ  and A are the known quantities, the goal is to determine Vavg. A few 

ways Vavg is measured are via the use of a pitot-static system, a hot-wire system, 

or a capillary flowmeter system [32].  

These methods share one thing in common: they are based on 

continuum flow, which is based on the principles of the ideal gas law. The term 

“continuum” refers to the postulate that the air that surrounds us feels like a 

continuous medium. However, as the density of a gas decreases, the medium 

goes from continuous to sparse (i.e., you begin to feel the individual impacts of 

each molecule). This regime is known as free molecular flow (i.e., low-density 

flow). The Knudsen number (Kn) is a ‘similarity parameter’ that governs these 

different regimes. It is defined as the ratio of the mean free path, λ,11 and a 

 

                                            
10 The mass discussed here is a gas. 

11 The mean free path is the average distance a molecule of gas moves between successive 
collisions. 
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characteristic dimension of the body in question, L. Kn > 1.0 implies free 

molecular flow, Kn < 0.03 implies Continuum Flow, and a transitional regime 

exists between 0.03 < Kn <1.0 [33].  

The mean free path is inversely proportional to pressure. Since we 

are interested in measurements at very low pressures, Kns are > 1.0, meaning 

these measurements involve nearly free molecular flow. Thus, the methods 

previously discussed do not yield an accurate calculation for m& . This is because 

these methods assume a velocity profile of the gas flow similar to that shown in 

Figure 20 [32]. The flow at the boundaries, referred to as the boundary layer, is 

zero due to friction. This is not true in the case of free molecular flow. A condition 

known as velocity slip begins to develop with Kn > 0.03 [33]. Velocity slip results 

in nonzero velocities at the boundaries, which in turn results in an increase in 

mass flow rate with a corresponding increase in pressure differential. While there 

are corrections that can be applied to Equation 10, the new test chamber design 

will utilize a mass flow controller which can properly measure and control mass 

flow rate at low pressures, thus simplifying mass flow rate determination. 

 

Figure 20 Velocity profile (From [32]) 
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II. OBJECTIVES 

The objective of this thesis is to design a user-friendly FI test chamber that 

provides the analytical capabilities needed to determine comprehensive 

performance metrics for the CNT FI electrodes. The test chamber must be able 

to conduct both FE and FI tests, and will incorporate several improvements over 

the previous test chamber designs developed by NPS students at NASA Ames. 

A critical requirement is to enhance the user-friendliness of the test 

chamber. This will require the apparatus to be operated and manipulated by a 

single person (no assistance required). It will also require the turnaround time 

between experiments to be reduced. Components and control software used to 

operate the apparatus should be largely of a plug-and-play type, with easy-to-use 

user interfaces. 

Another crucial design component is the use of high accuracy volt/current 

meters, a gap distance controller, and mass flow analyzer. For gap distance, a 

system that utilizes digital position feedback is required. The position feedback 

resolution should be at least 1 μm, with a matching repeatability. Also, the 

operator needs to be able to adjust the gap distance with the apparatus fully 

assembled. For mass flow rate, a system that calculates mass flow rate 

independent of pressure is required. This will allow for accurate mass flow rate 

calculations under vacuum conditions. For the ion current, a high-voltage source-

measure unit (HVSMU) is required. This unit supplies the necessary voltage for 

ionization, and measures the generated ion current, at the same time. 



 28

THIS PAGE INTENTIONALLY LEFT BLANK  



 29

III. RESULTS AND DISCUSSION 

A. DESIGN OF THE NEW TEST CHAMBER 

1. Improvements to GEN1 and GEN2 

The key inefficiencies to fix are the measurement of the mass flow rate 

and the gap distance. A thermal mass flow controller (MFC) can be used to 

accurate measure and regulate the flow of gas through the system. A MFC uses 

the heat transfer properties of the gas, vice differential pressure, to calculate 

mass flow rate. This means the measurement is independent of pressure. The 

gap distance can be determined and adjusted using a system external to the 

chamber, much like the micrometer used by LT Hicks in the GEN1 apparatus. 

The next issue that must be corrected in the new chamber design is user 

friendliness of the apparatus. It must be ensured that a single user can operate 

(i.e., changing samples) and maintain (e.g., changing gaskets, chamber repairs) 

the system, and that the time required to establish the vacuum and to replace 

sheared ceramic screws that secure the sample (a recurring problem) is 

minimized. To accomplish this, the sample mount must be designed such that it 

can be removed entirely from the apparatus. With the sample mount removed, 

samples can be attached without being constrained by the apparatus. The 

sample mount could also be designed so as to allow the growth of CNTs directly 

onto it. The mount for the sample mount must also be removable. This ensures 

that in the case when screws are sheared, the mount can be removed and 

replaced within minutes without having to disassemble the entire apparatus. 

Lastly, the turnaround time between experiments needs to be improved. 

MAJ Shrank’s GEN2 apparatus required ~ two hours to reach 1E-7 torr, and ~ 

eight hours to reach 1E-8 torr. Designing the apparatus so that the total chamber 

volume is minimized, as well as having vacuum pumps connect at the front and 
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back end of the apparatus, will reduce the vacuum draw-down time, thus 

reducing the overall time needed to conduct ionization experiments with different 

samples. 

