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ABSTRACT 

The objective of this thesis is to conduct a study to evaluate the feasibility of the hit-to-

kill trajectory-shaping(TS) guidance of an air-launched missile from a UCAV against 

enemy ballistic missiles via computer simulation, using a TS-guidance algorithm 

developed by LT Lukacs and Prof Yakimenko based on the direct method of calculus of 

variations that maximizes the kinetic energy transfer of an air-launched missile against an 

aerial target. The computer simulation code will generate the air-launched missile’s entire 

flight path in order to minimize the distance travelled by the air-launched missile, 

minimize the time to intercept, and maximize kinetic energy transfer to the target (a 

simulated enemy missile) by controlling the interception geometry while providing near-

optimal flight path to interception. This will be done by utilizing the direct method of 

calculus of variations combined with inverse dynamics theory to generate, in real time, an 

optimal flight path using the missile’s onboard sensors and computers. The results have 

confirmed the feasibility of hit-to-kill trajectory-shaping(TS) guidance of an air-launched 

anti-ballistic missile from a UCAV.  
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I. INTRODUCTION 

Ballistic missiles are getting more prevalent amongst world militaries. Such 

missiles can carry heavy payloads deep behind enemy lines compared to conventional 

tube artillery, providing a very powerful weapon at relatively nominal cost. Because of 

their high terminal velocity, ballistic missiles are difficult to intercept. Current air defense 

systems have improved ability to intercept tactical ballistic missiles, but cannot protect 

assets against these missiles with certainty. This allows a moderate force of missiles to 

threaten a numerically superior enemy force by penetrating their air defenses better than 

with conventional aircraft, while providing a deeper strike than tube artillery. A ballistic 

missile is only guided during the relatively brief initial powered phase of flight, known as 

the boost phase, and its course is subsequently governed by the laws of orbital 

mechanics and ballistics.  

To ensure a successful intercept of a supersonic ballistic missile, the interceptor 

must have the necessary response time, speed and accuracy. The interception can take 

place in any of the three distinct phases of ballistic missile flight—boost, midcourse or 

terminal (see Figure 1). 
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Figure 1.   Phases of Ballistic Missile Trajectory (From [8]) 

During the boost phase, the ballistic missile rocket motors are burning to 

accelerate the missile to a high trajectory altitude. Intercepting a ballistic missile in its 

boost phase is the ideal solution for missile defence, as the ballistic missile is most 

vulnerable during this phase of its flight. The reasons are that the hot rocket exhaust 

plume makes detection and targeting easier. The disadvantage however, lies in the 

geographical siting of the interceptor system (which has to be close to hostile territory) 

and the short time to intercept, typically about 180 seconds. The trajectory-shaping(TS) 

guidance developed by Lukacs and Prof Yakimenko in 2006 [1] shows that boost phase 

interception (BPI) is possible with a high probability of certainty. The disadvantage of the 

need for siting the interceptor system close to hostile territory is negated by the use of air-

to-air anti-ballistic missiles mounted on a stealthy X-47B UCAV conducting a Combat 

Air Patrol (CAP). This thesis focuses on the air-to-air interception of ballistic missiles in 

the boost phase. 

There are different guidance laws for the missile interception of aerial target, 

including the various types of proportional navigation (PN) guidance. A new guidance 
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algorithm was developed by John A. Lukacs IV and Prof Yakimenko in 2006 to intercept 

a ballistic missile during the boost phase by a sea-based missile interceptor. This TS 

guidance algorithm uses the direct method of calculus of variations that maximizes the 

kinetic energy transfer from a surface-launched missile to a ballistic missile target. 

A trade-off study was previously conducted [5] by applying this guidance law in 

simulated ballistic missile interception from a ship-launched SM-6 ABM as the 

interceptor missile and examined the interactions and trade-offs between the various 

critical parameters in the intercept solution, like the endgame intercept geometry, time-to-

intercept and intercept altitude. This provided insights into the feasibility and limitations 

of the TS guidance algorithm. A literature review of the drag model used in the algorithm 

and comparison of the new guidance with the compensated PN guidance was also 

conducted, and an induced drag model was developed for future studies. 

This project extends this to verify if an air-launched interceptor model based on 

the AIM-120 NCADE missile from the same manufacturer would be able to accomplish 

similar or superior performance with the TS guidance algorithm. The results verified that 

the trajectory-shaping guidance is feasible for the interception of ballistic missiles in the 

boost phase from a UCAV for a great range of launch locations with respect to a ballistic 

missile detection point by the UCAV.  
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II. MODELING AND SIMULATION 

A. DESCRIPTION OF TRAJECTORY SHAPING GUIDANCE 

In 2006, Lukacs and Prof Yakimenko [1] developed a simulation code in 

MATLAB as a demonstration of the feasibility of intercepting a ballistic missile during 

the boost phase by a surface-launched interceptor missile using the Trajectory Shaping 

(TS) guidance law. This thesis seeks to build upon this to show how the TS guidance law 

can be used for air-launched interceptor missiles. The TS guidance uses the principle of 

flight path optimization from the interceptor to the predicted target position. It relies on 

high-order polynomial as a reference function for the flight path and uses the virtual 

domain in the optimization process. A preset thrust history is used in the computation of 

interceptor flight path. The flight path is derived by minimization a combined 

performance index including intercept geometry, time-to-intercept, penalty on altitude 

and dynamic constraints. This performance index (J) is given by the following equation, 

J = tgo2 + WIA(μ – μdesired)2 + P1+ P2 
 

where tgo is the time-to-intercept, μ is the impact angle, P1 is the penalty on 

intercept altitude and P2 is the penalty on dynamic constraints. The application of such 

guidance is particularly suitable for interception of targets with a predictable trajectory, 

such as a ballistic missile in the boost phase. 

In the simulation, the U.S.-made NCADE missile, was used as the interceptor , 

while the ballistic missile target was modelled on the DPRK TPD-2 ballistic missile. A 3 

degree-of-freedom (3DoF) mathematical model was previously developed and used to 

simulate the trajectory and flight characteristics of both the ballistic and interceptor 

missile based on open-source missile data. The intercept path is continuously calculated 

onboard the interceptor missile as a two-point boundary value problem, using Direct 

Methods of Calculus of Variation to calculate a near-optimal flight path and the control 

commands necessary to attain it. 
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B. SIMULATION SOFTWARE ARCHITECTURE  

1. Flow-Chart 

The 3-DoF Simulation Modeling flowchart used in this project is shown. It was 

derived from research work previously carried out by Prof Yakimenko, Lukacs [1] and 

Leong [5].  

 

Figure 2.   Simulation Flowchart 

C. BALLISTIC MISSILE TARGET MODELING 

The TPD-2 ballistic missile is a two-stage intercontinental ballistic missile 

(ICBM) believed to be capable of an effective range of 6000 to 6500 km, [12].  
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This puts Alaska and Singapore within range of this weapon. To intercept this weapon 

during boost phase, the intercepting missile must be fired from a platform within range of 

the ballistic missile launch site.  

The TPD-2 has the following physical characteristics: 

Parameter Magnitude 
Total Length = Stage 1 length + Stage 2 length + 
warhead/nosecone (m) 

32 

Range (km) 3500-4300 
Payload (kg) 750-1000 

  
Stage 1  
Length (m) 16 
Diameter (m) 2.2 
  
Stage 2  
Length (m) 14 
Diameter (m) 1.335 
  

Table 1.   Characteristics(estimated) TPD-2 ICBM Data Input to Simulation(From [1]) 

 

 

Figure 3.   Reach of TPD-2 Missile 

A 3DoF ballistic missile simulation model of the North Korean TPD-2 was used 

in this project. It consists of a series of MATLAB functions on an iterative integration 

loop, using 4 function files to model the TPD-2 missile:- 

1. BRFlight3.m - integrates each time step to determine the current position, 
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attitude, and aerodynamic forces acting on the ballistic missile, generates a 

 ballistic flight path of the ballistic missile target based on the model developed by 

 Zarchan [6].; 

2. BRParams3.m – determines ballistic missile mass and surface reference area; 

3. BRDrag.m - determines target drag coefficient; 

4. STatmos.m – determines the properties of the local atmosphere; 

 

Figure 4.   TPD-2 Ballistic Missile Flight Path simulated in MATLAB(From [1]) 

D. UCAV-LAUNCHED INTERCEPTOR MISSILE MODELING 

The Northrop-Grumman X-47B [11] UCAV was used as the simulated launch 

platform for the interceptor missile. The X-47 project was initiated under the auspices of 

the J-UCAS program by DARPA. The X-47B is capable of high subsonic speeds 

(maximum speed estimated at Mach 0.9) and cruises at Mach 0.45, and has a service 

ceiling of greater than 40,000ft (12.2km). In addition, the X-47B has twin internal 

weapons bays conferring a 4,500lb-payload. Since a single AIM-120 air-to-air missile 

weighs 335 pounds [11], an X-47B will be able to carry at least 2 of them for combat persistence.  

