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Abstract:   
In the first year of this two-year project, we had established that the new modeling 
mechanism---mass estimation---has a strong theoretical underpinning for prediction 
and data modeling. We had also determined that mass–based approaches have time 
and space complexities more favorable than existing approaches in a number of data 
mining tasks e.g., anomaly detection, clustering and information retrieval. 
In the second year, we had developed (i) a new density estimator based on mass, and 
(ii) a new generative classifier based on mass. 
This project has produced a total of four publications in top conferences in the field. 
In addition, two journal papers and one conference paper are currently under review. 
This outcome is more than double the number of publications we had specified in the 
project proposal two years ago. 
 
Introduction:   
This project had planned to deliver a fundamentally different approach to design data 
mining algorithms; instead of relying on density estimation, a new method called 
mass estimation was introduced. The new method overcame the two key limitations 
of existing data mining algorithms which (a) require large data size in order to build 
a good performing model; and (b) they are restricted to low dimensional data sets 
because of high processing time and memory requirements. This project had aimed 
to 

1. Establish the theoretical underpinning of mass estimation as a computational 
model for prediction and data modelling. 

2. Develop a formalism in which mass estimation can be applied to various different 
tasks. 

3. Provide evidence that mass estimation is a practical approach that is more efficient 
and effective than many existing approaches in real applications. 

 
Experiment:  N/A 
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Results and Discussion:  
  
In the first half of this project from February 2010 to February 2011, we had 
established the theoretical underpinning of mass estimation, developed the first 
mass-based formalism, and provided some preliminary evidence that the new 
approach is more efficient and effective than existing density-based, distance-based 
and SVM approaches in regression, anomaly detection, information retrieval and 
clustering [1,2]. 
 
In the second half of this project from March 2011 to February 2012, we had focused 
on two directions. First, we showed that existing density-based approaches can be 
significantly improved, especially in terms of runtime, by using a new density 
estimation method [3]. This sets a new benchmark for density-based algorithms. The 
new density estimation method is constructed from mass since mass is a more 
fundamental measure than density, and it had been shown to be more efficient than 
existing density estimation methods. Second, we investigated a mass-based approach 
to build a generative classifier and it is found to be either competitive with or better 
than existing Bayesian classifiers, in term of predictive accuracy [6]. The new 
generative classifier also has better time complexity than existing Bayesian 
classifiers. 
 
In addition to the above two foci, we had also completed the following during the 
second half of this project: 
 

 Published a paper on mass-based anomaly detection in data streams [4]. 
 Submitted a journal version [7] of KDD 2010 paper [1] to Machine Learning 

Journal.  
 Submitted a journal version [8] of IEEE ICDM 2011 paper. We were invited 

to submit this paper to International Journal of Knowledge and Information 
Systems because the IEEE ICDM 2011 paper [3] was one of the few papers 
selected to be considered for the best paper award. Our paper was one of the 
101 accepted regular papers from over 800 submissions. 

 
Though not directly supported by this grant, the work produced in this project has 
directly contributed to an application of mass in information retrieval, reported by 
Zhou, Ting, Liu and Yin [5]. Our earlier work [1] showed that transforming the 
feature space to a mass space, and then applying an existing information retrieval 
system in the mass space produced better retrieval results than the same system 
operated in the original feature space. This is an indirect application of mass. The 
latest work [5] proposed a new information system that solves the problem directly 
using mass. The new system further improved the retrieval performance achieved by 
existing systems in the mass space.  
 
Attachments: The two 2011 publications and the papers currently under review are 
attached. The 2010 publications had been submitted last year. 
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ABSTRACT
This paper introduces mass estimation—a base modelling
mechanism in data mining. It provides the theoretical basis
of mass and an efficient method to estimate mass. We show
that it solves problems very effectively in tasks such as in-
formation retrieval, regression and anomaly detection. The
models, which use mass in these three tasks, perform at least
as good as and often better than a total of eight state-of-the-
art methods in terms of task-specific performance measures.
In addition, mass estimation has constant time and space
complexities.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Miscellaneous; I.5 [Pattern
Recognition]: General

General Terms
Algorithms, Theory

1. INTRODUCTION

‘Estimation of densities is a universal problem
of statistics (knowing the densities one can solve
various problems.)’ — V.N. Vapnik [16].

Density estimation has been the base modelling mecha-
nism used in many techniques designed for tasks such as
classification, clustering, anomaly detection and informa-
tion retrieval. For example in classification, density estima-
tion is employed to estimate class-conditional density func-
tion (or likelihood function) p(x|j) or posterior probability
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p(j|x)—the principal function underlying many classifica-
tion methods e.g., mixture models, Bayesian networks, and
Naive Bayes. Examples of density estimation include kernel
density estimation, k-nearest neighbours density estimation,
maximum likelihood procedures or Bayesian methods.
We shows in this paper that a new base modelling mecha-

nism called mass estimation possesses different properties
from those offered by density estimation:

• A mass distribution stipulates an ordering from core
points to fringe points in a data cloud. In addition, this
ordering accentuates the fringe points with a concave
function—fringe points have markedly smaller mass
than points close to the core points. These are the
fundamental properties required for many tasks, in-
cluding anomaly detection and information retrieval.
In contrast, density estimation is not designed to pro-
vide an ordering.

• Mass estimation is more efficient than density estimation
because mass is computed by simple counting and it
requires only a small sample through an ensemble ap-
proach. Density estimation (often used to estimate
p(x|j) and p(j|x)) require a large sample size in or-
der to have a good estimation and is computationally
expensive in terms of time and space complexities [7].

• Mass can be interpreted as a measure of relevance with
respect to the concept underlying the data, i.e., core
points indicate that they are highly relevant and fringe
points indicates that they are less relevance. We demon-
strate in this paper that a relevance feature space con-
sists of a vector of masses estimated from data is very
effective for three data mining tasks: information re-
trieval, regression and anomaly detection.

Mass estimation has two advantages in relation to effi-
cacy and efficiency. First, the concavity property mentioned
above ensures that fringe points are ‘stretched’ to be farther
from the core points in a mass space—making it easier to
separate fringe points from those points close to core points.
This property, otherwise hidden, can then be exploited by
a data mining algorithm to achieve a better result for the
intended task than the one without it. We show the effi-
cacy of mass in improving the task-specific performance of
four existing state-of-the-art algorithms in information re-
trieval and regression tasks in this paper. The significant
improvements are achieved through a simple mapping from
the original space to a mass space using the mass estimation
mechanism introduced here.



Table 1: Symbols and notations.
Ru A real domain of u dimensions
x An one-dimensional instance in R
x An instance in Ru

D A data set of x, where |D| = n
D A subset of D, where |D| = ψ
z An instance in Rt

D′ A data set of z
h Level of mass distribution
t Number of mass distributions in m̃ass(.)
mi(.) Mass base function defined using binary split si
mass(.) Mass function which returns a real value
m̃ass(.) Mass function which returns a vector of t values

Second, mass estimation offers to solve a problem more
efficiently using the ordering derived from data directly—
without distance or related expensive calculation—when the
problem demands ranking. An example of inefficient appli-
cation is in anomaly detection tasks where many methods
have employed distance or density—a computationally ex-
pensive process—to provide the required ranking. An ex-
isting state-of-the-art density-based anomaly detector LOF

[4] (which has quadratic time complexity) cannot complete
a job involving half a million data points in less than two
weeks; yet the mass-based anomaly detector we have intro-
duced here completes it in less than 40 seconds! Section 4.3
provides the detail of this example.
Section 2 introduces mass and mass estimation, together

with their theoretical properties. We also describe an
efficient method to estimate mass in practice. Section 3 de-
scribes a mass-based formalism which serves as a basis of ap-
plying mass to different data mining tasks. We present a re-
alisation of the formalism in three different tasks:
information retrieval, regression and anomaly detection, and
report the empirical evaluation results in Section 4. The re-
lation to kernel density estimation is given in Section 5. We
provide related work, the conclusions and future work in the
last two sections.

2. MASS AND MASS ESTIMATION
Data mass or mass is defined as the number of points

in a region; and two groups of data can have the same mass
regardless of the characteristics of the regions (e.g., density,
shape or volume). Mass in a given region is defined by a
rectangular function which has the same value for the entire
region in which the mass is measured.
Identifying a region occupied by a group of data in itself is

a clustering problem, but mass can nonetheless be estimated
without clustering. We show in this section that mass can
be estimated in a way similar to kernel density estimation
without involving clustering at all by using a function similar
to a kernel function.
Note that mass is not a probability mass function,

and it does not provide probability, as probability den-
sity function does through integration.
The detail of mass estimation is provided in the following

two subsections. In Section 2.1, we show how to estimate
a mass distribution for a given data set, and the theoret-
ical properties of mass estimation. Section 2.2 describes
an approximation to the theoretical mass estimation which
works more efficiently in practice. This paper focuses on

one-dimensional mass distribution only. The symbols and
notations used are provided in Table 1.

2.1 Mass distribution estimation
We first show level-1 mass distribution estimation in Sec-

tion 2.1.1. We then generalise the treatment for high level
mass estimation in Section 2.1.2.

2.1.1 Level-1 mass distribution estimation
Here, we employ a binary split to divide the data set into

two separate regions and compute the mass in each region.
The mass distribution at point x is estimated to be the sum
of all ‘weighted’ masses from regions occupied by x, as a
result of n− 1 binary splits for a set of data of size n.
Let x1 < x2 < · · · < xn−1 < xn on the real line1, xi ∈ R

and n > 1. Let si be the binary split between xi and xi+1,
yielding two non-empty regions having two masses mL

i and
mR
i .

Definition 1. Mass base function: mi(x) as a result of si,
is defined as

mi(x) =



mL
i if x is on the left of si

mR
i if x is on the right of si

Note that mL
i = n−mR

i = i.

Definition 2. Mass distribution: mass(xa) for a point xa ∈
{x1, x2, · · · , xn−1, xn} is defined as a summation of a series
of mass base function mi(x) weighted by p(si) over n − 1
splits as follows.

mass(xa) =

n−1
X

i=1

mi(xa)p(si)

=

n−1
X

i=a

mL
i p(si) +

a−1
X

j=1

mR
j p(sj)

=

n−1
X

i=a

ip(si) +

a−1
X

j=1

(n− j)p(sj) (1)

p(si) is the probability of selecting si. Note that we have
defined

Pr
i=q f(i) = 0, when r < q for any function f .

Example. For an example of five points x1 < x2 < x3 <
x4 < x5, Figure 1 shows the resultant mi(x) due to each
of the four binary splits s1, s2, s3, s4; and their associated
masses over four splits are given below:

mass(x1) = 1p(s1) + 2p(s2) + 3p(s3) + 4p(s4)
mass(x2) = 4p(s1) + 2p(s2) + 3p(s3) + 4p(s4)
mass(x3) = 4p(s1) + 3p(s2) + 3p(s3) + 4p(s4)
mass(x4) = 4p(s1) + 3p(s2) + 2p(s3) + 4p(s4)
mass(x5) = 4p(s1) + 3p(s2) + 2p(s3) + 1p(s4)

For a given data set, p(si) can be estimated on the real
line as p(si) = (xi+1 − xi)/(xn − x1) > 0, as a result of
random selection of splits based on a uniform distribution2.
For a point x /∈ {x1, x2, · · · , xn−1, xn}, mass(x) is defined

as an interpolation between two masses of adjacent points
xi and xi+1, where xi < x < xi+1.

1In data having a pocket of points of the same value, an
arbitrary order can be ‘forced’ by adding multiples of an in-
significant small value ε to each point of the pocket, without
changing the general distribution.
2The estimated mass(x) values can be calibrated to a finite
data range ∆ by multiplying a factor (xn − x1)/∆.
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Figure 1: Examples of mass base function mi(x) due to each of the four binary splits: s1, s2, s3, s4.

Theorem 1. mass(xa) is the maximum at a = n/2 for
any density distribution of {x1, · · · , xn}; and the points xa,
where x1 < x2 < · · · < xn−1 < xn on the real line, can be
ordered based on mass as follows.

mass(xa) < mass(xa+1), a < n/2

mass(xa) > mass(xa+1), a > n/2

Proof. The difference in mass between two subsequent
points xa and xa+1 differs in only one term, i.e., the mass
for p(sa) only; and ∀i 6= a, the terms for p(si) have the same
mass.
mass(xa)−mass(xa+1)

=
Pn−1
i=a ip(si) +

Pa−1
j=1 (n− j)p(sj)

−
Pn−1
i=(a+1) ip(si)−

Pa
j=1(n− j)p(sj)

= ap(sa)− (n− a)p(sa)

= (2a− n)p(sa) (2)

Thus,

sign(mass(xa)−mass(xa+1)) =

8

<

:

negative if a < n/2
0 if a = n/2
positive if a > n/2

¤

The point xn/2 can be regarded as the median. Note that
the number of points with the maximum mass depends on
whether n is odd or even: When n is an odd integer, only one
point has the maximum mass at xmedian, where median =
dn/2e; when n is an even integer, two points have the max-
imum mass at a = n/2 and a = 1 + n/2.

Theorem 2. mass(xa) is a concave function defined w.r.t.
{x1, x2, . . . , xn}, when p(si) = (xi+1 − xi)/(xn − x1).

Proof. We only need to show that the gradient ofmass(xa)
is non-increasing, i.e., g(xa) > g(xa+1) for each a.
Let g(xa) the gradient between xa and xa+1, and from

(2):

g(xa) =
mass(xa+1)−mass(xa)

xa+1 − xa
=

n− 2a

xn − x1

The result follows: g(xa) > g(xa+1) for a ∈ {1, 2, . . . , n−1}.

¤

Corollary 1. A mass distribution estimated using binary
splits stipulates an ordering, based on mass, of the points in a
data cloud from xn/2 (with the maximum mass) to the fringe
points (with the minimum mass at either side of xn/2), irre-
spective of the density distribution including uniform density
distribution.

Corollary 2. The concavity of mass distribution stipulates
that fringe points have markedly smaller mass than points
close to xn/2.

The implication from Corollary 2 is that fringe points are
‘stretched’ to be farther away from the median in a mass
space than in the original space—making it easier to sep-
arate fringe points from those points close to the median.
(The mass space is mapped from the original space through
mass(x).) This property, otherwise hidden, can then be ex-
ploited by a data mining algorithm to achieve a better result
for the intended task than the one without it. We will show
that this simple mapping significantly improves the perfor-
mance of four existing algorithms in information retrieval
and regression tasks in Sections 4.1 and 4.2.
Equation (1) is sufficient to provide a mass distribution

corresponds to a unimodal density function or a uniform
density function. To better estimate multi-modal distribu-
tions, a high level mass distribution is required. This is
provided in the following.

2.1.2 Level-h mass distribution estimation

Definition 3. Level-h mass distribution for a point xa ∈
{x1, . . . , xn}, where h < n, is expressed as

mass(xa, h) =

n−1
X

i=1

massi(xa, h-1)p(si)

=

n−1
X

i=a

massLi (xa, h-1)p(si) +

a−1
X

j=1

massRj (xa, h-1)p(sj) (3)

Here a high level mass distribution is computed recursively
by using the mass distributions obtained at lower levels. A
binary split si in a level-h(>1) mass distribution produces
two level-(h-1) mass distributions: (a) massLi (x, h-1)—the
mass distribution on the left of split si which is defined using
{x1, . . . , xi}; and (b) massRi (x, h-1)—the mass distribution
on the right which is defined using {xi+1, . . . , xn}. Equa-
tion (1) is the mass distribution at level-1.
Figure 2 shows part of the intermediate process in calcu-

lating massLi (x, h = 1) and massRi (x, h = 1) for two exam-
ple splits si=7 and si=11 in order to obtain mass(x, h = 2).

Using the same analysis in the proof for Theorem 1, the
above equation can be re-expressed as:



0

4

8

12

16
m

as
s

 

 

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

pd
f

 

 

mass h=1 mass h=2 mass h=3

density

(a) uniform

0

2

4

6

8

10

12

m
as

s

 

 

0 0.5 1
0

2

4

6

8

10

12

pd
f

 

 

mass h=1
mass h=2
mass h=3

density

(b) trimodal

0

5

10

15

m
as

s

 

 

0 0.2 0.4 0.6 0.8 1
0

2.5

5

7.5

pd
f

 

 

mass h=1
mass h=2
mass h=3

density

(c) skew

Figure 3: Examples of level-h mass distribution for h = 1, 2, 3 and density distribution from kernel density
estimation: Gaussian kernel with bandwidth= 0.1. All three data sets have 20 points each.
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massRi (x, h = 1) due to si=7 and si=11 in the process
to get mass(x, h = 2) from a data set of 20 points
with uniform density distribution. The resultant
mass(x, h = 2) is shown in Figure 3(a).

mass(xa+1, h) = mass(xa, h)+


[massRa (xa, h-1)−mass
L
a (xa, h-1)]p(sa), h > 1

(n− 2a)p(sa), h = 1
(4)

As a result, only the mass for the first point x1 needs to be
computed using Equation (3). Note that it is more efficient
to compute the mass distribution from the above equation
which has time complexity O(nh+1); the computation using
Equation (3) has O(nh+2).

Definition 4. A level-h mass distribution stipulates an or-
dering of the points in a data cloud from α-core points to the
fringe points. The α-core point(s) of a data cloud have the
highest mass value within α distance from the core point(s).
A small α defines local core point(s); and a large α, which
covers the entire value range for x, defines global core point(s).

Examples of level-h mass estimation in comparison with
kernel density estimation are provided in Figure 3. Note that
h = 1 mass estimation treats the entire data as a group, and
it produces a concave function. As a result, an h = 1 mass
estimation always has its global core point(s) at the median,
regardless of the underlying density distribution—see three
examples of h = 1 mass estimation in Figure 3.
For h > 1 mass distribution, though there is no guarantee

for a single concave function for the entire data set, each
cluster within the data cloud still exhibits a concave func-
tion and it becomes more distinct (as a concave function)
as h increases. This is shown in Figure 3(b) which has a
trimodal density distribution. Notice that the h > 1 mass
distributions have three α-core points for some α, e.g., 0.2.
Traditionally, one can determine the core-ness or the fringe-

ness of a non-uniformly distributed data to some degree by
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Figure 4: (a) An example of practical mass distribu-
tion mass(x, h|D) for 5 points, assuming a rectangu-
lar function for each point. (b) Correlation between
the orderings provided by mass(x, 1) and mass(x, 1)
for two data sets: one-dimensional Gaussian density
distribution and the COREL data set used in Section
4.1 (whose result is averaged over 67 dimensions).

using density or distance (but not in uniform density dis-
tribution.) Mass allows one to do that in any distributions
without density or distance calculation—the key computa-
tional expense in all methods that employ them. For exam-
ple in Figure 3(c) which has a skew density distribution,
the distinction between near fringe points and far fringe
points are less obvious using density, unless distances are
computed to reveal the difference. In contrast, mass distri-
bution depicts the relative distance from xmedian using the
fringe points’ mass values, without further calculation.
This section has described properties of mass distribution

from a theoretical perspective. Though it is possible to esti-
mate mass distribution using Equations (1) and (3), they are
limited by its high computational cost. We suggest a practi-
cal mass estimation method in the next section. We use the
term ‘mass estimation’ and ‘mass distribution estimation’
interchangeably hereafter.

2.2 Practical mass estimation
Here we devise an approximation to Equation (3) using

random subsamples from the given data set.

Definition 5. mass(x, h|D) is the approximate mass distri-
bution for a point x ∈ R, defined w.r.t. D = {x1, . . . , xψ},
where D is a random subset of the given data set D, and
ψ ¿ |D|, h < ψ.

Assume a rectangular function for each point x ∈ D (as
shown in Figure 4(a)), mass(x, h|D) is implemented using
a lookup table with each rectangle function covers a range
(xi−1 + xi)/2 ≤ x < (xi+1 + xi)/2 for each point xi ∈ D
having the same mass(xi, h|D) value. The range for each of
the two end-points is set to have equal length on either side
of the point. In addition, a number of mass distributions



needs to be constructed from different samples in order to
have a good approximation, that is,

mass(x, h) =
1

c

c
X

k=1

mass(x, h|Dk) (5)

The computation of mass(x, h) using the given data set D
costs O(|D|h+1); whereas mass(x, h) costs O(cψh+1).
Only relative, not absolute, mass is required to provide

an ordering between instances. Because the relative mass is
w.r.t. median and median is a robust estimator [1]—that is
why small subsamples produce a good order estimator.
Figure 4(b) shows the correlation (in terms of Spearman’s

rank correlation coefficient) between the orderings provided
by mass(x, 1) using the entire data set and mass(x, 1) using
ψ = 8 in two data sets, each having 10000 data points. They
achieve very high correlations when c ≥ 100.
The ability to use a small sample, rather than a large sam-

ple, is a key characteristic of mass estimation. We show in
this paper that mass(x, h|D) can be employed very effec-
tively for three different tasks: information retrieval, regres-
sion and anomaly detection, through a mass-based formal-
ism to be described in the next section. Although the mass
estimation is designed for one dimension only, we show that
it can be employed to solve multi-dimensional problems.

3. MASS-BASED FORMALISM
Let xi = [x1

i , . . . , x
u
i ]; xi ∈ D; and zi = [z1

i , . . . , z
t
i ]; zi ∈

D′. The proposed formalism consists of three components:

C1 The first component constructs a number of mass distri-
butions. A mass distributionmass(xd, h|D) for dimen-
sion d is obtained using our proposed mass estimation,
as given in Definition 5. A total number of t mass dis-
tributions is generated which forms m̃ass(x) → Rt,
where tÀ u. This procedure is given in Algorithm 1.

C2 The second component maps the data set D in the orig-
inal space of u dimensions into a new data set D′ of
t dimensions using m̃ass(x) = z. This procedure is
described in Algorithm 2.

C3 The third component employs a decision rule to deter-
mine the final outcome for the task at hand. It is a
task-specific decision function applied to z in the new
feature space.

Algorithm 1 : Mass Estimation(D,ψ, h, t)

Inputs: D - input data; ψ - data size for Dk; h - level of
mass distribution; t - number of mass distributions.
Output: m̃ass(x)→Rt - a function consists of t mass
distributions, mass(xd, h|Dk).

1: for k = 1 to t do
2: Dk ← a random subset of size ψ from D;
3: d← a randomly selected dimension from { 1,. . . ,u };
4: Build mass(xd, h|Dk);
5: end for

The formalism becomes a blueprint for different tasks.
Components C1 and C3 are mandatory in the formalism,
but component C2 is optional, depending on the task.
For information retrieval and regression, the task-specific

C3 procedure is simply using an existing algorithm for the
task except that the process is carried out in the new mapped
mass space, instead of the original space. This procedure

is given in Algorithm 3. The task-specific C3 procedure
for anomaly detection is shown in steps 2-5 in Algorithm 4.
Note that anomaly detection requires C1 and C3 only;
whereas the other two tasks require all three components.

Algorithm 2 : Mass Mapping(D, m̃ass)

Inputs: D - input data; m̃ass - a function consists of t mass
distributions, mass(xd, h|D).
Output: D′ - a set of mapped instances zi in t dimen-
sions.

1: for i = 1 to |D| do
2: zi ← m̃ass(xi);
3: end for

Algorithm 3 : Perform task in MassSpace(D,ψ, h, t)

Inputs: D - input data; ψ - data size for D; h - level of
mass distribution; t - number of mass distributions.
Output: Task-specific model.

1: m̃ass(.)← Mass Estimation(D,ψ, h, t);
2: D′ ← Mass Mapping(D, m̃ass);
3: Perform task (information retrieval or regression) in the

mapped mass space using D′;

Algorithm 4 for Anomaly Detection : MassAD(D,ψ, h, t)

Inputs: D - input data; ψ - data size for D; h - level of
mass distribution; t - number of mass distributions.
Output: Ranked instances in D.

1: m̃ass(.)← Mass Estimation(D,ψ, h, t);
2: for i = 1 to |D| do
3: mi ← Average of t masses from m̃ass(xi);
4: end for
5: Rank instances in D based on mi with low mass denotes

anomalies and high mass denotes normal points;

4. EXPERIMENTS
We evaluate the performance of MassSpace and MassAD for

three tasks in the following three subsections. In informa-
tion retrieval and regression tasks, the mass estimation uses
ψ = 8 and t = 1000. These settings are obtained by exam-
ining the rank correlation as shown in Figure 4(b)—having
a high rank correlation between mass(x, 1) and mass(x, 1).
Note that this is done before any method is applied and no
further fine-tuning. In anomaly detection tasks, ψ = 256
and t = 100 are used so that they are comparable to those
used in a benchmark method for a fair comparison. h = 1
is used in all tasks, unless stated otherwise. All the ex-
periments are run in Matlab and conducted on a Pentium 4
machine with an AMDOpteron machine with a 1.8 GHz pro-
cessor and 4 GB memory. The performance of each method
is measured in terms of task-specific performance measure
and runtime. Paired t-tests at 5% significance level are con-
ducted to examine whether the difference in performance is
significant between two algorithms under comparison.
Note that we treat information retrieval and anomaly de-

tection as unsupervised learning tasks. Classes/labels in the
original data are used as ground truth for evaluation of per-
formance only; they are not used in building mass distribu-
tions. In regression, only the training set is used to build
mass distributions in step 1 of Algorithm 3; the mapping in
step 2 is conducted for both the training and testing sets.



Table 2: CBIR results (the higher the better for BEP.)

BEP (×10−2) Processing time (second)
MRBIR′ MRBIR Qsim′ Qsim InstR′ InstR MRBIR′ MRBIR Qsim′ Qsim InstR′ InstR

One query 11.52 9.69 10.31 7.78 10.31 7.78 1.980 1.111 0.410 0.034 0.410 0.034
Round 1 15.14 12.72 15.39 10.59 13.45 9.40 2.499 2.155 0.588 0.078 0.558 0.046
Round 2 16.81 13.90 17.46 11.81 15.07 9.99 2.501 2.155 0.646 0.139 0.559 0.047
Round 3 17.94 14.75 18.46 12.59 16.15 10.36 2.499 2.155 0.737 0.227 0.560 0.048
Round 4 18.74 15.33 19.18 13.16 16.96 10.78 2.501 2.155 0.862 0.355 0.561 0.049
Round 5 19.39 15.71 19.62 13.55 17.62 11.05 2.499 2.155 1.016 0.516 0.562 0.050

Table 3: Regression results (the smaller the better for MSE; the larger the better for SCC.)

data MSE (×10−2) SCC (×10−2) Processing time Factor increase
size u SVR′ SVR W/D/L SVR′ SVR W/D/L SVR′ SVR time dimension

tic 9822 85 5.58 5.62 17/0/3 2.12 1.07 18/0/2 63.61 29.85 2.1 12
wine white 4898 11 1.21 1.36 20/0/0 45.18 38.60 20/0/0 17.30 7.24 2.4 91

quake 2178 3 2.86 2.92 18/0/2 0.84 0.31 14/0/6 3.18 1.09 2.9 333
wine red 1599 11 1.62 1.62 11/0/9 38.20 37.76 13/0/7 2.00 0.76 2.6 91
concrete 1030 8 0.33 0.57 20/0/0 92.62 87.17 20/0/0 1.08 0.44 2.5 125

4.1 Content-Based Image Retrieval
We use a Content-Based Image Retrieval (CBIR) task as

an example of information retrieval. The MassSpace ap-
proach is compared with three state-of-the-art CBIR meth-
ods that deal with relevance feedbacks: a manifold based
method MRBIR [9], and two recent techniques for improving
similarity calculation, i.e., Qsim [19] and InstRank [8]; and
we employ the Euclidean distance to measure the similar-
ity between instances in these two methods. The default
parameter settings are used for all these methods. Because
the same CBIR method is employed in the mapped space in
the MassSpace approach, we denote them as MRBIR′, Qsim′

and InstRank′ for those employ MRBIR, Qsim and InstRank,
respectively.
Our experiments are conducted using the COREL image

database [18] of 10000 images, which contains 100 categories
and each category has 100 images. Each image is repre-
sented by a 67-dimensional feature vector, which consists
of 11 shape, 24 texture and 32 color features. To test the
performance, we randomly select 5 images from each cate-
gory to serve as the initial queries. For a query, the images
within the same category are regarded as relevant and the
rest are irrelevant. For each query, we continue to perform
5 rounds of relevance feedback. In each round, 2 positive
and 2 negative feedbacks are provided. This relevance feed-
back process is also repeated 5 times, each up to 5 feedback
rounds. Finally, the average results with one query and in
different feedback rounds are recorded. The retrieval perfor-
mance is measured in terms of Break-Even-Point (BEP) [19,
18] of the precision-recall curve. The online processing time
reported is the time required in each method for a query
plus the stated feedback rounds. The reported result is an
average over 5×100 runs for query only; and an average over
5× 100× 5 runs for query plus feedbacks. The offline costs
of constructing the mass distributions and the mapping of
10000 images are 2.87 and 1.25 seconds, respectively.
The results are presented in Table 2 where the best per-

formance at each round has been boldfaced. The results are
grouped in pairs for ease of comparison.
The BEP results clearly show that the MassSpace ap-

proach achieves a better retrieval performance than that
using the original space in all three methods MRBIR, Qsim

and InstR, regardless it is with one query only or in rele-
vance feedbacks. Paired t-tests at 5% significance level also
indicate that the MassSpace approach significantly outper-
forms each of the three methods in all experiments, without
exception. These results show that the mass space provides
useful additional information that is hidden in the original
space.
The processing time for each of the three methods in the

mass space is expected to be longer than that in the original
space because the number of dimensions in the mass space
is significantly higher than those in the original space, where
t = 1000 and u = 67.
Figure 5(a) shows an example of performance for InstR′—

BEP increases as t increases until it reaches a plateau at
some t value; and the processing time for InstR′ is linear
w.r.t. the number of dimensions of the mass space, t.