2. Generation 3 Test Chamber 

With the limitation of GEN1 and GEN2 in mind, I enlisted the help of Mr. 

Jay Adeff (Research Assistant, Mechanical and Aerospace Engineering 

Department, NPS) to assist in creating the first option for the next generation, 

Generation 3 (GEN3), of the test chamber for use at NPS. Mr. Adeff’s 

recommendation was to design a “twist-to-adjust” chamber. The idea behind this 

design is to make the downstream end of the chamber threaded, so the gap 

distance can be adjusted by simply twisting the downstream section of the 

chamber (Figure 21). The upstream section of the chamber resembles a 

grooved-ASA half-nipple. The next part is a removable mount upon which the 

sample is mounted. The sample is attached to the mount via an electrically 

conductive adhesive (i.e., silver or carbon-based epoxy). This mount is 

sandwiched between the upstream and downstream sections of the chamber. 

The threaded portion of the downstream section is made of non-conductive 

material, so the gap adjuster is electrically isolated from the sample; it is pressed 

into the flange. The gap adjuster holds the accelerator grid, and threads into the 

downstream flange. For power, a positive potential is applied to the sample 

mount, while a negative potential is applied to the gap adjuster. 

This design satisfies the requirements of a removable sample mount for 

easier sample exchange and reduced overall volume. However, there are issues 

with this design. First, since the gap adjuster translates and rotates, the 

attachment at the downstream end has to accommodate that motion. Also, the 

gap adjuster has to be electrically isolated at both ends. This is because the 

negative potential must be applied to the external surface of the gap adjuster 

(putting a charged on the entire section), so as to provide the accelerator grid 

with a negative potential. This isolation requirement is already satisfied on the 
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upstream end by the non-conductive thread insert. To isolate the downstream 

end, a threaded mount, made of non-conductive material, has to be designed 

that can connect to the rest of the apparatus. A possible solution for this is show 

in Figure 22. 

 

Figure 21 GEN3 ionization chamber 

 

Figure 22 Downstream connection of gap adjuster for GEN3 apparatus 
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Second, the sample mount needs to be electrically isolated. The sample 

mount itself must be conductive to allow the electric potential applied to it to 

reach the sample. However, since the upstream and downstream flanges are 

metal as well, they also will have the potential applied to them. This is not 

desirable, because it could create an unsafe work environment if high voltages 

are applied. It could also damage equipment that has a conductive connection to 

the rest of the apparatus. A solution to this could be to make the upstream and 

downstream flanges entirely out of non-conductive material. However, this 

material may not be as durable as metal flanges. Another solution could be to 

break the sample mount into two pieces (Figure 23). 

 

Figure 23 GEN3 sample mount option 

With this option, the upstream and downstream flanges sandwich flange 

A. The sample itself mounts to flange B. B is electrically isolated from A by 

Kapton. A has channels drilled into it to allow wires to be passed through and 

connected to the back of B. The channels are vacuum-sealed with a vacuum 

grade epoxy. This design yields an added advantage. Since the samples are 
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attached to the mount via adhesive, they will be damaged if attempts are made to 

remove them (chemically, or physically). With this design, samples remain 

permanently attached to the mount, and each sample has its own mount. Thus, 

after a sample is attached to the mount, it does not have to be touched again. 

This reduces the possibility of damaging the sample through handling. In 

addition, the mounts can be designed so they can fit in growth chambers. 

Another issue concerns the linear translation required for experiments. 

Based on MAJ Shrank’s previous work, the range of motion is expected to be no 

greater than 100 μm. With that, a translational resolution of 1μm is desired. While 

a micrometer screw is capable of achieving this resolution, its use would prevent 

the gas flow from being linear throughout the apparatus. An option is to use a dial 

indicator with a plate attached to the gap adjuster (Figure 24). As the gap 

adjuster rotates, the plate pushes against the dial indicator, indicating 

displacement from some zero-position. 

 

 

Figure 24 GEN3 gap distance determination 

Making gap adjustments on the order of micrometers by simply twisting 

the gap adjuster is impractical, though. The first issue is the thread pitch. Since 

the desired range of motion is 100 μm, the necessary thread pitch required is 254 
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threads per inch (TPI).12 The concern with this magnitude of pitch is the fact that 

the thread depth is so small; it will be easy to cross-thread the gap adjuster when 

changing samples, thus damaging the threads (this assumes 254 TPI can even 

be made). Second, since the plate used for measuring gap distance is intended 

to rotate 360o per 100 μm of linear translation, the apparatus setup will have to 

accommodate this. This means, depending on the radial size of the plate, a 

section may have to be removed from the apparatus table to allow for plate 

clearance. One option is to reduce the thread lead to 90o per 100 μm. This would 

reduce the thread pitch to ~64 TPI, and reduce the plate to ¼ of its angular size 

(Figure 24). This eliminates the need for cutting the table. However, now 1μm of 

translation equates to ~ 1o of rotation, still an impractical situation to do by hand 

with the gap adjuster at such a small diameter. A solution could be to increase 

the radial length of the plate, and make gap adjustments by moving the plate, 

directly. This would increase the arc distance required to be traversed to achieve 

a desired linear translation, thus increasing the fidelity of rotation. Overall, this 

solution is limited to 100 μm of linear motion. If a greater distance is needed, a 

section of the table will still have to be removed for plate clearance. The inability 

to determine an effective and efficient solution to adjust the gap distance resulted 

in abandoning this design. 