The X-47B has an endurance of greater than 6 hours and a maximum range of 

over 2000 miles (3200km).  Because it remotely controlled, risk of injury to crew from 

enemy action or accidents is minimized and crew fatigue can be reduced as well. In 

addition, the platform is designed as a stealthy platform with a low RCS (exact figure 
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classified). Hence, it is ideal for autonomous and semi-autonomous Combat-Air-Patrol 

(CAP) missions near or even over hostile territory, making it closer to discovered or 

potential hostile ballistic missile launch sites. 

The X-47B made its first flight on Feb 4, 2011, and flew on cruise configuration 

with its landing gear retracted on Sep 30, 2011. Testing is in progress to make the X-47B 

carrier-capable. 

 

Figure 5.   X-47B at take-off 

 

Figure 6.   X-47B at cruise 
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Figure 7.   X-47B Specifications (From [11]) 

The interceptor missile, the Raytheon NCADE [9], an air-launched AIM-120-

derivative missile designed to intercept threat ballistic missiles in the boost and ascent 

phases of flight. NCADE combines a Raytheon-proprietary (probably based on the AIM-

9X focal plane staring array) seeker within an AIM-120 airframe and a booster stage. 

NCADE will be designed to intercept threat ballistic missiles in the endoatmosphere or 

exoatmosphere. 
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Figure 8.   NCADE dimensions (From [9,10]) 

 

Figure 9.   Interceptor Stage (Stage 2) (From [9]) 
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Parameter Magnitude 

Total Length = Stage 1 length + Stage 2 length ( 
including warhead/nosecone) (m) 

3.66 

Range (km) 250 
Payload (kg) 18 

  
Stage 1  
Length (m) 1.6529 
Diameter (m) 0.1778 
  
Stage 2  
Length (m) 2.0071 
Diameter (m) 0.1778 
  
  

Table 2.   Characteristics(estimated) of NCADE Input into Simulation (From 
[8,9,10,11])  

Because NCADE has the same form and fit as the AIM-120 [11], technically any 

aircraft that can carry the AIM-120 is also able to deploy the NCADE. A simulated 

model of the NCADE was utilized in this project based on publicly-available data from 

the US Navy and Raytheon, and if more information was required, assumptions were 

made on the specific capabilities. At no time was classified and/or proprietary data used 

in the simulations. The simulated interceptor missile was assumed to have a maximum 

range of 250km against a Ballistic Missile Target.  

E. MISSILE FLIGHT PROGRAM 

1. Initialization 

As per previous research work done simulations [1,4,5], the Earth’s geographical 

 data required was based on the WGS84 values in the following references 

 [14,15]: 

 Earth's Radius, Re  = 6,378,137 m 

 Earth's Semi-Minor Axis, b = 6,356,752 m 
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 Earth's Flattening (1/Ellipticity), f = 1/298.257223563 

 Earth's Rotation Rate (ΩzE) = 7.292116E-5 rad/sec 

 Earth's Gravitational Constant, GM = 3.986004418e14 m^3s^-2 

2. Flight Program Description 

From the NCADEFlightfromUCAV.m program initialization, it runs through 

several iterations. Upon integration of the previous iteration, it is returned to the program 

as the current values. The program then uses these values to calculate all the descriptive 

values of the system, apply the corrective time—and position—dependant factors, and 

calculate the derivatives for the next iteration. 

The trajectory of the interceptor missile is generated by the function 

NCADETrajectory.m by applying the TS guidance law through the NCADEGuidance.m  

function. This is an iterative process, starting with a ‘guess’ of the interceptor final states 

and subsequently performing trajectory optimization to minimize the cost and penalty of 

each iterative flight path generated. The optimized flight path is then returned to 

NCADETrajectory.m for execution for a successful intercept. 
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III. TRAJECTORY SHAPING GUIDANCE AND ITS BENEFITS 

In TS guidance, to derive the optimized interceptor flight path, a function J which 

consists of a set of two smaller functions, a Cost Function and Penalty functions, is to be 

minimized via multiple iterations [1,6]. The three parameters represented in the Cost 

Function are the length of the virtual arc (proportional to the flight path distance), the 

time to intercept and the impact angle of the final intercept (angular deviation from 

desired  impact angle of 90deg). Each of the parameters needs to be weighted to correctly 

reflect the desired condition of the intercept, and affects the Cost Function value as a 

whole. (the default weighing for attaining the 90-deg impact angle is 1000).  

J = tgo2 + WIA(μ – μdesired)2 + P1+ P2 

The penalty function consists of the maximum acceleration in the y- and z- 

directions. They represent the ‘penalty’ to pay when certain physical limitations are 

attained or breached. The penalty function has been set to the certain values, which are a 

function of speed and altitude of the interceptor missile. They represent the physical 

limits beyond which the intercept solution will not be feasible. 

The flight path optimization is done by solving a non-linear programming 

problem numerically real-time and once the minimum function is obtained, the algorithm 

will return the required control time history to the missile guidance system, which can 

then execute the commands and fly the derived flight path. Since the missile system can 

be programmed with sufficient data to compensate for its control system time constant, 

25 the system lag can be effectively negated, thus eliminating a source of error. The 

guidance system can be updated every few seconds to increase the accuracy of the 

intercept. 

The main advantages of this guidance are three-fold:(1) the relatively short 

computation time to iterate and converge to an optimized solution, (2) the cost and 

penalty functions are scalable as desired to fit the mission profile and (3) elimination of 

the control system time constant.  



 16

For a boost phase intercept mission, the TS guidance is able to address the disadvantages 

of the computed PN guidance and offers greater flexibility in being able to ‘customize’ 

the guidance to improve its performance to meet the different operational demands. 
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IV. SIMULATED LAUNCHES AND RESULTS 

The NCADE-derived interceptor missile was simulated as being air-launched by 

an X-47B UCAV at 10km (32808ft) of altitude, at an initial airspeed of 100m/s 

(approximately Mach 0.33 for a speed of sound of 299.5m/s) and zero-pitch angle. This a 

possible typical combat-air-patrol (CAP) flight condition by an X-47B UCAV.  

The purpose of this simulation was to determine if the Direct-Methods TS 

guidance law [1], already proven in simulation for vertical surface launched interceptors 

[4,5], is equally applicable to interceptor missiles launched from level flight (zero-pitch 

angle) at altitude.  

A. SIMULATION RESULTS (LAUNCH ALT = 10KM, LAUNCH 
AIRSPEED=100M/S OR MACH 0.33) 

The Northing and Westing distances were both 100km (default) and the weighing 

(from 90deg impact angle) assigned was 1000(default). The interceptor missile is gaining 

altitude and aligns itself to hit the target ICBM at an angle close to 90deg for maximum 

kinetic energy. The Euler angles of the interceptor missile are shown in Figure 11. Figure 

12 illustrates the velocity profile from launch to target interception. The interceptor 

missile accelerates steadily, showing a almost-proportional increase in velocity to a peak 

velocity at about t=20s, then the velocity stabilizes at about t=35s before finally hitting 

the target at t=42s. At no point was there any unsteady velocity fluctuations during the 

endgame, thus showing the ability of the interceptor guidance mechanism to achieve an 

optimal trajectory. 
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Figure 10.   Interceptor Trajectory at Default Conditions (Northing: 100km, Westing: 
100km, Weighing:1000) 



 19

 
 

Figure 11.   Interceptor Euler Angles  

 
 

Figure 12.   Interceptor Trajectory at Default Conditions (Northing: 100km, Westing: 
100km, Weighing:1000) 
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After optimization, the G-load factor constraints are satisfied (ie. no or negligible 

dynamic constraint violations in lateral accelerations) Figure 13 illustrates this. In 

addition, Figure 14 shows how the impact angle was adjusted during the optimization. In 

addition, it can be observed that the estimate of tgo converges to its steady-state value 

after about 60 iterations. 

 
 

Figure 13.   Lateral Acceleration (LATAX, Ny and Nz) Load Factor (No or negligible 
dynamic constraint violations 

 
 

Figure 14.   Interceptor Missile Impact Angle and Time-to-go 
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B. LAUNCH ALT = 17KM, LAUNCH AIRSPEED=100M/S  

After the initial default simulations looked promising, it was decided to increase 

the launch altitude to 17km to determine the kinematic boundary of the interceptor 

missile at a higher altitude. The Kinematic Boundary (KB) of the interceptor missile can 

be regarded as the locus of the points representing the maximum range representing the 

maximum range at which the ballistic missile target may be successfully engaged as a 

function of relative bearing from the target at the start of the engagement. 

Several simulated interceptor launches were made to generate a composite 

trajectory plot as a means of determining the KB, as shown in Figure 15. The individual 

interceptor trajectories are 3-dimensional and thus not planar. 

 

Figure 15.   Composite Interceptor Trajectory from Different Directions (the individual 
interceptor trajectories are 3D) 
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Figure 16 demonstrates that as long as the launch is carried out within a 60km 

radius from the interceptor missile launcher, the interceptor missile will hit the target. 

Hence, at a launch altitude of 17km, the interceptor missile’s kinematic boundary is 

60km. For optimal “hit-to-kill” kinetic energy, an impact angle as to or exactly at 90 deg 

is required. The plots show that an impact angle of 80 deg or more occur within 60km.  