4.2 Regression
In this experiment, we compare SVR′ with SVR—support

vector regression [16] that employs the mapped mass space
versus that employs the original space. SVR is the ε-SVR
algorithm with RBF kernel, implemented by LIBSVM [6].
SVR is chosen here because it is one of the top performing
regression models.
We utilize five benchmark data sets including four se-

lected from UCI repository [2] and one earthquake data
[14] from www.cs.waikato.ac.nz/ml/weka/ distribution. The
data characteristics are summarized in the first three columns
of Table 3. We select only those data sets which are more
than 1000 data points with all real-valued attributes and
without missing values—in order to get a result with a higher
confidence than those obtained from small data sets.
On each data set, we randomly sample two-thirds of the

instances for training and the remaining one-third for test-
ing. This is repeated 20 times and we report the average
result of these 20 runs. The data set, whether in the orig-
inal space or the mass space, is min-max normalized be-
fore an ε-SVR model is trained. To select optimal param-
eters for the ε-SVR algorithm, we conduct a 5-fold cross
validation based on mean squared error using the training
set only. The kernel parameter γ is searched in the range
{2−15, 2−13, 2−11, · · · , 23, 25}; the regularization parameter
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10 100 500 1000

0.7

0.8

0.9

t, number of mass distributions

A
U

C

 

 

h=1
h=2
h=3

(b) Effect of h in the Forest data set.
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(c) Effect of h in the Smtp data set.

Figure 5: (a) The retrieval performance and the processing time as t increases for InstR′. (b) High h produces
a poorer detection performance in this case. (c) High h produces a better detection performance in this case.

Table 4: Data characteristics of the data sets in
anomaly detection tasks. The percentage in brack-
ets indicates the percentage of anomalies.

data size u anomaly class
Http 567497 3 attack (0.4%)
Forest 286048 10 class 4 (0.9%) vs class 2

Mulcross 262144 4 2 clusters (10%)
Smtp 95156 3 attack (0.03%)
Shuttle 49097 9 classes 2,3,5,6,7 (7%) vs class 1

C in the range {0.1, 1, 10}, and ε in the range {0.01, 0.05, 0.1}.
We measure regression performance in terms of mean squared
error (MSE) and squared correlation coefficient (SCC), and
runtime in seconds. The runtime reported is the runtime for
SVR only. The total cost of mass estimation (from the train-
ing set) and mapping (of training and testing sets) is 3.95
seconds in the largest data set, tic. The cost of normalisa-
tion and the parameter search using 5-fold cross-validation
is not included in the reported result for both SVR′ and SVR.
The result is presented in Table 3. SVR′ performs signif-

icantly better than SVR in all data sets in both MSE and
SCC measures; the only exception is in the wine red data
set. Although SVR′ takes more time to run as it runs on the
data with a significantly higher dimension, yet the factor of
increase in time ranges from 2 to 3 only when the factor
of increase in the number of dimensions ranges from 12 to
over 300 (shown in the last two columns of Table 3). This is
because the time complexity in the key optimisation process
in SVR is not dependent on the number of dimensions.

4.3 Anomaly Detection
This experiment compares MassAD with four state-of-the-

art anomaly detectors: isolation forest (or iForest) [10],
a distance-based method ORCA [3], a density-based method
LOF [4], and one-class support vector machine (or 1-SVM)
[13]. MassAD is built with t = 100 and ψ = 256, the same
default settings as used in iForest [10], which also employs a
multi-model approach. The parameter settings employed for
ORCA and LOF are as stated in [10]. 1-SVM uses Radial Basis
Function kernel and an inverse width parameter estimated
by the method suggested in [5].
All the methods are tested on the five largest data sets

used in [10]. The data characteristics are summarized in
Table 4, which include one anomaly data generator Mulcross
[12] and the other four are from UCI repository [2]. The
performance is evaluated in terms of averaged AUC (area
under ROC curve) and processing time (a total of training

Table 5: AUC values for anomaly detection.
MassAD iForest ORCA LOF 1-SVM

ψ=8 ψ=256

Http 0.98 1.00 1.00 0.36 N/A 0.90
Forest 0.88 0.91 0.87 0.83 0.57 0.90

Mulcross 0.97 0.99 0.96 0.33 0.59 0.59
Smtp 0.86 0.86 0.88 0.87 0.32 0.78
Shuttle 0.99 0.99 1.00 0.60 0.55 0.79

Table 6: Runtime (second) for anomaly detection.
MassAD iForest ORCA LOF 1-SVM

ψ=8 ψ=256

Http 27 34 147 9487 > 2weeks 35872
Forest 14 18 79 6995 224380 9738

Mulcross 13 17 75 2512 156044 7343
Smtp 4 7 26 267 24281 987
Shuttle 2 4 15 157 7490 333

time and testing time) over ten runs (following [10]). MassAD
and iForest are implemented in Matlab and tested on an
AMD Opteron machine with a 1.8 GHz processor and 4 GB
memory. The results for ORCA, LOF and 1-SVM are conducted
using the same experimental setting but on a faster 2.3 GHz
machine, the same machine used in [10].
The AUC values of all methods are presented in Table 5

where the figures boldfaced are the best performance for
each data set. The results show that MassAD with ψ = 256
achieves the best performance on the three largest data sets;
and even on the other two data sets, MassAD is also competi-
tive since the AUC gap is small between MassAD and the best
method, i.e., iForest. It is noteworthy that MassAD signif-
icantly outperforms the traditional density-based, distance-
based and SVM anomaly detectors in all data sets, except
two: one in Smtp when compared with ORCA and another in
Forest when compared with 1-SVM. The above observations
validate the effectiveness of our proposed mass estimation
on anomaly detection tasks.
Table 6 shows the runtime result. Although MassAD is

run on a slower machine, it still has a significant advantage
in term of processing time over ORCA, LOF and 1-SVM. The
comparison with iForest is presented in Table 7 with a
breakdown of training time and testing time. Note that
MassAD takes the same time as iForest in training, but it
only takes about one-tenth of the time required by iForest

in testing. These results show that MassAD is an efficient
anomaly detector.
Figures 5(b) and 5(c) show the effect of h on the detection



Table 7: Training time and testing time (second) for
MassAD and iForest, using t = 100 and ψ = 256.

Training time Testing time
MassAD iForest MassAD iForest

Http 20.96 19.72 12.93 127.47
Forest 11.26 11.47 6.97 67.45

Mulcross 10.54 10.69 6.82 64.34
Smtp 4.97 4.1 2.22 22.39
Shuttle 3.43 3.23 1.01 11.79

performance of MassAD with ψ = 8—higher h degrades the
detection performance in Forest; but it improves in Smtp.
This shows that for best performance in individual data set,
some parameter tuning is required, like most other algo-
rithms. Note that there is no attempt to tune this parameter
(or any other parameters) in the result reported in Tables
5, 6 and 7 where h = 1 is used throughout.
The time and space complexities for four methods are

given in Table 8. MassAD and iForest have the best time and
space complexities due to their ability to use small ψ ¿ n
and h = 1. Note that MassAD (h = 1) is faster by a factor
of log(ψ = 256) = 8 which shows up in the testing time—
ten times faster than iForest given in Table 7. The training
time disadvantage, compared to iForest, did not show up be-
cause of small ψ. MassAD also has an advantage over iForest
in space complexity by a factor of log(ψ).

Table 8: A comparison of time and space complex-
ities. The time complexity includes both training
and testing. n is the given data set size and u is the
number of dimensions. For MassAD and iForest, the
first part of the summation is the training time and
the second the testing time.

Time complexity Space complexity

MassAD O(t(ψh+1 + n)) O(tψ)
iForest O(t(ψ + n) · log(ψ)) O(tψ · log(ψ))
ORCA O(un · log(n)) O(un)
LOF O(un2) O(un)

4.4 Constant time and space complexities
In this section, we show that mass(x, h|D) (in step 4 of

Algorithm 1) takes only constant time, regardless of the
given data size n, when the algorithmic parameters are fixed.
Table 9 reports the runtime time for sampling (to get a ran-
dom sample of size ψ from the given data set—steps 2 and
3 of Algorithm 1) and the runtime for mass estimation—to
construct mass(x, h|D) t times, for five data sets which in-
clude the largest and smallest data sets in regression and
anomaly detection tasks.
The results show that the sampling time increases linearly

with the size of the given data set, and it takes a significantly
longer (in the largest data set) than the time to construct the
mass distribution—which is constant, regardless of the given
data size. Note that the training time provided in Table 7
includes both the sampling time and mass estimation time,
and it is dominated by the sampling time.
The memory required for each construction ofmass(x, h|D)

is to store one lookup table of size ψ which is constant, again
independent of the given data size.

Table 9: Runtime (second) for sampling, mass(x, 1|D)
and mass(x, 3|D), where t = 1000 and ψ = 8.

data size sampling mass(x, 1|D) mass(x, 3|D)
Http 567497 185.21 0.57 17.15

Shuttle 49097 12.47 0.59 17.37
COREL 10000 2.34 0.53 17.28

tic 9822 2.28 0.56 17.23
concrete 1030 0.36 0.48 17.28

Summary
The above results in all three tasks show that the order-
ings provided by mass distributions deliver additional in-
formation about the data that would otherwise hidden in
the original features. The additional information improves
the task-specific performance significantly, especially in the
information retrieval and regression tasks.
Using Algorithm 3, the runtime is expected to be higher

because the new space has much higher dimensions than the
original space (t À u). It shall be noted that the runtime
increase (linearly or worse) is solely a characteristic of the
existing algorithms used, not due to the mass space mapping
which has constant time and space complexities.
We believe that a more tailored approach that better inte-

grates the information provided by mass (into the C3 com-
ponent in the formalism) for the specific task can potentially
further improve the current level of performance in terms of
either task-specific performance measure or runtime. We
have demonstrated this ‘direct’ application using Algorithm
4 for the anomaly detection task, in which MassAD performs
equally well or significantly better than four state-of-the-art
methods in terms of task-specific performance measure, and
it executes faster than all other methods in terms of runtime.
Why does one-dimensional mapping work when tackling

multi-dimensional problems? The mapping transforms each
original feature to approximately t

u
features in the mass

space—unearth hidden information for each original feature.
It is more of a question whether an algorithm can make full
use of this information in the new space; as both the original
and new spaces are multi-dimensional. A multi-dimensional
mapping may better enhance information in some domains.
It is thus worthwhile to explore this extension.

5. RELATION TO KERNEL DENSITY
ESTIMATION

A comparison of mass estimation and kernel density esti-
mation is provided in Table 10.

Table 10: A comparison of kernel density estimation
and mass estimation. Kernel density estimation re-
quires two parameter settings: kernel function K(.)
and bandwidth hw; mass estimation has one: h.

Kernel density(x) = 1
nhw

Pn
i=1K(x−xi

hw
)

mass(x, h) =


Pn−1
i=1 massi(x, h-1)p(si), h > 1

Pn−1
i=1 mi(x)p(si), h = 1

Like kernel estimation, mass estimation at each point is
computed through a summation of a series of values from
a mass base function mi(.), equivalent to a kernel function
K(.). The two methods differ in the following ways:



Table 11: CBIR results: Compare with Qsim′′ and InstR′′ which use Gaussian kernel density estimation.
BEP (×10−2) Processing time (second)

Qsim′ Qsim′′ Qsim InstR′ InstR′′ InstR Qsim′ Qsim′′ Qsim InstR′ InstR′′ InstR

One Query 10.31 2.51 7.78 10.31 2.51 7.78 0.410 0.409 0.034 0.410 0.409 0.034
Round 1 15.39 2.72 10.59 13.45 2.66 9.40 0.588 0.633 0.078 0.558 0.571 0.046
Round 2 17.46 2.67 11.81 15.07 2.51 9.99 0.646 0.780 0.139 0.559 0.574 0.047
Round 3 18.46 2.56 12.59 16.15 2.31 10.36 0.737 0.989 0.227 0.560 0.577 0.048
Round 4 19.18 2.53 13.16 16.96 2.20 10.78 0.862 1.275 0.355 0.561 0.580 0.049
Round 5 19.62 2.46 13.55 17.62 2.07 11.05 1.016 1.629 0.516 0.562 0.582 0.050

Table 12: Anomaly detection: MassAD vs DensityAD.
AUC Time (second)

MassAD DensityAD MassAD DensityAD

Http 1.00 0.99 34 33
Forest 0.91 0.69 18 18

Mulcross 0.99 1.00 17 17
Smtp 0.86 0.60 7 7
Shuttle 0.99 0.92 4 4

• Aim: Kernel estimation is aimed to do probability density
estimation; whereas mass estimation is to estimate an
order from the core points to the fringe points.

• Kernel function: While kernel estimation can use differ-
ent kernel functions for probability density estimation;
we doubt that mass estimation requires a different base
function for two reasons. First, a more sophisticated
function is unlikely to provide a better ordering than
a simple rectangular function. Second, the rectangu-
lar function keeps the computation simple and fast. In
addition, a kernel function must be fixed (i.e., having
user-defined values for its parameters); e.g., the rect-
angular kernel function has fixed width or fixed per
unit size. But the rectangular function used in mass
has no parameter and no fixed width.

• Sample size: Kernel estimation or other density estima-
tion methods require a large sample size in order to
estimate the probability accurately [7]. Mass estima-
tion usingmass(x, h|D) needs only a small sample size
in an ensemble to accurately estimate the ordering.

• Definition: Probability density can be defined indepen-
dent of data, whereas mass (in its current form) must
be defined w.r.t. a set of data.

Because of a lack of concavity, density will not perform as
successfully as mass. Here we present the results using a
Gaussian kernel density estimation, replacingmass(x, h|Dk),
using the same subsample size in an ensemble approach. The
bandwidth parameter is set to be the standard deviation of
the subsample; and all the other parameters are the same.
The results for information retrieval and anomaly detec-

tion are provided in Tables 11 and 12. Compare to mass,
density performs significantly worse in information retrieval
task in all experiments using Qsim and InstR, denoted as
Qsim′′ and InstR′′, respectively. They are even worse than
those run in the original space. In anomaly detection, Den-
sityAD, which uses a Gaussian kernel density estimation,
performs significantly worse than MassAD in three out of five
data sets in the anomaly detection tasks, and equally well
in the other two data sets.

6. RELATED WORK
There is a close relationship between the proposed mass

and data depth [11]: they both delineate the centrality of a
data cloud (as opposed to compactness in the case of den-
sity.) The properties common to both measures are: (a) the
centre of a data cloud has the maximum value of the mea-
sure; (b) an ordering from the centre (having the maximum
value) to the fringe points (having the minimum values).
However, there are three fundamental differences. First,

data depth can deal with unimodal data only; whereas mass
can deal with both unimodal and multi-modal data by set-
ting h = 1 or h > 1.
Second, mass is a simple and straightforward measure,

and has an efficient estimation method; whereas data depth
has many different definitions, depending on the construct
used to define depth. The constructs could be Mahalanobis,
Convex Hull, simplicial and so on [11], all of which are expen-
sive to compute [1]—this has been the main obstacle in ap-
plying data depth for real applications in multi-dimensional
problems. In addition, the centre of a data cloud varies de-
pending on the construct used to define data depth; whereas
mass (h = 1) always has the centre located at the mid-point
in the series of data points.
Third, the h = 1 mass estimation guarantees concavity—

the reason why a simple mass space mapping improves the
task-specific performance of four existing algorithms in in-
formation retrieval and regression tasks. In contrast, there
is no such guarantee in data depth. Because of a lack of con-
cavity, like density, data depth is unlikely to be as successful
as mass in the three tasks we have reported here, even if we
ignore the runtime issue.
Mass estimation can be implemented in different ways.

For example, we have reported an implementation using a
tree structure (instead of a lookup table) in [15] using Half-
Space Trees. It reduces the time complexity to O(th(ψ+n))
from O(t(ψh+1 + n)), making it feasible for very high level-
h mass estimation. We have repeated the experiments re-
ported in this paper using Half-Space Trees, and it produces
almost identical results.
Half-Space Trees extends naturally from one-dimensional

mass estimation to multi-dimensional mass estimation. This
has been tested in anomaly detection task [15].
iForest [10] and MassAD shares some common features:

Both are ensemble methods which build t models, each from
a random sample of size ψ, and they both combine the out-
puts of the models through averaging during testing. Al-
though iForest [10] is designed specifically for anomaly de-
tection which employs path length—an instance traverses
from the root of a tree to its leaf—as the anomaly score, we
have shown in [15] that the path length used in iForest is
in fact a proxy to mass. In other words, iForest is a kind of



mass-based method—that is why MassAD and iForest have
similar detection accuracy.
We have already established a direct application of mass

in content-based image retrieval [17]. In addition to the
mass-space mapping we have shown here, [17] presents a
framework that assigns a weight (based on iForest, thus,
mass) to each feature w.r.t. a query image; and then it ranks
images in the database according to their weighted average
feature values. The framework also incorporates relevance
feedback which modifies the ranking based on the feedbacks
through reweighted features. This framework makes use of
all three components of the formalism stated in Section 3.
This direct application of mass performs significantly better
than the indirect approach we have shown in Section 4.1,
in terms of both retrieval performance and processing time.
Like MassAD, no distance calculations are used at all—the
key reason for its superior time complexity.

7. CONCLUSIONS AND FUTURE WORK
This paper makes two key contributions. First, we intro-

duce a base measure, mass, and delineate its three prop-
erties: (i) a mass distribution stipulates an ordering from
core points to fringe points in a data cloud; (ii) this order-
ing accentuates the fringe points with a concave function—
the essential property that is easily exploited by existing
algorithms to improve their task-specific performance; and
(iii) it is a constant-time-and-space-complexities estimation
method. Density estimation has been the base modelling
mechanism employed in many techniques thus far. Mass es-
timation introduced here provides an alternative choice, and
it is better suited for many tasks which require an ordering
rather than probability density estimation.
Second, we present a mass-based formalism which forms a

basis to apply mass for different tasks. The three tasks (i.e.,
information retrieval, regression and anomaly detection) in
which we have successfully applied are just examples of its
application. Mass estimation has potentials in applications
as diverse as density estimation has applied now.
There are potential extensions to the current work. First,

one shall consider a new way to best utilise mass when solv-
ing a problem. In other words, we advocate a direct appli-
cation of mass, rather than an indirect application. Second,
the algorithms provided here for the three tasks are by no
means definitive, and even the formalism can be improved
or extended to include more tasks. Third, because the pur-
poses and their properties differ, mass estimation is not in-
tended to replace density estimation—it is thus important
to identify areas in which each is best suited for. This will
ascertain areas in which density has been a mismatch, un-
beknown thus far.
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Abstract—Mass estimation, an alternative to density esti-
mation, has been shown recently to be an effective base
modelling mechanism for three data mining tasks of regres-
sion, information retrieval and anomaly detection. This paper
advances this work in two directions. First, we generalise the
previously proposed one-dimensional mass estimation to multi-
dimensional mass estimation, and significantly reduce the time
complexity to O(ψh) from O(ψh)—making it feasible for a
full range of generic problems. Second, we introduce the first
clustering method based on mass—it is unique because it does
not employ any distance or density measure. The structure
of the new mass model enables different parts of a cluster to
be identified and merged without expensive evaluations. The
characteristics of the new clustering method are: (i) it can
identify arbitrary-shape clusters; (ii) it is significantly faster
than existing density-based or distance-based methods; and
(iii) it is noise-tolerant.

Keywords-Mass estimation; mass-based clustering.

I. INTRODUCTION

Mass estimation [12] was introduced recently as a base
modelling mechanism in data mining. It is as fundamental
as density estimation which has been the bedrock for most
data modelling methods for a wide range of tasks such
as classification, clustering, and anomaly detection. Mass
estimation possesses the following properties [12]:

“(i) a mass distribution stipulates an ordering from
core points to fringe points in a data cloud; (ii) this
ordering accentuates the fringe points with a concave
function—the essential property that is easily exploited
by existing algorithms to improve their task-specific
performance; and (iii) it is a constant-time-and-space-
complexities estimation method.”

Ting et al [12] show that models using mass estimation
perform at least as good as and often better than a total
of eight state-of-the-art methods in terms of task-specific
performance measures in three tasks: information retrieval,
regression and anomaly detection.

Notwithstanding its successful applications, the major
limitation of existing mass estimation is that it is designed
for one-dimensional problems only.

Our first contribution in this paper is to extend the above-
mentioned work to a new version of mass estimation which
allows it to

• remove the current limitation of one-dimensional mass
estimation to enable multi-dimensional mass estimation;

• reduce the time complexity to O(ψh) from O(ψh),
making it feasible for very high level mass estimation,
where ψ is the sampling size, and h is the level.

These enhancements boost its applicability to a full range
of generic problems, unconstrained by one-dimensional ap-
plications and low level mass estimation.

While maintaining the three properties mentioned above,
the new proposed mass estimation is capable of modelling
arbitrary shapes in multi-dimensional data—the key weak-
ness of one-dimensional mass estimation.

In our second contribution, we show that the mass model
produced for mass estimation can be employed to perform
clustering more efficiently and effectively than existing state-
of-the-art methods. The first mass-based clustering method
we introduce is distinguished from the existing density-based
or distance-based clustering methods by

• Making no density or distance calculation which is the
major expense in any density-based or distance-based
methods;

• Exploiting the structure provided by the mass model
to identify clusters without expensive evaluations. This
significantly speeds up the clustering process, leading to
a sublinear time complexity algorithm in average case.

In the next section, we reiterate the original one-
dimensional mass estimation, as presented by [12]. Section
III introduces our proposed multi-dimensional mass esti-
mation. Section IV describes a special tree structure de-
signed for the mass estimation, and Section V demonstrates
the modelling capability of the proposed mass estimation
method. We introduce the first mass-based clustering method
in Section VI and present the evaluation result in the
next section. The last two sections give further discussion,
conclusions and possible future work. The key symbols and
notations used are given in Table I.

II. ONE-DIMENSIONAL MASS ESTIMATION

Ting et al [12] introduce one-dimensional mass estimation
mass(x, h), where the level h ≥ 1. h = 1 mass estimation
guarantees concavity, independent of the underlying density
distribution; and h > 1 is used to model multi-modal mass



Table I: Symbols and notations.

x An one-dimensional instance in R
x An instance in Rd

D A data set of x, where |D| = n

D A subset of D, where |D| = ψ

z An instance in Rt

D′ A data set of z

h Level of mass estimation
mı(.) Mass base function defined using binary split sı
m(.) Generalised mass base function
T (.) A function which splits Rd into subspaces
mass(.) One-dimensional mass function which returns a real value
gmass(.) Multi-dimensional mass function which returns a real value
t Number of models used in mass(.) or gmass(.)

distribution. It is defined w.r.t. D = {x1, x2, · · · , xn−1, xn},
where x1 < x2 < · · · < xn−1 < xn on the real line.

mass(x, h) =























n−1
∑

ı=1

massı(x, h-1)p(sı), h > 1

n−1
∑

ı=1

mı(x)p(sı), h = 1

(1)

The mass base function mı(x), as a result of a binary
split at sı on the real line, is defined as

mı(x) =

{

mL
ı = ı if x ≤ sı

mR
ı = n− ı if x > sı

L and R denote the left and right sides of the split,
respectively; and p(sı) = (xı+1 − xı)/(xn − x1) > 0 is
the probability of the binary split.

A high level mass estimation is computed recursively by
using the mass estimations obtained at lower levels. A binary
split at sı in a level-h (> 1) mass estimation produces two
level-(h-1) mass estimations: (a) massLı (x, h-1)—the mass
estimation for x ≤ sı which is defined using {x1, . . . , xı};
and (b) massRı (x, h-1)—the mass estimation for x > sı
which is defined using {xı+1, . . . , xn}.

massı(x, h-1) =

{

massLı (x, h-1) if x ≤ sı
massRı (x, h-1) if x > sı

Further, mass(x, h) can be approximated using sample
subsets. The approximate mass estimation mass(x, h) for a
point x ∈ R, is defined w.r.t. D = {x1, . . . , xψ}, where D
is a random subset of D, and ψ ¿ |D|, h < ψ.

mass(x, h) =
1

t

t
∑

k=1

mass(x, h|Dk) (2)

Ting et al [12] show one way that this one-dimensional
mass estimation can be applied to multi-dimensional prob-
lems by conducting an one-dimensional mapping of the
original Rd space to new mass space Rt, where d ¿ t;
x = [x1, . . . , xd], x ∈ D; z = [z1, . . . , zt], z ∈ D′. This
is done by randomly selecting a subset D ⊂ D and a
dimension q from [1, . . . , d] and then it builds a mass model
mass(xq, h|D). This is repeated t times; and the t mass

models can then be used to map every x ∈ D to z ∈ D′ in
the new mass space.

Ting et al [12] show that four existing algorithms perform
better in the mass space than in the original space in
terms of task-specific measures in two tasks: regression and
information retrieval.

Despite this successful application, it is recognised by [12]
that a multi-dimensional mass mapping, rather than the one-
dimensional mass mapping, can further widen its applica-
tions to a full range of generic problems. We introduce one
way to achieve this aim in the next three sections.

III. MULTI-DIMENSIONAL MASS ESTIMATION

Here we propose a way to generalise the one-dimensional
mass estimation that eliminates the need to compute the
probability of binary split, p(sı); and it gives rise to a
randomised version of the above equations. It requires two
functions. First, a function that generates different (random)
subspaces covering each point in the feature space. This
generalises the binary split into half-space splits or 2h-space
splits when h levels of half-space splits are used. Second, a
generalised version of mass base function is used to define
mass in a subspace. The formal definition follows.

Let x be an instance in Rd. Let T (x) be one of the
two half-spaces in which x falls into; and m the number
of training instances in the half-space.

Generalised mass base function: m(T (x)) is defined as

m(T (x)) =

{

m if x is in a half-space of T ,
0 otherwise.

In one-dimensional problems, let Ti(x) be one of the two
half-spaces in which x falls into; and T hi (x) be one of the
2h-spaces in which x falls into.

Equations (1) and (2) can now be approximated as fol-
lows:

n−1
∑

ı=1

mı(x)p(sı) ≈
1

t

t
∑

i=1

m(Ti(x)) (3)

mass(x, h) ≈
1

t

t
∑

i=1

m(T hi (x)) (4)

mass(x, h) ≈
1

t

t
∑

i=1

m(T hi (x|Di)) (5)

Here every Ti (or T hi ) is generated randomly with equal
probability. Note that p(sı) in Equation (1) has the same
assumption.

The new mass estimation for multi-dimensional problems
is the same as Equation (5) by simply replacing x with x:

gmass(x) ≈
1

t

t
∑

i=1

m(T hi (x|Di)) (6)

Like its one-dimensional counterpart, the multi-dimensional
mass estimation (i) stipulates an ordering from core points



(a) (b)

Figure 1: (a) An example of the new mass estimation for
h = 1, 2, 3 in comparison with Gaussian kernel density
estimation. (b) The result of two equal-size splits T h

1
and

Th
2

implemented as two h:d-Trees using h:d = 2:2. The
two splits start with different working spaces—the two outer
rectangles of solid and dotted boxes. The shaded cells are the
subspaces in which x falls into in T h

1
and T h

2
, respectively.

(having high mass) to fringe points (having low mass) in a
data cloud, regardless of its density distribution, including
uniform density distribution; (ii) this ordering accentuates
the fringe points with a concave function. An example of the
new mass estimation is shown in Figure 1(a) for a uniform
density distribution and a Gaussian density distribution.

IV. MASS ESTIMATION USING h:d-TREES

Th(x|D) can be implemented using a tree structure,
where a working space is partitioned into 2` equal-size
subspaces at the leaves of the tree with height ` = h × d,
where d is the number of dimensions. Let mj be the mass of
subspace j; and there is a total of 2` subspaces which have
a total mass: |D| =

∑

2
`

j=1
mj , where mj = m(T h(x|D));

and x is in subspace j of T h.
We implement T h(x|D) as an h:d-Tree, where each

path from the root to a leaf has h×d nodes within which each
of the d attributes appears exactly h times. For examples:

(a) h:d = 1:2 generates a tree of height = 2 in a two-
dimensional domain where each attribute is used exactly
once on every path from the root to a leaf.

(b) h:d = 3:4 generates a tree of height = 12 in a four-
dimensional domain where each attribute is used three times
on every path from the root to a leaf.

The procedure to generate an ensemble of h:d-Trees is
given in Algorithm 1. Each h:d-Tree, an implementation
of T h(x|D), is generated after the following two randomi-
sation processes:

(i) Each D of size ψ is a random sample of D. The
sampling is conducted ‘strictly’ without replacement, i.e.,
x 6= y,where x ∈ Di,y ∈ Dj ,∀i, j. This is done in line# 4
of Algorithm 1. The sampling process is restarted with D
when the data run out.

(ii) Each working space, which covers D, is initialised
from a random perturbation as follows. For each attribute
q, a split value (vq) is chosen randomly within the range

Algorithm 1 : BuildTrees(D, t, ψ, h)
Inputs: D - input data, t - number of trees, ψ - sub-sampling
size, h - number of times an attribute is employed in a path.
Output: F - a set of t h:d-Trees

1: MaxHeightLimit← h× d
2: Initialize F
3: for i = 1 to t do
4: D ← sample(D,ψ) {strictly without replacement}
5: (min,max) ← InitialiseWorkingSpace(D)
6: F ← F ∪ SingleTree(D,min,max, 0)
7: end for

[minq(D),maxq(D)], i.e., the minimum and maximum val-
ues of q in D. Then, attribute q of the working space is
defined having the range [minq , maxq] = [vq − r, vq + r],
where r = max(vq−minq(D),maxq(D)−vq). The ranges of
all d dimensions define the working space used to generate
an h:d-Tree. This is done in line# 5 of Algorithm 1.