The final design for the ionization chamber solved the issue of being able 

to make gap adjustments with the apparatus fully assembled, as well as 

instantaneously determining the gap distance. It utilizes the 2-part sample mount 

discussed earlier (Figure 23), making the system more user-friendly. It also 

incorporates a MFC for instantaneous mass flow measurements. 

a. Linear Shift Mechanism with Linear Potentiometer 
(LSM38–50-SS-LP-UP, Kurt J. Lesker Company) 

The primary component of the GEN3 ionization chamber design is 

a linear shift mechanism (LSM) with a linear potentiometer (LP) attached (Figure 

                                            
12 This assumes 100 μm of linear translation for 360o rotation of the gap adjuster. 
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25). The LSM supports a removable bellows, which serves as the actual 

ionization chamber. A stepper motor is used to adjust the distance between the 

two flanges of the bellows; one flange remains stationary while the other 

translates linearly, thus allowing for accurate gap adjustments between the 

electrodes. The LP, which has a resolution and repeatability of 2 μm, provides 

instantaneous position feedback of the translating flange with respect to the 

stationary flange. The size of the bellows is ~ ½ in larger in diameter (1.57 in 

inner diameter) than the GEN3 design. This size was chosen to ensure easy 

handling and accessibility, while keeping the chamber volume reasonably small. 

Too small of an inner diameter would have resulted in a very small sample 

mount, resulting in the setup being too petite to handle. 

 

Figure 25 Linear shift mechanism with linear potentiometer 

The 2 μm resolution is greater than the desired resolution of 1 μm. 

However, given the capabilities of the system, the tradeoff is acceptable, 

accurate experiments can still be conducted with this added error. 
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b. Electrode Mount 

The Electrode Mount (Figure 26) will mount the electrodes (in this 

case, the accelerator grid and CNT sample electrodes), via the use of an 

electrically conductive adhesive. Electric potential will be applied directly to the 

mount. It will be electrically isolated from the rest of the apparatus via the use of 

Kapton washers.  

 

Figure 26 Electrode mount 

The gas passage size can be adjusted to allow for samples of 

varying sizes. The sample/electrode must fit within a ½ in diameter to use this 

mount (Figure 26). If a larger size is required, the entire apparatus will have to be 

resized to accommodate. Currently, the Electrode Mount is sized to accept 3.05 

mm diameter TEM grids, with CNT arrays grown directly on them.13  

c. Sacrificial Mount 

Sacrificial Mounts (Figure 27) are mounted in between the 

Electrode Mounts and their respective mounts. They are included because of the 

possibility of sheared screws. The screws that must be used to attach the 

electrode mounts must be non-conductive (i.e., ceramic, or plastic). As 
                                            

13 The “flange” on these grids has a thickness of 400 nm. 
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demonstrated in MAJ Shrank’s thesis, these screws are easily sheared. With the 

sacrificial mount, if a screw is sheared, the sacrificial mount can be removed 

without disassembling the entire apparatus. A replacement mount can be used in 

its place to continue experiments, while the fouled mount has the screw 

removed. This limits the time loss due to sheared screws to a minimum, making 

the test system more efficient and user-friendly. 

 

Figure 27 Sacrificial mount 

d. Accelerator Grid Electrode Mount – “Top Hat” 

The top hat is the unit upon which the accelerator grid electrode will 

be mounted (Figure 28). This mount will connect to the stationary end of the 

LSM, remaining fixed during gap adjustments. It is made from a double-face 

conflat flange. A 1 in outer diameter cylinder, with a ½ in inner diameter channel, 

is attached to it. The passage drilled from the outside flange to the base of the 

Top Hat is where the wire providing negative potential to the electrode mount will 

be routed. Figure 29 shows how the Top Hat will mount with the sacrificial and 

electrode mounts. 
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Figure 28 Top hat 

 

Figure 29 Top hat with sacrificial mount and electrode mount attached 

e. Sample Electrode Mount 

This mount holds the samples to be tested (Figure 30). It attaches 

to the translating end of the LSM. It is made from a double-face conflat flange, 

with a ½ in diameter gas passage drilled into it. It has a wire passage for the wire 

that will provide the positive potential to the electrode mount. A sacrificial mount 



 39

will be mounted between the sample electrode mount and the electrode mount. 

Figure 31 shows how these components will be mounted. 

 

Figure 30 Sample electrode mount 

 

Figure 31 Sample mount with sacrificial mount and electrode mount attached 
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f. Thermal Mass Flow Controller (C100, Sierra 
Instruments) 

Accurate measurement and control of the mass flow is provided by 

a thermal MFC (Figure 32). A thermal MFC determines mass flow rate based on 

the heat transfer properties of the gas being used. A portion of the gas flow 

entering the MFC is directed through a capillary tube. This tube has two 

resistance temperature detector (RTD) coils wrapped around it. The gas takes 

heat from the upstream coil and passes it to the downstream coil. The MFC takes 

this difference in temperature, along with the coefficient of specific heat for the 

gas in use, and calculates a mass flow (Figure 33). The MFC is operated using a 

pilot module. A detailed description of the procedures required to operate the 

MFC are located in Appendix B. 