 

Figure 16.   Kinematic Boundary (max radius 60km) of Interceptor Missile at launch alt 
=17km (all constraints satisfied) 

In addition, Figure 17 illustrates that the lateral acceleration constraint violation in 

the Z-direction (Nz) is zero G and in the Y-direction (Ny) of the interceptor missile is 

negligible at less than 0.5G. The scaled combined performance index plot in Figure 17 

mirrors the impact angle plot of Figure 16, illustrating the correlation between the 

performance index and the high weighing of the 90 degree impact angle requirement on 

the optimization. 
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Figure 17.   Kinematic Boundary(max radius 60km) of Interceptor Missile at launch alt 
=17km (additional plots) 
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V. DISCUSSIONS, ADDITIONAL RESULTS AND ANALYSIS 

After the initial simulations described in the previous chapter were conducted, it 

was decided to vary the interceptor launch altitude to evaluate the flexibility of the 

algorithm at different launch altitudes.  Figure 18 illustrates the trajectory comparison 

with launch at a lower altitude compared to higher altitude. 

 

 

Figure 18.   Trajectories at a lower launch altitude of 10km compared to the original 
launch altitude of 17km 

At lower altitudes , while keeping the weighing for impact angle at 90deg at a 

high of 1000, it was observed that lateral acceleration (LATAX) G-load factor (Ny and 

Nz) violations increased and interception of the Ballistic Missile Target took place at 

lower speeds and higher intercept altitudes (ie. Forcing the missile to fly high). Removing 

the 90deg impact angle requirement by making the weighing 0 allows the interceptor 

missile to be air-launched from any altitude (see Figure 19). 
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Figure 19.   Interceptor Trajectories at launch altitude of 17km (90deg Impact Angle 
weighing and non-weighing comparison) 

Figure 20 shows that even with weighting requirement for 90 deg impact angle 

removed, the kinematic boundary is increases to ~150km. In addition, the simulated 

impact angles are not much lower than the previous case (see Figure 16 for comparison). 
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Figure 20.   Boundary increased to 150km with new launch altitude of 10km and 90deg 
Impact Angle requirement 
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In Figure 21, the scaled-performance index is better (ie. of a lower magnitude) 

and a 0-index covers a much larger area compared to the previous case, reinforcing the 

larger kinematic boundary conferred by removing the 90-degree impact angle 

requirement.  In addition, lateral acceleration dynamic constraint violations are zero. 

 

 

Figure 21.   Kinematic Boundary increased to 150km with new launch altitude of 10km 
and 90deg Impact Angle requirement removed (additional plots) 
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Figure 22.   Various launch altitudes compared (weighing for 90 deg impact angle 
removed) 



 30

THIS PAGE INTENTIONALLY LEFT BLANK 



 31

VI. CONCLUSION 

This project has shown that it is feasible to use Directed-Method Trajectory 

Shaping in air-launched anti-ballistic missiles from UCAVs in addition to launches from 

land and surface platforms. For greater accuracy, future work would be to investigate the 

effects of increasing the time-delay from ballistic missile target launch to interceptor 

missile carrier platform detection and launch of interceptor missile. In addition, a higher-

fidelity UCAV model could be developed and integrated with the model. 
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APPENDIX 

A. NCADEFLIGHTFROMUCAV.M 

Description:  

This MATLAB code develops and tracks the trajectory of the interceptor 
missile. It was originally written for a surface-launched interceptor, 
but subsequently modified by the author to replicate an air-launched 
interceptor. 
 
% Written by LT John A. Lukacs IV, Naval Postgraduate School, June 2006 
% Corrected by O.Yakimenko, August 2007, November 2009 
% Modified by Zheng Liang Lu, Singapore on May 2011 
  
% This script develops and tracks the flight path of the interceptor 
% missile. For the first ten seconds it integrates a series of  
% acceleration commands to simulate an airborne, near-vertical launch 
and tip-over.   
% Upon activation of the guidance law, it sends the known values to the 
guidance 
% law and receives back the future time history of the optimal flight 
path. 
% This script then implements that optimal path. It updates the final  
% conditions and recalculates the optimal flight path at an interval of 
10 
% seconds. The script calls BRFlight3, NCADEParams1.m, NCADEDrag.m,  
STatmos.m, 
% and NCADEGuidance.m 
  
%% List of variables 
% Acc_SM     = index-based vector of acceleration values 
% AllSM      = index based vector of all interceptor values 
% alt        = altitude 
% CD         = drag coefficient 
% count      = counting variable to determine guidance law update 
interval 
% dist       = cumulative distance travelled 
% Drag       = total drag force 
% Forces_SM  = index-based vector of force values 
% g          = gravitational force, based on WGS-84 value of 
gravitational  
%              attraction and altitude 
% m_i        = interceptor mass 
% Model_SM   = index-based vector of internal values 
% MV         = interceptor speed in Mach (relative to local speed of 
sound) 
% N1,N2      = variables used to ensure optimal vectors are the same 
length 
% num_SM     = number of interations conducted (used for plotting) 
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% nx,ny,nz   = axial acceleration command, body frame x, y and z, 
respectively 
% nx(y,z)_Op = index based vector of the optimal flight path values  
% path       = returned time history of the optimal path 
% Pos_SM     = index-based vector of position values 
% press      = local atmospheric pressure 
% psi        = heading angle 
% psidot     = rate of change of heading angle 
% psidot_Op  = index based vector of the optimal flight path values  
% px,py,pz   = x, y and z components of position 
% px(y,z)_Op = index based vector of the optimal flight path values  
% py_Op      = index based vector of the optimal flight path values  
% pz_Op      = index based vector of the optimal flight path values  
% q          = counting variable (used in another program) 
% Re         = WGS-84 Earth's radius 
% ro         = local atmospheric density 
% Sref       = planar reference area (for drag calculations) 
% state      = the state of the interceptor 
% t          = global time 
% target     = the state of the rocket 
% temp       = local atmospheric temperature 
% tgo        = time to go to intercept 
% th         = flight path angle 
% th_Op      = index based vector of the optimal flight path values  
% thdot      = rate of change of flight path angle 
% thdot_Op   = index based vector of the optimal flight path values  
% Thrust     = thrust generated by interceptor motor 
% time_Op    = index based vector of the optimal flight path values  
% time_SM    = index-based vector of time values 
% update     = number of updates to the guidance law conducted 
% V          = velocity of the interceptor 
% V_Op       = index based vector of the optimal flight path values  
% Vdot       = rate of change of the velocity 
% Vdot_Op    = index based vector of the optimal flight path values  
% Vel_SM     = index-based vector of velocity values 
% w          = number of 0.5s steps between the lunches of traget and 
interceptor 
  
close all, clear all, clc 
  
global Re alphag path            % shared by SMFlight3, NCADEGuidance & 
NCADETrajectory 
global q states                  % shared by SMFlight3 & NCADEGuidance 
global Pos_BR Pos_SM Npol Npt kpolar weight90 % ... by SMFlight3 & 
NCADETrajectory 
  
%% Computing the flight path of a Ballistic Missile in a gravity turn 
BRFlight3    
  
%% Initializing variables for an Interceptor 
t=0; dt=0.5; q=0; w=120; % 60 sec detection time 
Nupd=30; count=Nupd; update=0; 
Npt=100;            % the number of points the optimal trajectory is 
computed at 
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Npol=8;             % number of coefficients in approximating 
polynomials 
kpolar=0.02; 
  
 prompt = {'Northing wrt to BM launch point, km',... 
           'Westing wrt to BM launch point, km',... 
           'Weighting coefficient for impact angle'}; 
 dlg_title = 'Enter Interceptor launch coordinates'; 
 num_lines = 1; 
 def = {'100','100','1000'}; 
 answer = inputdlg(prompt,dlg_title,num_lines,def,'on'); 
 px      =str2num(answer{1})*1000; 
 py      =str2num(answer{2})*1000; 
 weight90=str2num(answer{3}); 
% px=-100000/20; 
% py=100000/2; 
% weight90=100; 
% pz=sqrt((Re)^2-px^2-py^2); 
%assume an initial launch alt of 10000m (updated May 2011 for UCAV 
launch, further amended Oct 2011) 
pz=sqrt((Re+10000)^2-px^2-py^2); 
px_old=px; py_old=py; pz_old=pz; 
dist=0; 
  
psi=atan2(Pos_BR(120,2)-py,Pos_BR(120,1)-px); psi_old=psi; 
%th=90*pi/180; th_old=th; 
%%changing the original pitch angle 'th' from 90deg to another 
value>=30deg 
%%pitch angle 'th' seems to be of a minimum of ~10deg for an initial 
10000m alt 
th=0*pi/180; th_old=th; 
%th=0*pi/180; th_old=th; 
%V=1; V_old=V; 
%%changing the original initial velocity V from 1 m/s to an assumed 
value 
%%based on the UCAV flight profile at an inital alt  
V=100; V_old=V; 
  
%% Computing Interceptor flight path 
for i=1:20%1000 
    t=t+dt; 
%% Boost phase (angled launch, was originally vertical launch), t<10s 
if t<3                               
    % Speed, Mach number 
     
    alt=norm([px;py;pz])-Re; 
    [ro,press,temp]=STatmos(alt); 
    MV = V/sqrt(1.402*287.053*temp); 
  