Examples of the splits T h
1
(x|D1) and T h

2
(x|D2) using

h:d = 2:2, created from two different working spaces, are
shown in Figure 1(b). The mass for each x, estimated
using Equation (6), is derived from t subspaces in which
x falls into (see shaded cells in Figure 1(b).) Note that
m(T h(x|D)) = 0 if x falls outside the working space.

The tree building process is deterministic, shown in Algo-
rithm 2. The nextAttribute(A, `) routine (in line# 4) selects
an attribute in a round-robin manner from the attribute set A
as the height level ` increases. After an attribute is selected,
the node is constructed by splitting the working space into
two equal-volume half-spaces (line# 5-7). If the two half-
spaces are non-empty, the process is then repeated recur-
sively on each half-space (line# 17-20). The tree growing
process stops when the height level limit is met (line# 2).
If one of the two half-spaces is empty (therefore resulting
a single-branch node), the ranges in the node defined in
min and max is constrained accordingly without actually
creating the single-branch node (line# 8-15.) This is to
avoid creating unnecessary single-branch nodes—to reduce
memory requirement.

Mass estimation using h:d-Trees. Once an ensemble
of h:d-Trees is built, it is ready for mass estimation. For
each instance x, the number of instances of subspace j (of
an h:d-Tree) in which x falls into is returned as mass:

h:d-Tree(x) = mj = m(T h(x|D))

The multi-dimensional mass estimation can now be ex-
pressed as

gmass(x) ≈
1

t

t
∑

i=1

h:d-Treei(x) (7)

Parameter discussion. We set t = 1000 to get a large
ensemble. Then, only two other parameters need to be set:
h and ψ. A guideline is given below.



Algorithm 2 : SingleTree(D,min,max, `)
Inputs: D - input data, min & max - arrays of minimum
and maximum values for each attribute in A that defines a
working space, ` - current height level, A - set of d attributes.
Output: an h:d-Tree

1: while (true) do
2: if (` < MaxHeightLimit) then
3: {Retrieve an attribute from A based on height level.}
4: q ← nextAttribute(A, `)
5: p← (maxq +minq)/2
6: Dl ← filter(D, q < p)
7: Dr ← filter(D, q ≥ p)
8: if (|Dl| = 0 ) or (|Dr| = 0) then
9: {Constrain range for single-branch node.}

10: if (|Dl| > 0 ) then maxq ← p
11: else minq ← p
12: end if
13: `← `+ 1
14: continue at the start of while loop
15: end if
16: {Build two nodes: Left and Right as a result of a

split into two equal-volume half-spaces.}
17: temp← maxq; maxq ← p
18: Left← SingleTree(Dl,min,max, `+ 1)
19: maxq ← temp; minq ← p
20: Right← SingleTree(Dr,min,max, `+ 1)
21: end if
22: terminate while loop
23: endwhile
24: return Node(Left,Right, SplitAtt← q,

SplitV alue← p, Size← |D|)

Setting h: The level setting influences the size of the
subspaces in which mass is calculated. To differentiate one
cluster from another, the zero-mass subspaces must be small
enough to fit into the region separating different clusters—if
the subspaces are too large, different clusters are joined.

Let δ be the minimum separation between any two clusters
(in all dimensions); and r be the range of the working space
in the same dimension δ is measured. In order to have zero-
mass subspaces separating the two clusters, δ > r

2h . Thus,

h > log2(
r

δ
)

Note that this setting is with reference to the ratio r
δ

rather
than the absolute separation δ. In other words, δ may be
small, but if all the data is concentrated in a small area, then
r
δ

is small too; thus a low h can be used to separate these
clusters with small δ. An example of separation required
between two clusters is shown in Figure 2(a), where δ =
0.0077 and r = 0.97 which yields h > 6.97.

Figure 2(b) shows how h can be set in practice (when used
for clustering, to be described in Section VI): h is increased
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Figure 2: (a) An example of δ in the horizontal dimension
in the Ring-Curve data set (the full view of the data set
is shown in the last diagram of Figure 4(b)). (b) As h
increases from 1 to 8, the number of clusters identified by
gmass(.) also increases as follows: 1,3,5,5,5,7,7,196 (in a
48-dimensional data set.)

until a large number of clusters is identified. In this case, the
setting before this large number shall be used, i.e., h = 7.

Setting ψ: The complexity of the data influences the
setting of ψ. While a large ψ is preferred, a small ψ can
often be used. Simple clusters require small ψ; whereas
complex clusters requires large ψ. Note that h also affects
the choice of ψ. A high h should accompany a high ψ to
avoid producing many isolated small islands in a cluster
(when a low ψ is used.)

A. Time and Space Complexities

Using h:d-Tree reduces the time complexity to
O(min(hd, logψ)ψt) from O(ψh t) (using Equation (2)),
making it feasible for very high level-h mass estimation.
The space complexity of h:d-Tree is O(min(ψ, hd)t). It
has almost the same order to O(ψt) when one-dimensional
mass estimation using Equation (2) is stored using a lookup
table [12].

B. Relation to k-d Tree

At the algorithmic level, a k-d Tree [6], based on me-
dian split, may appear on the surface to be similar to the
h:d-Tree. For example, constructing a node of a k-d Tree
starts on one dimension, and cycles through the dimensions
to build subsequent nodes in the tree. h:d-Tree does a
similar dimension cycling. However, there are important
differences. First, the purposes differ: k-d Tree is designed
to speed up search, e.g., in a near neighbour search; whereas
h:d-Tree is specifically designed for mass estimation.
Second, k-d Tree employs the median as the split point; in
contrast, the split point for a node of h:d-Tree is simply
the mid-point of a dimension in the working space, indepen-
dent of the distribution of the data—no search is required
to find the split point. Third, a k-d Tree cannot be used to
estimate mass because the median-split produces a balanced
tree with all external nodes having the same mass—useless



for our purpose! Fourth, a k-d Tree is constructed using all
available data; whereas each h:d-Tree requires a small
training sample only. As a result, although both are linear
time-complexity algorithms, k-d Tree is linear with respect
to the total training set size n; and h:d-Tree is linear with
respect to ψ ¿ n.

C. Mass’s relation to density

Density is defined as mass per volume; whereas mass
is defined independent of volume. Density is equivalent to
mass only if the volume is the same for every subspace in a
single tree. Because multiple trees are employed, the mass
estimated by gmass(.) is not equivalent to density since the
volume of each subspace varies from one tree to the next (see
subspaces created by the two example trees in Figure 1(b).)

The only reason for using equal-size-subspace in each
h:d-Tree is for fast tree construction—each division can
be done without looking at the data, once the working space
is defined. In fact, there is already a tree implementation that
produces varying-size grid [9] which is designed specifically
for anomaly detection only.

Further distinctions between mass estimation and density
estimation have been provided by [12]. Their effects on
clustering algorithms are given in Section VIII.

V. MODELLING DATA DISTRIBUTION

Here we compare the one-dimensional mass estima-
tion with the multi-dimensional mass estimation using
h:d-Trees, in terms of their runtime and ability to model
data distribution.

Runtime. Figure 3 shows the factor of increase in runtime
when h increases from 1 to 5, when both mass estimations
use t = 1000 and ψ = 8 in the Ring-Curve data set. The one-
dimensional mass estimation using Equation (2) increases
the runtime by a factor of 264 when increasing h from 1 to
5; whereas h:d-Trees’s runtime increases by a factor of
1.07 only. Setting ψ = 256 and h = 5, the one-dimensional
mass estimation fails to complete the run in less than one
day, whereas h:d-Trees completes it in 130 seconds.

Because the one-dimensional mass estimation using Equa-
tion (2) is so slow and h:d-Trees can be easily modified
to produce one-dimensional mass estimation (by randomly
selecting an attribute to form A in Algorithm 2), we show
the result of one-dimensional h:d-Trees instead in the fol-
lowing experiments. The one-dimensional mapping applied
to multi-dimensional problems is the same as that described
in Section II or [12].

Modelling the underlying data distribution for multi-
dimensional problems. After h:d-Trees are trained using
the given data, the modelling results are presented as con-
tour maps, produced from the mass values estimated from
h:d-Trees for a lattice of equal-spaced points in the entire
feature space.
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Figure 3: Runtime comparison: one-dimensional mass esti-
mation versus multi-dimensional mass estimation.

Figure 4 shows the contour maps of the two mass estima-
tions using a two-dimensional data set: Ring-Curve. They
show the modelling progression as h increases from 2 to 6.
The one-dimensional mass estimation, in Figure 4(a), fails
to model the two clusters. In contrast, the multi-dimensional
mass estimation successfully models the two clusters when
h = 6 (see the last diagram in Figure 4(b).)

Figure 5 shows the key weaknesses of one-dimensional
mass estimation using three additional data sets: one-
Gaussian, three-Gaussian, and Ring. Although it models
the uni-modal data reasonably well, it does poorly in the
multi-modal data—it creates phantom modes (e.g., in the
three-Gaussian and Ring data sets) because it assumes data
symmetry. Multi-dimensional mass estimation does not have
this kind of weakness and models the underlying data
distribution well, when an appropriate h is used.

Because h:d-Trees has done the hard work to model
the underlying data distribution, to identify clusters within
the data is simply to extract the connecting structures from
h:d-Trees. We will describe how this can be done in the
next section.

VI. MASS-BASED CLUSTERING

In this section, we show how to employ mass to perform
clustering. It is unique among existing clustering methods
because it does not employ any distance or density measure.
Mass-based clustering has the following characteristics:

• It employs the same mass model to identify arbitrary-
shape clusters and to filter noise;

• It does not assume any data distribution;

• It scales up well to huge data size;

• It performs clustering without the need to invoke
distance or density calculations.

The local neighbourhood of any instance is readily avail-
able in h:d-Trees after they have been built. Thus, cluster-
ing based on mass gets the local neighbourhood information
without additional cost.

We provide the definitions and the algorithm for mass-
based clustering in the next two sections, and the time and
space complexities in the third section.
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(a) One-dimensional mass estimation, with h = 2, 4, 6
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(b) Multi-dimensional mass estimation, with h = 2, 4, 6

Figure 4: Contour maps from mass estimation using h:d-Trees (ψ = 256, t = 1000) for the Ring-Curve data set.
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Figure 5: Contour maps from mass estimation using h:d-Trees (ψ = 256, t = 1000, h = 4) for the one-Gaussian,
three-Gaussian, and Ring data sets, shown in the first, second and third column, respectively.



A. Definitions

To simplify notation, we use T to denote a subspace
defined by T (x) in which an instance x falls into.

Definition 1: An instance x̂ ∈ Ti ⊂ R
d is a seed to form

a cluster, iff m(Ti(x̂)) > 0.
Recall that Ti(.) is built and m(Ti(.)) is estimated using
Di ⊂ D (see Equation (6)), where |Di| ¿ |D|.

Definition 2: An instance x ∈ D is T -connected by a
seed x̂ ∈ Ti, iff
(a) x ∈ Ti, or
(b) x ∈ TIj+1

, x /∈ (Ti ∪ (∪jTIj
)) : m(Ti ∩ TI1) > 0 and

m(TI1 ∩ TI2) > 0 and . . . and m(TIj
∩ TIj+1

) > 0, where
Ij is an index and j ≥ 1.

Definition 3: A seed-based cluster is a subset C ⊆ D,
where ∀x ∈ C : x is T -connected by x̂.

Definition 4: A cluster-pair [g, h] consists of two seed-
based clusters with x̂g and x̂h, where ∃x ∈ D : x is T -
connected jointly by x̂g and x̂h.

Definition 5: An arbitrary-shape cluster, for the set of
seeds S and the set of cluster-pairs P , is a subset C ⊆ D,
iff
(a) ∀x ∈ C, ∃x̂ ∈ S : x is T -connected by x̂, and
(b) ∀x̂g, x̂h ∈ S, either [g, h] ∈ P or ∃x̂F1

, . . . , x̂Fı
∈ S :

{[g, F1], [F1, F2], . . . , [Fı, h]} ⊆ P , where Fı is an index
and ı ≥ 1.

Definition 6: Noise instances are instances in C where
|C| < η, where η is a constant defined by users.

We call the process to find arbitrary-shape clusters from
a given data set and h:d-Trees, a T -connection process.

It is interesting to note that one may invoke a search to
find a seed which is either the centre of the cluster (i.e.,
the instance having the highest mass, max

g
gmass(x̂g)) or

x̂ ∈ Ti having the highest mass, max
i

m(Ti(x̂)). But, the

clustering result obtained is exactly the same as that obtained
by any seed satisfying Definition 1. This is because the
T -connection process will eventually encompass the entire
cluster, no matter which instance in the cluster is chosen
as the seed. We employ the cheapest, no-search option
in formulating the mass-based clustering algorithm called
MassTER in the next section.

B. The MassTER Algorithm

The idea is to extract the connecting structures from
different h:d-Trees—which have already modelled the
underlying data distribution—in order to identify arbitrary-
shape clusters that are free of noise instances, using the
definitions provided in the last section. Recall that each
h:d-Tree is a realisation of Ti. The algorithm aims at
uniquely assigning every instance to one cluster.

The mass-based clustering procedure, MassTER, is given
in Algorithm 3. The first step is to build an ensemble of
h:d-Trees in order to obtain the connecting subspaces Ti.
The second step is to assign a cluster to each instance if Ti
has previously been labelled with a cluster ID (Definition 2.)
If Ti is labelled, this step also checks whether the instance is
T -connected to another seed-based cluster (Definition 4). If
it is, a cluster-pair is formed. If Ti is unlabelled, the instance
is designated as the seed of a new cluster (if it satisfies
Definition 1) and Ti is labelled with the same new cluster
ID. The third step is to merge all cluster-pairs, that satisfy
Definition 5(b), into a single arbitrary-shape cluster.

Algorithm 3 : MassTER(D, t, ψ, h, η)

Inputs: D - input data, t - number of trees, ψ - sub-sam-
pling size, h - number of times an attribute is employed in
a path, η - minimum number of instances in a cluster.

1: {Ti : i = 1, . . . , t} ← BuildTrees(D, t, ψ, h)
2: Assign a seed-based cluster to each instance x ∈ D

(satisfying Definitions 1 or 2) and identify all cluster-
pairs satisfying Definition 4.

3: Merge cluster-pairs which satisfy Definition 5(b).
4: E ← clusters having number of instances less than η.
5: return K arbitrary-shape clusters, C,  = 1, . . . ,K;

and noise instances in E.

An example of the second step is shown in Figure 6(a).
Assume x̂g, x̂h,x1,x2 are assigned a cluster ID in the
following sequence, given T1, . . . , T5 and ∀i,m(Ti(.)) > 0:

x̂g: Since this is the first instance to be assigned a cluster,
no Ti has label. Thus, x̂g is designated as the seed, and
T1, T2, T3 and x̂g are labelled with a new cluster ID: g
(Definition 1.)

x̂h: Since T5 is unlabelled at this point in time, x̂h is
designated as the seed, and T5 and x̂h are labelled with a
new cluster ID: h (Definition 1.)

x1: T5 has a label now, x1 is assigned with the cluster
ID: h. T4 is also labelled with the same ID (Definition 2.)

x2: Since both T3 and T4 have been labelled with different
cluster IDs, a cluster-pair is formed: [g, h] (Definition 4.)

Note that the second step produces different results for
different orderings, e.g., the reverse ordering of the above
example will assign all four instances to a single cluster ID.
However, the merging process will yield the same clustering
result, independent of the ordering of the instances.

At the end of the merging process, all clusters having
the number of instances less than η are considered as noise
instances; they are filtered out in the fourth step of the
algorithm. η is the only additional parameter in MassTER,
and it is set to 10 in our experiments—a cluster of less than
10 instances is too small to be considered as a proper cluster.



(a) Example assignment of cluster ID (b) Ring-Curve (c) Wave (d) Triangular-Gaussian

Figure 6: (a) An example of assigning a cluster ID to each of the four instances in step 2 of Algorithm 3. (b)-(d) Scatter plots
of the clustering result by MassTER in the 3-dimensional Ring-Curve-Wave-TriGaussian data set. Note that all unassigned
instances are at the periphery of each cluster.

C. Time and space complexities

The time complexity analysis is as follows. The construc-
tion of h:d-Trees costs O(tψhd) (assume hd > log(ψ)).
The most expensive part of the clustering procedure is to
assign a seed cluster to each instance which costs O(tnhd).
The last two steps cost O(n) in the worse case. Thus, the
overall time cost for the MassTER algorithm is O(tnhd), as
ψ ¿ n. The main space requirement is to store h:d-Trees
and input D; the space requirements in other steps are
substantially lower. Thus, MassTER has space complexity
O(thd + n) during training. The training set is discarded
after training, yielding O(thd).

VII. EMPIRICAL EVALUATION

We use DBSCAN [5] and DENCLUE [3] as the bench-
marks because they both claim to be fast running density-
based clustering algorithms. MassTER is implemented in
JAVA, and we use DBSCAN in WEKA [13] and a version
of DENCLUE implemented in R (www.r-project.org) in our
empirical evaluation. The experiments are run on a machine
having 2 × Xeon X5550 Quad-core 2.66 GHz processors
and 48GB memory (www.vpac.org).

The clustering result is reported in terms of CPU run-
time (in seconds), number of clusters identified, number
of unassigned instances, and F-measure which is calculated
based on assigned instances only. F-measure = 1 when all
assigned instances are in the correct clusters, i.e., perfect
clustering; and F-measure = 0 if all instances are assigned
to wrong clusters. We tune the parameters of each algorithm
and report the best result.

We use five data sets that have the characteristics in
which clustering methods can be evaluated: clusters of
different shapes, sizes and densities; for example, one data
set has clusters embedded in high dimensional space; one
has significant amount of noise; and one has overlapping
clusters. We describe the experimental result with each data
set in the following subsections.

Table II: Clustering results in the Ring-Curve-Wave-Tri-
Gaussian data sets for MassTER (h = 7 and ψ = 256)
and DBSCAN (ε = 0.01 and minPts = 6).

3-dimensional data 48-dimensional data
MassTER DBSCAN MassTER DBSCAN

Runtime 59 1357 256 12021
#cluster [7] 7 8 7 8
#unassigned 321 332 692 332
F-measure 1.0000 0.9999 1.0000 0.9999

Ring-Curve-Wave-Tri-Gaussian. It has three two-
dimensional synthetic data embedded in either a 3-
dimensional data set or a 48-dimensional data set (where 42
dimensions are irrelevant with a constant value.) The three
two-dimensional data are Ring-Curve, Wave and Triangular-
Gaussian shown in Figure 6(b),(c),(d), which have a total of
seven clusters. Each cluster has 10000 instances with a total
of 70000 instances.

The clustering results from MassTER and DBSCAN
are shown in Table II. In both the 3-dimensional and
48-dimensional data sets, MassTER performs better than
DBSCAN in three out of the four performance measures:
MassTER run faster than DBSCAN by a factor of 23 and
47, respectively in the two data sets; MassTER identifies
the correct 7 (versus 8) clusters and the perfect F-measure
of 1 (versus 0.9999). MassTER has increased its number of
unassigned instances from 321 to 692 when the number of
dimensions increases from 3 to 48; whereas DBSCAN has
the same 332 unassigned instances in both cases. Note that
MassTER can reduce the number of unassigned instances
by increasing ψ, e.g., setting ψ from 256 to 2560 reduces
the number of unassigned instances from 692 to 317; and
this only increases the runtime from 256 to 646 seconds.

The unassigned instances by MassTER are all at the
periphery of each cluster shown in Figure 6(b),(c),(d).

In order to examine how well the algorithms scale up, we
use the 48-dimensional data set and increase the data size
from 7000 to 70000, 525000, and 1050000. Figure 7 plots
runtime ratio versus data size ratio (1, 10, 75 and 150) by
using 7000 as the base. The result shows that MassTER has
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Figure 7: Runtime scale up comparison: MassTER vs DB-
SCAN in the 48-dimensional Ring-Curve-Wave-TriGaussian
data set. Note that DBSCAN completes the task of the one-
million data set (at data size ratio=150) in 36 days versus
MassTER’s 1.3 hours.

a sublinear increase in runtime: The runtime ratio increases
from 1 to 112 when the data size ratio increases from 1 to
150. In contrast, DBSCAN’s runtime ratio increases from
1 to more than 18000 with the same increase in data size
ratio. MassTER is faster than DBSCAN by a factor of 655
when the one-million data set is used.

VaryingDensity. This data set has 2 dimensions and 2
clusters of different densities, and each cluster has 250
instances. The two clusters are two Gaussian distributions
with density ratio dr = σ2

σ1
ranging from 30 to 50 where

cluster 1 has fixed σ1=1. At dr=50, dense cluster 1 is within
the boundary of sparse cluster 2. The result shown in Table
III reveals that MassTER produces better clustering than
DBSCAN in terms of F-measure and number of clusters.
This result shows that MassTER is more tolerant to varying
densities than DBSCAN. In this small data set of 500,
DBSCAN runs faster than MassTER because MassTER has
some fixed overhead, independent of the data size.

Table III: Clustering results in VaryingDensity data sets for
MassTER (h = 5) and DBSCAN (minPts = 6).

dr = 30 dr = 50
MassTER DBSCAN MassTER DBSCAN
ψ = 256 ε = 0.069 ψ = 500 ε = 0.053

Runtime 1.1 0.1 1.8 0.2
#cluster [2] 2 2 2 3
#unassigned 47 34 59 55
F-measure 1.000 0.983 0.995 0.962

OneBig. This data set was previously employed by [11].
It has 20 attributes and 9 clusters. The biggest cluster has
50,011 instances, and each of the other eight clusters has
approximately 1000 instances. In addition, there are 10,000
noise instances randomly distributed in the feature space.
This data set has a total of 68,000 instances.

The result in Table IV shows that MassTER and DB-
SCAN have same clustering result in terms of F-measure
and number of clusters; but MassTER runs significantly
faster than DBSCAN is this large data set. Note that both
MassTER and DBSCAN have correctly identified the 10000
noise instances in this data set.

Table IV: Clustering results in the OneBig data set for
MassTER (h = 3 and ψ = 256) and DBSCAN (ε = 0.1
and minPts = 6).

MassTER DBSCAN
Runtime 146 6738

#cluster [9] 9 9
#unassigned 10022 10005
F-measure 1.00 1.00

Iris and Yeast. Iris has 150 instances, 4 dimensions
and 3 clusters; Yeast has 1484 instances, 8 dimensions
and 10 clusters. The clustering results are presented in
Table V. In Iris, MassTER performs the best in terms of
#cluster and F-measure though slower than DBSCAN (for
this small data set). It is suspected that Yeast has significant
overlapping clusters; this is reflected in low F-measure in
all methods. It appears that all three methods have problems
with overlapping clusters.

Table V: Clustering results in Iris and Yeast. The settings
used for Iris are: MassTER (h = 4, ψ = 64), DBSCAN
(ε = 0.1,minPts = 5), DENCLUE (tol = 0.0001, ctol =
1, b = 0.3). Yeast: MassTER (h = 3, ψ = 16), DBSCAN
(ε = 0.07,minPts = 5), DENCLUE (tol = 0.1, ctol =
70000, b = 0.06)

Iris (3 clusters) Yeast (10 clusters)
Mass DBSC DENC Mass DBSC DENC

Runtime 1.1 0.1 58.8 1.4 1.8 40.9
#cluster 3 5 4 11 12 10

#unassigned 58 70 0 966 1197 0
F-measure 1.00 0.89 0.88 0.34 0.2 0.08

Note that DENCLUE is very sensitive to parameter set-
tings; Han and Kamber [7] have also reported the same
observation. Because DENCLUE is significantly slower than
either MassTER or DBSCAN, it cannot complete the exe-
cution in reasonable time for the large data sets we have
presented earlier.

VIII. DISCUSSION

For the purpose of clustering, the use of mass estimation
avoids the key weakness of using density estimation: It is
computationally expensive to get accurate density estima-
tion. This is why DENCLUE [3] has to use grid instead for
practical applications.

Mass has the following advantages over density. First,
MassTER can use any instance of a cluster as the seed to
form a cluster; DENCLUE relies on an density-attractor to
form a cluster—this requires a search for a local maxima
in the density estimation function. Though a hill-climbing
search is employed (and a further improved search is de-
scribed in [4]), the search is still a considerable compu-
tational expense that MassTER does not need. Second,
constructing the grid takes O(nlogn) for DENCLUE when
storing the grid in a tree-structure. In contrast, MassTER



takes only O(1) to construct the trees because all the
parameters in O(min(hd, logψ)ψt) are constant.

Each hyper-sphere centred at x in DBSCAN corresponds
with a subspace T in MassTER—that is the key difference
between the two algorithms. The subsequent steps to find
clusters depend on this first step. Thus, the difference boils
down to density versus mass—DBSCAN takes O(n2) to
compute density; MassTER takes O(n) to compute mass.

Most subspace clustering methods [8] are either bottom-
up or top-down algorithms. Bottom-up algorithms (e.g.,
[10]) first examine one dimensional projections and then
increasingly higher dimensions. Top-down algorithms (e.g.,
[2]) examine all dimensions and then assess the local neigh-
bourhood to determine the best subspaces to identify clus-
ters. MassTER is a top-down algorithm but it avoids the key
pitfall of existing top-down algorithms: high computational
cost with worse case time complexity O(d2) because of
distance calculations. MassTER has used the T -connection
process to assess local neighbourhood encapsulated in the
mass model, without the need to compute distance.

It is interesting to note that MassTER completes a cluster-
ing task without computing mass using Equation (7), except
checking m(T (.)) > 0. When the structure of the clusters
discovered is required, mass distribution can be computed
with a minimum cost from h:d-Trees for each cluster—
this provides useful information about the structure of the
cluster, e.g., the peak(s) or centre(s) of the cluster, and the
distribution of the data over the entire cluster, shown as
contour maps in Figures 4 and 5.

IX. CONCLUSION AND FUTURE WORK

This paper advances the first work on mass estimation
in two significant ways. First, without the version we intro-
duce here, existing mass estimation can only apply to one-
dimensional problems and is limited to low level-h mass
estimation because of its high time-complexity O(ψh). We
show that the new mass estimation can model arbitrary-
shape distributions in multi-dimensional problems, and has
time-complexity O(ψh) only.

Second, we realise one potential of mass, as a base mod-
elling mechanism, to solve different kinds of data mining
problems. The mass-based clustering method we introduced
demonstrates that mass can be employed as an alternative to
distance or density—the commonly used measures to design
data mining methods. This is an example of applying mass
directly to solve problems that yields a net gain in efficacy
and efficiency. The proposed method identifies each cluster
through a T -connection process by examining the structure
of the mass model, without expensive evaluations. The
result is an efficient noise-tolerant clustering method which
can identify arbitrary-shape clusters. It has average case
sublinear time complexity and linear space complexity w.r.t.
input size; and it is shown to run significantly faster than
existing density-based methods DBSCAN and DENCLUE.

In the near future, we will investigate how to apply the
multi-dimensional mass estimation to a host of tasks such as
classification and regression. In clustering, we will explore
the ability of the mass-based clustering method in dealing
with high dimensional problems and overlapping clusters.
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Abstract—Density estimation is the ubiquitous base mod-
elling mechanism employed for many tasks such as clustering,
classification, anomaly detection and information retrieval.
Commonly used density estimation methods such as kernel
density estimator and k-nearest neighbour density estimator
have high time and space complexities which render them inap-
plicable in problems with large data size and even a moderate
number of dimensions. This weakness sets the fundamental
limit in existing algorithms for all these tasks.

We propose the first density estimation method which
stretches this fundamental limit to an extent that dealing with
millions of data can now be done easily and quickly. We
analyze the error of the new estimation (from the true density)
using a bias-variance analysis. We then perform an empirical
evaluation of the proposed method by replacing existing density
estimators with the new one in two current density-based
algorithms, namely, DBSCAN and LOF. The results show
that the new density estimation method significantly improves
the runtime of DBSCAN and LOF, while maintaining or
improving their task-specific performances in clustering and
anomaly detection, respectively. The new method empowers
these algorithms, currently limited to small data size only, to
process very large databases — setting a new benchmark for
what density-based algorithms can achieve.

Keywords-density estimation; density-based algorithms;

I. INTRODUCTION

Density estimation is ubiquitously applied to various tasks
such as clustering, classification, anomaly detection and
information retrieval. Despite its pervasive use (‘estimation
of densities is a universal problem of statistics’ [18]), there
are no efficient density estimation methods thus far. Most ex-
isting methods such as kernel density estimator and k-nearest
neighbour (k-NN) density estimator cannot be applied to
problems with even a moderate number of dimensions and
large data size. This paper is motivated to introduce the first
efficient method for density estimation. We show that two
existing density-based algorithms, which employ the new
density estimator, set a new runtime benchmark that is orders
of magnitude faster. For example, these two algorithms now
take only days instead of months to complete tasks involving
millions of instances, after the existing density estimators are
replaced with the new one.

We make four contributions in this paper:

1) Propose a new density estimation method which has a
significant advantage over existing methods in terms
of time and space complexities.

2) Establish the characteristics of the method through a
bias-variance analysis of the error of the new method.

3) Verify the generality of the method by replacing
existing density estimators with the new one in two
current density-based algorithms.

4) Significantly simplify and speed up the current al-
gorithms using set-based definitions instead of the
common point-based definitions (see Section V.)