 

Figure 32 Thermal mass flow controller (left) with pilot module (right) 



 41

 

Figure 33 MFC mass flow rate determination (From [34]) 

g. High-Voltage Source-Measure Unit (Keithley 237) 

The HVSMU will provide the voltage that will be applied to the 

electrodes (Figure 34). It is capable of sourcing voltage and measuring the 

generated current, in one unit. The maximum voltage producible is 1100 V, which 

produces a maximum current of 10 mA. The unit can be controlled locally via its 

front panel, or remotely via a computer using the program LabView. In the 

remote configuration, LabView can extract the generated voltages, and 

associated currents, from the HVSMU for data analysis. The unit can generate 

either a constant DC source, or a “sweep” source, where the voltage is varied 

over time. Procedures for operating the HVSMU are located in Appendix C. 

 

 

Figure 34 Keithley 237 high-voltage source-measure unit 
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h. Complete Test Stand 

 

Figure 35 Complete GEN3 test stand (HVSMU not pictured) 

The completely assembled test stand is shown in Figure 35. The 

propellant gas enters the apparatus at a 4-way cross (from the left), passes 

through the MFC, where mass flow rate is metered and controlled, into the 

ionization chamber. A gate valve is attached to the 4-way cross at the front end 

of the apparatus. This gate valve is an on/off valve that controls vacuum flow at 

the front end of the apparatus. This vacuum access point is used to decrease the 

vacuum draw-down time. The system will reach operating pressure faster by 

drawing vacuum at both ends of the apparatus, thus reducing turnaround time 

between experiments. The apparatus supports were designed in SolidWorks and 

created using NPS’s 3D printer. They are made of a polycarbonate plastic. 

Figure 36 shows how the sample electrode mount and accelerator grid electrode 

mount are mounted within the ionization chamber. 
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Figure 36 Sample electrode mount and accelerator grid electrode mount within 
ionization chamber (LSM bellows suppressed to allow for viewing of 

mounts) 

This design satisfies all requirements mandated in the previous 

sections. First, the design is user-friendly. Once samples are mounted to 

electrodes, they no longer require direct contact. This greatly reduces the 

possibility of damaging samples, especially during installation. These samples 

are then mounted to the sample electrode mount, which can easily be removed 

from the apparatus. This makes installation easier, and further reduces the 

possibility of sample damage. Sacrificial mounts are used in between electrode 

and sample/top hat mounts. These prevent time lost due to sheared 

plastic/ceramic screws used to secure the electrode mounts. Without this mount, 

if a screw is sheared in the top hat, the entire apparatus will have to be 

disassembled to remove the fouled top hat. The sample electrode mount and 

upstream bellows connect via studs secured to the translating flange of the LSM. 

This further makes installation easier, because the sample electrode mount and 
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bellows flanges simply slide and align into place over the studs. The user does 

not have to keep three flanges aligned while attempting to secure them. Thus, it 

requires only one user to exchange samples (Figure 37). 

 

Figure 37 Sample exchange 
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Second, high accuracy, plug-and-play components were chosen to 

measure the required parameters (mass flow rate, applied voltage, ion current, 

electrode gap distance). The Sierra Instruments MFC yields real time 

measurement and control of the propellant flow, while its external control unit has 

a user-friendly interface. The Keithley HVSMU controls the applied voltage and 

measures the generated ion current. It has a user-friendly interface, via both its 

front panel and through LabView. Data can be pulled directly from the HVSMU 

via LabView for data analysis. The Kurt J. Lesker LSM with LP externally controls 

the electrode gap distance, as well as gives live measurement of that distance. 

Third, the turnaround time was decreased. This was accomplished 

by reducing the internal volume of the chamber by 70%. The GEN3 chamber has 

an internal volume of ~110 in3, while the GEN2 chamber has an internal volume 

of ~375 in3. The system also has vacuum connections at the upstream and 

downstream ends of the apparatus. This reduces the time required to bring the 

apparatus down to the required operating pressure. 

An added feature of this design is the fact it is highly modular. 

Minus the Sacrificial, Electrode, and 3D printer mounts, the apparatus is 

composed of commercial, off-the-shelf parts. This keeps the system cost low, 

and makes future adjustments to the design easier, using standard parts. 

Addition components, such as pressure transducers, can also be added to the 4-

way crosses, along with a gas supply at the downstream 4-way cross to simulate 

varying altitudes. Lastly, a Mass Flow Meter (MFM) can be included in between 

the downstream 4-way cross and the ionization chamber to ensure the mass flow 

rate going into the chamber matches the mass flow rate leaving it. 
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B. FIELD EMISSION AND FIELD IONIZATION TESTING 

FE and FI tests will be conducted using a CNT sample grown on a TEM 

grid to confirm the GEN3 design functions properly. This sample was created by 

CAPT Allan Wold, USMC, during his thesis at NPS [35]. Tests will be conducted 

at a vacuum pressure of 1E-7 torr. This is a sufficient vacuum to simulate 

conditions in outer space. 