    % Forces 
    g=3.986004418e14/norm([px;py;pz])^2; 
    [m_i,Sref] = NCADEParams1(t); 
    CDtable = NCADEDrag(MV); 
        if t<=6,    Thrust = 206000; psidot=0;        thdot=0;   
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        else        Thrust = 95300;  psidot=0;        thdot=0;        
end     
        %%original line below:- 
        %else        Thrust = 95300;  psidot=0;        thdot=-0.075;        
end 
    ny = V/g*cos(th)*psidot; 
    nz = V/g*thdot+cos(th); 
    nn = sqrt(ny^2+nz^2); 
        CL=(2*nn*m_i*g)/(ro*V^2*Sref); 
        CD = CDtable(1) + kpolar*CL^2; 
    Drag = ro*V^2*CD*Sref/2; 
    nx=(Thrust-Drag)/m_i/g;     
     
    alphag=180/pi*nn*m_i*g/(ro*V^2*Sref/2)/13; 
         
    % Kinematics 
    Vdot=g*(nx-sin(th)); 
    psidot=ny*g/V/cos(th); 
    thdot=g*(nz-cos(th))/V; 
  
    % Collecting variables 
    time_SM(i,1)=t; 
    Forces_SM(i,1)=nx;     Forces_SM(i,2)=ny;     Forces_SM(i,3)=nz; 
    Model_SM(i,1)=V;       Model_SM(i,2)=Vdot; 
    Model_SM(i,3)=th;      Model_SM(i,4)=thdot; 
    Model_SM(i,5)=psi;     Model_SM(i,6)=psidot; 
    Pos_SM(i,1)=px;        Pos_SM(i,2)=py;        Pos_SM(i,3)=pz;  
    Pos_SM(i,4)=dist; 
    Vel_SM(i,1)=V*cos(th)*cos(psi);  
    Vel_SM(i,2)=V*cos(th)*sin(psi);  
    Vel_SM(i,3)=V*sin(th); 
    Acc_SM(i,1)=Vdot*cos(th)*cos(psi)-V*cos(th)*sin(psi)*psidot... 
        -V*sin(th)*cos(psi)*thdot;  
    Acc_SM(i,2)=Vdot*cos(th)*sin(psi)+V*cos(th)*cos(psi)*psidot... 
        +V*sin(th)*sin(psi)*thdot;  
    Acc_SM(i,3)=Vdot*sin(th)+V*cos(th)*thdot; 
  
    % Euler integration   
    V=V_old+Vdot*dt; 
    psi=psi_old+psidot*dt; 
    th=th_old+thdot*dt; 
    px=px_old+V*cos(th)*cos(psi)*dt; 
    py=py_old+V*cos(th)*sin(psi)*dt; 
    pz=pz_old+V*sin(th)*dt; 
  
    dist=(dist+abs(norm([px-px_old;py-py_old;pz-pz_old]))); 
  
    V_old=V;      psi_old=psi;  th_old=th; 
    px_old=px;    py_old=py;    pz_old=pz; 
     
else 
%% Optimal guidance, t>10s 
    if count==Nupd & update==0     % Recomputing the trajectory every 
Nupd cycles 
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        update=update+1; 
        fprintf('Starting Interceptor''s Guidance Update 
#%2.0f\n',update) 
        state=[px;py;pz;V;th;psi;Vdot;thdot;psidot]; 
        target=[Pos_BR(i+w,1);Pos_BR(i+w,2);Pos_BR(i+w,3); 
                Vel_BR(i+w,1);Vel_BR(i+w,2);Vel_BR(i+w,3); 
                Acc_BR(i+w,1);Acc_BR(i+w,2);Acc_BR(i+w,3)]; 
        path=NCADEGuidance(t,state,target,i);      % Calling 
NCADEGuidance function 
            if update==1; 
                N1=length(path(:,1)); N2=N1; 
            else 
                N2=length(path(:,1)); 
            end 
        % Identifying variables 
        time_Op(:,update)=[path(:,1);zeros(N1-N2,1)]; 
        px_Op(:,update)=[path(:,2);zeros(N1-N2,1)]; 
        py_Op(:,update)=[path(:,3);zeros(N1-N2,1)]; 
        pz_Op(:,update)=[path(:,4);zeros(N1-N2,1)]; 
        V_Op(:,update)=[path(:,5);zeros(N1-N2,1)]; 
        th_Op(:,update)=[path(:,6);zeros(N1-N2,1)]; 
        psi_Op(:,update)=[path(:,7);zeros(N1-N2,1)]; 
%         Vdot_Op(:,update)=[path(:,8);zeros(N1-N2,1)]; 
%         thdot_Op(:,update)=[path(:,9);zeros(N1-N2,1)]; 
%         psidot_Op(:,update)=[path(:,10);zeros(N1-N2,1)]; 
        nx_Op(:,update)=[path(:,8);zeros(N1-N2,1)]; 
        ny_Op(:,update)=[path(:,9);zeros(N1-N2,1)]; 
        nz_Op(:,update)=[path(:,10);zeros(N1-N2,1)]; 
        count=1; 
    end 
            if     count==101            % added by OY 2009-10-08 
                   count=count-1;  
            elseif count==0 
                   count=1; 
            end 
  
    t=time_Op(count,update); 
    nx=nx_Op(count,update);  
    ny=ny_Op(count,update); 
    nz=nz_Op(count,update); 
    V=V_Op(count,update); 
%     Vdot=Vdot_Op(count,update); 
    th=th_Op(count,update); 
%     thdot=thdot_Op(count,update); 
    psi=psi_Op(count,update); 
%     psidot=psidot_Op(count,update); 
    px=px_Op(count,update); 
    py=py_Op(count,update); 
    pz=pz_Op(count,update); 
     
    % Collecting variables 
    time_SM(i,1)=t; 
    Forces_SM(i,1)=nx;     Forces_SM(i,2)=ny;     Forces_SM(i,3)=nz; 
    Model_SM(i,1)=V;       Model_SM(i,2)=Vdot; 
    Model_SM(i,3)=th;      Model_SM(i,4)=thdot; 
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    Model_SM(i,5)=psi;     Model_SM(i,6)=psidot; 
    Pos_SM(i,1)=px;        Pos_SM(i,2)=py;        Pos_SM(i,3)=pz;  
    Pos_SM(i,4)=dist; 
    Vel_SM(i,1)=V*cos(th)*cos(psi);  
    Vel_SM(i,2)=V*cos(th)*sin(psi);  
    Vel_SM(i,3)=V*sin(th); 
    Acc_SM(i,1)=Vdot*cos(th)*cos(psi)-V*cos(th)*sin(psi)*psidot... 
        -V*sin(th)*cos(psi)*thdot;  
    Acc_SM(i,2)=Vdot*cos(th)*sin(psi)+V*cos(th)*cos(psi)*psidot... 
        +V*sin(th)*sin(psi)*thdot;  
    Acc_SM(i,3)=Vdot*sin(th)+V*cos(th)*thdot; 
    Update(i,1)=update; 
  
    % Time step 
    count=count+1; 
    dist=(dist+abs(norm([px-px_old;py-py_old;pz-pz_old]))); 
    V_old=V; 
    psi_old=psi; 
    th_old=th; 
    px_old=px; 
    py_old=py; 
    pz_old=pz; 
end                     % the end of the "if" loop 
end                     % the end of the "for" loop 
  
AllSM= [time_SM Forces_SM Model_SM Pos_SM Vel_SM Acc_SM]; % update]; 

(end of function) 

B. NCADEGUIDANCE.M 

Description:  

This MATLAB function develops the Directed Methods TS Guidance 

methodology to develop an  optimal flight path for the air-launched 

interceptor 

  

function path=NCADEGuidance(time,state,target,i) 
% Written by LT John A. Lukacs IV, Naval Postgraduate School, June 2006 
% Corrected by O.Yakimenko, August 2007, October 2009 
% Adapted by Zheng Liang Lu,Singapore, May 2011  
% This function takes in the state of the interceptor and target and  
% generates an initial guess at the final conditions (position,  
% orientation angles, range, and time to intercept) through a first-
order 
% trajectory assumption and iterative process.  It then calls the  
% fminsearch function using those initial guesses.  Finally, it plots 
the 
% returned optimal flight path and associated variables. 
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%% List of variables 
% best      = vector of the variables in the optimal path returned from 
%             the fminsearch function 
% BC        = boundary conditions 
% cost      = cost function value returned from NCADEGuidanceCost 
function 
% costs     = array of the value of the cost variables at each 
iteration 
% free      = variables that fminsearch can modify, specifically  
%             [tau;thf;psif] 
% init      = vector of initial estimates 
% J         = vector of cost function variable values 
% N         = length of the path vector (used for plotting) 
% nmax      = maximum acceleration capability of the interceptor,  
%             altitude dependent 
% path      = returned time history of the optimal path 
% psi       = initial interceptor heading angle 
% psidot    = initial rate of change of interceptor heading angle 
% psif      = final interceptor heading angle, calculated from final  
%             conditions estimate 
% psit      = target heading angle 
% Py,Pz     = penalty functions on the y and z acceleration 
% q         = variable, counting trajectory updates during intercept 
% qq        = variable, counting the number of iterations during 
optimization  
% range     = estimate of distance between target and interceptor 
% state     = state of the interceptor missile, sent from 
NCADEGuidance.m 
%             [px;py;pz;V;th;psi;Vdot;thetadot;psidot]; 
% states    = array of the values of all processes in NCADEGuidance.m 
% target    = state of the rocket, sent from NCADEGuidance.m at i+w, 
%             synchronizing times 
% tau_f     = value of the virtual arc 
% tgo       = time to go to intercept 
% th        = initial interceptor flight path angle 
% thdot     = initial rate of change of interceptor flight path angle 
% thf       = final interceptor flight path angle 
% tht       = target flight path angle 
% tic..toc  = MATLAB function to track run time 
% trys      = vector of optimal path and derivative values 
% V         = initial interceptor velocity 
% V_f       = final interceptor velocity 
% Vave      = average interceptor velocity 
% Vdot      = initial interceptor acceleration 
% x0        = initial inteceptor position 
% xd0       = initial interceptor velocity 
% xdd0      = initial inteceptor acceleration 
% xdf       = final inteceptor position 
% xdt       = current target velocity 
% xf        = final inteceptor acceleration 
% xmult     = ratio value (used for plotting) 
% xt        = current target position 
% ymult     = ratio value (used for plotting) 
% zmult     = ratio value (used for plotting) 
  