The new density estimation method distinguishes itself
from existing methods by:
• Employing no distance measures in the density estima-

tion process.
• Having average case sublinear time complexity and

constant space complexity. Thus, it can be applied to
very large databases in which current methods such
as kernel and k-NN density estimators are infeasible
because they are prohibitively expensive to compute.

Two existing density estimators are presented in Sec-
tion II, in order to contrast with the new density estimator
we introduce in Section III. We analyze the error produced
by the new estimator by a bias-variance analysis and pro-
vide a comparison of the estimation results between the
new estimator and kernel density estimator in Section IV.
Sections V and VI describe how the new estimator can re-
place existing density estimators in two current state-of-the-
art density-based algorithms and their empirical evaluation
results, respectively. A discussion of the related issues and
the conclusions are provided in the last two sections.

II. DENSITY ESTIMATION

This section describes two, probably the most commonly
used, density estimation methods, namely kernel density
estimator and k-nearest neighbour density estimator.

A. Kernel Density Estimator

Let x be an instance in a d-dimensional space Rd. The
kernel density estimator (KDE) defined by a kernel function
K(·) and bandwidth b is given as follows [13].



f̄KDE(x) =
1

nbd

n∑
i=1

K(
x− xi

b
)

The difference x − xi requires some form of distance
measure; and n is the number of instances in the given data
set D. An example of K(·), as a rectangular function, is
given as follows.

K(x) =

{
1
2 if |x| < 1
0 otherwise.

B. k-NN Density Estimator

A k-nearest neighbour (k-NN) density estimator can be
expressed as follows [14].

f̄kNN (x) =
|N(x, k)|

n
∑

x′∈N(x,k)

distance(x,x′)

where N(x, k) is the set of k nearest neighbours to x; and
the search for nearest neighbours is conducted over D of
size n.

Both KDE and k-NN density estimators have O(n2)
time complexity and O(n) space complexity in order to
estimate the densities of n instances. Although there are
various indexing schemes to speed up the search for nearest
neighbour in order to aid the k-NN density estimator, they
are not satisfactory in terms of dealing with high dimen-
sional problems and large data sets. We will provide further
discussion of this issue in Section VII.

III. DENSITY ESTIMATOR BASED ON MASS

A recently introduced base measure called mass [17] has
demonstrated its wide application to solve various data min-
ing tasks such as regression, information retrieval, clustering
and anomaly detection, including one in data stream [17],
[16], [15].

Because mass is more fundamental than density, we show
in this paper that a density estimator can be constructed
from mass. The key advantage of mass is that it can be
computed very quickly. The new density estimator based on
mass inherits this advantage and executes significantly faster
than existing density estimators such as KDE and k-NN. It
raises the capability of density-based algorithms to handle
large data sets to a new high level.

A mass base function is defined as follows by [16]

m(T (x)) =

{
m if x is in a region of T (·),
0 otherwise,

where T (·) is function which subdivides the feature space
into non-overlapping regions based on the given data set D;
and m is the number of samples in a region of T (x) in
which x falls into.

[16] shows that mass can also be effectively estimated
using data subsets Di ⊂ D (i = 1, . . . , t) and its associated

Ti(x|Di), where |Di| = ψ � n. Each Di is sampled without
replacement from D. The mass estimated using subsamples
is defined as

mass(x) =
1

t

t∑
i=1

m(Ti(x|Di)).

We now introduce the new density estimators based on
mass (DEMass) and describe its implementation in the next
two subsections.

A. DEMass

Once mass is estimated, density can be estimated as a
ratio of mass and volume.

Thus, the new density estimators based on mass functions
m(T (x)) and m(Ti(x|Di)) are defined respectively as

fm(x) =
m(T (x))

nv
. (1)

f̄m(x) =
1

t

t∑
i=1

m(Ti(x|Di))

ψvi
. (2)

where v and vi are the volumes of regions T (x) and
Ti(x|Di), respectively.

We use the term DEMass to refer to density estimator
f̄m(x) in the rest of this paper.

DEMass has two key differences/advantages when com-
pared to the one based on a kernel method or k-NN:
• f̄m is estimated from tψ instances only which are

significantly smaller than D in a large data set. It sums
over t number of randomly generated regions; whereas
f̄KDE sums over n number of instances in D, and
f̄kNN also requires access to the entire data set. For a
large data set, f̄ is prohibitively expensive to compute
in these two methods 1.

• f̄m needs no distance measures.

B. Implementation

Mass estimation can be implemented in different ways
[17], [16], [15].

When T (·|D) is implemented using a binary tree, the
volumes of regions in T (·|D) are controlled by a parameter
h which defines the level of binary subdivision.

Let ∆i be a work space in Rd which envelops Di;
and ∆i has its length along each dimension j as ∆ij =
max(xkj |xk ∈ Di) − min(xkj |xk ∈ Di). Each Ti(·|Di) is
constructed within work space ∆i, resulting in 2hd hyper-
rectangular regions where every region has an equi-width
δxij = ∆ij/2

h on each dimension j and a volume vi =
δxi1 × · · · × δxid. For example, in a one-dimensional space
with work space ∆i derived from Di and set h = 3, Ti(·|Di)

1While there are ways to reduce the computational cost of KDE and
k-NN, they are usually limited to low dimensional problems or incur
significant preprocessing cost. See Section VII for a discussion.



subdivides the work space into 23 equi-width regions. We
use Ti to denote Th

i , unless h is required in the context; and
Ti is built from Di, for each i.

We use the implementation of T (·|D) as described in [16]
as the basis to build density estimator f̄m. The algorithm,
used to generate such a tree, is given in Appendix A for
ease of reference.

The time complexity of constructing the trees is O(tψhd).
The space complexity is O(thd + n) during construction.
After the trees are built, the data set is discarded, yielding
O(thd).

To estimate the density of a given instance x, only these
trees are used according to Equation (2).

In the next section, we will show that the bias between
f̄m(x) and the true probability density function pd(x) con-
verges asymptotically.

IV. ERROR ANALYSIS THROUGH
BIAS-VARIANCE DECOMPOSITION

The density estimator based on mass (DEMass) f̄m(x)
can be thought of as a random variable because of its depen-
dence on D and its random subsamples Di (i = 1, . . . , t).
Accordingly, we analyze Mean Squared Error (MSE) of
f̄m(x) from its true probability density pd(x). It is defined
as

MSE(f̄m(x)) = E
[
{f̄m(x)− pd(x)}2

]
where the expectation E[·] is taken over the distribution of
f̄m(x). This is rewritten by introducing the expectation of
f̄m(x): E[f̄m(x)] as follows [13].

MSE(f̄m(x)) =
{
E[f̄m(x)]− pd(x)

}2
+E
[
{f̄m(x)− E[f̄m(x)]}2

]
.

The first term on the rhs is called “square bias ” and the
second “variance.” We evaluate the magnitude of each of
these two terms in the following.

To simplify notations for the rest of the paper, we have
used Ti(x) to denote Ti(x|Di), and p(Ti(x)) to denote
p(xk ∈ Ti(x)| xk ∈ Di).

Let ci be the center of a region of Ti(x) where each
element cij of ci is a middle point of the interval on each
dimension j. The second order Taylor approximation of
pd(x) around ci for Ti(x) is given as

pd(x)|ci∈Ti(x) ≈ pd(ci) + (x− ci)
T∇pd(x)|x=ci

+
1

2
{(x− ci)

T∇}2pd(x)|x=ci
, (3)

where ∇ = [∂/∂x1, . . . , ∂/∂xd]T.
Note that m(Ti(x)) follows a binomial distribution2

B(ψ, p(Ti(x))). Therefore, E[f̄m(x)] is expressed by sub-

2The implementation of T (·) used in this paper is a tree-based nonpara-
metric method. The binomial distribution is required for the error analysis
only.

stituting E[m(Ti(x))] = ψp(Ti(x)) in Eq. (2).

E[f̄m(x)] =
1

t

t∑
i=1

E[m(Ti(x))]

ψvi

=
1

t

t∑
i=1

p(Ti(x))

vi

=
1

t

t∑
i=1

1

vi

∫
Ti(x)

pd(x∗)dx∗. (4)

Accordingly, the square bias is evaluated as follows by
applying Eq. (3) and the fact that the integral of an odd
function over [cij − δxj/2, cij + δxj/2] for each dimension
j is zero.{

E[f̄m(x)]− pd(x)
}2

≈
[

1

t

t∑
i=1

{
1

24

d∑
j=1

∂2pd(x)

∂x2j

∣∣∣
x=ci

δx2ij

−(x− ci)
T∇pd(x)|x=ci

−1

2
{(x− ci)

T∇}2pd(x)|x=ci

}
ci∈Ti(x)

]2
≤
[

1

t

t∑
i=1

{
1

24

∣∣∣∣ d∑
j=1

∂2pd(x)

∂x2j

∣∣∣
x=ci

∣∣∣∣∆2
ij2
−2h

+

d∑
j=1

∣∣∣∣∂pd(x)

∂xj

∣∣∣
x=ci

∣∣∣∣∆ij2
−h

+
1

2

d∑
j=1

d∑
k=1

∣∣∣∣∂2pd(x)

∂xj∂xk

∣∣∣
x=ci

∣∣∣∣∆ij∆ik2−2h
}

ci∈Ti(x)

]2
= O(4−h)

This result shows that the square bias diminishes as level h
increases, i.e., as the size of the regions decreases. Though
this analysis uses the second order approximation of pd(x),
the result using the higher order approximation is the same
since the first order term dominates in the above formula.

Because m(Ti(x)) follows the binomial distribution
B(ψ, p(Ti(x))), the variance of m(Ti(x)) is

var[m(Ti(x))] = ψp(Ti(x))(1− p(Ti(x))).

In concert with Eq. (2), the variance of f̄m(x) is represented
as follows.

E
[
{f̄m(x)− E[f̄m(x)]}2

]
=

1

t2

t∑
i=1

p(Ti(x))(1− p(Ti(x)))

ψv2i

=
1

t2

t∑
i=1

1

ψv2i

∫
Ti(x)

pd(x∗)dx∗

(
1−

∫
Ti(x)

pd(x∗)dx∗

)
.



Using the similar calculus as applied to the square bias, we
obtain the variance as follows where ci is a center of Ti(x).

E
[
{f̄m(x)− E[f̄m(x)]}2

]
≈ 1

t2

t∑
i=1

1

ψ

{
pd(ci) +

1

24

d∑
j=1

∂2pd(x)

∂x2j

∣∣∣
x=ci

δx2ij

}

×
{

1

vi
− pd(ci)−

1

24

d∑
j=1

∂2pd(x)

∂x2j

∣∣∣
x=ci

δx2ij

}
.

=
1

t2

t∑
i=1

1

ψ

{
pd(ci) +

1

24

d∑
j=1

∂2pd(x)

∂x2j

∣∣∣
x=ci

∆2
ij2
−2h
}

×
{

2dh∏d
j=1 ∆ij

− pd(ci)−
1

24

d∑
j=1

∂2pd(x)

∂x2j

∣∣∣
x=ci

∆2
ij2
−2h
}
.

= O(2dh)

This result indicates that the variance increases when level
h increases. Also, the result does not change even if we use
the higher order approximation because the term pd(ci)/vi
dominates in the above formula.

The property of DEMass, revealed from this error anal-
ysis, is similar to that of the conventional kernel density
estimator which shows a bias-variance trade off—the bias
decreases as the kernel bandwidth b decreases but this
increases the variance; and the reverse is true if the kernel
bandwidth in increased [13]. The parameter k in k-NN
density estimator has the same effect.

In conclusion, DEMass has a comparable performance
with the kernel density estimator if both trade-off bias and
variance equally well; and it is indeed the case in practice.
Figure 1 shows the estimation result of a normal distribu-
tion using KDE and DEMass, respectively. It demonstrates
that DEMass produces similar result to that generated by
KDE, for different data sizes. Smoothing can be applied by
increasing b for KDE or decreasing h for DEMass which
produces the estimation results as shown in Figure 2. The
parameters used for DEMass are: t = 1000 and ψ = n when
n = 10, 100; ψ = 1000 when n = 1000000.

Note that in either settings shown in Figures 1 and 2,
the estimations of both KDE and DEMass approach the true
distribution as the number of instances increases.

V. USING DEMASS IN EXISTING
DENSITY-BASED ALGORITHMS

This section describes how DEMass can be applied to two
current density-based algorithms, DBSCAN [6] and LOF
[4], in place of their existing density estimators. DBSCAN
and LOF are one of the best algorithms for clustering and
anomaly detection, respectively.

Using DEMass in both DBSCAN and LOF automatically
carries the two advantages mentioned in Section III: (i) The
estimation requires no distance measures, thus, it completely

KDE (b = 0.1) DEMass (h = 5)
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Figure 1: Example estimations of Kernel Density Estimator
(with Gaussian kernel) using b = 0.1 and DEMass using
h = 5 for different data sizes, n = 10, 100, 1000000. The
true data distribution is a normal distribution.
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Figure 2: Example estimations of Kernel Density Estimator
(with Gaussian kernel) using b = 0.3 and DEMass using
h = 3 for the same data used in Figure 1.

saves the cost of distance calculations for every pair of in-
stances; and (ii) DEMass enables small samples to construct
the required regions T (·|D), overcoming the key limitation
of DBSCAN and LOF in handling very large databases.
We will discuss further advantages specific to individual
algorithms in the following subsections.

A. DEMass-DBSCAN

The principal steps of DEMass-DBSCAN is the same as
DBSCAN, except that no border points and their associated
step are required. A comparison of the two algorithms are
provided in Table I. The algorithm for DBSCAN is adapted
from [14].

While following its principal steps, the use of DEMass
simplifies DBSCAN in two ways, in addition to the two



step DBSCAN DEMass-DBSCAN
1 Label all points as core, Label all T (x) satisfying

border, or noise points, Definition 1 as core
based on f̄kNN (x) regions, based on f̄m(x).

Points not covered by
core regions are noise.

2 Eliminate noise points Eliminate noise points
3 Connect all core points that Connect all core regions

are within ε of each other. that have non-zero
intersections.

4 Make each group of Make each group of
connected core points connected core regions
into a separate cluster into a separate cluster.

5 Assign each border point
to one of the clusters
of its associated core points.

Table I: Algorithms for DBSCAN and DEMass-DBSCAN.
Note that border points are not required with DEMass-
DBSCAN; thus step 5 is not needed. Both versions of
DBSCAN could include an additional cluster size threshold
to eliminate small size clusters in the last step.

advantages already mentioned above. First, DEMass enables
regions to be labelled instead of individual points. Because
the number of regions is significantly less than the number
of points, linking regions to form a cluster becomes sig-
nificantly faster than connecting points. Second, no border
points need to be defined because the connections within a
cluster are established via core regions only when DEMass
is used. The first simplification is the key reason for the
significant speed up achieved by DEMass-DBSCAN, which
we will show in Section VI-A.

The formal definitions for DEMass-DBSCAN are given
as follows. Although point-based definitions can be simi-
larly defined as in DBSCAN [6], we show that set-based
definitions are simpler.

Definition 1: T (x) is a core region of point x wrt h and
MinPts if m(T (x)) ≥MinPts.

Definition 2: Tr(·) is density-connected to Ts(·) wrt h
and MinPts if there is a chain of regions T1(·), . . . , Tg(·)
where r = 1 and s = g such that Tı(·) ∩ Tı+1(·) 6= ∅ and
Tı(·) is a core region for all ı wrt h and MinPts.

Definition 3: An arbitrary-shape cluster C wrt h and
MinPts is a non-empty subset of a database D satisfying
the following condition: ∀r, s;Tr(·), Ts(·) ⊂ C: Tr(·) is
density-connected to Ts(·) wrt h and MinPts.

Definition 4: Let C1, . . . , Ck be the clusters of D wrt h
and MinPts. Noise is the set of points in D not belonging
to any cluster C, i.e., noise = {x ∈ D|∀ : x /∈ C}.

Definitions 1 and 2 assume that Ti(·) has the same volume
for every i. In the case Ti(·) has a different volume for
each i (as in our implementation described in Section III-B),
only the condition in Definition 1 needs to be modified to
m(T (x)) vmax

v ≥ MinPts, where vmax = maxi vi, and v
is the volume of region T (x). The normalisation factor v

vmax

ranges from 0 to 1.

AB

C

ε ε ε

Figure 3: An example for DBSCAN for Minpts = 5. A is
a core point, B is a border point, and C is a noise point.
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Figure 4: An example for DEMass-DBSCAN for Minpts =
5. The circle symbol indicates core points and the star
symbol indicates noise points. T3, T4, and T5 are core
regions. T3 and T4 are linked by a common core point.

A comparison between DBSCAN and DEMass-
DBSCAN is provided using two examples showed
in Figures 3 and 4. They show how core points
and non-core points are labelled in DBSCAN and
DEMass-DBSCAN. Note that hyper-spheres are
used in DBSCAN, and hyper-rectangles are used in
DEMass-DBSCAN in our current implementation of Ti(·).

B. DEMass-LOF

Table II compares the algorithms for LOF and DEMass-
LOF which have three identical principal steps: Compute
density distribution and LOF , and then rank all instances
based on their LOF values. The key difference is the density
estimator used in step 1 which changes the computation of
LOF in step 2.

In addition to the two advantages due to the use of
DEMass mentioned in Section III, the advantage specific
to LOF is that DEMass enables the computation of the
relative density to be substantially simplified, changing from
nearest-neighbour-based to set-based. Instead of finding the
neighbours of x and then compute the density of each
neighbours, the modified ranking measure LOFp is com-
puted based on the region T (x) and its immediate larger
region T̆i(x) ⊃ Ti(x). In a tree implementation of T (·),



step LOF DEMass-LOF
1 Compute density distribution: Compute density distribution:

f̄kNN (x) f̄m(x)
2 Compute LOF (x) using Compute LOFp(x) using:∑

x′∈N(x,k)

f̄kNN (x′)

|N(x, k)|

f̄kNN (x)

1

t

t∑
i=1

m(T̆i(x))

ψ̆v̆i

f̄m(x)
3 Rank all instances based on Rank all instances based on

their LOF values in their LOFp values in
descending order descending order

Table II: Algorithms for LOF and DEMass-LOF. f̄kNN (x)
and N(x, k) are defined in Section II-B; f̄m(x) is defined
in Section III. T̆i(x) ⊃ Ti(x) correspond to the parent and
child nodes in our tree implementation; ψ̆ and v̆i are the data
size and volume of T̆i(x), respectively. Note that T̆i(x), the
next superset of Th

i (x), is not necessarily Th−1
i (x) because

there are d levels in the tree for each increment of h and the
implementation allows single branch extensions if there are
no data in other branches. See Appendix A for the details
of the implementation.

this corresponds to computing the density of the node in
which x falls into, relative to the density of its parent node.

In steps 1 and 2, the time complexities of DEMass-
LOF and LOF are O(ntψ) and O(n2), respectively. Since
DEMass-LOF does not need to perform neighbourhood
search as in LOF, it is much faster, especially in large data
sets. This is because DEMass-LOF does not need to compute
the density of all neighbours of each instance.

The parameter k in LOF has an inverse relationship with
h in DEMass-LOF, i.e., high h corresponds to low k (which
covers a smaller region than that using low h or high k).

A larger k increases LOF’s processing time so as a larger
h increases DEMass-LOF’s processing time.

Note that LOF is a relative density score. Both LOF
and LOFp range from 0 to +∞, indicating the degree of
anomaly; the higher the LOF score, the higher the degree
of anomaly.

VI. EMPIRICAL EVALUATION

Both of the following evaluations, in clustering and
anomaly detection tasks, are conducted in the unsupervised
learning setting. We will compare DBSCAN with DEMass-
DBSCAN in the first subsection and then compare LOF with
DEMass-LOF in the second subsection.

All experiments were conducted as single thread jobs
processed at 2.3 GHz in a Linux cluster (www.vpac.org)
using a node with 32 GB memory. All DEMass related
algorithms were written in JAVA in WEKA platform [19],
so as DBSCAN. LOF was written in Java in ELKI platform
version 0.4 [1]. The data sets used are from UCI Machine
Learning Repository [7], unless stated otherwise.

The clustering result was reported in terms of CPU run-
time (in seconds), number of clusters identified, number of

Table III: Clustering results in the Ring-Curve+Wave+Tri-
Gaussian data sets for DEMass-DBSCAN (h = 7 for 3-
dimensional data; h = 6 for 48-dimensional data) and
DBSCAN (ε = 0.01).

3-dimensional data 48-dimensional data
DEMass- DBSCAN DEMass- DBSCAN

DBSCAN DBSCAN
Runtime 135 2391 1261 21906

#cluster [7] 9 8 7 8
#unassigned 535 332 61 332
F-measure 0.9999 0.9999 1.0000 0.9999

unassigned instances, and F-measure which was calculated
based on assigned instances only. F-measure = 1 when all
assigned instances are in the correct clusters, i.e., perfect
clustering; and F-measure = 0 if all instances are assigned
to wrong clusters. The anomaly detection result was reported
in terms of CPU runtime and AUC (Area Under ROC Curve)
based on the ranked result. We tuned the parameters of each
algorithm and reported the best result.

A. DEMass-DBSCAN versus DBSCAN

DEMass-DBSCAN had ψ = 256 and t = 1000 as
default; and both DEMass-DBSCAN and DBSCAN used
MinPts = 6 in all experiments. As a result, only one
parameter needed to be tuned for a particular data set: h
for DEMass-DBSCAN and ε for DBSCAN.

Ring-Curve-Wave-Tri-Gaussian. It has three two-
dimensional synthetic data embedded in either a 3-
dimensional data set or a 48-dimensional data set (where 42
dimensions are irrelevant with a constant value). The three
two-dimensional data are Ring-Curve, Wave and Triangular-
Gaussian shown in Figure 7 in Appendix B, which have a
total of seven clusters. Each cluster has 10,000 instances
with a total of 70,000 instances.

The clustering results from DEMass-DBSCAN and DB-
SCAN are shown in Table III. DEMass-DBSCAN ran
faster than DBSCAN by a factor more than 17 in both
data sets. In terms of #clusters and #unassigned, DEMass-
DBSCAN performed slightly worse than DBSCAN in the
3-dimensional data set, but better in the 48-dimensional data
set. DEMass-DBSCAN decreased its number of unassigned
instances from 535 to 61 when the number of dimensions
was increased from 3 to 48; whereas DBSCAN had the same
332 unassigned instances in both cases. DEMass-DBSCAN
performs either similarly to or better than DBSCAN in terms
of F-measure in these two data sets.

In order to examine how well the algorithms scale up
to large data size, we used the 48-dimensional data set and
increased the data size from 7000 to 70000, half-a-million, 1
million and 10 million. Figure 5 plotted runtime ratio versus
data size ratio (1, 10, 75, 150 and 1500) by using 7000 as
the base. The result showed that DEMass-DBSCAN had a
sublinear increase in runtime: The runtime ratio increased
from 1 to 101 when the data size ratio increased from 1 to
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Figure 5: Scale up: DEMass-DBSCAN vs DBSCAN in
the 48-dimensional Ring-Curve-Wave-TriGaussian data set.
Note that DBSCAN completed the task of the one-million
data set (at data size ratio=150) in 36 days versus DEMass-
DBSCAN’s 4.5 hours. Even with the 10-million data set,
DEMass-DBSCAN completed it in 38 hours.

150. In contrast, DBSCAN’s runtime ratio increased from 1
to 18000 with the same increase in data size ratio. DEMass-
DBSCAN was faster than DBSCAN by a factor of 193
when the one-million data set is used. Even the data size
was increased by a factor of 1500, the runtime of DEMass-
DBSCAN increased by a factor of 862 only.

OneBig and Pendigits. The OneBig data set [11] has 20
attributes, 9 clusters and a total of 68,000 instances. The
biggest cluster has 50,011 instances, and each of the other
eight clusters has approximately 1000 instances. In addition,
there are 10,000 noise instances randomly distributed in the
feature space. The Pendigits data set has 16 attributes and
10 clusters. Each cluster has approximately 1,100 instances
which makes up a total of 10,992 instances.

The result in Table IV showed that DEMass-DBSCAN
and DBSCAN for OneBig had the same clustering result in
terms of F-measure and number of clusters; but DEMass-
DBSCAN ran faster than DBSCAN by a factor of 7. Note
that DEMass-DBSCAN had correctly identified all but one
of the 10,000 noise instances; whereas DBSCAN correctly
identified all of the noise instances. For Pendigits, the result
showed that although DEMass-DBSCAN had a lower F-
Measure than DBSCAN, it was better than DBSCAN in
all other measures: it had only 20% instances unassigned
whereas DBSCAN had 57% instances unassigned; DEMass-
DBSCAN found 47 cluster whereas DBSCAN detected 65.

B. DEMass-LOF versus LOF

For anomaly detection tasks, we compared LOF with
DEMass-LOF in this section. Table V provided the prop-
erties of the data sets used. Note that Http and Smtp are
subsets of the network intrusion data set used in KDDCUP
99 [20]; and an anomaly data generator [12] is used to
generate a synthetic data set. All the data sets used have

Table IV: Clustering results in the OneBig and Pendigits
data sets for DEMass-DBSCAN (h = 3 for OneBig; h = 2
for Pendigits) and DBSCAN (ε = 0.1 for OneBig; ε = 0.2
for Pendigits).

OneBig Pendigits
DEMass- DBSCAN DEMass- DBSCAN

DBSCAN DBSCAN
Runtime 1145 8544 91 204
#cluster [9] 9 9 [10] 47 65

#unassigned 10021 10005 2166 6251
F-measure 1.00 1.00 0.65 0.75

Table V: Data sets used for the anomaly detection task for
comparing DEMass-LOF with LOF.

Data Size n d anomaly class
Http 567,497 3 attack (0.4%)

ForestCover (FC) 286,048 10 class 4 (0.9%) vs. class 2
Mulcross 262,144 4 2 clusters (10%)

Smtp 95,156 3 attack (0.03%)
Shuttle 49,097 9 classes 2,3,5,6,7 (7%)

nearly fifty thousand or more instances, with the largest up
to half a million instances. The default settings for DEMass-
LOF were ψ = 256 and t = 100.

Table VI compares LOF with DEMass-LOF in terms of
detection performance AUC and time. DEMass-LOF using
either h=1 or 4 obtained better AUC results than LOF. It
is interesting to note that DEMass-LOF achieved extreme
results in the Smtp and Mulcross data sets between the
two h settings; and it behaved differently in these two data
sets, where a low h setting is better in Mulcross but a high
h setting is better in Smtp. This is because the two data
sets have two different types of anomalies: clustered and
scattered anomalies [10]. Mulcross has clustered anomalies,
i.e., outlying clusters with high density but a small number
of instances. DEMass-LOF with a high h setting (i.e., h=4)
regarded these anomaly clusters more ‘normal’ than normal
instances, which was reflected in the result: AUC=0.09. In
contrast, the Smtp data set has scattered anomalies which

Table VI: Compare LOF and DEMass-LOF in terms of AUC
(Area Under ROC Curve) and time (in seconds). AUC=1 is
the perfect detection performance and AUC=0 is the worst.
The default settings for DEMass-LOF were h = 1, ψ = 256
and t = 100 which were used for all data sets. The parameter
k (for LOF) and h (for DEMass-LOF) were changed in order
to explore a better result.

AUC Time (seconds)
LOF DEMass- LOF DEMass-

LOF LOF
k=10 k=60 h=1 h=4 k=10 k=60 h=1 h=4

Http 0.44 0.35 0.99 0.93 18913 19818 19 42
FC 0.57 0.58 0.74 0.77 10835 11147 39 40

Mulcross 0.59 0.59 0.96 0.09 5432 5486 12 53
Smtp 0.32 0.85 0.29 0.89 540 552 2 5

Shuttle 0.55 0.62 0.94 0.71 368 380 5 12
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Figure 6: Scale up: LOF versus DEMass-LOF in Mulcross.
The base for data size ratio is 8192 instances and the base
for runtime ratio is the runtime on 8192 instances.

are isolated outlying instances around normal clusters. This
scenario requires a high h setting in order for DEMass-LOF
to compute the right densities for these anomalies.

LOF was not competitive, and the AUC results did not
change much from the presented results even other k values
were used (we had tried k=30, 40, 50, 80, 100, 120.)

However, it shall be noted that LOF could achieve good
detection accuracy with an appropriate k. For example,
LOF obtained AUC=0.99 when k = 4000 was used in the
shuttle data set. But similar search in the largest three data
sets failed with out of memory problem even though the
computer system was allocated 32 GB memory! This result
reveals two universal problems with k-NN approaches like
LOF: (i) An extensive parameter search is required to obtain
good detection accuracy; this search adds a significant cost
to the already long runtime process. The total time cost is
often prohibitive; and (ii) high memory requirement.

Table VI also compares these detectors in terms of pro-
cessing time. DEMass-LOF was one to near-three orders of
magnitude faster than LOF in these data sets.

Figure 6 showed the runtime of both algorithms when
scaling from 8192 instances up to a million instances in
the Mulcross data set. The data size was increased by a
factor of 16, 32, 64, 128 from 8192 instances. DEMass-
LOF increased its runtime by a factor of 11, 23, 25 and
86, respectively. In contrast, LOF increased its runtime by
a factor of 217, 845, 2371, 11173, respectively. At data size
ratio = 128, which has a million instances, LOF completed
the task in 28 hours whereas DEMass-LOF accomplished it
in 45 seconds!