1. Field Emission Testing 

The goal of the FE tests will be to determine the field enhancement factor, 

β , of the CNT in accordance with Fowler-Nordheim theory. These tests will be 

conducted at vacuum pressure, with no propellant14 flowing. A negative potential 

will be applied to the sample electrode; a positive potential will be applied to the 

accelerator grid electrode. Both potentials will be applied to the wires that attach 

to the Electrode Mounts via the leads external to the chamber. The gap distance 

will initially be set to 50 μm, then incrementally decreased by 10 μm to a final 

distance of 10 μm.15 For each gap distance, the “sweep” function of the HVSMU 

will be used to apply 0 to 1100 V. This will yield for each gap distance the ~ 

voltage the CNTs begin to field emit.16 The generated currents and applied 

voltages will then be plotted using Equation 4: Plottable form of Fowler-Nordheim 

equation (corrected). If the plot is linear, then the CNTs field emit in accordance 

with Fowler-Nordheim theory. β  can then be calculated from the slope of the 

plot. This should yield a range of β s by which to characterize the field 

enhancement provided by the CNTs. 

                                            
14 The propellant being used for these experiments is pure Argon gas. 

15 LT Hicks used a range from 10–100 μm for his initial tests [18]. His results showed a trend 
of increasing current for a decrease in gap distance, in accordance with Equation 9. MAJ Shrank 
did most of his experiments at ~100 μm [31]. Since the goal is strictly to show the apparatus 
works, the number of data points was halved. 

16 Also referred to as the “turn-on” voltage. 
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2. Field Ionization Testing 

The goal of the FI tests will be to demonstrate the feasibility of field 

ionization through CNT-covered grid electrodes while providing reliable ionization 

efficiency data and other critical performance metrics. The results of these 

experiments will yield the MUF, which will confirm whether or not a CNT-based IT 

is feasible. FI testing will be conducted at vacuum pressure, with propellant 

flowing. A positive and negative potential will be applied to the sample and 

accelerator grid electrode; respectively. Both potentials will be applied to the 

wires that attach to the electrode mounts via the leads external to the chamber. 

The gap distance will initially be set to 50 μm, then incrementally decreased by 

10 μm to a final distance of 10 μm. For each gap distance, the “sweep” function 

of the HVSMU will be used to apply 0 to 1100 V. The objective is to determine for 

each gap distance the applied voltage at which the Argon gas is ionized.17 The 

mass flow rate will remain constant at 10 gram
hr

18 during the experiments.19 If the 

test reaches saturation, noted by a loss of current with all other parameters 

present, then the mass flow rate can be adjusted. The measured current can 

then be compared to the maximum theoretical current to yield a preliminary MUF 

for the CNT sample.20 

                                            
17 This is the voltage at which current starts being generated. 

18 The resolution of the MFC is limited to 250sccm. This equals 6.9E-6kg/sec for Argon, 
which cannot be resolved by the Pilot Module, nor the MFC software. Thus, units of grams/hr had 
to be used. 250sccm equals 24.83 grams/hr for Argon. 

19 At this point, it is unknown what mass flow rate will cause the experiments to saturate. It is 
possible that the internal electric field associated with the ion cloud can oppose the electric field 
generated by the accelerator grid electrode when too many charges of the same sign try to pass 
simultaneously through the accelerator grid electrode. This saturation value is known as the 
space-charge-limited current [1]. 

20 These preliminary experiments are intended primarily to test the GEN3 apparatus for 
proper operation, not to optimize the ionization capability of the CNT sample. Thus, this 
preliminary MUF is not an optimized value, and the feasibility of a CNT-based IT should not be 
based solely on this MUF value. 
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IV. CONCLUSIONS AND OUTLOOK 

A. CONCLUSIONS 

This thesis succeeded in designing and building a more user-friendly 

ionization test chamber that provides the analytical capabilities needed to 

determine critical performance metrics of the CNT FI electrodes. The GEN3 

design can be operated in FE and FI mode and is the key to determining the 

feasibility of CNT-based IT, in general.  

First, the GEN3 is more user-friendly compared to previous chamber 

designs, as it is capable of being operated by a single user. It has an internal 

volume of that is 70% smaller than the GEN 2. Lastly, the electrode mounts are 

designed with a sacrificial mount to minimize time loss due to sheared mounting 

screws. 

Second, the components chosen to operate the system are plug-n-play, 

with easy to use interfaces. Each of these components is used to measure a 

specific performance metric. With a resolution of 2 μm, the LSM with LP 

externally controls and measures the gap distance between the electrodes. This 

component is also capable of adjusting the gap distance while the apparatus is 

fully assembled. The MFC is capable of measuring the mass flow rate of the 

propellant, independent of pressure. The HVSMU is capable of applying the 

necessary voltage for FE and FI, while measuring the generated current for both 

instances. 

Unfortunately, final FE and FI testing of the GEN3 apparatus could not be 

conducted in the scope of this thesis due to unforeseen problems with the LSM. 

During final installation and testing, it was discovered that the ultimate resolution 

of the LP is not the 2 μm stated by the manufacturer, but is actually 12 μm. The 

12 μm resolution is not sufficient for FE and FI testing and the item has to be 

replaced. 
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The issue was discovered after the apparatus was fully assembled, and 

initial operational tests of the LSM were being conducted. After two weeks of 

troubleshooting tracking and communication errors, the manufacturer of the LSM 

learned from one of its component suppliers that the employed combination of 

stepper motor controller and LP can only provide a best resolution of 12 μm. 