 42

global Re alphag path            % shared by SMFlight3, NCADEGuidance & 
NCADETrajectory 
global q states                  % shared by SMFlight3 & NCADEGuidance 
global qq thdot psidot tgo costs trys          % ... by NCADEGuidance & 
NCADETrajectory 
  
%% Counting trajectory updates during intercept 
q=q+1; 
  
%% Initializing Interceptor (all states) 
x0=state(1:3); 
V=state(4); 
th=state(5); 
psi=state(6); 
Vdot=state(7); 
thdot=state(8); 
psidot=state(9); 
xd0  = [V*cos(th)*cos(psi); 
        V*cos(th)*sin(psi); 
        V*sin(th)]; 
xdd0 = [Vdot*cos(th)*cos(psi)-V*cos(th)*sin(psi)*psidot-
V*sin(th)*cos(psi)*thdot; 
        Vdot*cos(th)*sin(psi)+V*cos(th)*cos(psi)*psidot-
V*sin(th)*sin(psi)*thdot; 
        Vdot*sin(th)+V*cos(th)*thdot]; 
  
%% Initializing BM (up to the second-order derivatives) 
xt  =target(1:3); 
xdt =target(4:6); 
xddt=target(7:9); 
  
%% Estimating time-to-go 
tgo1=100; delta=5; 
vmaxhyp=2600; 
while delta>1 
    if tgo1>20 
        V_f=vmaxhyp-10*(tgo1-20); 
        Vave=(20*vmaxhyp/2+(tgo1-20)*(vmaxhyp+V_f)/2)/tgo1; 
    else 
        V_f=tgo1*vmaxhyp/20; 
        Vave=V_f/2; 
    end 
    xf=xt+xdt*tgo1; 
    tgo2=sqrt((xf(1)-x0(1))^2+(xf(2)-x0(2))^2+(xf(3)-x0(3))^2)... 
         /(norm(xdt)+Vave); 
    delta=abs(tgo2-tgo1); 
    tgo1=(tgo1+tgo2)/2; 
end 
tgo=tgo1; 
  
%% Initializing optimization 
range=sqrt((xf(1)-x0(1))^2+((xf(2)-x0(2)))^2+((xf(3)-x0(3)))^2); 
%fprintf('Trajectory update # %2.0f \n',q) 
fprintf('\nSlant range to target:           %5.1fkm \n',range/10^3) 
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tau_f =0.00045*range-1000*(q-1);   % guess on tau_f 
fprintf('Guess on the virtual arc length: %5.1f \n',tau_f) 
fprintf('Guess on the time-to-go:         %5.1fkm \n',tgo) 
    predicted_xdt=xddt*tgo; 
tht =atan2(predicted_xdt(3),norm(predicted_xdt(1:2))); 
psit=atan2(predicted_xdt(2),predicted_xdt(1)); 
thf   =0;%-tht;                 % guess on thf 
psif  =psi;%psit+pi;            % guess on psif 
free  =[tau_f;thf;psif;.1;1;1;-0.001;-0.001]; 
BC=[x0;xd0;xdd0;time;xt;xdt;xddt]; 
  
%% Searching for the minimum performance index 
qq=0;   % counting iterations to converge 
tic 
options=optimset('MaxIter',100,'Tolfun',1,'TolX',1); 
best = fminsearch(@(x) NCADETrajectory(x,BC),free,options);  % 
Optimization 
tcpu=toc; 
fprintf('\nIt took %6.0f interations to converge\n',qq) 
fprintf('Elapsed time is %6.1f seconds\n',tcpu), 
fprintf('Combined performance index is %5.1f\n',costs(end,1)) 
fprintf('    including: tau_f=%5.1f, t2go=%5.1fs, ImpAngle=%4.1f 
off,\n',... 
                                
costs(end,2),costs(end,3),180/pi*costs(end,4)) 
fprintf('               Pny=%5.1f and     
Pnz=%5.1f\n',costs(end,5),costs(end,6)) 
fprintf('              Dtgo=%5.1f and 
Altfine=%5.1f\n',costs(end,7),costs(end,8)) 
  
tau_f=best(1); 
thf  =best(2); 
psif =best(3); 
[best(4);best(5);best(6);best(7);best(8)]; 
  
V_f=path(end,5); 
xf=path(end,2:4); 
fprintf(['Impact occurs at Altitude of %4.1fkm, Northing=%4.1fkm, and 
'... 
                              'Westing=%4.1fkm\n'],[xf(3)-Re xf(1) 
xf(2)]/10^3) 
fprintf('with interceptor''s speed of %4.1f km/s\n',V_f/10^3) 
  
xdf=[V_f*cos(thf)*cos(psif); 
     V_f*cos(thf)*sin(psif); 
     V_f*sin(thf)]; 
  
%% Plotting results 
  
xmult=20000/(norm(xd0)+norm(xdt)); 
ymult=20000/(norm(xd0)+norm(xdt)); 
zmult=20000/(norm(xd0)+norm(xdt)); 
nmax=40+(40-10)/(0-50000)*(path(:,4)-Re); 
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figure('Name','Bird-eye view')              % Bird-eye view 
plot3(path(:,2)/10^3,path(:,3)/10^3,(path(:,4)-Re)/10^3,'-
.b','Linewidth',2) 
hold on, grid 
plot3(10^-3*[x0(1)-xmult*xd0(1);x0(1)+xmult*xd0(1)],... 
      10^-3*[x0(2)-ymult*xd0(2);x0(2)+ymult*xd0(2)],... 
      10^-3*[x0(3)-Re-zmult*xd0(3);x0(3)-
Re+zmult*xd0(3)],'c','Linewidth',2) 
plot3(xf(1)/10^3,xf(2)/10^3,(xf(3)-Re)/10^3,'pr','Linewidth',2) 
plot3(10^-3*[xf(1)-xmult*xdt(1);xf(1)+xmult*xdt(1)],... 
      10^-3*[xf(2)-ymult*xdt(2);xf(2)+ymult*xdt(2)],... 
      10^-3*[xf(3)-Re-zmult*xdt(3);xf(3)-
Re+zmult*xdt(3)],'r','Linewidth',2) 
plot3(x0(1)/10^3,x0(2)/10^3,(x0(3)-Re)/10^3,'*b','Linewidth',5) 
plot3((x0(1)+xmult*xd0(1))/10^3,(x0(2)+xmult*xd0(2))/10^3,... 
                                (x0(3)-
Re+xmult*xd0(3))/10^3,'^c','linewidth',2) 
plot3((xf(1)+xmult*xdt(1))/10^3,(xf(2)+xmult*xdt(2))/10^3,... 
                                (xf(3)-
Re+xmult*xdt(3))/10^3,'^r','linewidth',2) 
hl=legend('Intercept trajectory','Interceptor''s velocity vector',... 
       'Impact point','BM''s velocity vector at 
intercept','Location','Best'); 
set(hl,'FontSize',8); 
xlabel('Northing (km)'), ylabel('Westing (km)'), zlabel('Altitude 
(km)') 
%title('Interception Geometery','Fontsize',10) 
view(-102,8) 
axis equal 
  