VII. DISCUSSION

What we have presented is the first density estimation
method that utilizes no distance measures. It potentially
solves fundamental problems such as the curse of dimen-
sionality in which the use of a distance measure plays a key

part in creating the problem [2], [8].
There are significant improvements of nearest neighbour

search in recent times. For example, indexing schemes to
speed up nearest neighbour search such as Cover Trees
[3] and M-Trees [5] are claimed to have time complexity
significantly better than O(n2). Indexing schemes such as
Cover Trees or M-Trees rely on distance-based pruning
methods in both the index tree construction and range query
processes. Distance-based pruning methods cannot scale up
to massive data, and they are known to be inefficient even for
a moderate number of dimensions. Thus, it is unlikely that
any of the recent indexing schemes can be used to speed up
nearest neighbour search to the level that has been achieved
already by DEMass-DBSCAN and DEMass-LOF, especially
in large data sets.

Note that the purpose of trees used in DEMass differs
from that used for Cover Trees or M-Trees. Trees in DEMass
are used to estimate mass, the core computation process. In
contrast, Cover Trees or M-Trees are indices used to speed
up nearest neighbour search. The indices are required be-
cause the core computation, i.e., the requirement to calculate
distance for every pair of instances, is slow. In other words,
one uses trees directly in the core process; and the other
uses trees to aid the core process where trees are not used
in the actual computation of distance.

The cost of KDE estimation can be lowered, for example,
by reducing the given data set D to some ‘representative’
subset, where each representative kernel is derived from a
subsample using a maximum likelihood method such as EM.
This reduces the KDE estimation time; but it comes with a
cost of an expensive pre-processing step.

It is possible to use neighbours to compute LOF for
DEMass-LOF. However, the runtime advantage over LOF
will be significantly reduced because of the additional com-
putations required to calculate the density of each neighbour,
even though it does not need to find neighbours based on
distance calculations.

DENCLUE [9], a generic density-based algorithm, builds
a density distribution from data, and then uses a threshold to
determine clusters—all connected points above the threshold
form a cluster. DBSCAN is a special case of DENCLUE.
DEMass-DENCLUE has exactly the same procedure as
DEMass-DBSCAN, where Minpts or the equivalent density
threshold stated in Section V-A is employed as the threshold.

DEMass sets a new benchmark of what density-based
algorithms can achieve. In contrast to the density-based
approaches, mass-based approaches [17], [16] solve prob-
lems without the use of a density estimator. Mass-based
approaches have been shown to perform better than the
current density-based approaches in terms of time and space
complexities. It is thus interesting to compare the new
benchmark achieved by DEMass-density-based approaches
with mass-based approaches.

The current implementation of DEMass has two limita-



tions. First, it has step subdivisions controlled by a global
parameter h. The limited possible steps may be too coarse
for some applications and the setting is not adaptive to local
variations in density. Second, the grid-based implementa-
tion carries all the limitations associated with grid-based
approaches, especially dealing high dimensional problems.
All these limitations can be overcome by using a non-grid
method which is adaptive to the local data distribution. This
non-grid-based implementation will eliminate one global
parameter and potentially tackle high-dimensional problems
more effectively.

VIII. CONCLUSIONS AND FUTURE WORK

The new density estimation method we introduced have
two unique features which can not be found in existing
density estimation methods. First, it is the first density
estimator that utilizes no distance measures. Second, it has
average case sublinear time complexity and constant space
complexity. Existing density estimators must use a distance
measure and have time and space complexities a lot worse
than linear. The time and space complexities achieved set
a new benchmark for density-based algorithms, of what
previously thought impossible.

The bias-variance analysis reveals that the new density
estimator has the same characteristic as kernel density
estimator, i.e., both have a smoothing parameter used to
trade-off between systematic error (bias) and random error
(variance).

Making full use of the features in the new density
estimator, we show that two current algorithms can be
significantly simplified through set-based definitions rather
than the current point-based definitions. This has directly
contributed to their improved time complexities.

Our evaluation shows that the new density estimator
not only successfully replaces existing density estimators
in two density-based algorithms, DBSCAN and LOF, but
significantly improves their runtime. In addition, DEMass-
DBSCAN and DEMass-LOF often achieve equivalent or
better task-specific performances than DBSCAN and LOF.

Our result implies that most, if not all, density-based
algorithms can reap the immediate benefit of significantly
lowering their time complexities by simply replacing the
existing density estimators with the new one, with a potential
further improvement in the task-specific performance.

Future work has three directions. First, we will apply
the new density estimator in existing algorithms in more
areas. We will ascertain whether there are areas in which the
new density estimator cannot replace existing density esti-
mators. Second, compare DEMass-density-based approaches
with mass-based approaches to determine their relative
strengths and weaknesses. Third, we will explore DEMass’s
ability to deal with high dimensional problems.
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APPENDIX A: ALGORITHMS FOR GENERATING BINARY
TREES TO REPRESENT T (x|D)

We use the same algorithms to generate binary trees to
represent T (x|D) as used in [16] for multi-dimensional mass
estimation. Only the pertinent details are provided here.

Algorithm 1 : BuildTrees(D, t, ψ, h)

Inputs: D - input data, t - number of trees, ψ - sub-
sampling size, h - number of times an attribute is employed
in a path.
Output: F - a set of t h:d-Trees

1: MaxHeightLimit← h× d
2: Initialize F
3: for i = 1 to t do
4: D ← sample(D,ψ) {strictly without replacement}
5: (min,max) ← InitialiseWorkSpace(D)
6: F ← F ∪ SingleTree(D,min,max, 0)
7: end for

A work space which envelops D is partitioned into 2`

equal-size regions at the leaves of the tree with height ` =
h × d, where d is the number of dimensions. Let mk be
the mass of region k; and there is a total of 2` regions
which have a total mass: |D| =

∑2`

k=1 mk, where mk =
m(T (x|D)); and x is in region k of T .
T (x|D) is represented as a binary tree (called h:d-Tree

in [16]), where each path from the root to a leaf has h× d
nodes such that each of the d attributes appears exactly h
times.

Algorithm 1 generates t trees from a given data set D.
Algorithm 2 generates a single tree using a subset D ⊂ D,
where |D| = ψ.

Algorithm 2 : SingleTree(D,min,max, `)
Inputs: D - input data, min & max - arrays of minimum
and maximum values for each attribute in A that define a
work space, ` - current height level, A - set of d attributes.
Output: an h:d-Tree

1: while (` < MaxHeightLimit) do
2: {Retrieve an attribute from A based on height level.}
3: q ← nextAttribute(A, `)
4: p← (maxq +minq)/2
5: Dl ← filter(D, q < p)
6: Dr ← filter(D, q ≥ p)
7: if (|Dl| = 0 ) or (|Dr| = 0) then
8: {Reduce range for single-branch node.}
9: if (|Dl| > 0 ) then maxq ← p

10: else minq ← p
11: end if
12: `← `+ 1
13: continue at the start of while loop
14: end if
15: {Build two nodes: Left and Right as a result of a split

into two equal-volume half-spaces.}
16: temp← maxq; maxq ← p
17: Left← SingleTree(Dl,min,max, `+ 1)
18: maxq ← temp; minq ← p
19: Right← SingleTree(Dr,min,max, `+ 1)
20: endwhile
21: return Node(Left,Right, SplitAtt← q,

SplitV alue← p, Size← |D|)

APPENDIX B - DATA CHARACTERISTIC

The characteristic of the data set, Ring-Curve-Wave-
TriGaussian, used in Section V-A is shown in Figure 7. Each
of the Ring-Curve, Wave and Triangular-Gaussian is a two-
dimensional data set; and together there is a total of seven
clusters. Each cluster has 10000 instances. When used in the
scale up experiment, the data size in each cluster was scaled
by a factor of 0.1, 1, 75, 150 to 1500.

(a) Ring-Curve (b) Wave (c) Tri-Gaussian

Figure 7: Scatter plot of the clusters in the Ring-Curve-
Wave-TriGaussian data set, as used in [16].
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Abstract

This paper introduces Streaming Half-Space-Trees
(HS-Trees), a fast one-class anomaly detector for
evolving data streams. It requires only normal data
for training and works well when anomalous data
are rare. The model features an ensemble ofran-
dom HS-Trees, and the tree structure is constructed
without any data. This makes the method highly
efficient because it requires no model restructuring
when adapting to evolving data streams. Our anal-
ysis shows that Streaming HS-Trees hasconstant
amortised time complexity and constant memory
requirement. When compared with a state-of-the-
art method, our method performs favourably in
terms of detection accuracy and runtime perfor-
mance. Our experimental results also show that
the detection performance of Streaming HS-Trees
is not sensitive to its parameter settings.

1 Introduction
The problem of detecting anomalies in streaming data has the
following characteristics. Firstly, the stream is infinite, so any
off-line learning algorithms that attempt to store the entire
stream for analysis will run out of memory space. Secondly,
the stream contains mostly normal instances because anoma-
lous data are rare and may not be available for training. In
this case, any multi-class classifiers that require fully labeled
data will not be suitable. Thirdly, streaming data often evolve
over time. Thus, the model must adapt to different parts of
the stream in order to maintain high detection accuracy.

This paper proposes an anomaly detection algorithm,
Streaming Half-Space Trees (HS-Trees), that addresses the
above-mentioned problem. The proposed method has sev-
eral features that distinguish itself from other existing tech-
niques. Firstly, it processes data in one pass and only requires
constant amount of memory to process potentially endless
streaming data or massive datasets. Thus it is different from
existing off-line anomaly detectors (e.g., ORCA [Bay and

∗This work is partially supported by the Air Force Research Lab-
oratory, under agreement# FA2386-10-1-4052. The U.S. Govern-
ment is authorized to reproduce and distribute reprints for Govern-
mental purposes notwithstanding any copyright notation thereon.

Schwabacher, 2003], LOF [Breuniget al., 2000] and SVM
[Scholkopfet al., 2002]) which are designed to mine static
and finite datasets.

Secondly, Streaming HS-Trees is a one-class anomaly de-
tector which is useful when a stream contains a significant
amount of normal data.

Thirdly, it performs fast model updates in order to maintain
high detection accuracy when dealing with time-varying data
distribution. Its model update is simple and fast because it re-
quires no modifications of the tree structure when processing
streaming data.

Streaming HS-Trees employsmass[Ting et al., 2010] as
a measure to rank anomalies. The mass profile can be con-
structed with small samples, allowing the anomaly detector
to learn quickly and adapt to changes in data streams in a
timely manner.

Unlike other decision trees (e.g., random forests [Breiman,
2001]), Streaming HS-Trees does not induce its tree struc-
ture from actual training examples. Instead, the tree structure
is constructed using the data space dimensions alone. The
trees can be built quickly because it requires no attribute or
split-point evaluations; and the model can be deployed be-
fore the streaming data arrive. A direct consequence of this
feature is that Streaming HS-Trees has aconstantamortised
time complexity and a constant memory requirement. This is
unlike algorithms that induce decision tree and alter its tree
structure dynamically as streaming data arrive (e.g., Hoeffd-
ing Tree [Domingos and Hulten, 2000]).

Our experimental study shows that an ensemble of Stream-
ing HS-Trees leads to a robust and accurate anomaly detector
that is not too sensitive to different parameter settings.

2 Related work

In the literature, there are already a number of studies devoted
to anomaly detection instatic datasets. Typical examples
include the statistical methods [Barnett and Lewis, 1994],
classification-based methods [Abeet al., 2006], clustering-
based methods [Heet al., 2003], distance-based methods
[Bay and Schwabacher, 2003], One-Class Support Vector
Machine (SVM) [Scholkopfet al., 2002] and Isolation For-
est [Liuet al., 2008]. These off-line learning methods are not
designed to process streaming data because they require load-
ing of the entire dataset into the main memory for mining.



Recent work on anomaly detection for streaming data in-
clude the domain of monitoring sensor networks [Subrama-
niam et al., 2006] and for abnormal event detection [Davy
et al., 2005], but there is currently little work considering
anomaly detection inevolvingdata streams.

One interesting related work is LOADED by Oteyet
al. [2006], a link-based unsupervised anomaly detector that
works well on datasets with mixed (continuous and categor-
ical) attributes. However, LOADED does not work well on
datasets with purely continuous attributes [Oteyet al., 2006].
Unlike LOADED, Streaming HS-Trees is a semi-supervised
one-class learner [Chandolaet al., 2009] that works well for
data with continuous attributes.

A recent system that deals with non-stationary data dis-
tributions is OLINDDA (OnLIne Novelty and Drift Detec-
tion Algorithm) [Spinosaet al., 2009]. OLINDDA uses stan-
dard clustering algorithm to groups examples into clusters (or
concepts). Through monitoring the clusters, it detects new
emerging concepts rather than anomalies.

Apart from unsupervised methods discussed earlier, super-
vised learning methods can also be used for anomaly detec-
tion in data streams. For example, Hoeffding Trees (HT)
[Domingos and Hulten, 2000; Hultenet al., 2001] is an in-
cremental anytime decision tree induction algorithm for clas-
sifying high-speed data streams. HT can also be used with
Online Coordinate Boosting (denoted as BoostHT) [Pelossof
et al., 2009]. HT and BoostHT require positive as well as
negative class labels to be available for training. However,
this is not a realistic assumption because anomalous data is
usually rare or not available for training.

3 The Proposed Method
This section presents the proposed method and the key nota-
tions used to describe the method are listed in Table 1.

x a streaming point
n the number of streaming points
T an Half Space Tree, HS-tree

Node a node in an HS-Tree
k the current depth of a node orNode.k
t the number of HS-Trees in an ensemble
h maximum depth (level) of a tree, ormaxDepth
r mass of a node in the reference window
l mass of a node in the latest window
ψ window size
s an anomaly score

Table 1: Key notations used in this paper.

3.1 Overview
The proposed method is an ensemble of HS-Trees. Each HS-
Tree consists of a set of nodes, where each node captures the
number of data items (a.k.a. mass) within a particular sub-
space of the data stream. Mass is used to profile the degree of
anomaly because it is simple and fast to compute in compari-
son to distance-based or density-based methods.

To facilitate learning of mass profiles in evolving data
streams, the algorithm segments the stream into windows

of equal size (where each window contains a fixed number
of data items). The system operates with two consecutive
windows, thereferencewindow, followed by thelatestwin-
dow. During the initial stage of the anomaly detection pro-
cess, the algorithm learns the mass profile of data in the ref-
erence window. Then, the learned profile is used to infer the
anomaly scores of new data subsequently arriving in the latest
window—new data that fall in high-mass subspaces is con-
strued as normal, whereas data in low-mass or empty sub-
spaces is interpreted as anomalous. As new data arrive at the
latest window, the new mass profile is also recorded. When
the latest window is full, the newly recorded profile is used
to override the old profile in the reference window; thus the
reference window will always store the latest profile that can
be used to score the next batch of newly arriving data. Once
this is done, the latest window erases its stored profile and get
ready to capture profile of the next batch of newly arriving
data. This process continues as long as the stream exists.

3.2 Half-Space Trees
Definition An HS-Tree of depthh is a full binary tree con-
sisting of2h+1 − 1 nodes, in which all leaves are at the same
depth,h.

When constructing a tree, the algorithm expands each node
by picking a randomly selected dimension,q, in the work
space(to be described later in this section) associated with
the node. Using the mid-point ofq, the algorithm bisects the
work space into two half-spaces, thus creating the left child
and right child of the node. Node expansion continues un-
til the maximum depth (i.e.,h or maxDepth) of all nodes is
reached.

Each node records the mass profile of data in a work space
that it represents, and has the following elements: (i) arrays
min andmax, which respectively store the minimum and
maximum values of each dimension of the work space rep-
resented by the node; (ii) variablesr andl, which record the
mass profiles of data stream captured in the reference win-
dow and latest window, respectively; (iii) variablek, which
records the depth of the current node; and (iv) two nodes rep-
resenting the left child and right child of the current node,
each associated with a half-space after the split. Figure 1 de-
picts an example window of (two-dimensional) data that is
partitioned by a simple HS-Tree.� �� � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � �� �� �Y X
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Figure 1: An example of data (in a window) partitioned by a
simple HS-Tree.

Creating diverse HS-Trees is crucial to the success of our
ensemble method. This is achieved by using a procedure,



Initialise Work Space, right before the construction ofeach
tree. Assume that attributes’ ranges are normalised to [0, 1]
at the outset. Letsq be a real numberrandomly and uni-
formly generated from the interval [0, 1]. A work range,
sq ± 2 · max(sq, 1 − sq), is defined for every dimensionq
in the feature spaceD. This produces a work space that is a
random perturbation of the original feature space. Since each
HS-Tree is built from a different work space (defined asmin
andmax in Algorithm 1), the result is an ensemble of diverse
HS-Trees.

Algorithm 1 : BuildSingleHS-Tree(min,max, k)
Inputs: min & max - arrays of minimum and maximum
values for every dimension in a Work Space,
k - current depth level
Output: an HS-Tree
1: if k == maxDepth then
2: returnNode(r ← 0, l← 0) {External node}
3: else
4: randomly select a dimensionq
5: p← (maxq +minq)/2
6: {Build two nodes (Left& Right) from a split into

two equal-volume half-spaces.}
7: temp← maxq; maxq ← p
8: Left← BuildSingleHS-Tree(min,max, k + 1)
9: maxq ← temp; minq ← p

10: Right← BuildSingleHS-Tree(min,max, k + 1)
11: returnNode(Left,Right, SplitAtt ← q,

SplitV alue ← p, r ← 0, l← 0)
12: end if

Algorithm 1 shows the procedure for building a single HS-
Tree. Each internal node is formed by randomly selecting a
dimensionq (Line 4) to form two half-spaces; the split point
is the mid-point of the current range ofq. The mass variables
of each node,r and l, are initialised to zero during the tree
construction process.

Recording mass profile in HS-Trees. Once HS-Trees are
constructed, mass profile of normal data must be recorded in
the trees before they can be employed for anomaly detection.
The process involves traversing every instance in a window
through each HS-Tree. Algorithm 2 shows the process where
instances in the reference window will update massr; and
massl is updated using instances in the latest window. These
two collections of mass values at each node,r and l, repre-
sent the data profiles in the two different windows. They are
used in Streaming HS-Trees, which will be described in Sec-
tion 3.3.

Algorithm 2 : UpdateMass(x,Node, referenceWindow)

Inputs: x - an instance,Node - a node in an HS-Tree
Output: none
1: (referenceWindow)?Node.r++ : Node.l++
2: if (Node.k < maxDepth) then
3: LetNode′ be the next level ofNode thatx traverses
4: UpdateMass(x,Node′, referenceWindow)
5: end if

Anomaly score. Mass in every partition of an HS-Tree
is used to profile the characteristics of data. Letm[i] be
the mass in a half-space partition at depth leveli of an HS-
Tree. Under uniform mass distribution, mass values between
any two partitions at levelsi and j are related as follows:
m[i]×2i = m[j]×2j .When the distribution is non-uniform,
the following inequality establishes an ordering between par-
titions at different levels:m[i]× 2i < m[j]× 2j . We use this
property to rank anomalies.

LetScore(x, T ) be a function that traverses a test instance
x from the root of an HS-Tree (T) until a terminal node. This
function then returns the anomaly score ofx by evaluating
Node∗.r × 2Node

∗.k, whereNode∗.k being the depth level
of the terminal node containingNode∗.r instances. Here,
a terminal node, orNode∗, is a node that has reached the
maximum depth, or a node that containssizeLimit instances
or fewer.

The final score forx is the sum of scores obtained from
each HS-Tree in the ensemble:

∑

T∈HS-Trees
Score(x, T ).

In practice,sizeLimit is not a critical parameter, and a
good default setting is0.1ψ, whereψ is the window size.
We want a large value formaxDepth so that a large num-
ber of subspaces is used to capture the data profile in a com-
prehensive manner. But in practice, this setting is limited by
the amount of computer memory available for tree construc-
tion. In our computer, we setmaxDepth to 15, which is
adequate for capturing data stream profile. Streaming HS-
Trees is able to learn data stream profile using small samples;
hence, a small window size ofψ = 250 is sufficient for our
experiments. The ensemble uses 25 trees as this is a mod-
erate ensemble size (t) which can be easily incorporated in
most machines.

3.3 Streaming HS-Trees
Algorithm 3 shows the operational procedure for Streaming
HS-Trees. Line 1 builds an ensemble of Half-Space Trees.
Line 2 uses the firstψ instances of the stream to record its
initial reference mass profile in the HS-Trees. Since these in-
stances come from the initial reference window, only massr
of each traversed node is updated. After these two steps, the
model is ready to provide an anomaly score for each subse-
quent streaming point.

Mass r is used to compute the anomaly score for each
streaming point (Line 8). The recording of mass for each
subsequent streaming point in the latest window is then car-
ried out on massl (Line 9). At the end of each window, the
model is updated. The model update procedure is simple—
before the start of the next window, the model is updated to
the latest mass by simply transferring the non-zero massl
to r (Line 14). This process is fast because it involves no
structural change of the model. After this, each node with a
non-zero massl is reset to zero (Line 15).

Time and Space Complexities:The four key operations
in the main loop of Algorithm 3 are: scoring (Line 8), up-
dating mass (Line 9), model update (Line 14) and model re-
sets (Line 15). For each of the first two operations, every



Algorithm 3 : Streaming HS-Trees(ψ, t)
Inputs: ψ - Window Size,t - number of HS-Trees
Output: s - anomaly score for each streaming instancex

1: Build t HS-Trees : Initialise Work Space and call Algo-
rithm 1 for each tree

2: Record the first reference mass profile in HS-Trees:
for each treeT , invoke UpdateMass(x, T.root, true) for
each itemx in the firstψ instances of the stream

3: Count← 0
4: while data stream continuesdo
5: Receive the next streaming pointx
6: s← 0
7: for each treeT in HS-Treesdo
8: s← s+ Score(x, T ) {accumulate scores}
9: UpdateMass(x, T.root, false) {update massl in T}

10: end for
11: Reports as the anomaly score forx
12: Count++
13: if Count == ψ then
14: Update model :Node.r ← Node.l for every node

with non-zero massr or l
15: ResetNode.l ← 0 for every node with non-zero

massl
16: Count← 0
17: end if
18: end while

instance is traversed from a tree’s root to a terminating node
(i.e.,O(h)); the last two operations each accesses at mostψ
nodes but occursn

ψ
times over the entire stream. Hence the

(average-case) amortised time complexityfor n streaming
points isO(t(h+1)); the worst-case isO(t(h+ψ)), which oc-
curs when model update and reset are performed between
streaming data. These time complexities are constant when
the maximum depth level (h), ensemble size (t) and the win-
dow size (ψ) are fixed.

In Streaming HS-Trees, each arriving instance is first pro-
cessed and then discarded, before the next is processed. This
forms a one-pass algorithm that uses a finite memory to pro-
cess infinite data streams. Thespace complexityfor HS-
Trees isO(t2h) which is also a constant with fixedt andh.

4 Experimental Setup
Data: Columns 2 to 4 of Table 2 summarise the six large
datasets used in this study. SMTP and HTTP (from KDD Cup
99) are streaming data involving network intrusions. HTTP is
characterised by sudden surges of anomalies in some stream-
ing segments. SMTP does not have surges of anomalies,
but possibly exhibits some distribution changes within the
streaming sequence.

In practice, it is hard to quantify whether a distribution
change has indeed occurred within a stream. For this rea-
son, we derive a dataset, SMTP+HTTP, containing the SMTP
data instances follow by the HTTP data instances. We ex-
pect a distribution change to occur when the communication
protocol is switched from SMTP to HTTP.

COVERTYPE is a UCI dataset [Asuncion and Newman,
2007] commonly used in data stream research. We split the
anomaly class into several small groups and placed them in
different segments of the dataset in order to simulate short
bursts of anomalies in different streaming segments.

SHUTTLE (from UCI) and MULCROSS [Rocke and
Woodruff, 1996] are datasets with little or no distribution
change. However, MULCROSS contains dense clusters of
anomalies that are harder to detect than scattered anomalies.

Experimental Settings: The parameter settings for
Streaming HS-Trees have been discussed earlier in Section 3.
In addition, all the methods are implemented in Java and all
experiments were conducted on a 3GHz Pentium CPU with
1GB RAM.

Once the anomaly scores for all instances (of a segment in
the data stream or of the entire dataset) were obtained, the
instances were ranked based on their anomaly scores. From
this ranking and the ground truth, we then computed the AUC
(Area Under receiver operating characteristic Curve) [Hand
and Till, 2001] to measure the performance of all anomaly
detectors reported in this paper.

In all experiments, we conducted 30 independent runs of
each algorithm on each dataset, and then computed the aver-
age results. A t-test at 5% level of significance was used to
compare performance levels of the algorithms.

5 Experimental Results
We report the results of the experiments in this section. First,
we assess the effectiveness of model adaptation to varying
data distribution. This is done by comparing Streaming HS-
Trees that performs regular updates of its model (denote this
as HSTa), versus Streaming HS-Trees without model update
(we denote this model as HSTn, which only learns from the
firstψ instances of the stream).

Model Adaptation Performance: Unlike HSTa, Table
2 (Columns 5 and 6) shows that HSTn only works well
in datasets with no change in distribution (i.e., SHUTTLE
and MULCROSS). It performs poorly when a distribution
change occurs within the data (e.g., SMTP, SMTP+HTTP,
and COVERTYPE). These results are consistent with Figure
2, where HSTn degrades when there are changes in certain
streaming segments of SMTP, SMTP+HTTP, and COVER-
TYPE. Using two artificial datasets, we also confirm that
HSTn does not work well when there is a drift in normal
data, whereas HSTa works well when there is a drift in ei-
ther anomalies or normal data. Details of the artificial data
are omitted here due to space constraints.

Comparison with Hoeffding Trees: Here, we compare
HSTa with Hoeffding Trees (HT) as well as HT with On-
line Coordinate Boosting (BoostHT). For HT and BoostHT,
we use the probability of predicting a negative class (i.e., a
normal point) as the anomaly score—a true anomaly gener-
ally gets a low prediction probability, while a normal point
gets a high probability. This serves as a ranking measure for
anomaly detection. We employ the Java implementations of
HT and BoostHT developed by Bifetet al. [2009].

In terms of the overall AUC scores (c.f. Columns 6 to 8
of Table 2), we expect Hoeffding Tree (HT) to produce the



Data Dimension- AUC Runtime
Dataset Size ality Anomaly HSTn HSTa HT BoostHT HSTa HT
HTTP 567497 3 attack (0.4%) .982 .996 .994 .998 48 227
SMTP 95156 3 attack (0.03%) .740 .875 .858 .692 10 39

SMTP+HTTP 662653 3 attack (0.35%) .387 .996 .991 .993 57 272
COVERTYPE 286048 10 outlier (0.9%) .854 .991 .998 .968 25 124
MULCROSS 262144 4 2 dense clusters (10%) .998 .998 1.00 1.00 26 114

SHUTTLE 49097 9 class 2,3,5-7 (7%) .999 .999 .991 .984 6 21

Table 2: Average AUC scores for Streaming HS-Trees with no model updates (HSTn) and with regular model updates (HSTa),
Hoeffding Tree (HT), and HT with boosting (BoostHT). Using HSTa as a reference, scores lower than HSTa are underlined, and
scores higher than HSTa are printed in boldface. Runtime is measured in seconds. The figures in brackets are the proportions
of anomalies.

best overall results because it is an oracle-informedmulti-
class classifier—it is given the advantage of using the actual
positive and negative class labels for training, and this is done
immediatelyafter each new instance is scored. In contrast,
Streaming HS-Trees with regular model updates (HSTa) uses
only normal data for training.

Because HT is an optimistic baseline, any one-class
anomaly detector for evolving data streams that performs
comparably to HT shall be deemed as a competitive method.
Interestingly, Table 2 shows that HSTa actually gives higher
AUC scores on four (i.e., HTTP, SMTP, SMTP+HTTP, and
SHUTTLE) out of six datasets tested, as compared to HT.
This observation is further examined in Figure 2, which
shows that HSTa surprisingly outperforms HT in HTTP (seg-
ment 2), SMTP (segments 1 and 5), SMTP+HTTP (segment
1) and SHUTTLE (segment 1). HT is unable to cope with
distribution changes in these segments, causing its detection
performance to degrade.

Table 2 shows that BoostHT does not improve the perfor-
mance of HT significantly. In fact, BoostHT performs poorly
on SMTP, which is the most imbalanced dataset used in this
study. This could be due to overfitting of the boosted model.

We also stress test the methods using datasets in which only
20% of the data are labelled. We find that HSTa outperforms
HT on smaller datasets (namely SHUTTLE and SMTP) due
to its ability to learn with fewer instances. Details of this
experiment will be given in a future publication.

Runtime Performance: Hoeffding Tree has the ability to
adapt its tree structure to streaming data—it uses Hoeffding
Bound to decide the best splitting attribute when incremen-
tally inducing a decision tree from a data stream. However,
this flexibility comes with a price—the need to modify the
tree causes HT’s runtime to be four to six times slower than
Streaming HS-Trees, as shown in the last two columns of Ta-
ble 2.

Unlike Hoeffding Trees, Streaming HS-Trees does not
modify or extend the tree structure during the streaming pro-
cess, after it was first built. Even the tree construction pro-
cedure for Streaming HS-Trees is very efficient because the
process requires no evaluation criteria for dimension or split
point selections.

Effects of Parameters:Using four of the datasets for illus-
tration, Figure 3(a) shows that the AUC scores of HSTa reach
high values with 10 trees, and the scores improve steadily as
the ensemble size increases. Using the SHUTTLE dataset as

an example, Figures 3 (b) to (d) show that the effects of differ-
ent parameter settings diminish as the ensemble size grows.
This is due to the power of ensemble learning—while individ-
ual base learners (i.e., HS-Trees) may be weakened by non-
optimal parameter settings for a problem at hand, the combi-
nation of these weak learners still produces reasonably good
results.