A potential alternative is to use a LSM with a linear encoder (LE) for 

position feedback (possibly supplied by Thermionics). This LE will have the 

desired resolution and repeatability of 1 μm. 

Once this new unit is purchased, it is estimated to take three months to 

have the apparatus fully tested for proper operation.  The first month will involve 

redesigning the mount for the LSM, and testing the LSM and LE for expected 

motion and position feedback.  Vacuum leak checks will also be conducted 

during this month.  The second month will involve conducting the FE and FI tests 

with CNT samples.  The third month will involve any necessary troubleshooting 

that may be required. 

B. OUTLOOK 

1. Multi-Hole Electrode Mount 

Currently, the electrode mount is sized for only one TEM grid. Because 

there is enough room on the mount for more than one grid, multi-hole grids 

should be investigated. Multi-hole grids will allow a higher gas flow through the 

electrode mount, resulting in increased ionization and higher current, and thus, 

an increase in the MUF. Figure 38 shows a possible seven-hole electrode mount. 
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Figure 38 Seven-hole electrode mount 

2. Non-Conductive Electrode Mount for Accelerator Grid 

For FI testing, the entire electrode mount for the accelerator grid is 

negatively charged. This means the ionized propellant can be attracted to 

anywhere on the mount.21 This could result in the chamber becoming saturated 

by propellant that does not go through the accelerator grid electrode. The ions 

could also build up on the surface of the mount, resulting in a possible 

electrostatic discharge. A mount made out of a non-conductive material, with a 

channel for connecting the potential input to the electrode, should be 

investigated. This will limit the applied potential strictly to the grid electrode. 

3. Mass Flow Meter Downstream of Ionization Chamber 

To confirm all inputted gas is leaving the apparatus, a MFM can be 

installed in between the exit of the ionization chamber and the downstream 4-

way cross. The assumption with the GEN3 design is that all gas molecules 

entering the apparatus are leaving the apparatus. As discussed in Section IV.B.2, 

this might not be the case. Some of the propellant may be attracted to the 

Accelerator Grid Electrode Mount, or, since the flow direction of the propellant 

                                            
21 Minus the non-conductive mounting screws. 
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through the ionizing electrode is not guaranteed to be normal to the electrode, 

propellant may get “trapped” within the ionization chamber. The GEN3 design 

does not allow for a channel that surrounds the Electrode Mounts, which would 

contain the flow of propellant. The inclusion of the MFM will yield how much 

propellant is actually leaving the ionization chamber. 

4. Downstream Gas Input for Altitude Variation 

The ability to simulate various altitudes via a back-pressure input can yield 

the affect this has on the performance of the sample, and the flow rate through 

the apparatus. The downstream 4-way cross has two open connections that can 

be used for simulating various altitudes. A pressure transducer and a gas input 

line can be connected to these ports, with a gate/shut off valve before the gas 

line. 

5. Jog Box for Sample Changes 

The inclusion of a Jog Box with Joystick can further ease the changing out 

of samples (Figure 39). A Jog Box allows for moving the LSM via a separate 

hand-held controller, vice commands inputted via the keyboard. It simply moves 

the translating flange fore and aft. Flange position is still referenced via the 

computer interface. 

 

Figure 39 McLennan JC100 Jog Box 
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6. Replace Upstream Bellows with 100mm Travel Bellows 

Replacing the upstream 50 mm travel bellows with a 100 mm travel 

bellows will make the exchange of samples easier. The 50 mm bellows was used 

because it is the same bellows connected to the LSM. Thus, both bellows have 

the same amount of travel. However, the clearance needed to remove the 

sample mount, with the sacrificial mount attached, requires the upstream bellows 

to be almost fully compressed. This requires a significant effort. This problem will 

be solved by replacing the 50 mm bellows with a 100 mm bellows. The 100 mm 

travel bellows has more travel with which to compress the bellows during sample 

mount removable and installation, thus reducing the effort required to compress 

the bellows, as well as increasing the clearance available to remove the sample 

mount. 

7. Linear Encoder for Position Feedback 

The resolution of the supplied LP is much higher than what can be used 

for FE and FI experiments. A LE can achieve the desired 1 μm resolution and 

repeatability, but must be operated differently from the LP. A LE must first 

reference itself to some “zero reference” position. Distance is then measured 

from that zero reference to determine the current position. Also, if the LE loses 

power, it “forgets” where it is, and must re-reference the zero position before 

returning to the desired position. The LE can be used in the same manner as the 

LP. Gap distance would be determined using the same procedures as the LP. 
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APPENDIX A. MECHANICAL DRAWINGS 

 
Figure 40 Electrode mount 
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Figure 41 Sacrificial mount 
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Figure 42 Sample mount 
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Figure 43 Top hat mount
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APPENDIX B. MASS FLOW CONTROLLER OPERATING PROCEDURES 

The password is set to 0000. Do not change! 

The Full Scale22 of the unit is preset by the factory. Do not change! If you change 

the units of measurement, the Full Scale will recalculate to the units selected. If 

the Full Scale reads “0.000” for the units you select, this means the selected 

units yield a Full Scale that is beyond the resolution of the system. 

 

POWER UP PROCEDURES 

1. Confirm no gas is flowing into the MFC, and all electrical connections 

(CAT 5 cable, DB-15 connection, system ground) are tight and secure at 

both the MFC and the Pilot Module. 