% 
figure('Name','Combined PI and Virtual arc')    % Performance index & 
Virtual arc 
subplot(211) 
semilogy(costs(:,1)/costs(1,1),'h-.'), grid 
xlabel('Iteration'), ylabel('Relative PI (PI_i/PI_1') 
xlim([1 qq]), axis 'auto y' % ylim([0 2]) 
subplot(212) 
plot(costs(:,2),'h-.'), grid 
xlabel('Iteration'), ylabel('Length of virtual arc, \it\tau_f') 
xlim([1 qq]) 
  
figure('Name','Delta Time-to-go and Altitude violation') % Dtgo & 
Altitude fine 
subplot(211) 
plot(costs(:,7),'h-.'), grid 
xlim([1 qq]) 
xlabel('Iteration'), ylabel('\Delta \itt_{go} \rm(s)') 
subplot(212) 
plot(costs(:,8)/10^3,'h-.'), grid 
xlabel('Iteration'), ylabel('Alt. violation, (km)') 
xlim([1 qq]) 
  
figure('Name','Impact angle and Time-to-go')     % Impact angle & Time-
to-go 
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subplot(211) 
plot(real(180/pi*acos(costs(:,4))),'h-.'), grid 
axis([1 qq 60 90]) 
xlabel('Iteration'), ylabel('Impact angle (^o)') 
subplot(212) 
plot(costs(:,3),'h-.'), grid 
xlabel('Iteration'), ylabel('Time-to-go, \itt_{go} \rm(s)') 
xlim([1 qq]) 
  
figure('Name','G-load factors')                   % G-load constraints 
subplot(211) 
plot(path(:,1),path(:,9),'-b.'), grid 
hold on 
plot(path(:,1),path(:,10),'--g.') 
plot(path(:,1),nmax(:),'r','Linewidth',2) 
plot(path(:,1),-nmax(:),'r','Linewidth',2) 
hl=legend('n_y','n_z','Dynamic constraints',2); 
set(hl,'FontSize',8); 
xlabel('Time (s)'), ylabel('Load factor (g)') 
subplot(212) 
plot(costs(:,5)/10^7,'-b.','Linewidth',2), grid 
hold on 
plot(costs(:,6)/10^7,'--g.','Linewidth',2) 
xlabel('Iteration'), ylabel('Relative penalty') 
hl=legend('n_y penalty','n_z penalty','Location','Best'); 
set(hl,'FontSize',8); 
xlim([1 qq]) 
  
figure('Name','Lambda and Tau profile')          % Lambda and tau 
subplot(211) 
plot(path(:,1),path(:,end),'.'), grid 
xlabel('Time (s)'), ylabel('\it\lambda') 
subplot(212) 
plot(path(:,1),path(:,end-1),'.'), grid 
xlabel('Time (s)'), ylabel('\it\tau') 
  
figure('Name','Speed and Angle of attack profile') % SM speed and Angle 
of attack 
subplot(211) 
plot(path(:,1),path(:,5),'.'); grid 
xlabel('Time (s)'), ylabel('Speed, V (m/s)') 
subplot(212) 
plot(path(:,1),alphag,'.'), grid 
xlabel('Time (s)'), ylabel('Angle of attack (^o)') 
  
figure('Name','Euler angles profile')            % SM Euler angles 
subplot(211) 
plot(path(:,1),path(:,6)*180/pi,'.','Linewidth',2), grid 
hold on 
plot(path(end,1),thf*180/pi,'ro') 
ylim([-30 90]) 
xlabel('Time (s)'), ylabel('\theta (^o)') 
subplot(212) 
plot(path(:,1),path(:,7)*180/pi,'g.','Linewidth',2), grid 
hold on 
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plot(path(end,1),psif*180/pi,'ro') 
ylim([-180 180]) 
xlabel('Time (s)'), ylabel('\psi (^o)') 
%} 
  
%% Creating results structure 
states{q,1}=path; 
states{q,2}=BC; 
states{q,3}=free; 
states{q,4}=best; 
states{q,5}=costs; 
  
return 

(end of function) 

C. NCADETRAJECTORY.M 

Description:  

This MATLAB function is sub-function of NCADEGuidance.m, which creates 

a 7th order set of equations and evaluates that set at the boundary 

conditions supplied by the inputs to optimize the interceptor 

trajectory. 

 

function cost=NCADETrajectory(free,BC) 
% This function computes a candidate trajectory and associated cost 
based on 
% the vector of varied parameters "free" and boundary conditions "BC". 
  
% This is a sub-funtion of the NCADEGuidance.m function's fminsearch. 
% This function creates a 7th order set of equations and evaluates that 
set at 
% the boundary conditions supplied by the inputs. It then calculates 
the time 
% history of all the flight vehicle variables, including controls and 
reactions,  
% necessary to develop that flight path. A plot command set at the end 
of this 
% function will plot a chart of the iterations at the end of run if 
desired. 
% Finally, this function calculates the cost of the candidate 
trajectory 
% combining the value of the performance index and penalties. This cost 
value is 
% used to determine whether the proposed trajectory is optimal. (The 
trajectory 
% that returns the minimum value of the cost is the sub-optimal one.) 
  
% O.Yakimenko, Naval Postgraduate School, November 2009 
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%% List of variables 
% A,Ax,Axp,Axpp,Axppp    = cell matrices of coefficients of a candidate 
reference 
%                          trajectory and their derivatives wrt virtual 
arc  
% BC        = boundary conditions, specifically 
[x0;xd0;xdd0;time;xt;xdt;xddt] 
% Cx,Cxp,Cxpp,Cxppp      = coefficients of a candidate reference 
trajectory and 
%                          their derivatives wrt virtual arc 
% dtau      = tau step value 
% dtime     = time step value 
% free      = variable parameters, specifically [tau;thf;psif] 
% g         = gravitational force 
% L         = lambda, virtual speed 
% Lp        = first-order derivative of lambda wrt to virtual arc 
% nmax      = maximum acceleration capability of the interceptor,  
%             altitude dependent 
% nX,nXp,nXpp,nXppp     = norm of reference trajectory and its 
derivatives 
% nx        = axial acceleration command, body frame x 
% ny        = axial acceleration command, body frame y 
% nz        = axial acceleration command, body frame z 
% path      = returned time history of the optimal path, specifically 
%             [time' X(1:3,:)' V' th' psi' nx' ny' nz' tau' L'] 
% psi       = interceptor heading angle 
% psidot    = rate of change of interceptor heading angle 
% qq        = variable counting the number of iterations 
% t         = global current time 
% tau       = virtual arc 
% tau_f     = length of the virtual arc 
% tgo       = time to go to intercept 
% th        = interceptor flight path angle 
% thdot     = rate of change of interceptor flight path angle 
% thp       = first-order derivative of flight path angle wrt to 
virtual arc 
% time      = optimal path time history time=[0;tgo] 
% trys      = collection of norms [X nX Xp nXp Xpp nXppp] (used for 
plotting) 
% V         = velocity 
% Vdot      = acceleration 
% Vp        = irst-order derivative of velocity wrt to virtual arc 
% X,Xp,Xpp,Xppp         = reference trajectory and its derivatives wrt 
tau 
% x0,xf     = initial and final inteceptor position 
% xd0,xdf   = initial and final interceptor velocity 
% xdd0,xddf = initial and final inteceptor acceleration 
% xp,xpp,xppp           = boundary conditions (at 0 and f) in the 
virtual domain 
% xt,xdt,xddt           = target position, velocity and acceleration at 
time=0 
  
global Re alphag path            % shared by SMFlight3, NCADEGuidance & 
SMTrajectory 
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global Pos_BR Pos_SM Npol Npt kpolar weight90   % ... by SMFlight3 & 
SMTrajectory 
global qq thdot psidot tgo costs trys          % ... by NCADEGuidance & 
SMTrajectory 
  
%% Counting iterations to converge 
qq=qq+1; 
tgoold=tgo; 
  
%% Assigning variables 
tau_f=free(1); 
thf  =free(2); 
psif =free(3); 
t=BC(10);  % current time in the SM frame to compute it's stage (thrust 
and drug) 
  
x0=BC(1:3); 
xd0=BC(4:6); 
xdd0=BC(7:9); 
V(1)=norm(xd0); 
Vdoti=norm(xdd0); 
  
L(1)=1;%V(1); 
Lpi=0;%Vdoti/L(1) 
  
xt=BC(11:13);   % Target's coordinates at the moment of detection 
xdt=BC(14:16);  % Target's velocities at the moment of detection 
xddt=BC(17:19); % Target's accelerations at the moment of detection 
  
V(Npt)=2600-1/3*(tgo-20);   % NACDE velocity estimate at impact 
Vdotf=-0.3;%-5.9578;        % NCADE acceleration estimate at impact 
  
L(Npt)=1;%V(Npt); 
Lpf=0;%Vdotf/L(Npt); 
  
xf=xt+xdt*tgo+0.5*xddt*tgo^2; 
xdf=[V(Npt)*cos(thf)*cos(psif); 
     V(Npt)*cos(thf)*sin(psif); 
     V(Npt)*sin(thf)]; 
  
thdotf=free(7); psidotf=free(8); 
xddf=[Vdotf*cos(thf)*cos(psif)-V(Npt)*cos(thf)*sin(psif)*psidotf-... 
      V(Npt)*sin(thf)*cos(psif)*thdotf; 
      Vdotf*cos(thf)*sin(psif)+V(Npt)*cos(thf)*cos(psif)*psidotf-... 
      V(Npt)*sin(thf)*sin(psif)*thdotf; 
      Vdotf*sin(thf)+V(Npt)*cos(thf)*thdotf]; 
  
%% Converting boundary conditions ito the virtual domain 
xp0=xd0/L(1); 
xpp0=(xdd0-xd0*Lpi)/L(1)^2; 
xppp0=[free(4);free(5);free(6)]; 
  
xpf=xdf/L(Npt); 
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xppf=(xddf-xdf*Lpf)/L(Npt)^2; 
xpppf=[0;0;0]; 
  