6 Concluding Remarks
The proposed anomaly detection algorithm, Streaming HS-
Trees, satisfies the key requirements for mining evolving data
streams: (i) it is a one-pass algorithm withO(1) amortised
time complexity andO(1) space complexity, which is capable
of processing infinite data streams; (ii) it performs anomaly
detection and stream adaptation in a seamless manner.

Our empirical studies show that Streaming HS-Trees with
the regular model update scheme is robust in evolving data
streams. In terms of detection accuracy, Streaming HS-Trees
is comparable to the oracle-informed Hoeffding Tree (an op-
timistic baseline). In terms of runtime, Streaming HS-Trees
outperforms Hoeffding Tree. Our results also show that the
performance of Streaming HS-Trees is robust against differ-
ent parameter settings.

References
N. Abe, B. Zadrozny, and J. Langford. Outlier detection by

active learning. InProceedings of the 12th ACM SIGKDD,
2006.

A. Asuncion and D. Newman. Uci machine learning reposi-
tory. 2007.

V. Barnett and T. Lewis.Outliers in Statistical Data. John
Wiley, 1994.

S.D. Bay and M. Schwabacher. Mining distance-based
anomalies in near linear time with randomization and a
simple pruning rule. InProceedings of the 9th ACM
SIGKDD, 2003.

A. Bifet, G. Holmes, B. Pfahringer, R. Kirkby, and
R. Gavald̀a. New ensemble methods for evolving data
streams. InProceedings of the 15th ACM SIGKDD, 2009.

L. Breiman. Random forests.Machine Learning, 45:5–32,
2001.



HSTn HSTa HTHSTn HSTa HT

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5

A
U

C

Progression of data stream (120000)

0 1 200 104 101

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5

A
U

C

Progression of data stream (120000)

0 1 200 104 101

[1] "Sh ttl itCl 4 5 1 t 10000 # 706 0 999

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5

A
U

C

Progression of data stream (20000)

13 1 11 4 1

o

o

o

o

o

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5

A
U

C

Progression of data stream (20000)

13 1 11 4 1

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5

A
U

C

Progression of data stream (150000)

30
1 200 105 100

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5

A
U

C

Progression of data stream (150000)

30
1 200 105 100

(a) HTTP (b) SMTP c) SMTP+HTTP

0.4

0.6

0.8

1.0

1 2 3 4 5

A
U

C

Progression of data stream (60000)

726 0 144 576 0

o

o

o

o

o

0.4

0.6

0.8

1.0

1 2 3 4 5

A
U

C

Progression of data stream (60000)

726 0 144 576 0

[1] "DiffA l i C 1 7 1 t 1000 # 96 0 995 0 994

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5
A

U
C

Progression of data stream (60000)

598 611 585 606 219

o

o

o

o

o

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5
A

U
C

Progression of data stream (60000)

598 611 585 606 219

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5

A
U

C

Progression of data stream (10000)

706 713 721 717 654

o

o

o

o

o

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5

A
U

C

Progression of data stream (10000)

706 713 721 717 654

(d) COVERTYPE (e) MULCROSS (f) SHUTTLE

Figure 2: AUC scores in five segments. The number on top of each segment is the number of anomalies in that segment. The
number in bracket is the number of items in each segment.
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Figure 3: As the ensemble size grows, the effects of different parameter settings on the detection performance tend to diminish.
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This paper presents a novel ranking framework for content-based multimedia information retrieval

(CBMIR). The framework introduces relevance features and a new ranking scheme. Each relevance
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1. Introduction

We have witnessed a substantial progress in the acquisition
and storage of digital media such as images, video and audio.
With the rapid increase of digital multimedia collections, effective
and efficient retrieval techniques have become increasingly
important. Many existing multimedia information retrieval sys-
tems index and search the multimedia databases based on textual
information such as keywords, surrounding text, etc. However,
the text-based search suffers from the following inherent draw-
backs [1,2]: (i) the textual information is usually nonexistent or
incomplete with the emergence of massive multimedia data-
bases; (ii) the textual description is not sufficient for depicting
subjective semantics since different people may describe the
content in different ways; and (iii) some media contents are
difficult to be described in words.

To address these problems, content-based multimedia infor-
mation retrieval (CBMIR) is proposed and has attracted a lot of
research interest in recent years [1,3–6]. In a typical CBMIR
setting, a user poses a query instance to the system in order to
retrieve relevant instances from the database. However, due to
the semantic gap [3,4] between high-level concepts and low-level

features, the list returned by the initial search may not be good
enough to satisfy the user’s requirement. Thus, relevance feed-
back [7,8] is usually employed to allow the user to iteratively
refine the query information by labeling a few positive instances
as well as negative instances in each feedback round.

The performance of a CBMIR system relies on the accuracy of
its ranking results. Thus, ranking is the central problem in CBMIR,
and many researchers have endeavored to design a fast and
effective ranking method [1,4,5]. A key ingredient in ranking is
the measure used for comparing instances in the database with
respect to the query. Many existing methods (e.g., [9–11,2]) use
distance as the core ranking measure.

This paper presents a novel ranking framework for CBMIR
that does not use distance as the ranking measure, which is
fundamentally different from the above-mentioned methods.
Our framework uses some form of ranking models to produce a
relevance feature space. It first builds a collection of ranking
models and the output of each model forms a relevance feature.
Then, the models are used to map every instance from the original
feature space to a new space of relevance features. Finally, the
ranking and retrieval of instances, based on one query and
relevance feedbacks, are computed in the new space using our
proposed ranking scheme, which ranks instances based on the
weighted average of relevance feature values.

Our analysis shows that the power of the proposed framework
derives primarily from the relevance features and secondarily
from the ranking scheme. The framework has linear time and
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space complexities with respect to the database size. The on-line
processing time is constant when the number of relevance
features is fixed, no matter how many original features are used
to represent an instance. These characteristics enable the pro-
posed framework to scale up to large databases. In addition, our
framework has a good tolerance to irrelevant features.

The rest of this paper is organized as follows. Section 2 reviews
related work. Section 3 introduces our framework, followed by
a detailed description in Section 4. Section 5 reports empirical
studies, and Section 6 discusses related issues. Finally, this paper
concludes in Section 7.

2. Related work

Many ranking methods employ distance as the core ranking
measure [1,4,5]. In the case of retrieval with one query without
relevance feedback, the majority of previous works have focused
on different variants of distance metrics. The simplest way is to
use a single distance metric, e.g., Euclidean distance or Manhattan
distance. Here instances that lie near to a given query are ranked
higher than instances far away from the query. However, these
distance metrics are global measures and they might not produce
the best results for all queries. Thus, researchers have investigated
distance metrics that can be tailored to each query. For example,
based on the manifold ranking algorithm [12], He et al. [9] have
proposed the MRBIR method which implicitly learns a manifold
metric to produce rankings.

In relevance feedback, the additional information provided by
the user offers more flexibility in the design of effective ranking
methods. Here the query and positive feedbacks are usually
considered as positive instances, and negative feedbacks are nega-
tive instances. The refinement can be done in three ways. First, the
distance metric for the initial query session can be refined based
on pair-wised distance constraints derived from positive and
negative instances. Commonly used techniques include distance
metric learning [13,14], kernel learning [15], and manifold learning
[16,17].

Second, instead of refining the distance metric, we can also
tackle the problem by designing appropriate ranking schemes. For
example, MARS (Multimedia Analysis and Retrieval System) [18]
employs a query-point movement technique which estimates the
‘‘ideal query point’’ by moving it towards positive instances and
away from negative ones. The ranking is produced by measuring
distance with respect to the ideal query after the movement.
Giacinto and Roli [10] proposed the InstRank method based
on the idea that an instance is more likely to be relevant if
its distance to the nearest positive instance is small, while an
instance is more likely to be irrelevant if its distance to the
nearest negative instance is small. Qsim [11] advocates ranking
instances based on the query-sensitive similarity measure, which
takes into account the queried concept when measuring simila-
rities. Note that these methods are all based on some predefined
or learned distance metrics.

Third, some methods transform the CBMIR problem into a
classification problem, and solve it using classification techniques
such as support vector machine [19] and Bayesian method [2].
A representative method called BALAS [2] first estimates the
probability density function of positive and negative classes, and
then the ranking is produced within a Bayesian learning framework.
However, most classification methods are designed to classify
instances into a fixed number of classes and are not designed for
ranking instances. Thus, the ranking results might be suboptimal.

This paper proposes to rank instances through a new frame-
work that does not require distance calculation—a computation-
ally expensive process. This is fundamentally different from most

existing methods. Our framework is able to deal with retrieval
tasks with one query as well as in relevance feedback. In contrast,
most of the above-mentioned methods were designed to be used
in relevance feedback only, e.g., InstRank, Qsim and BALAS.

Note that meta-search [20] employs an ensemble of ranking
models for information retrieval. However, this technique aims at
improving the retrieval performance by combining the ranking
results returned by multiple search engines. This is a different
problem from the one we addressed. It is also worth noting that
Rasiwasia et al. [21] proposed the query-by-semantic-example
method which maps and retrieves instances in a semantic space.
Here a set of semantic-level concepts has to be predefined in
order to construct the semantic features. On the contrary, the
relevance features used in this paper are automatically generated—

users do not need to specify them.

3. The proposed framework

Generally speaking, a CBMIR system is composed of four parts
[22]: (i) a given multimedia database D; (ii) a query Q; (iii) a
model FðQ,DÞ to model the relationships between instances in Q
and D; and (iv) a ranking scheme RðD9QÞ which defines an
ordering among the database instances with respect to Q. On
the other hand, a ranking system consists of three components:
(i) a given data set D̂; (ii) a model F̂ðD̂Þ to model the relationships
between instances in D̂; and (iii) a ranking scheme R̂ðD̂Þ which
produces an ordering for all the instances in D̂. Ranking in CBMIR
are typically provided by distance metrics. In this work, we show
an alternative method, that is more suitable for CBMIR, using an
ensemble of ranking systems.

Here, we propose to map the database D from the original
d-dimensional feature space Rd into a new space Rt to form a
new database D0 by using an ensemble of t ranking models, i.e.,
~F ¼ ½F̂1,F̂2, . . . ,F̂t�. Each ranking model is regarded as a feature
descriptor, and the ranking output is the feature value; for an
instance, the t ranking outputs from the t ranking models
constitute the new t-dimensional feature vector. Given a query
Q, we first map it into the new space to obtain Q0, and then we
employ a ranking scheme R0ðD09Q0Þ to rank the instances in D0.
Note that R0 can be any existing ranking scheme. But we propose a
new ranking scheme based on the weighted average of relevance
feature values to avoid the costly distance or similarity calcula-
tion. We show in this paper that the ensemble of ranking models,
i.e., ~F, can be implemented using an anomaly detector called
Isolation Forest, or iForest [23].

iForest builds an ensemble of isolation trees (or iTrees) to
detect anomalies. Each iTree is constructed on a fix-sized random
sub-sample of the given data set. The tree growing process
recursively random-partitions the sub-sample along axis-parallel
coordinates until every instance is isolated from the rest of the
instances or a specified height limit is reached. Each iTree is a
ranking model which describes a data profile from the view of the
underlying sub-sample and produces a ranking output in terms of
path length for any test instance. The ranking output can be
interpreted as: a short path length indicates irrelevance to the
profile because an instance, which has different data character-
istics from the majorities, is easily isolated by a few random
partitions; on the other hand, a long path shows relevance to the
profile. For anomaly detection tasks, instances identified to be
irrelevant to the various profiles modeled by a number of iTrees
are deemed to be anomalies, and instances relevant to the profiles
are normal points. The algorithms to produce iTree and iForest are
provided in Appendix A.

In our framework, we first build an iForest, which is composed
of t iTrees, to map instances from the original feature space to the
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relevance feature space, i.e., Rd-Rt . Different iTrees profile
different aspects of the multimedia database. We treat each iTree
as a feature descriptor, and the feature value (i.e., path length) is a
measure of relevance with respect to the profile modeled by the
iTree. The representation of an instance in the new space is a
vector of relevance features; hence the name relevance feature

mapping. To implement R0ðD09Q0Þ, we have also designed a new
ranking scheme based on the weighted average of relevance
feature values. We call our framework ReFeat which refers to
the retrieval based on Relevance Feature mapping.

4. ReFeat

ReFeat has two stages. The first off-line modeling stage builds
an iForest to perform relevance feature mapping and the second
on-line retrieval stage ranks instances with respect to the query. We
first describe the two stages in the next two subsections, followed
by explaining why our ranking scheme works in Section 4.3. We
then provide our treatment for relevance feedback in Section 4.4.
The algorithmic complexity is analyzed in the last subsection.

4.1. Off-line modeling and relevance feature mapping

In off-line modeling, we build an iForest from the given
database D. Here t iTrees are constructed, each built on a sub-
sample of randomly selected c instances from D. After iForest is
built, D is mapped to D0 as follows.

Let ‘iðxÞ denotes the path length of an instance xAD on an
iTree Ti (iAf1;2, . . . ,tg). We map x to the relevance feature space
as: x0 ¼ ½‘1ðxÞ,‘2ðxÞ, . . . ,‘tðxÞ�

T . All the instances in D are mapped
through the relevance feature mapping to form a new database
D0 ¼ fx098xADg. Note that this stage does not require any user
intervention. Thus, D0 is generated off-line to accelerate the
following on-line retrieval process.

4.2. On-line retrieval with one query

Given a query instance q, ReFeat maps it to q0 ¼ ½‘1ðqÞ, . . . ,
‘tðqÞ�

T . To retrieve instances relevant to q, we first assign a weight
to each feature due to q: a high weight is assigned to a feature
which signifies that q is relevant to the profile modeled by
the feature; otherwise, a low weight is assigned. Then the ranking
score for every instance in the database is computed using
a weighted average of its relevance feature values. The instances
having the highest scores are regarded to be the most relevant
to the query. To implement this, we define a weight for feature
i as:

wiðqÞ ¼
‘iðqÞ

cðcÞ
�1: ð1Þ

cðcÞ is a normalization term which estimates the average path
length of a c-sized iTree. The cð�Þ function is defined as follows [23]:

cðnÞ ¼
2ðlnðn�1Þ�ðn�1Þ=nþEÞ if n41,

0 if n¼ 1,

(
ð2Þ

where E� 0:5772 is the Euler’s constant.
Finally, the ranking score of an instance x with respect to the

query q is given by the weighted average of feature values:

Scoreðx9qÞ ¼
1

t

Xt

i ¼ 1

ðwiðqÞ � ‘iðxÞÞ: ð3Þ

Eq. (3) gives high scores to instances which have long path lengths on
many highly weighted features induced by the query; and it produces
low scores to instances which have short path lengths on many lowly
weighted features. Scoreðx9qÞ can be negative. If required, strictly

positive scores can be produced by using an exponential mapping.
For the rest of this paper, we refer to the ranking based on the
weighted average of feature values as our ranking scheme.

It is worth noting that the off-line modeling of iForest utilizes
no distance or similarity measure [23], and the proposed on-line
ranking scheme also avoids distance or similarity calculation
through Eqs. (1) and (3). This characteristic differentiates ReFeat
from most existing methods which are based on certain distance
or similarity measures.

4.3. Understanding the ranking scheme

Our ranking scheme is based on the idea that similar instances
share many relevance features with long path lengths from
iTrees; whereas dissimilar instances have many relevance fea-
tures with short path lengths.

A region defined by a long path length in an iTree has many same
splitting conditions, where each condition is defined by an internal
node along the path from the root to the external node. Thus,
intuitively, instances falling into each of these regions (defined by
long path lengths) are likely to be more similar than those instances
falling into other regions. This explains why we use Eq. (1) to assign
high weights to iTrees where the query is estimated to have long
path lengths—a big contribution to the relevance score through
Eq. (3) if the test instance also achieves long path lengths on these
iTrees. On the other hand, if an instance is estimated to have a short
path length on an iTree, then it is most likely to be different from the
instances falling into the regions defined by long-path-length
external nodes. Thus, Eq. (1) assigns negative weights to the iTrees
in which the query has short path lengths—via Eq. (3) to penalize
the test instances with long path lengths in these iTrees. In addition,
if the query is estimated to have a path length around cðcÞ, then we
simply assign a small or zero weight because instances having
similar path lengths are likely to be in different regions.

In the following paragraphs, we first provide the topologically
distinct iTree structures in the setting we have used in our
experiment. Then, we show that the majority of iTrees produced
from a database have distinct long and short path lengths that
allow our scheme to identify similar instances from dissimilar
ones through ranking.

The parameters we have used in the experiment are: the sub-
sample size c¼ 8 and the height limit h¼ dlog2ce ¼ 3. This
produces a total of 17 topologically distinct tree structures as
shown in Fig. 1. To obtain the path length of an instance x from an
iTree, x traverses from the root of the iTree to an external node;
and the path length is computed as the number of edges traversed
plus the estimated average path length of an unbuilt subtree from
a sample of Size instances which is cðSizeÞ, where Size is the
number of sub-sample instances at the external node and cð�Þ is
defined in Eq. (2). Note that out of the 17 structures depicted in
Fig. 1, structures (a)–(g) all have the minimum path length equal
to 1; and structures (h)–(p) have the minimum path length equal
to 2. These structures have the maximum path lengths vary
from 3þc(5), 3þc(4), 3þc(3) to 3þc(2). Only structure (q) is a
balanced tree which gives the same path length for all instances.

An iTree is only useful if it is imbalanced and provides long and
short path lengths that differentiate similar and dissimilar
instances. It is also preferred to have the maximum path length
in only one external node that uniquely identifies the neighbor-
hood region. A total of 10 structures, i.e., (a)–(f) and (h)–(k), satisfy
this essential property,1 where the maximum path lengths are

1 Structure (d) is an exception but it still stipulates the neighborhood region

by at least two splitting conditions. We include (d) here to facilitate the following

analysis.
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3þc(5), 3þc(4) and 3þc(3). A total of six structures, i.e., (g) and
(l)–(p), are also good by providing short path lengths. An iTree like
structure (q) which gives the same path length for all instances is
useless for our purpose.

We employ d, which is the difference between the maximum
path length and the minimum path length of an iTree, to indicate
how imbalance the iTree is. Out of the 17 topologically distinct
tree structures, we have only eight d values: 0, 1þc(2), 2þc(2),
1þc(3), 1þc(4), 2þc(3), 2þc(4), and 2þc(5), which range from
balanced tree (q) to highly imbalanced tree (a).

Using the COREL image database [24], we generate 1000 iTrees
and then tally the number of trees for each d value. Fig. 2(a) shows
the result: more than 75% of the iTrees have dZ1þcð3Þ which
represents the 10 imbalanced iTree structures (a)–(f) and (h)–(k).
The near-balanced trees (having 0odr2þcð2Þ) constitute about
23% of the iTrees which represents the six structures (g) and
(l)–(p). The balanced iTrees constitute less than 1%. The result
shows that the majority of the generated iTrees are useful for
identifying similar instances as well as dissimilar instances.

To further enhance the understanding, we provide statistics of
the path lengths in the following case study. We select a rose
image (Fig. 2(b)) from the COREL database as a query. Another
rose image (Fig. 2(c)) is considered as relevant, and a beach image
(Fig. 2(d)) is treated as irrelevant. We estimate the path lengths of
the three images on the above-generated 1000 iTrees. Considering
the 17 distinct iTree structures, we have seven possible path
length values ranging from the longest to the shortest: 3þc(5),
3þc(4), 3þc(3), 3þc(2), 3, 2, and 1. We then divide the 1000

iTrees into seven categories based on the query’s path lengths. In
each category, we calculate the proportion of iTrees that produce
different path lengths for the relevant image and the irrelevant
image, and the results are provided in Table 1. It shows that: on
highly weighted iTrees (in which the query has long path lengths,
shown in top rows in Table 1(a) and (b)), the relevant image has
significantly more long path lengths than the irrelevant image; on
negatively weighted iTrees (in which the query has short path
lengths, shown in bottom rows in Table 1(a) and (b)), the relevant
image has noticeably less long path lengths. This explains why the
relevant image scores larger than the irrelevant one through Eq.
(3) in our ranking scheme. In this case, the scores for relevant and
irrelevant images are 1.14 and 0.89, respectively.

Also notice that the similarity between the relevant image and
the query is implied by the high proportion of iTrees when the
path length is matched between the two images (see the numbers
in the diagonal of Table 1(a)). The corresponding proportions of
iTrees are significantly less between the irrelevant image and the
query image, shown in Table 1(b).

4.4. On-line retrieval in relevance feedback

If feedbacks are available, we use them to refine the retrieval
result by modifying the feature weights. Here the query is
denoted by Q¼P [N , where P is the set of positive feedbacks
and the initial query; and N is the set of negative feedbacks. Begin
with the initial query q, they are initialized as follows: P ¼ fqg and

Fig. 1. The 17 unique iTree structures with c¼ 8 and h¼3. Circles (J) denote internal nodes, and squares (&) are external nodes. The figure in an external node indicates

the number of sub-sample instances split in the node, i.e., the ‘‘Size’’ of the node.
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N ¼Ø. Then, P and N are enriched with the instances labeled by
the user in the relevance feedback process.

If only positive feedbacks are provided, ReFeat puts them in P
and calculates the feature weights in the same way as that for the
initial query. Formally, ReFeat defines the weight of feature i due
to a positive feedback zþ AP as:

wþi ðz
þ Þ ¼

‘iðz
þ Þ

cðcÞ
�1: ð4Þ

Then the resultant weight for feature i due to P is obtained by
averaging the weights produced by all the positive instances in P:

wþi ðPÞ ¼
1

9P9
X9P9
k ¼ 1

wþi ðz
þ

k Þ: ð5Þ

Here 9 � 9 denotes the size of a set. Now by replacing wiðqÞ with
wþi ðPÞ in Eq. (3), a new ranking score can be produced for each
instance and a refined retrieval result is returned to the user.

When negative feedbacks are also provided in relevance feed-
back, ReFeat puts them in N and defines the weight in an
opposite way as for the initial query: a high weight is assigned to
a feature which signifies that a negative feedback is irrelevant to
the profile modeled by the feature; otherwise, a low weight is
assigned. To implement this, ReFeat calculates the weight for
feature i due to a negative feedback z�AN as:

w�i ðz
�Þ ¼ 1�

‘iðz
�Þ

cðcÞ
: ð6Þ

The resultant weight for feature i due to N is generated by
averaging over all negative instances in N :

w�i ðN Þ ¼
1

9N 9

X9N 9

s ¼ 1

w�i ðz
�
s Þ: ð7Þ

Now the final weight for feature i can be obtained by
aggregating wþi ðPÞ and w�i ðN Þ. The aggregation can be realized
in different ways. Here we use a simple summing method:
wiðQÞ ¼wþi ðPÞþgw�i ðN Þ, where gAð0;1� is a trade-off parameter
accounting for the relative weights of the contributions between
positive and negative instances. It is reasonable that positive
instances make more contribution to the final ranking than
negative ones. Since the farther an instance lies from positive
instances, the less likely that it is a relevant one. However, we can
not draw an opposite conclusion for negative instances: if an
instance lies far from negative instances, it is not necessarily
relevant, since it may be far from positive instances too. Similar
strategies were employed in previous works (e.g., [9,11]). The
empirical study presented in Section 5.2.6 also shows the efficacy
of this strategy.

Finally, ReFeat estimates the ranking score for every instance
in the database using Eq. (3) (by replacing wiðqÞ with wiðQÞ), and
returns the instances by ranking them in a descending order
according to their scores.

4.5. Complexity

We now analyze the time complexity of ReFeat. In the off-line
modeling stage, building the iForest model takes Oðtc log cÞ and
the mapping from D to D0 costs Oð9D9t log cÞ [23]. Thus, the total
time complexity is Oðð9D9þcÞt log cÞ. In the on-line retrieval
stage, the relevance feature mapping for the query costs

(a)2+c(5) 4.33

(d) (e) (f)

(b) (c)2+c(4) 3.85

(h)1+c(4) 2.85

2+c(3) 3.21

(i) (j) (k)1+c(3) 2.21� 
va

lu
e

(g)2+c(2) 2.15

(q)

(l)~(p)

0

1+c(2) 1.15

proportion (%)
0 5 10 15 20 25

Fig. 2. Statistics of iTrees and the sample images used in our case study. (a) The proportions of 1000 iTrees with different d values. (b) Query image. (c) Relevant image.

(d) Irrelevant image.

Table 1
The proportion (%) of iTrees that produce different path lengths for the relevant

image (Fig. 2(c)) and the irrelevant image (Fig. 2(d)) out of the number of iTrees

that estimate a specified path length for the query (Fig. 2(b)). For this query image,

the numbers of iTrees having path lengths 3þc(5), 3þc(4), 3þc(3), 3þc(2), 3, 2,

1 are 79, 99, 121, 162, 268, 189, 82, respectively.

Query’s path

length

Proportion of iTrees with path length

3þc(5) 3þc(4) 3þc(3) 3þc(2) 3 2 1

(a) Relevant image

3þc(5) 83.5 N/A N/A N/A 3.8 7.6 5.1

3þc(4) N/A 77.8 N/A 3.0 8.1 4.0 7.1

3þc(3) N/A N/A 73.6 8.3 7.4 7.4 3.3

3þc(2) N/A 1.2 5.6 74.1 9.3 5.6 4.3

3 1.9 1.5 7.1 6.3 75.7 4.5 3.0

2 2.1 3.2 4.2 4.8 7.4 77.2 1.1

1 4.9 4.9 3.7 2.4 3.7 2.4 78.0

(b) Irrelevant image

3þc(5) 29.1 N/A N/A N/A 19.0 15.2 36.7
3þc(4) N/A 33.3 N/A 7.1 21.2 23.2 15.2

3þc(3) N/A N/A 29.8 8.3 20.7 26.4 14.9

3þc(2) N/A 3.1 6.2 24.7 32.7 21.0 12.3

3 1.9 7.8 12.7 17.9 29.9 19.0 10.8

2 9.0 11.1 14.8 15.3 23.8 18.5 7.4

1 17.1 15.9 11.0 7.3 29.3 9.8 9.8
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Oðt log cÞ, calculating weights takes Oð9Q9tÞ, and producing rank-
ing scores for all instances in the database costs Oð9D9tÞ. Thus, for
a query session, ReFeat has a time complexity of Oðð9D9þ9Q9þ
log cÞtÞ. It is worth noting that 9Q9 is much smaller than 9D9, and
both t and c are fixed at the beginning of the off-line modeling
stage which do not change in on-line retrieval. Thus, ReFeat has
a linear time complexity with respect to 9D9 in both the off-line
modeling stage and the on-line retrieval stage, which makes it
possible to scale up to large multimedia databases. Table 2 lists
the time complexities of ReFeat as well as three other methods
for on-line retrieval. It shows that ReFeat has a relatively low
time complexity in on-line retrieval although it needs an addi-
tional modeling stage. Note that we also compare BALAS and
MRBIR in our experiments. Although it is difficult to analyze their
complexities, the experimental results show that BALAS and
MRBIR usually spend much longer time than ReFeat.

The space requirement of our off-line model is also linear with
respect to 9D9, since the database D0 costs Oð9D9tÞ and iForest
requires Oðð2c�1ÞtbÞ memory space only [23], where b is the
memory size taken by a tree node.

5. Experiments

The performance of ReFeat is evaluated with content-based
image and music retrieval tasks on COREL image database (which
is used in [24]) and GTZAN music database [25], respectively. The
image database consists of 10 000 COREL images that are col-
lected from 100 categories such as car, forest, sunset, tiger, etc.;
each category contains 100 images. As in [24], each image is
represented by a 67-dimensional feature vector which consists of
32 color features generated by HSV histogram, 24 texture features
derived from Gabor wavelet transformation and 11 shape features
including invariant moments, center coordinates, area and prin-
cipal axis orientation. The music database contains 1000 songs
which are uniformly distributed over 10 genres including classi-
cal, country, disco, hiphop, jazz, rock, blues, reggae, pop, and
metal. Each song is a 30-second excerpt which is stored as a
22 050 Hz, 16-bit, mono-audio file. Following the feature extrac-
tion steps in [26], we split each song into 3-second segments,
where a MFCC [25] feature vector is extracted from each segment
and the top 20 MFCC coefficients are kept to represent the
segment. The mean and the lower-triangular covariance matrix
of MFCC features are calculated and concatenated into a 230-
dimensional feature vector to represent the song. Note that there
is no feature selection although it may be beneficial. The same
features are used by all the compared methods because we are
only interested in the relative instead of absolute performance of
the methods.

Our experiments study the retrieval performance of ReFeat
both with one query and in relevance feedback. The initial queries
are chosen as follows: for the image database, we randomly select
five images from each category to obtain 500 initial queries; and
for the music database, we use every song in the whole database

and there are a total of 1000 initial queries. For a query, the
images/songs within the same category/genre are regarded as
relevant and the rest are irrelevant. We continue to perform
five rounds of relevance feedback for each query. In each round,
we randomly select two relevant and two irrelevant instances
as positive and negative feedbacks, respectively. Note that an
instance will not be considered for selection if it has been chosen
as a feedback in previous rounds. To simulate different users’
behavior, this relevance feedback process is repeated five times,
each with a different random series of feedbacks. Finally, we
report the average result over multiple runs for the initial query
and the subsequent rounds of feedback.