 - DO NOT CONNECT THE CAT 5 CABLE TO AN ETHERNET 

CONNECTION WHILE IT IS PLUGGED INTO THE PILOT MODULE, OR 

THE MFC! THIS WILL DAMAGE THE UNIT! 

2. Turn power on at power strip. 

- The control valve within the MFC remains closed until power is supplied. 

3. System will go through self-test. If all checks are good, Pilot Module will go 

to Mass Flow Rate screen. 

 - Allow system to warm up for 15 minutes for optimal performance. 

                                            
22 The range of measurement of the MFC. 
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PILOT MODULE BUTTON FUNCTIONS 

 

Figure 44 Pilot module buttons (From [34]) 

Enter – Allows the changing of a parameter; accepts the selected parameter. 

Escape – Returns to Mass Flow Rate screen. 

Left/Right – Select different parameters to change. 

Up/Down – Change the value of the parameter. 

BASIC SETUP 

1. Setup Mass Flow Rate for g/hr23 and Argon: 

 a. At the Mass Flow Rate screen, press Enter. 

 b. Enter Password, press Enter. 

 c. Press Left or Right until you reach the Change Units screen. 

 d. Press Enter to change parameter; use Up/Down to change value. 

 e. Press Enter to confirm change. 

 f. Press Right once to get to Change Gas screen. 

                                            
23 Because the Full Scale for the unit is 0–250 sccm, and the equations will use kg/sec, the 

units must be set to g/hr to yield a sufficient resolution to measure mass flow rate (0–24.82 
grams/hr). To convert to kg/sec, divide by 3.6E6. 
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 g. Change gas to Argon. 

2. Confirm Set Point Source and Value:24 

 a. Press Right twice to get to Change Set Point Source. 

 b. Set source to Pilot/RS232. 

 c. Press Right until you get to Change Set Point. 

 d. Enter desired Set Point Value. 

PURGING MFC 

1. From Mass Flow Rate screen, press Enter, then press Right, until you get 

to the Change Valve Operation screen. 

2. Change value to Purge. 

 - The valve is now in the full open position for cleaning. 

3. Introduce gas flow. 

4. Allow system to purge for 1 minute. 

5. When purging is complete, secure gas flow to MFC.  

6. Return to the Change Valve Operation screen; change value back to 

Automatic. 

OPERATION 

1. Confirm no gas flow is off, and no gas flow is measured on the MFC. 

2. Press Enter. 

3. Enter Password, press Enter. 

4. Cycle to Zero Meter screen. 

5. Follow directions on screen to zero the meter. 

                                            
24 Set Point is the value the MFC will control the flow of gas to, i.e., enter 1.0 to control flow 

at 1.0 grams/hr. 
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6. With the MFC zeroed, the Set Point set, and Valve Operation at 

Automatic, introduce gas at the pressure indicated for the controller.25 

7. When experiment is complete, secure flow to the MFC. 

8. Ensure MFC reads zero flow. 

9. Secure power to the MFC. 

Serial Order Mfg. Date
146212 125235 May 11, 2011

STP
70oF / 1 ATM
Set Signal

PILOT MODULE
Supply
24 VDC

Inlet Press. Outlet Press. Max. Press.
50 +/‐ 5 PSI g 49 PSI g 500 PSI g
Oper. Temp. Max. Temp. Connections
60‐70oF 122oF 1/4" COMP
O‐Ring Valve Seat
Viton Viton

Technician Cal. Date Recal. Date
F.T. May 11, 2011 May 11, 2012

Made in the USA

See Instruction Manual
www.sierrainstruments.com

0‐250 SCCM
Output Signal

0‐5 VDC / 4‐20 mA
Orientation
HORIZONTAL

NOT CLEANED FOR OXYGEN SERVICE

Range & Units

Mass Flow Controller
Model

C100L‐RD‐2‐OV1‐SV1‐PV2‐V1‐S0‐C1

Gas
ARGON

 

Figure 45 MFC parameters/specifications (located on back of MFC) 

 

                                            
25 This controller has a required input pressure of 50 +/- 5 psi. 
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APPENDIX C. HIGH-VOLTAGE SOURCE-MEASURE UNIT OPERATING 
PROCEDURES 

The unit requires a warm-up time of at least 1 hour to achieve rated accuracy. 

WHEN OPERATE IS PRESSED/ILLUMINATED, THE UNIT IS CAPABLE OF 

GENERATING LETHAL VOLTAGES! EXERCISE CAUTION WHEN 

MANIPULATING VOLTAGE SOURCE LEADS! 

Values can be entered either by the keypad on the front panel, or via < > buttons 

below the rotary knob, then adjust via the rotary knob. 

The Green Lead provides the primary source (positive for these experiments).  

DC VOLTAGE OPERATION 

This operation is used when you require a constant voltage source. This will be 

used when the zero position for the gap distance is being determined, and when 

the mass flow rate and gap distance are being optimized. This is conducted 

strictly from the front panel of the HVSMU, with no communication from/with 

LabView. 

1. Turn power on. Unit will commence self-test and display firmware version 

and IEEE address. 