%% Calculating polynomials' coefficients and reference trajectories 
    dtau =tau_f/(Npt-1); 
    tau  =linspace(0,tau_f,Npt); 
for i=1:3 
A{i}=[x0(i); 
      xp0(i); 
      xpp0(i); 
      xppp0(i); 
      (-16*xppp0(i)-4*xpppf(i))/tau_f+(-
120*xpp0(i)+60*xppf(i))/tau_f^2+... 
                  (-360*xpf(i)-480*xp0(i))/tau_f^3+(840*xf(i)-
840*x0(i))/tau_f^4; 
      (60*xppp0(i)+30*xpppf(i))/tau_f^2+(600*xpp0(i)-
420*xppf(i))/tau_f^3+... 
               (2340*xpf(i)+2700*xp0(i))/tau_f^4+(5040*x0(i)-
5040*xf(i))/tau_f^5; 
      (-80*xppp0(i)-60*xpppf(i))/tau_f^3+(780*xppf(i)-
900*xpp0(i))/tau_f^4+... 
             (-4080*xpf(i)-4320*xp0(i))/tau_f^5+(-
8400*x0(i)+8400*xf(i))/tau_f^6; 
      (35*xppp0(i)+35*xpppf(i))/tau_f^4+(420*xpp0(i)-
420*xppf(i))/tau_f^5+... 
              (2100*xpf(i)+2100*xp0(i))/tau_f^6+(4200*x0(i)-
4200*xf(i))/tau_f^7]; 
    Ax{i}   =diag([ 1,   1,   1/2, 1/6,  1/24, 1/60, 1/120, 1/210 
])*A{i}; 
    Axp{i}  =diag([ 0,   1,   1,   1/2,  1/6,  1/12, 1/20,  1/30 
])*A{i}; 
    Axpp{i} =diag([ 0,   0,   1,   1,    1/2,  1/3,  1/4,   1/5 
])*A{i}; 
    Axppp{i}=diag([ 0,   0,   0,   1,    1,    1,    1,     1  ])*A{i}; 
    Cx(i,:)   =Ax{i}([Npol:-1:1]); 
    Cxp(i,:)  =Axp{i}([Npol:-1:2]); 
    Cxpp(i,:) =Axpp{i}([Npol:-1:3]); 
    Cxppp(i,:)=Axppp{i}([Npol:-1:4]); 
    X(i,:)   =polyval(Cx(i,:),tau); 
    Xp(i,:)  =polyval(Cxp(i,:),tau); 
    Xpp(i,:) =polyval(Cxpp(i,:),tau); 
    Xppp(i,:)=polyval(Cxppp(i,:),tau); 
end 
  
%% Computing the states 
xp12=Xp(1,:).^2+Xp(2,:).^2; 
th  =atan2(Xp(3,:),sqrt(xp12)); 
psi =atan2(Xp(2,:),Xp(1,:)); 
thp =(Xpp(3,:).*xp12-
Xp(3,:).*(Xp(1,:).*Xpp(1,:)+Xp(2,:).*Xpp(2,:)))./... 
                                             
sqrt(xp12)./(xp12+Xp(3,:).^2); 
psip =(Xp(1,:).*Xpp(2,:)-Xpp(1,:).*Xp(2,:))./xp12;      
  
time(1)=t; 
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g      = 3.986004418e14/norm(X(1:3,1))^2; 
nx(1)  = Vdoti/g+sin(th(1)); 
ny(1)  = V(1)/g*cos(th(1))*psidot;  
nz(1)  = V(1)/g*thdot+cos(th(1)); 
  
[ro,press,temp]=STatmos(norm(X(:,1))-Re); 
[m_i,Sref]=NCADEParams1(time(1)); 
alphag(1)=180/pi*sqrt(ny(1)^2+nz(1)^2)*m_i*g/(ro*V(1)^2*Sref/2)/13; 
     
for j=2:Npt; 
    g=3.986004418e14/norm(X(1:3,j))^2; 
        if norm(X(:,j))-Re<86000, [ro,press,temp]=STatmos(norm(X(:,j))-
Re); 
        else                      [ro,press,temp]=STatmos(86000);          
end 
    MV=V(j-1)/sqrt(1.402*287.053*temp); 
    CDtable=NCADEDrag(MV); 
        if      time(j-1)<=6,   Thrust=206000; CD0=CDtable(1);   
  
        elseif  time(j-1)<20    Thrust=95300;  CD0=CDtable(1); 
             
        else                    Thrust=0;      CD0=CDtable(2);             
end 
    [m_i,Sref]=NCADEParams1(time(j-1)); 
            CL=(2*sqrt(ny(j-1)^2+nz(j-1)^2)*m_i*g)/(ro*V(j-1)^2*Sref); 
            CD = CD0 + kpolar*CL^2; 
    Drag=ro*V(j-1)^2*CD*Sref/2; 
    nx(j)=(Thrust-Drag)/m_i/g; 
  
    V(j)=V(j-1)+g*(nx(j-1)-sin(th(j-1)))/L(j-1)*dtau;     
  
    ddist=sqrt((X(1,j)-X(1,j-1))^2+(X(2,j)-X(2,j-1))^2+(X(3,j)-X(3,j-
1))^2); 
    dtime=2*ddist/(V(j)+V(j-1)); 
    L(j)=dtau/dtime; 
     
    ny(j)=V(j)/g*cos(th(j))*psip(j)*L(j); 
    nz(j)=V(j)/g*thp(j)*L(j)+cos(th(j)); 
    alphag(j)=180/pi*sqrt(ny(j)^2+nz(j)^2)*m_i*g/(ro*V(j)^2*Sref/2)/13; 
     
    time(j)=time(j-1)+dtime; 
end 
  
tgo=time(end)-time(1); 
  
for i=1:Npt 
    nX(i)=norm(X(1:3,i)); 
    nXp(i)=norm(Xp(1:3,i)); 
    nXpp(i)=norm(Xpp(1:3,i)); 
end 
  
trys=[X' nX' Xp' nXp' Xpp' nXpp']; 
path=[time' X(1:3,:)' V' th' psi' nx' ny' nz' tau' L']; 
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%% Computing cost and penalties 
V_f=V(end); 
xdt=BC(14:16)+BC(17:19)*tgo; 
xdf=[V_f*cos(thf)*cos(psif); 
     V_f*cos(thf)*sin(psif); 
     V_f*sin(thf)]; 
  
nmax=40+(40-10)/(0-50000)*(X(3,:)-Re); 
if nmax<1, nmax=1; end 
  
J=[tgo; 
   abs(dot(xdf,xdt))/norm(xdf)/norm(xdt)]; 
Py=max([0,abs(ny)-nmax]); 
Pz=max([0,abs(nz)-nmax]); 
Dtgo=tgoold-tgo; 
Altfine=max([0,X(3,end)-Re-60000]).^2+min([0,X(3,end)-Re-9000]).^2; 
cost=norm([1,weight90]*J)+10*(Py^2+Pz^2)+100*Dtgo^2+0.1*Altfine; 
costs(qq,:)=[cost;tau_f;J;Py;Pz;Dtgo;Altfine]; 
  
%% Animating iterations 
%{ 
figure(100),% set(gcf,'Color','w'); 
subplot(3,6,[1 2 7 8]) 
plot3(Pos_BR(1:300,1)/10^3,Pos_BR(1:300,2)/10^3,(Pos_BR(1:300,3)-
Re)/10^3,... 
                                   '-.r','LineWidth',2) 
hold on 
plot3(Pos_BR(140,1)/10^3,Pos_BR(140,2)/10^3,(Pos_BR(140,3)-Re)/10^3,... 
                                   '^g','LineWidth',2) 
plot3(Pos_SM(1:19,1)/10^3,Pos_SM(1:19,2)/10^3,(Pos_SM(1:19,3)-
Re)/10^3,... 
                                   '.k','LineWidth',2) 
  
plot3(X(1,:)/10^3,X(2,:)/10^3,(X(3,:)-Re)/10^3,'Linewidth',3); grid on 
plot3(xf(1)/10^3,xf(2)/10^3,(xf(3)-Re)/10^3,'pk','MarkerSize',11) 
plot3(X(1,end)/10^3,X(2,end)/10^3,(X(3,end)-
Re)/10^3,'pr','MarkerSize',9); 
view(-102,8) 
hl=legend('BM trajectory','BM detection','Unguided ascend',... 
       'Guided flight','Predicted intercept point','Actual intercept 
point',... 
       'Location','Best'); set(hl,'FontSize',7) 
hold off 
axis([0 1.1e5 -1e4 1.1e5 0 7e4]/10^3) 
xlabel('Northing, x (km)'),ylabel('Westing, y (km)'),zlabel('Altitude 
(km)') 
        subplot(3,6,[13 14]) 
        plot(path(:,1),path(:,9),'--b','Linewidth',2) 
        hold on; grid on 
        plot(path(:,1),path(:,10),'-.g','Linewidth',2) 
        plot(path(:,1),nmax(:),'r','Linewidth',2) 
        plot(path(:,1),-nmax(:),'r','Linewidth',2) 
        axis([10 time(Npt) -45 45]); 