PR-curve is a commonly used performance measure in infor-
mation retrieval. It depicts the relationship between precision and
recall of a retrieval system. In the experiments, we employ PR-
curve to evaluate the retrieval performance with one query.
However, in relevance feedback, a single PR-curve is not enough
to reveal the performance changes with the increasing number
of feedbacks. Thus, we use Mean Average Precision (MAP) and
Precision at N (P@N) [4]. MAP is the average of precisions
computed at the point of each of the relevant instances in the
ranked sequence. P@N records the fraction of relevant instances in
the top-N ranked instances, and we empirically set N¼50 in the
following experiments. The higher the MAP and P@N values, the
better the performance. Notice that previous works (e.g., [10,11])
have included feedback instances in the evaluation of retrieval
performance. However, this calculation inflates the performance
since the feedbacks are labeled instances that should not be
displayed to the user. Thus, we have excluded feedbacks in our
performance evaluation.

The efficacy and efficiency of ReFeat are validated in the next
subsection, followed by empirical studies showing the effective-
ness of the relevance feature mapping, the utility of our ranking
scheme, the influence of increasing database dimension, and the
effect of different parameter settings in ReFeat. All the experi-
ments are conducted on a Pentium 4 machine with a 1.86 GHz
CPU and 2 GB memory.

5.1. Comparison with existing methods

In this subsection, we first compare ReFeat with the Euclidean
distance based method and a manifold ranking method MRBIR [9]
when no relevance feedback is performed. Then with relevance
feedbacks, Qsim [11], InstRank [10], MRBIR [9] and BALAS [2] are
employed for benchmarking. Here Qsim and InstRank are methods
for improving ranking calculation, and BALAS is a Bayesian learning
method. Because Qsim and InstRank are proposed to be used only
in relevance feedback for improving similarity calculation, we
employ Euclidean distance to measure the relevance so that they
can deal with query without feedbacks. BALAS also does not mean
to work with single query and there is no comparison of BALAS for
retrieval with one query. Note that we also include the chance
performance of random method (called Random) as a baseline
method.

There are three parameters in ReFeat: number of relevance
features t, sub-sample size c and trade-off parameter g. ReFeat is
not very sensitive to g when gA ½0:1,0:4�, and we set g¼ 0:25 for
both the image and music databases. The values of t and c are
problem-dependent. We set t¼1000, c¼ 8 for the image data-
base, and t¼1000, c¼ 4 for the music database. The effect of
the three parameters on the performance of ReFeat is studied in
Section 5.2. For MRBIR, we keep the default parameter settings as
in [9]: 200 nearest neighbors are used for constructing the
weighted graphs; the contribution of negative ranking scores is
weighted by 0.25; the trade-off parameter a is set to be 0.99
in the manifold ranking algorithm, which iterates 50 rounds to

Table 2
Time complexities of ReFeat, Euclidean, InstRank [10] and Qsim [11] for

on-line retrieval. Here d is the original dimension of the multimedia database D.

InstRank and Qsim are methods dealing with relevance feedback only.

Method With one query In relevance feedback

ReFeat Oðð9D9þ log cÞ � tÞ Oðð9D9þ9Q9Þ � tÞ

Euclidean Oð9D9� dÞ N/A

InstRank N/A Oð9D9� 9Q9� dÞ

Qsim N/A Oð9D9� 9Q9� ðdþ9P9ÞÞ
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obtain the final results. The only difference lies in the setting of dl

in computing Laplacian kernels: while [9] empirically sets
dl ¼ 0:05, we select the best dl from {0.0125,0.025,0.05,0.1,0.5,1}
and use 0.05 for the image database and 0.025 for the music
database. For BALAS, we generate five random instances to
represent each negative feedback (in addition to the feedback
instances selected from the database) to enable the estimation of
the probability density function. The threshold for determining
high trustworthy dimensions is kept to be 0.7 as in [2]. Qsim and
InstRank do not have parameters that need to be set.

5.1.1. Retrieval with one query

The PR-curves of ReFeat, Euclidean, MRBIR and Random for
retrieval with one query are presented in Fig. 3. It shows that on
the image database, ReFeat outperforms the other three com-
pared methods, and MRBIR is better than Euclidean; and on the
music database, ReFeat is better than Euclidean, MRBIR and
Random on most recall values, except that MRBIR achieves the
best precision when the recall value r0:2.

We also provide a detailed comparison in Table 3 to gain further
insight into the advantages of ReFeat. For each initial query, we
calculate the MAP and P@50 values using every compared method,
and present the average results in Table 3. A paired t-test at 5%
significance level is performed for the MAP (and P@50) series over
all queries, and we record the probability of rejecting the hypothesis
that ReFeat is significantly better than the compared method. The
average results in Table 3 reveal that ReFeat performs better than
Euclidean and MRBIR, and the t-test results show that the
difference is statistically significant. The only exception is that
ReFeat achieves no significant result against MRBIR on the music
database. These observations reveal the superior performance of
ReFeat for retrieval with one query.

5.1.2. Retrieval in relevance feedback

Fig. 4 shows the MAP and P@50 results for retrieval in
relevance feedback. Note that round 0 presents the retrieval
performance with one query only, and Euclidean is used as
the base method for Qsim and InstRank.

It is found in Fig. 4 that as the number of feedback rounds
increases, the retrieval performance of most methods tends to
improve. However, BALAS performs poor on the music database,
and we suspect that this might be caused by the violation of
feature independent assumption on the music database. Never-
theless, Fig. 4 clearly reflects that ReFeat achieves the best MAP
and P@50 no matter how many feedbacks are provided. Since
ReFeat has superior performance with both one query and

relevance feedbacks, we can conclude that ReFeat is highly
effective for CBMIR.

5.1.3. Processing time

The average on-line processing time of all compared methods
is tabulated in Table 4 where the shortest time at each round is
boldfaced. Note that the processing time for retrieval with one
query is reported in round 0, where the time costs of Qsim and
InstRank are filled by that of Euclidean.

Table 4 shows that ReFeat has the best efficiency except that
it spends a bit more time than Euclidean for retrieval with one
query on the image database. This implies that Euclidean

prefers low-dimensional databases and ReFeat is more efficient
on high-dimensional databases. We have provided a detailed
analysis in Section 5.2.3 on how the database dimension influ-
ences the retrieving time of the compared methods. Note that
ReFeat achieves the shortest and near constant processing time
regardless of the feedback round. The time is independent of the
number of feedbacks because the time complexity of ReFeat for
retrieval in relevance feedback, i.e., Oðð9D9þ9Q9Þ � tÞ (as shown in
Table 2), is dominated by Oð9D9� tÞ as 9Q959D9. InstRank also
has a near constant time cost because the distances calculated
in previous feedback rounds are saved for the following rounds.
MRBIR has to iteratively update the ranking result with expens-
ive large matrix operations, resulting in the highest on-line
retrieval time.

Although ReFeat has an off-line modeling stage, it costs only
2.87 s for the image database containing 10 000 images and 0.33 s
for the music database containing 1000 songs, respectively. We
believe that it pays to employ such an off-line modeling stage
because of the good retrieval performance and quick processing
time achieved by ReFeat for on-line retrieval.
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Fig. 3. PR-curves of ReFeat, Euclidean, MRBIR and Random for retrieval with one query. (a) COREL image database. (b) GTZAN music database.

Table 3
A detailed comparison (average MAP (�10�2), average P@50 (�10�2) and t-test)

of ReFeat against Euclidean and MRBIR for retrieval with one query.

Method COREL image database GTZAN music database

MAP P@50 MAP P@50

ReFeat 9.11 15.64 31.06 37.59

Euclidean 4.76 8.97 28.94 36.18

MRBIR 7.03 11.99 29.27 37.74

t-test results of ReFeat against:

Euclidean 4.6�10�28 1.4�10�29 2.7�10�14 2.0�10�4

MRBIR 2.3�10�7 2.5�10�9 1.9�10�10 0.7199
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5.2. Analysis

This subsection analyzes some important issues in relation to
ReFeat. We first empirically validate the effectiveness of the
relevance feature mapping and our ranking scheme. Then we
show the influence of increasing database dimension on the
compared methods. At the end of this subsection, we study the
effect of the three parameters in ReFeat and give some guide-
lines for selecting them. Note that the same conclusion can
always be made for both MAP and P@50. Thus, we only provide
the MAP results hereafter.

5.2.1. Relevance feature mapping

Recall that ReFeat is a two-stage process, where the first
maps database instances to a relevance feature space, and the
second ranks the instances in the new space. We conduct
experiments to show the effectiveness of our relevance feature
mapping in this subsection, and the efficacy of the proposed
ranking scheme is validated in the next subsection.

Previous experiments have already shown that ReFeat out-
performs existing methods which are conducted in the original
feature space. Here, we hypothesize that the performance of
existing methods can be improved using our relevance features.
Thus, we perform three distance based methods, i.e., Qsim,
InstRank and MRBIR, in our relevance feature space. The new
methods are named Qsim-RF, InstRank-RF and MRBIR-RF,
respectively. Table 5 presents the MAP results which are grouped
in pairs for ease of comparison. Exactly the same relevance
feature mapping is employed for all methods that use it. Note
that round 0 gives the results with one query, and the Euclidean
method performed in the original feature space is used as the
base method for Qsim and InstRank. Similarly, Euclidean dis-
tance measured in the relevance feature space is employed by
Qsim-RF and InstRank-RF at round 0.

As shown in Table 5, with the help of the relevance feature
mapping, Qsim-RF, InstRank-RF and MRBIR-RF significantly
outperform their original versions, i.e., Qsim, InstRank and
MRBIR, respectively. There are two exceptions on the music
database: the first is InstRank-RF which performs worse than
InstRank, and the second is for retrieval with one query,
Euclidean performs slightly better in the original space. Never-
theless, these observations show that our relevance feature space
is more suitable for retrieval than the original space, and thus, we
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Fig. 4. Average MAP and P@50 values of ReFeat, Qsim, InstRank, MRBIR, BALAS and Random for retrieval in relevance feedback. (a) COREL image database: MAP.

(b) COREL image database: P@50. (c) GTZAN music database: MAP. (d) GTZAN music database: P@50.

Table 4
Average on-line processing times (in millisecond) of ReFeat (RF), Qsim (QS),

InstRank (IR), MRBIR (MR) and BALAS (BA).

Round RF QS IR MR BA

(a) COREL image database

0 27.2 24.7 24.7 612.9 N/A

1 23.8 71.3 32.6 1172.4 262.8

2 24.0 146.3 33.4 1172.3 317.5

3 24.2 261.9 34.2 1172.3 373.0

4 24.4 417.9 34.9 1172.2 437.9

5 24.5 615.8 35.5 1172.1 506.0

(b) GTZAN music database

0 3.6 10.8 10.8 168.1 N/A

1 3.1 16.6 14.1 279.0 152.2

2 3.3 20.9 14.2 279.5 160.2

3 3.4 27.4 14.3 279.3 166.7

4 3.6 36.7 14.3 278.6 173.2

5 3.7 47.8 14.4 280.5 180.3
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can conclude that the power of ReFeat is largely derived from
the relevance feature mapping.

We also report the on-line processing time in Table 6. The time
costs of Qsim-RF and InstRank-RF are expected to be longer
than each of the original versions because the dimensionality of
the relevance feature space is significantly higher than that of the

original space. It is interesting to note that MRBIR-RF spends less
time than MRBIR in most cases. This indicates that it is easier
to find the underlying manifold in our relevance feature space, as
compared to that in the original space.

Despite these improvements, ReFeat is still significantly
better than the other three methods applied in the relevance
feature space (except that MRBIR-RF achieves the best perfor-
mance for retrieval with one query on the image database). The
processing time reported in Table 6 also shows that ReFeat has
the best efficiency among these methods. These results validate
the efficacy and efficiency of our proposed ranking scheme. We
will provide a more detailed analysis on our ranking scheme in
the next subsection.

5.2.2. The ranking scheme

This subsection analyzes our ranking scheme. ReFeat incor-
porates the query information into the feature weights. Here, we
employ the same weights in the existing methods to improve
their performance. Based on InstRank-RF, we design a new
method called InstRank-WRF which uses weighted Euclidean
distance instead of Euclidean distance in InstRank-RF. The
weights for the relevance features are calculated in exactly the
same way as that in ReFeat. InstRank-WRF is compared with
ReFeat and InstRank-RF in Fig. 5 and Table 7. It is shown that
InstRank-WRF outperforms InstRank-RF in most cases except
for retrieval with one query on the image database. These
observations show that the feature weights are not only useful
in our ranking scheme, but also in existing distance-based ranking
schemes. We also provide the retrieval performance of InstRank
in Fig. 5. Recall that InstRank performs better than InstRank-RF
on the music database. However, with the feature weights,
InstRank-WRF is now better than InstRank.

Overall, Fig. 5 and Table 7 reveal that ReFeat is superior
to InstRank-WRF in terms of both retrieval performance and

Table 6
Average on-line processing time (in millisecond) of ReFeat (RF), Qsim-RF

(QS-RF), Qsim (QS), InstRank-RF (IR-RF), InstRank (IR), MRBIR-RF (MR-RF)

and MRBIR (MR). The figures boldfaced are the smallest time on each feedback

round while the underlined indicate the smaller time in each grouped pair.

Round RF QS-RF QS IR-RF IR MR-RF MR

(a) COREL image database

0 27.2 345.5 24.7 345.5 24.7 955.5 612.9

1 23.8 461.9 71.3 421.6 32.6 1117.4 1172.4

2 24.0 540.1 146.3 422.4 33.4 1117.5 1172.3

3 24.2 660.7 261.9 423.1 34.2 1117.5 1172.3

4 24.4 823.1 417.9 423.8 34.9 1117.5 1172.2

5 24.5 1030.2 615.8 424.5 35.5 1117.4 1172.1

(b) GTZAN music database

0 3.6 34.2 10.8 34.2 10.8 96.6 168.1

1 3.1 45.6 16.6 42.2 14.1 114.8 279.0

2 3.3 51.0 20.9 42.3 14.2 114.9 279.5

3 3.4 59.7 27.4 42.4 14.3 114.9 279.3

4 3.6 71.2 36.7 42.5 14.3 114.8 278.6

5 3.7 86.4 47.8 42.5 14.4 114.8 280.5
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Fig. 5. Average MAP values of ReFeat, InstRank-WRF, InstRank-RF and InstRank. (a) COREL image database. (b) GTZAN music database.

Table 7
Average on-line processing time (in millisecond) of ReFeat (RF), InstRank-WRF

(IR-WRF) and InstRank-RF (IR-RF).

Round COREL image database GTZAN music database

RF IR-WRF IR-RF RF IR-WRF IR-RF

0 27.2 731.6 345.5 3.6 98.5 34.2

1 23.8 1773.0 421.6 3.1 232.4 42.2

2 24.0 1881.2 422.4 3.3 237.9 42.3

3 24.2 1899.9 423.1 3.4 241.1 42.4

4 24.4 1920.9 423.8 3.6 244.1 42.5

5 24.5 1940.8 424.5 3.7 247.5 42.5

Table 5
Average MAP values (�10�2) of ReFeat (RF), Qsim-RF (QS-RF), Qsim (QS),

InstRank-RF (IR-RF), InstRank (IR), MRBIR-RF (MR-RF) and MRBIR (MR). The

figures boldfaced are the best performance on each feedback round while the

underlined indicate the better performance in each grouped pair.

Round RF QS-RF QS IR-RF IR MR-RF MR

(a) COREL image database

0 9.11 8.87 4.76 8.87 4.76 10.88 7.03

1 15.17 14.83 7.07 10.56 6.24 14.52 9.60

2 18.20 17.51 8.08 11.81 6.76 16.01 10.63

3 19.92 19.17 8.72 12.85 7.06 17.05 11.32

4 20.93 20.17 9.22 13.49 7.37 17.68 11.84

5 21.71 20.98 9.57 14.07 7.58 18.11 12.18

(b) GTZAN music database

0 31.07 28.73 28.94 28.73 28.94 29.54 29.27

1 39.87 35.14 34.89 32.70 36.50 34.15 33.36

2 43.64 37.06 35.80 36.06 39.97 37.01 36.17

3 45.56 38.17 36.02 38.64 42.26 39.06 38.19

4 46.56 38.78 36.14 40.52 44.11 40.58 39.76

5 47.09 39.12 36.10 41.92 45.49 41.76 40.97
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processing time. This indicates that there is no need to calculate
the costly distance in the relevance feature space; instead, a good
ranking can be efficiently produced by simply averaging the
weighted relevance feature values.

5.2.3. Increasing dimensionality

Recall that every image in the COREL image database is repre-
sented by a 67-dimensional feature vector containing shape, texture
and color features. Here we denote the database as COREL[67], and
construct three other databases: (i) COREL[11] employs 11 shape
features only; (ii) COREL[35] uses 35 features, consisting of 11 shape
and 24 texture features; and (iii) COREL[200] is a 200-dimensional
database, created by adding 133 random features to COREL[67] (each
random feature is generated from a uniform distribution). Similarly,
we denote the original GTZAN music database as GTZAN[230], and
construct three other databases: (i) GTZAN[20] uses the first 20
features of GTZAN[230]; (ii) GTZAN[100] employs the first 100 feature
of GTZAN[230]; and (iii) GTZAN[400] is created by adding 170 random
features to GTZAN[230]. All the methods are evaluated on the eight
databases, and the retrieval results with one query and in feedback
round 5 are shown in Fig. 6 and Table 8.

Fig. 6 shows that ReFeat outperforms the other methods
regardless of how many features are used to describe the
database. The only exception is GTZAN[20], on which Euclidean

is slightly better than ReFeat for retrieval with one query. These
results validate the efficacy of ReFeat when dealing with
different dimensional databases.

Note that on the databases COREL[200] and GTZAN[400] with
randomly generated features, ReFeat outperforms the other
methods with the lowest performance degradation, when compared
with that on the original databases COREL[67] and GTZAN[230],

respectively. For example, at feedback round 5 of image retrieval,
the MAP value of ReFeat degrades by 50.4%, which is much better
than 93.7% for Qsim, 93.7% for InstRank, 94.7% for MRBIR and
92.4% for BALAS; at feedback round 5 of music retrieval, ReFeat
only degrades by 11.3%, as compared to 56.7% for Qsim, 66.1% for
InstRank, 84.5% for MRBIR and 51.3% for BALAS. These results
show that ReFeat has a good tolerance to randomly generated or
irrelevant features.

Moreover, it is interesting to note that for our music retrieval
problem, every method (except MRBIR) achieves the best MAP on
GTZAN[100] out of the four databases including the original one,
GTZAN[230]. This observation indicates that the music retrieval
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Fig. 6. Average MAP values of the compared methods evaluated on the image and music databases with different dimensions. (a) COREL image database: one query.

(b) COREL image database: round 5. (c) GTZAN music database: one query. (d) GTZAN music database: round 5.

Table 8
Average on-line processing time (in millisecond) of the methods tested on the

image and music databases with different dimensions. The method names are

abbreviated as ReFeat (RF), Euclidean (EU), MRBIR (MR), Qsim (QS), InstRank

(IR) and BALAS (BA).

Database One query Round 5

RF EU MR RF QS IR MR BA

(a) COREL image database

COREL[11] 27.2 4.3 591.6 24.5 590.9 10.6 1172.1 347.1

COREL[35] 27.2 13.7 599.6 24.5 602.8 22.5 1172.1 415.7

COREL[67] 27.2 24.7 612.9 24.5 615.8 35.5 1172.1 506.0

COREL[200] 27.2 69.5 645.2 24.5 670.0 89.7 1172.1 874.2

(b) GTZAN music database

GTZAN[20] 3.7 0.4 144.7 3.7 35.0 1.6 280.5 24.8

GTZAN[100] 3.7 3.6 147.1 3.7 37.9 4.5 280.5 50.0

GTZAN[230] 3.6 10.8 168.1 3.7 47.8 14.4 280.5 180.3

GTZAN[400] 3.7 13.8 159.0 3.7 50.6 17.2 280.5 148.5
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performance might be further improved using some proper
feature selection scheme.

The processing time reported in Table 8 shows that Euclidean
and InstRank spend the shortest time in low-dimensional cases,
but their processing time increases linearly with respect to the
database dimension. Qsim, MRBIR and BALAS spend much more
time than ReFeat. ReFeat achieves constant time with respect to
the database dimension, either dealing with one query or handling
feedbacks. This enables our framework to scale up to high-
dimensional databases without increasing the processing time.

5.2.4. Using different numbers of relevance features

We study the effect of the number of relevance features, i.e., t,
in this subsection. Fig. 7 shows the MAP values of ReFeat as t

varies from 10, 50, 100, 500, 1000, 2000, 3000, 4000, 5000, 6000,
7000, 8000, 9000, to 10 000. Here we set c¼ 8 and g¼ 0:25 by
default.

Fig. 7 shows that the retrieval performance of ReFeat rapidly
increases with the increase of t when t is relatively small. Even
with a sufficiently large t, the performance still appears to rise
without overfitting. These observations show the possibility of
improving the performance of ReFeat by adding more relevance
features. However, when setting t, the trade-off between perfor-
mance and processing time should be considered.

5.2.5. Using different sub-sample sizes

From the analysis provided in Section 4.3, we know that
iForests built with different sub-sample sizes generate different
sets of topologically distinct iTrees, thus producing different sets
of distinct path lengths. We suspect that the ‘‘diversity’’ of the
path lengths has a critical impact on the performance of ReFeat,
because a system with diverse path lengths tends to provide a full
range of relevancy to improve ranking results. Therefore, to gain
an insight into the setting of sub-sample size c, we use Shannon
index [27] to measure the diversities of iForests built with
different c values. Shannon index is a statistic for measuring
the biodiversity of an ecosystem. The index increases when the
ecosystem has additional unique species or a greater species
evenness. A bigger Shannon index indicates a larger diversity. In
this subsection, each instance (e.g., an image or a song) is treated
as an ecosystem. The instance may have different relevance
feature values on different iTrees, and each possible feature
value is considered as a species in the ecosystem. We count
the numbers of the species and measure the instance diversity by
Shannon index. The final diversity of the iTrees is estimated by
averaging the Shannon indices over all instances. Formally, the

diversity DðcÞ of the iTrees built with sub-sample size c is
calculated by:

DðcÞ ¼ �
1

9D9
X9D9
i ¼ 1

X9Lc9
j ¼ 1

njðxiÞ

t
ln

njðxiÞ

t

� �
�
9Lc9�1

2t
, ð8Þ

where Lc ¼ f‘1,‘2, . . . ,‘kg is the set of all possible relevance feature
values measured by the iTrees, xiAD is an instance in the
database, njðxiÞ returns the number of iTrees in which xi has
feature value ‘j, t is the total number of iTrees, and ð9Lc9�1Þ=2t is
a correction factor.

We set c¼ 22,23, . . . ,212 for the image database, and
c¼ 22,23, . . . ,29 for the music database. The resultant Shannon
indices are plotted in Fig. 8, which shows that the diversity
increases as c increases from 4 and reaches the peak at c¼ 64
on both the image and music databases. It is also interesting
to note that the diversity decreases as c goes beyond 64,
even though the number of possible feature values (i.e., possible
species) increases. The MAP values of ReFeat are also shown in
Fig. 8. Since the best performance of ReFeat is obtained with
c¼ 8 for the image database and c¼ 4 for the music database,
and there is no benefit to use a large c (i.e., c464), we suspect
that the optimal setting for any task is somewhere between the
smallest c (¼4) and the diversity peak. This can be used as an
empirical guideline for setting the sub-sample size.

5.2.6. Using different g values

We also study how the trade-off parameter g affects the
performance of ReFeat in relevance feedback. We test it by
varying g from 0 to 1 with step 0.1, and the resultant MAP values
are shown in Fig. 9. It shows that ReFeat achieves relative good
performance when gA ½0:1,0:4� on both the image and music
databases. These observations verify our statement in Section 4.4
that positive instances should contribute more than negative ones.

6. Discussion

This section discusses three related issues. We first provide
some necessary characteristics of a ranking model to be applied in
the ReFeat framework. Then, we detail the difference between
our ranking scheme and that measured by distance and similarity.
Finally, our ranking score calculation is compared with the one
used in iForest for anomaly detection.

For a successful application in the proposed framework, the
necessary characteristics of alternative ranking models are (i) each
individual model provides a ranking of instances through some
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profile underlying the database and (ii) each model is generated
efficiently so that the multiple models, representing multiple
profiles of the database, can be generated very quickly to form
the relevance feature space. We show that iTrees work well in our
framework. Whether there are other ranking models which satisfy
the characteristics is an open question.

Next we analyze the difference between our ranking scheme
and that measured by distance and similarity. Let dða,bÞ and sða,bÞ
denote the distance value and similarity value, respectively,
between two instances a and b. Then a distance metric and its
inversely related similarity measure are required to obey the
following four axioms for all instances a, b and c [28]: (i) equal
self-similarity: dða,aÞ ¼ dðb,bÞ and sða,aÞ ¼ sðb,bÞ; (ii) minimality:
dða,bÞ4dða,aÞ and sða,bÞosða,aÞ; (iii) symmetry: dða,bÞ ¼ dðb,aÞ
and sða,bÞ ¼ sðb,aÞ; (iv) triangle inequality: dða,bÞþdðb,cÞ4dða,cÞ,
and if a and b are similar and b and c are similar, then a and c
must also be similar.

The score calculated by Eq. (3) does not satisfy any of the above
axioms. For example, symmetry does not hold in our calculation
since Scoreða9bÞ�Scoreðb9aÞ ¼

Pt
i ¼ 1ð‘iðbÞ�‘iðaÞÞ, which is not 0 in

most cases. The violation of the axioms provides our ranking
scheme more flexibility when ranking instances with respect to a
query. In fact, questions have been raised about the practical
validity of each of these axioms [28]. To the best of our knowledge,
there is no other CBMIR ranking scheme that violates all the
axioms.

In the anomaly detection setting [23], instances are anomalies
if they are irrelevant to the various profiles modeled by different
iTrees, i.e., if they have short average path lengths in an iForest
model. Thus, the anomaly scoring formulation given in [23] can

be rewritten as ScoreADðxÞ ¼ 1
t

Pt
i ¼ 1 ‘iðxÞ, where high scores indi-

cate normal points, and low scores indicate anomalies. The above
anomaly scoring formulation is only different from Eq. (3) by one
term, which is the feature weight wiðqÞ. We show that, under
CBMIR, this term effectively modifies the ranking scheme from
providing an ordering from normal points to anomalies under
anomaly detection, to providing an ordering from instances most
relevant to those most irrelevant with respect to the query q.

7. Conclusions

This paper proposes a novel ranking framework for CBMIR
with relevance feature mapping derived from an ensemble of
ranking models. We employ an ensemble of iTrees to map
instances from the original feature space to the proposed new
relevance feature space. We show that the new relevance feature
space has richer information than the original one for ranking
database instances with respect to a given query as well as
subsequent feedbacks. We also show that the relevance feature
space accounts for the significant performance improvement of
several existing methods when compared to the same methods
applied in the original feature space. Moreover, our experiments
validate the utility of our relevance feature weighting, on which
the proposed new ranking scheme is based. The new scheme
performs better than the four existing methods when they are
evaluated in the same footing, in terms of both retrieval perfor-
mance and time complexity.

The proposed framework has the following unique character-
istics: (i) it utilizes no distance measure and has linear time and
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space complexities with respect to the database size when
building its model and mapping the database off-line; (ii) it has
constant on-line retrieval time, irrespective of the number of
relevance feedback rounds; (iii) it can deal with high-dimensional
databases with constant time complexity, once the number of
relevance features is fixed; and (iv) it has a good tolerance to
irrelevant features.
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Appendix A. Isolation forest

This section briefly introduces the methodology of iForest [23],
which employs a two-stage process to detect anomalies. We
provide some insights on how each iTree measures the relevance
of instances with respect to a profile underlying the data. It helps
to understand the relevance feature space.

In the first stage, iForest builds a collection of iTrees using
fixed-sized random sub-samples of a data set. Each iTree is
constructed by recursively random-partitioning the sub-sample
along axis-parallel coordinates until every instance is isolated
from the rest of instances or a specified height limit is reached.
The algorithmic details are given by Algorithms 1 and 2. Note that
an iTree models a profile of the given random sub-sample, and
different iTrees describe different profiles due to the randomness
incurred in both the sub-sampling process and the tree building
process.

Algorithm 1. iForestðD,t,cÞ.

input : D - input data, t - number of iTrees, c - sub-sample
size
output: a set of t iTrees

1 set height limit h¼ dlog2ðcÞe;
2 for i¼1 to t do
3 D’sampleðD,cÞ; // randomly sample c instances from D
4 Ti’iTreeðD,0,hÞ;
5 end

Algorithm 2. iTreeðD,e,hÞ.

input : D - input data, e - current tree height, h - height limit
output: an iTree

1 if eZh or 9D9r1 then

2 return exNodefSize’9D9g; // an external node

3 else
4 randomly select an attribute a from the data D;
5 randomly select a split point p from max and min values of

attribute a in D;

6 Dl’filterðD,aopÞ; // instances in D which have values

less than p on attribute a

7 Dr’filterðD,aZpÞ; // instances in D which have

values greater than or equal to p on attribute a

8 return inNodefSplitAtt’a, SplitValue’p,

Left’iTreeðDl,eþ1,hÞ, Right’iTreeðDr ,eþ1,hÞg;
// an internal node

9 end

In the second stage, iForest calculates an anomaly score for
each test instance based on its average path length over all iTrees.
A path length is estimated by counting the number of edges from
the root node to the external node as an instance travels through
the iTree. If the instance falls into an external node with Size41,
the returned path length is adjusted by adding cðSizeÞ, which is
defined in Eq. (2) and accounts for the average path length of an
unbuilt subtree beyond the height limit. This process is given by
Algorithm 3.