2. Select V – I for Source Measure switch. 

3. Select DC for Function. 

To determine zero gap distance 

1. Set Compliance (via Compliance) to 1 microamp.26 

2. Set applied voltage to 1100 V. 

3. Ensure system is under vacuum, with no gas flow. 

                                            
26 Compliance limits the maximum current generated. 
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4. Attach positive potential to accelerator grid, and negative potential to 

sample. 

6. Press Operate to apply power to the apparatus. 

5. Move the LSM until the sample shorts against the accelerator grid. 

 - This is the point at which current is generated. 

7. Note the distance displayed on the LSM position monitor program. 

8. Secure power to the apparatus. 

9. Move the LSM to the desired gap distance. 

SWEEP VOLTAGE OPERATION 

This operation is used to determine the voltages at which FE and FI occur. It will 

also be used during tests to characterize the performance of the CNTs. These 

voltages are those at which current is generated. 

1. Attach positive potential to sample, and negative potential to accelerator 

grid. 

2. Open GPIB Configuration Utility (Figure 46). 

 

Figure 46 GPIB configuration utility 



 65

3. Double click on GPIB0 under My Computer. 

4. Ensure GPIB Primary Address matches IEEE Address in HVSMU 

(currently set to 7). 

 - The IEEE Address of the HVSMU appears during start up of the 

HVSMU. 

5. Click Okay.  

- The TLK light on the HVSMU front panel should illuminate, if the 

communications connection is good. 

6. Open LabView. 

7. Open file: 23x Linear Stair SweepVI-repeat.vi. The Graphical User 

Interface (GUI) pictured below will load (Figure 47): 
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Figure 47 LabView GUI for HVSMU 

8. Change GPIB address at top of GUI to that of the IEEE Address in the 

HVSMU. 

9. Activate the GUI by clicking on the  button; the RMT and LSN lights on 

the HVSMU panel will illuminate. This indicates the unit is being controlled 

remotely from the computer. 

10. Setup parameters: 

 a. Set Bias to 0 V 
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b. Set Compliance, Start and Stop Voltages, and the number of data 

Points to desired values. 

c. LabView will automatically calculate the necessary Step Size, 

based on the inputted values. 

11. Click “Setup Linear Stair Sweep” button. This will setup the sweep in the 

HVSMU. The Trigger light will flash on the front panel, indicating the 

HVSMU is ready. 

12. Click “Run Single Sweep” button. This runs the inputted sweep. The TLK 

light will illuminate temporarily while it sends V-I data to the computer. 

13. To output the data to a .txt file for analysis, under the Data tab, click the 

Log switch. This will make it turn Green and say Yes. Change the file path 

to the desired location. 

14. When experiments are complete, click the  button, or Quit. This will 

disable the GUI. 

15. Close LabView and the GPIB Configuration Utility. RMT light will 

extinguish. Front panel operation will be restored. 
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APPENDIX D. APPARATUS PARTS LIST 

Company Part Description Quantity Part #
Kurt J. Lesker 4‐Way Cross KF40 2 QF40‐150‐X

Blank KF40 Flange 3 QF40‐150‐SB
KF 40 Bellows (48" Long; Standard 

Unbraided Wall) 1 MH‐QF‐C48
KF 40 Bellows (24" Long; Standard 

Unbraided Wall) 1 MH‐QF‐C24
2.75" CF to KF40
Adaptor Nipple 2 F0275XQF40

KF40 Tee 1 QF40‐150‐T
KF40 Cast Clamp 15 QF40‐150‐C
KF40 Centering
Rings (SS & F/C) 15 QF40‐150‐SRV

Copper Crush Gaskets (2.75") ‐
Package of 10 1 GA‐0275LB (1.53" ID)

Double‐Faced CF
Flange (2.75"), Blank 2 DFF275X000
KF40 Gate Valve 1 SG0150MVQF

50mm Stroke, 38mm bore, 
Stainless Steel Bellows 1 LSM38‐BA‐50

CF Viton Gasket
(molded) ‐ Package of 2 5 VZVIT38
1/4" OD SS Tubing ‐
304L (per inch) 12 SST‐0025I

KF40 90 Deg Elbow 2 QF40‐150‐E90
Linear Shift w/

Linear Potentiometer 1 LSM38‐50‐SS‐LP‐UP
Sim‐Step Controller 1 MSMC‐7854‐001
5m Motor Cable 1 MSMC‐MC

Limit & Datum Cable 1 MSMC‐LDC‐UP
5m Encoder Cable 1 MSMC‐ENC  

Table 1.   Apparatus parts list 
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Company Part Description Quantity Part #

MDC Vacuum
KF40 to

Quick Connect ‐ 1/4" 3 K150XDS‐25

Sierra
Instruments

Mass Flow Controller ‐
100L Series 1

C100L‐RD‐2‐OV1‐
SV1‐PV2‐V1‐S0‐C1

Keithley
Instruments

High‐Voltage
Source‐Measure Unit 1 237

Master
Pneumatic

Miniature  Filter 1/4"‐ 
NPTF Fittings;

5 um filter; manual drain 1 F50‐2T
Miniature Filter
Mounting Bracket 1 K50‐01

Ideal Vacuum
Products

Varian Torr Seal
Vacuum Equipment
High Vacuum Epoxy 1 P102144  

Table 2.   Apparatus parts list (continued) 
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