 52

        xlabel('Time (s)'), ylabel('Load Factor (g)') 
        leg2=legend('n_y','n_z','Dynamic 
constraints','Location','Best'); 
        set(leg2,'FontSize',7) 
        hold off 
      subplot(3,6,3) 
      plot(time,X(1,:)/10^3,'Linewidth',2); grid on 
      axis([10 time(Npt) 1e4/10^3 1.1e5/10^3]) 
      title('x_1 (km)') 
    subplot(3,6,9) 
    plot(time,X(2,:)/10^3,'Linewidth',2); grid on 
    axis([10 time(Npt) -1e4/10^3 1.1e5/10^3]) 
    title('x_2 (km)') 
  subplot(3,6,15) 
  plot(time,(X(3,:)-Re)/10^3,'Linewidth',2); grid on 
  axis([10 time(Npt) 0 7e4/10^3]) 
  title('x_3 (km)'), xlabel('Time (s)') 
subplot(3,6,4) 
plot(time,Xp(1,:)/10^3,'Linewidth',2); grid on 
axis([10 time(Npt) -45 45]); axis 'auto y' 
title('x_1'' /10^3') 
  subplot(3,6,10) 
  plot(time,Xp(2,:)/10^3,'Linewidth',2); grid on 
  axis([10 time(Npt) -45 45]); axis 'auto y' 
  title('x_2'' /10^3') 
    subplot(3,6,16) 
    plot(time,Xp(3,:)/10^3,'Linewidth',2); grid on 
    axis([10 time(Npt) -45 45]); axis 'auto y' 
    title('x_3'' /10^3'), xlabel('Time (s)') 
      subplot(3,6,5) 
      plot(time,Xpp(1,:)/10^2,'Linewidth',2); grid on 
      axis([10 time(Npt) -45 45]); axis 'auto y' 
      title('x_1'''' /10^2') 
        subplot(3,6,11) 
        plot(time,Xpp(2,:)/10^2,'Linewidth',2); grid on 
        axis([10 time(Npt) -45 45]); axis 'auto y' 
        title('x_2'''' /10^2') 
      subplot(3,6,17) 
      plot(time,Xpp(3,:)/10^2,'Linewidth',2); grid on 
      axis([10 time(Npt) -45 45]); axis 'auto y' 
      title('x_3'''' /10^2'), xlabel('Time (s)') 
    subplot(3,6,6) 
    hold on 
    plot(qq,time(Npt)-time(1),'+c','Linewidth',1); grid on 
    hold off 
    axis([1 200 40 60]); axis 'auto y' 
    title('Time-to-go (s)') 
  subplot(3,6,[12 18]) 
  hold on 
  plot(qq,cost,'+m','Linewidth',1); grid on 
  axis([1 200 0 100]); axis 'auto y' 
  hold off 
  title('Performance Index'), xlabel('Iteration') 
%} 
return 
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(end of function) 

D. NCADEPARAMS1.M 

Description:  

This MATLAB function calculates the J-Matrix and the Mass of the 2-

stage Air-launched NCADE Interceptor. 

 

function [SM_mass,Sref]=NCADEParams1(t) 
% Written originally by LT John A. Lukacs IV, Naval Postgraduate 
School, June 2006 
% Modified by Zheng Liang Lu, Singapore MOD, May 2011 
% This function calculates the J Matrix and Mass of the air-launched 
NCADE interceptor,  
% assuming a cruciform rocket in two stages to intercept.  This 
% function also returns the reference (base) diameter of the missile. 
% The NCADE is a derivative of the AIM-120 AMRAAM 
% Specific NCADE data is classified or proprietary to the missile OEM 
% hence, assumptions must be made about the NCADE's physical and 
operational parameters 
% It is assumed that the NCADE dimensions and mass are similar to the 
% AIM-120 and its trajectory similar to the SM3 and SM6 ABMs  
  
%% Notes: 
% The first stage last 6 seconds, the second stage lasts an additional 
% 10 seconds.  Stage 1 (booster) seperates upon completion.  Stage 2  
% does not separate after completion 
  
%% List of variables 
% dia           = reference diameter, base diameter (in m) 
% l             = length, varies by component (in m) 
% p_SM_st1_fuel = density of stage 1 rocket fuel 
% p_SM_st2_fuel = density of stage 2 rocket fuel 
% p_SMstr       = density of structural material 
% r             = radius, varies by component 
% ro            = outer radius, varies by component 
% ri            = inner radius, varies by component 
% SM_mass       = total rocket mass 
% SM_nose       = total mass of nosecone section 
% SM_st1_fcr    = consumption rate of stage 1 fuel 
% SM_st1_fuel   = remaining stage 1 fuel based on time and  
%                 consumption rate 
% SM_st1_str    = total mass of stage 1 structural material 
% SM_st1_tfm    = total mass of stage 1 fuel 
% SM_st2_fcr    = consumption rate of stage 2 fuel 
% SM_st2_fuel   = remaining stage 2 fuel based on time and  
%                 consumption rate 
% SM_st2_str    = total mass of stage 2 structural material 
% SM_st2_tfm    = total mass of stage 2 fuel 
% t             = time 
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% th            = structural thickness 
% V_body        = volume of body structural material 
% V_nose_str    = volume of nosecone structural material 
% V_nose_str0   = volume of nosecone structural material,  
%                 intermediate value 
% V_nose_str1   = volume of nosecone structural material,  
%                 intermediate value 
% V_st1_fuel    = volume of stage 1 fuel 
% V_st1_str     = volume of stage 1 structural material 
% V_st2_fuel    = volume of stage 2 fuel 
% V_st2_str     = volume of stage 2 structural material 
  
%% Structural components 
    p_SMstr = 4225; 
    th = .0208; 
  
    %overall length of AIM-120 is 3.66m, wingspan is 0.5258m IAW USAF 
Fact 
    %Sheet 
    % the length of the NCADE 1st stage is 1.6529m and the 2nd stage 
    % (interceptor-engine and warhead) is 2.0071m. 
    % Mass of nose cone 
    l = 0.5608; 
    r = 0.1778/2; 
    V_nose_str0 = pi*(l*((r^2+l^2)/(2*r))^2-l^3/3-(((r^2+l^2)/... 
          (2*r))-r)*((r^2+l^2)/(2*r))^2*asin(l/((r^2+l^2)/(2*r)))); 
    l = 0.5608-th; 
    r = 0.1778/2-th; 
    V_nose_str1 = pi*(l*((r^2+l^2)/(2*r))^2-l^3/3-(((r^2+l^2)/... 
          (2*r))-r)*((r^2+l^2)/(2*r))^2*asin(l/((r^2+l^2)/(2*r)))); 
    V_nose_str = V_nose_str0-V_nose_str1+pi*r^2*th; 
    SM_nose = 1.3*V_nose_str*p_SMstr; 
  
    % Mass of Body/Warhead Section 
    l = 0.5608; 
    ro = 0.1778/2; 
    ri = 0.1778/2-th; 
    V_body = l*pi*(ro^2-ri^2); 
    SM_body = V_body*p_SMstr+115; 
  
    % Mass of Stage 1 (NCADE Booster) 
    l = 1.6529; 
    ro = 0.1778/2; 
    ri = 0.1778/2-th; 
    V_st1_str = l*pi*(ro^2-ri^2)+2*pi*ro^2*th; 
    SM_st1_str = V_st1_str*p_SMstr; 
  
    % Mass of Stage 2 (Engine and Warhead Section) 
    l = 2.0071-2*th; 
    ro = 0.1778/2; 
    ri = 0.1778/2-th; 
    V_st2_str = l*pi*(ro^2-ri^2)+2*pi*ro^2*th; 
    SM_st2_str = V_st2_str*p_SMstr; 
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%% Fuel Components 
    % Stage 1 Solid Fuel is HTPB/AP/Al 
    l = 1.6529; 
    ri = 0.1778/2-th; 
    V_st1_fuel = 0.80*l*pi*ri^2; 
    p_SM_st1_fuel = 1860; 
    SM_st1_tfm = 468; 
    SM_st1_fcr = 468/6; 
    % Stage 2 Solid Fuel is TP-H1205/6 
    l = 2.0071-0.5608; 
    ri = 0.1778/2-th; 
    V_st2_fuel = 0.60*l*pi*ri^2; 
    SM_st2_tfm = 360; 
    p_SM_st2_fuel = SM_st2_tfm/V_st2_fuel;   
    SM_st2_fcr = 360/15; 
  
if t<6 
    %% Stage 1 - Stage 1 Fuel is consumed, Stage 2 Fuel is not used. 
    SM_st1_fuel = SM_st1_tfm - SM_st1_fcr * t; 
    SM_mass = SM_nose+SM_body+SM_st2_str+SM_st2_tfm+SM_st1_str+... 
          SM_st1_fuel; 
    dia = 0.1778; 
  
elseif t<21 
    %% Stage 2 - Stage 1 has seperated, Stage 2 Fuel is consumed. 
    SM_st2_fuel = SM_st2_tfm - SM_st2_fcr * (t-6); 
    SM_mass = SM_nose+SM_body+SM_st2_str+SM_st2_fuel; 
    dia = 0.1778; 
  
else 
    %% Stage 3 - The unpowered nosecone and Stage 2 remains. 
    SM_mass = SM_nose+SM_body+SM_st2_str; 
    dia = 0.1778; 
  
end 
  
Sref=pi*dia^2/4; 
  
return 

(end of function) 
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