Algorithm 3. PathLengthðx,T,eÞ.

input : x - an instance, T - an iTree, e - current path length
(to be initialized to 0 when first called)
output: the path length of x

1 if T is an external node then
2 return eþcðT:SizeÞ; // cð � Þ is defined in Eq. (2)

3 end
4 a’T:SplitAtt, p’T:SplitValue;
5 if xaop then
6 return PathLengthðx,T:Left,eþ1Þ;
7 else
8 return PathLengthðx,T:Right,eþ1Þ;
9 end

Here, a short path length means that we can easily isolate the
instance from the majority of instances by a few random partitions.
Thus, instances having short path lengths always differ from the
majorities on some characteristics. Note that an iTree describes a
data profile from a given sub-sample. Therefore, instances having
short path length have different data characteristics to the majo-
rities which have long path lengths. Thus, the path length stipu-
lated by an iTree actually measures the relevance of an instance
with respect to the profile modeled by this iTree: a short (long)
path length indicates that the instance is irrelevant (relevant) to
the profile. For anomaly detection, instances identified to be
irrelevant to the various profiles modeled by a number of iTrees
are deemed to be anomalies, and instances relevant to the various
profiles are normal points.
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ABSTRACT
The current approach to build generative classifiers is to es-
timate the joint probability p(x, y) indirectly by estimating
the conditional likelihood p(x|y) and the prior probability
p(y). They predict the most likely class that maximises the
posterior probability p(y|x) using Bayes rule.
In this research, we propose a new type of generative classi-
fier called MassCfier, that estimates the joint distribution
directly through a recently introduced data modelling mech-
anism called mass estimation. This new generative classifier
makes prediction based on a new decision rule that max-
imises mass, rather than Bayes rule, and has sub-linear time
complexity and constant space complexity.
Empirical evaluations show that MassCfier performs better
than or at least competitive with existing generative classi-
fiers based on Bayes rule on benchmark data sets in terms
of predictive accuracy.

Categories and Subject Descriptors
[Algorithms]: Classification

Keywords
Mass distribution, Mass Estimation, Generative classifier,
MassCfier

1. INTRODUCTION
Classification is a data mining task that deals with assigning
data instances described by a set of variables (x) to one of
the predefined mutually exclusive categories (y).
Discriminative and generative classifiers are two distinct ap-
proaches to solve classification problems [10, 13]. Generative
classifiers model the joint probability p(x, y) via Bayes rule
[10]. Discriminative classifiers, on the other hand, learn a
direct mapping from x to y [10]. Classifers such as Naive
Bayes (NB), Bayesian Belief Network (BayesNet), Aggre-
gating One Dependence Estimators (AODE) are examples
of generative classifiers; whereas, Artificial Neural Networks
(ANN), Linear Logistic Regression (LLR), Support Vector

Machines (SVM) are examples of discriminative classifiers.
Building generative models require density estimators. Cur-
rent density estimators such as kernel density estimator and
k-nearest neighbour density estimator have a high time and
space complexities. Thus, it is difficult to estimate p(x, y)
directly to build generative models even with data sets that
have a moderate number of dimensions and moderate data
size.
Instead, the current generative approach focuses on estimat-
ing p(x|y) and p(y), and makes the final decision via Bayes
rule. This approach encounters the same limitation of exist-
ing density estimators: p(x|y) cannot be estimated directly.
However, surrogates of p(x|y) can be estimated efficiently
provided some assumptions are made (e.g., attribute inde-
pendence given the class.) Though this type of generative
classifiers has been shown to perform well [7, 12, 8], the as-
sumptions made are often violated in practice and can result
in poor predictive accuracy.
Mass estimation [17, 16, 15] provides an alternative to den-
sity estimation for data modelling and it has been shown to
work well in anomaly detection, information retrieval, clus-
tering and regression. This paper is motivated to employ
mass estimation to solve classification problems, in particu-
lar, by estimating joint distribution directly to build genera-
tive models. This is a more direct approach than the current
approach to build generative models.
We propose a new type of generative classifier called
MassCfier that exploits the notion of mass and mass dis-
tribution to estimate the joint distribution effectively.
MassCfier has three distinctive characteristics compared to
existing generative classifiers:

1. The joint distribution is estimated directly without es-
timating the likelihood p(x|y) and the prior probability
p(y).

2. Its prediction decision is based on a maximum mass
rule rather than Bayes rule.

3. It has sub-linear time complexity and constant space
complexity; therefore, it scales better for very large
databases.

The rest of the paper is structured as follows. We briefly
discuss three existing generative classifiers in section 2 fol-
lowed by the concept of mass and mass estimation in section
3. The proposed classifier, MassCfier, is described in section
4. The empirical evaluation results are presented in section
5. Finally, we provide discussion and conclusion in the last
two sections.



2. EXISTING GENERATIVE CLASSIFIERS
The existing generative classifiers estimate the conditional
likelihood p(x|y) and the prior p(y) and use Bayes rule to
make the final prediction.

ŷ = arg max
y

(p(x|y)× p(y)) (1)

Different generative classifiers estimate the conditional like-
lihood p(x|y) in different ways. We briefly describe three
existing generative classifiers in this section.

2.1 Naive Bayes
Naive Bayes (NB) [2, 7] assumes class conditional indepen-
dence and estimates the likelihood on each dimension sepa-
rately. A typical structure of Naive Bayes is given in figure
1. The likelihood of x given class y is estimated as follows.

p(x|y) =

d∏
i=1

p(xi|y) (2)

Figure 1: Structure of Naive Bayesian classifier where pre-
dictive attributes (x1, x2, · · · , xd) are conditionally indepen-
dent given the class attribute y.

For continuous valued attributes, p(xi|y) can be computed
either through discretisation or by using a density estimator.
We use three versions of Naive Bayes: (i) Naive Bayes with
Gaussian Distribution (NB-GD) [7] (by assuming Gaussian
distribution); (ii) Naive Bayes with Kernel Density Estima-
tion (NB-KDE) [8]; (iii) Naive Bayes with Discretisation
(NB-Disc).

2.2 Bayesian Networks
Bayesian Networks (BayesNet) [5, 11] learns probabilistic
relationships among the attributes including the class in the
form of directed acyclic graph (DAG) from the training data.
In a graph, edges represent conditional dependencies and
nodes, which are not connected, are conditionally indepen-
dent. At each node, conditional probabilities with respect
to its parents are learned from the training data. Figure
2 shows an example of a Bayesian Network representing a
probabilistic relationship between four attributes and a class
label. In a graph, each node are independent of its non-
descendants given the state of its parents. In this way, the
number of parameters needed to characterise a probability
distribution are reduced and can be computed efficiently.
In the version of Bayesian Networks we used, continuous
valued attributes are discretised.

2.3 Aggregating One-Dependence Estimator
Aggregating One-Dependence Estimators (AODE) [18] al-
lows conditional dependence with one ‘privileged’ attribute.

Figure 2: Bayesian Network representing a probabilistic re-
lationship between four predictive attributes (x1, x2, x3, x4)
and class variable y.

Other attributes are conditionally independent given class
label y. The conditional probability, with a privileged at-
tribute xi, is computed as follows.

p(x|xi, y) =

d∏
j=1

p(xj |xi, y) (3)

As AODE is designed for discrete attributes, continuous-
valued attributes are discretised. The conditional probabil-
ity is computed as relative frequencies as in NB-Disc.
Each attribute gets a chance to be a privilege attribute once;
hence, AODE builds d models and aggregates the decisions
to make the final prediction. Figure 3 shows a typical struc-
ture of AODE.

Figure 3: Typical structure of Aggregating One-Dependence
Estimators (AODE).

3. MASS AND MASS-ESTIMATION
Ting et al [17] introduced the fundamental concept of mass
as a base measure. The application of mass to solve var-
ious data mining problems such as regression, information
retrieval, clustering, anomaly detection, and data stream are
demonstrated in [17, 16, 14, 15]. Mass-based data mining
methods often performed better than or at least as well as
the state-of-the-art methods. The key advantages of mass-
based methods are as follows:

1. Employ no distance measures and generally run faster.

2. Have average case sub linear time complexity and con-
stant space complexity; hence, it can be applied to very
large data sets.



In its simplest form, mass is the number of data instances in
a bounded region. A mass base function is defined as follows
[16]:

m(T (x)) =

{
m if x is in a region of T (·),
0 otherwise,

(4)

where, T (·) is a function that subdivides the feature space
of the given data set D into non-overlapping regions; and,
m is the number of instances in a region of T (x) in which x
falls into.
Ting and Wells [16] showed that mass can also be effectively
estimated by using data subsets Di ⊂ D (i = 1, . . . , t), where
|Di| = ψ � n. Each Di is sampled without replacement
from D and is used to construct Ti(.). The estimated mass
for an instance x is defined [16] as:

mass(x) =
1

t

t∑
i=1

m(Ti(x)) (5)

Mass estimation has been shown to be a good data modelling
mechanism in [17, 16, 15]. Figure 4 shows the estimation
of two overlapped clusters in one dimensional feature space
using kernel density estimation (KDE) and mass estimation.
It demonstrates that mass-based estimation is comparable
to that of KDE.

0 1 2 3 4 5 6 7 8 9 10

(a) Density distribution

0 1 2 3 4 5 6 7 8 9 10

(b) Mass distribution

Figure 4: Density estimation of KDE vs. Mass estimation.
Y-axis: a) density, b) mass. The parameters used for mass
estimation are t = 100, ψ = 4096 and h = 5. These pa-
rameters are discussed in the following section. Parameter
h for mass is equivalent to the bandwidth smoothing param-
eter for KDE. The bandwidth parameter was automatically
selected in the case of KDE.

Once the data distribution has been modelled using mass
distribution, a simple decision rule based on maximum mass
can be used to make a prediction in the classification con-
text.

4. PROPOSED CLASSIFIER
MassCfier is a generative classifier that exploits the no-
tion of mass and mass distribution. It estimates the mass
joint distribution of x and y. The corresponding mass base
function m(T (x), y) is defined as the count of instances in a
region of T (x) that belong to class y.

m(T (x), y) =

{
my if x is in a region of T (·),
0 otherwise,

(6)

where, my is the number of instances belonging to class y in
a region of T (x).

The joint mass distribution of x and y is estimated as:

mass(x, y) =
1

t

t∑
i=1

m(Ti(x), y) (7)

where, each Ti(.) is constructed by using data subsets Di ⊂
D (i = 1, . . . , t).
At training phase, only Ti(.) (i = 1, . . . , t) is to be con-
structed.
To predict a class for an instance x, at testing phase, the
joint mass distribution mass(x, y) is used to make the final
decision based on the following decision rule:

ŷ = arg max
y

(mass(x, y)) (8)

Note that mass(x, y) is proportional to the joint probability
p(x, y).
The decision rules of existing generative classifiers and Mass-
Cfier are provided in Table 1.

Table 1: Decision rules of different existing generative clas-
sifiers and MassCfier.

Classifier Decision Rule Remarks

arg max
y

(p(y)× p(x|y))

p(xi|y) in eq.2
NB- is estimated with
GD norm. dist.

p(xi|y) in eq.2
NB- is estimated with
KDE KDE.

p(xi|y) in eq.2
NB is estimated by

-Disc discretisation.

arg max
y

(

d∏
i

p(πi, y)p(xi|πi, y))Bayes πi = parents(xi)
Net

arg max
y

(

d∑
i=1

p(xi, y)p(x|xi, y))
p(x|xi, y) is

AODE estimated using
eqn. 3

arg max
y

(mass(x, y))
mass(x, y) is

MassCfier estimated using
eqn. 7

4.1 Implementation
Mass estimation can be implemented in different ways [17,
16, 14]. We use the implementation described in [16]. Fea-
ture space is divided into small non-overlapping regions by
recursively splitting each dimension at mid point of the sam-
ple range.
T (·) is represented as a binary tree (called h:d-Tree in [16]).
A parameter h defines the maximum level of binary subdivi-
sion. The maximum height of a tree is h×d. Let ∆ be a work
space in Rd which envelops D; and ∆ has its length along
each dimension j as ∆j = max(xkj |xk ∈ D)−min(xkj |xk ∈
D). The work space ∆ is adjusted to become δ using a
random perturbation conducted as follows. For each dimen-
sion j, a split point vj is chosen randomly within the range
∆j . Then, the new range δj along dimension j is defined as
[vj−r, vj +r], where r = max(vj−minj(∆),maxj(∆)−vj).
The new ranges on all dimensions define the adjusted work
space for the tree building process.
A subset D is constructed from D by sampling ψ instances



from each class without replacement. If there are not enough
instances to sample in a class, all the instances from that
class are used i.e. ψy = min(ψ, |Cy|), where Cy is the set
of instances belonging to class y and |Di| =

∑c
y=1(ψy). If

every class in a data set has instances less than ψ, the entire
training set D is used to build t trees. The random adjust-
ment of the work space, as described earlier, ensures that
no two trees are likley to be identical, even if the same data
sub-sample is used to generate the trees.
The dimension to split is selected from a randomised set of d
dimensions in a round-robin manner at each level of a tree.
A tree is constructed by splitting the work space into two
equal-volume half spaces at each level. The process is then
repeated recursively on each non-empty half-space. The tree
building process stops when there are less than two instances
in a node or the maximum height is reached.
Figure 5 shows a typical example of h:d-Tree for h = 1 and
d = 2. The dotted lines enclosed the instances in D (having
8 samples from each of the two classes) and the solid lines
enclosed the adjusted work space. The algorithm, used to

Figure 5: An example of h:d-Tree for h = 1 and d = 2.

generate such trees, is given in Appendix B for ease of ref-
erence.
The time complexity of constructing the trees is O(tcψhd).
The space complexity is O(thd + n) during construction.
After the trees are built, the data set is discarded, yielding
O(thd).

5. EXPERIMENTS
In this section, we compare the performance of MassCfier
with existing generative classifiers Naive Bayes with den-
sity estimation through Gaussian Distribution assumption
(NB-GD), Naive Bayes with Kernel Density Estimator (NB-
KDE), Naive Bayes with Discretisation (NB-Disc), Bayesian
Networks (BayesNet), and Aggregating One-dependence Es-
timators (AODE).
We have implemented the proposed method using the WEKA
platform [6, 19] which has all of the existing generative clas-
sifiers. The data sets used are from UCI Machine Learning
Repository [4] unless stated otherwise.
All the experiments were conducted as single thread jobs
processed at 2.27 GHz on a Linux cluster using a node with
40 GB memory.
All the algorithms were executed with default parameters
except BayesNet. For BayesNet, the parameter ‘max num-
ber of parents’ was set to 100 to enforce no restriction on
the number of parents that a node can have in the net-
work; and the parameter ‘initialise as Naive Bayes’ was set

to ‘false’ to initialise an empty network structure. The rest
of the parameters were set to defaults. The default settings
for MassCfier were t = 100, ψ = 4096 and h = dlog2(ψ)e.
Where there are less than 4096 instances in each class, the
entire data set were used to construct the trees.
We report the results in terms of classification accuracy and
CPU runtime (in seconds) from a 10-fold cross validation.
For AODE and NB-Disc, we discretised the attributes us-
ing the minimum entropy supervised discretisation method
proposed in [3]. BayesNet performs discretisation internally
before building the classification model. Runtime includes
the discretisation time as well.
We compared the performance of proposed methods with the
existing generative classifiers on 18 data sets with different
sizes, dimensions, number of classes and class distributions.
The properties of the data sets are provided in Table 2.

Table 2: Data sets used to compare the performance of
MassCfier with other existing generative classifiers.

Data set datasize #dimensions #classes
CoverType 581012 10 7
MiniBooNE 129596 50 2
OneBig 68000 20 10
Shuttle 58000 8 7
Wave 20000 2 2
RingCurve 20000 2 2
Letters 20000 16 26
Magic04 19020 10 2
Mammography 11183 6 2
Pendigits 10992 16 10
Wine 6497 11 2
Satellite 6435 36 7
OpticalDigits 5620 62 10
PageBlocks 5473 10 5
RobotNavigation 5456 24 4
Waveform 5000 21 3
ImageSegments 2310 19 7
SteelPlateFaults 1941 25 7

Out of 18 data sets used, OneBig, Wave and RingCurve
are synthetic and the rest are real data sets. Wave and
RingCurve are two dimensional data sets, which are sub-
sets of RingCurve-Wave-TriGaussian data set, shown in Ap-
pendix A, each having two classes with 10000 data instances
in each class. The OneBig data set [9] has 20 attributes, 9
clusters and 10000 noise instances randomly distributed in
the feature space. Noise in the data set are treated as a
separate class; hence, it has 10 classes.

5.1 Overall Comparison
5.1.1 Classification Accuracy

The experimental results, in terms of classification accura-
cies, are show in Table 3.

Compared with existing generative classifiers, the result
showed that MassCfier yielded better or at least competitive
classification accuracies in most of the data sets. A statisti-
cal test based on two standard errors was performed to ex-
amine whether the difference is significant. The win:loss:draw
counts of MassCfier over existing generative classifiers are re-
ported in Table 4. A win or loss is counted if the difference
is significant; otherwise, it is a draw.



Table 3: Classification accuracies (%) on different data sets
over a 10-fold cross validation for MassCfier and existing
generative classifiers: AODE, BayesNet, NB-KDE, NB-GD
and NB-Disc. Figures marked with ∗ and † represent signif-
icant win and loss respectively, of MassCfier with respect to
AODE based on a two-standard-error significance test.

Data Set Mass AO Bayes NB- NB- NB-
Cfier DE Net KDE GD Disc

CoverType 79.16∗ 72.89 87.54 66.72 63.05 66.61
MiniBooNE 90.90∗ 89.58 90.19 86.07 83.40 86.29
OneBig 100∗ 99.69 99.99 99.98 99.89 99.97
Shuttle 99.89∗ 99.85 99.92 92.68 85.67 94.36
Wave 99.99∗ 78.50 78.27 77.91 66.80 78.51
RingCurve 100∗ 99.98 99.96 99.27 90.11 99.48
Letters 96.67∗ 88.81 86.76 74.21 64.01 73.94
Magic04 84.58∗ 83.00 83.36 76.13 72.69 78.30
Mammography 98.59 98.42 98.48 97.86 95.68 97.62
Pendigits 99.45∗ 97.84 96.56 88.64 85.75 87.90
Wine 99.32 99.29 99.20 99.0 97.58 99.01
Satellite 91.41∗ 89.26 83.29 82.11 79.52 82.42
OpticalDigits 98.40∗ 97.03 96.16 92.21 91.33 92.31
PageBlocks 96.31† 97.37 96.25 94.03 90.32 93.57
RobotNavigation 91.51† 94.13 94.85 83.39 52.49 88.73
Waveform 84.48† 86.48 82.32 80.90 81.04 81.76
ImageSegments 96.97∗ 95.76 95.50 85.71 80.17 91.90
SteelPlateFaults 74.19 75.32 74.03 62.13 59.25 70.12
Avg. Accuracy 93.43 91.29 91.26 85.50 79.93 86.82

MassCfier had 12 wins, 3 losses and 3 draws when compared
to AODE, and 11 wins, 2 losses and 5 draws in comparison
to BayesNet. Similarly, it had 18 wins over NB-KDE and
NB-GD; and 17 wins and 1 draw over NB-Disc.

Table 4: The result of the significance test comparing Mass-
Cfier to existing generative classifiers. Values represent
win:loss:draw for MassCfier.

MassCfier
AODE 12:3:3

BayesNet 11:2:5
NB-KDE 18:0:0

NB-GD 18:0:0
NB-Disc 17:0:1

In some data set such as Wave and Letters, MassCfier had
significant difference in accuracy than the best existing gen-
erative classifier with more than 20% and 8% improvement
respectively. In case of Covertype, though the result of
MassCfier was significantly poorer than BayesNet, it can
be improved by increasing sample size. With ψ = 16384,
MassCfier yielded accuracy of 87.44% in Covertype.

5.1.2 Run time
Although the runtime results in Table 5 showed that MassC-
fier does not have the fastest runtime of all classifiers, these
results do not present the full picture of the classifiers’ time
complexities.

Table 5: Run time (in seconds) of a 10-fold cross valida-
tion for MassCfier and existing generative classifiers: AODE,
BayesNet, NB-KDE, NB-GD, NB-Disc. Runtime for AODE,
BayesNet, and NB-Disc includes the time for discretisation
as well.

Data Set Mass AO Bayes NB- NB- NB-
Cfier DE Net KDE GD Disc

CoverType 1253 105 4208 949 179 96
MiniBooNE 756 162 3230 8160 162 80
OneBig 413 37 4673 2352 30 21
Shuttle 331 8 95 15 10 8
Wave 80 3 2 22 2 2
RingCurve 78 2 4 21 1 1
Letters 425 10 56 23 7 4
Magic04 123 4 14 87 3 4
Mammography 70 2 3 5 2 2
Pendigits 230 5 22 15 4 2
Wine 170 3 5 2 2 2
Satellite 167 8 49 9 4 4
OpticalDigits 175 12 108 9 4 4
PageBlocks 80 2 7 2 4 1
RobotNavigation 143 4 145 22 1 2
Waveform 71 2 7 12 2 1
ImageSegments 89 2 14 4 2 3
SteelPlateFaults 38 2 10 6 1 2
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Figure 6: Scale up: MassCfier versus existing gener-
ative classifiers in the 48-dimensional Ring-Curve-Wave-
TriGaussian data set. The base for data size ratio is 70000
instances and the base for runtime ratio is the runtime on
70000 instances. NB-KDE did not complete in 10 days when
data size increased by a factor of 150. Horizontal axis is on
logarithmic scale of base 10.

In order to examine how well the classifiers scale-up to large
data size, we used the 48-dimensional RingCurve-Wave-Tri-
Gaussian data set previously employed by Ting and Wells
[16]. It is a combination of three two-dimensional data sets
- RingCurve, Wave and TriGaussian as shown in Appendix
A, where 42 irrelevant attributes with constant values are
added. Data size was increased from 70000 to half-a-million,
1 million and 10 million. Figure 6 showed the increase in
runtime of MassCfier and the existing generative classifiers.
With the increase in data size by a factor of 7.5 and 15,
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Figure 7: Influence of class distribution in the test set on classification accuracies of MassCfier, AODE and NB-KDE on
Covertype2C, Magic04, MiniBooNE and Shuttle2C data sets. In Shuttle2C, the results of MassCfier and AODE are similar.

MassCfier increased its runtime by a factor of 1.2 and 1.6.
The closest contender AODE increased its runtime by a fac-
tor of 7 and 16, followed by NB-Disc (8 and 16); BayesNet
(8 and 16); NB-GD (11 and 25); and NB-KDE (68 and 258).
Even with the data size increase by a factor of 150, MassCfier
only increased its runtime by a factor of 6, whereas NB-Disc,
AODE, BayesNet and NB-GD increased their runtime by
factors of 148, 178, 213 and 409 respectively. NB-KDE did
not complete in 10 days when the data size was increased to
10 million. This result showed that MassCfier has a better
scale up capabilities than the existing generative classifiers.
As MassCfier uses c×ψ samples only to construct the trees,
the increase in the data size n only increases the sampling
time. The tree building time is constant.

5.2 Further Analyses
5.2.1 Varying class distribution in the test set

In existing generative classifiers, the prediction is influenced
by priors. The accuracy depends upon the proportions of
classes in the test data.
In order to examine the effect of varying testing priors on the
results of the classifiers, we conducted an experiment on the
four largest real data sets - Covertype, MiniBooNE, Shuttle

and Magic04. This experiment was conducted using two-
class data sets so that the class proportion can be changed
easily. Hence, we used a subset of Covertype and Shuttle
with the largest two classes - Covertype2C and Shuttle2C.
MiniBooNE and Magic04 are two-class data sets. We chose
these four largest real data sets so that the range of testing
priors can be varied as large as possible.
We did a 10-fold cross validation. In each fold, the actual
test set was constructed by random sampling of instances
from the original test set of this fold with the desired class
distribution. We tested the results of MassCfier and existing
generative classifiers: AODE, BayesNet, NB-KDE, NB-GD
and NB-Disc. We repeated the experiment with different
class distribution in the test set (i.e., c1:c2 = 1:9, 1:3, 1:2,
1:1, 2:1, 3:1, and 9:1).
Figure 7 showed the change in accuracies of MassCfier, AODE
and NB-Disc. Table 6 showed the difference between the
maximum and minimum accuracies of the classifiers when
tested over a range of class distributions in the test set.
From the experiment, it was observed that the accuracies

of the existing generative classifiers varied widely across a
range of class distribution in the test set. MassCfier pro-
duced approximately the same result regardless the propor-



Table 6: Difference between the maximum and minimum ac-
curacies of existing generative classifers and MassCfier over
a range of test set with different class distributions (1:9, 1:3,
1:2, 1:1, 2:1, 3:1, 9:1) on four largest real data sets - Cover-
type, MiniBooNE, Shuttle, Magic04.

Data Set Mass AO Bayes NB- NB- NB-
Cfier DE Net KDE GD Disc

Covertype2C 0.60 6.01 4.76 7.75 1.36 7.77
MiniBooNE 1.78 4.12 6.82 0.96 5.2 0.61
Shuttle2C 0.03 0.03 0.03 8.25 31.25 1.50
Magic04 4.54 29.61 18.10 43.44 43.2 38.15

tion of classes in the test data. The results of MassCfier
were generally better than that of the existing classifiers.
In the case of Magic04, the accuracies of AODE, BayesNet,
NaiveBayes varied by 29%, 18% and over 38% respectively;
whereas, MassCfier only varies its accuracies by 4.5%. In
the case of Covertype2C, AODE, BayesNet, NB-KDE and
NB-Disc varied their accuracies by 6%, 4%, 7%, and 7%
respectively, but MassCfier produced almost the same re-
sults (with variation of 0.6%). In MiniBooNE, MassCfier
has slightly higher variation than NB-Disc and NB-KDE.
MassCfier, BayesNet and AODE produced the same results
in Shuttle2C.

5.2.2 The effect of discretisation on existing genera-
tive classifiers

The supervised minimum entropy discretisation proposed in
[3] was suggested for AODE by the authors of [18]. We tried
both supervised minimum entropy discretisation and unsu-
pervised equal frequency bins discretisation [1] in all data
sets and observed that AODE, BayesNet and NB-Disc had
better results in most cases with supervised discretisation;
whereas, in some cases such as Wave, unsupervised tech-
nique yielded significantly better results.
To illustrate the effect of the two discretisation techniques,
we conducted an experiment on Wave, RingCurve and a sub-
set of Letters and Pendigits data sets with two most misclas-
sified classes - LettersOQ and Digits12. Wave, Letters and
Pendigits are the data sets where AODE and BayesNet had
significantly poorer results than MassCfier. These data sets
are selected to examine whether a different discretisation
method would improve the predictive accuracies of AODE,
BayesNet and NB-Disc. RingCurve was used to contrast the
results.
Table 7 showed the results of AODE, NB-Disc and BayesNet
with two different discretisation techniques. In LettersOQ,
Digits12 and Wave, both AODE and BayesNet yielded bet-
ter results with unsupervised techniques; whereas, the su-
pervised technique was better for RingCurve.

As shown in figure 9 (in Appendix A), Wave could not
be discretised along horizontal axis with supervised tech-
nique. The decision was only based on vertical axis; hence,
yielded poor performance. Similarly, in LetterOQ and Dig-
its12, some dimensions could not be discretised with super-
vised technique and gave poorer performance. With unsu-
pervised techniques, attributes were discretised into 10 equal
frequency bins regardless the class distribution that results
better density estimation. MassCfier yielded significantly
better (based on two-standard error significance test) re-
sults than AODE, BayesNet and NB-Disc with either of the

Table 7: Classification accuracies of AODE, BayesNet and
NB-Disc with supervised minimum entropy discretisation [3]
and unsupervised equal frequency discretisation with 10 bins
[1].

Supervised Disc. Unsupervised Disc.
Data sets Mass AO Bayes NB- AO Bayes NB-

Cfier DE Net Disc DE Net Disc
LettersOQ 98.37 93.10 95.50 88.15 95.70 96.81 87.37
Digits12 99.21 92.87 93.88 87.84 96.24 96.24 87.84

Wave 99.99 78.51 78.51 78.51 97.78 97.77 75.80
RingCurve 100 99.98 99.98 99.48 98.45 98.45 96.66

discretisation methods.

5.2.3 Sensitivity of parameters
In order to examine the effect of two parameters, sample size
(ψ) and number of trees (t) on the classification accuracy of
MassCfier, we ran two experiments on four biggest real data
sets, namely Covertype, MiniBooNE, Shuttle, and Magic04
varying:

1. Sample size ψ with a fixed number of trees, t =100.

2. Number of trees t with a fixed sample size, ψ =256.

The four largest real data sets were chosen for this experi-
ment so that there are enough instances to vary the sample
size (ψ). Figure 8 shows the results of these two experi-
ments.
As sample size ψ was increased, the accuracy increased up
to a certain point and then remained flat. But, in case of
Covertype, accuracy kept increasing because the two biggest
classes have more than two hundred fifty thousand instances
each and the continuous improvement in accuracy is a result
of improved accuracy for these two classes.
When the number of trees t was increased, the accuracy
increased initially and remained constant after reaching a
certain point.
In a nutshell, parameters ψ and t are not very sensitive if
set to sufficiently high values.

6. DISCUSSION
Note that the purpose of trees used in this paper differs from
that of decision trees. Trees are used to estimate mass, no
class information are used in the building process.
This paper uses the tree-based implementation discussed in
[16] for mass estimation. This implementation is grid-based
and comes with the weakness of any grid-based methods, es-
pecially dealing high dimensional problems. Non-grid based
implementations will eliminate the limitations of grid-based
implementation and can handle high-dimensional problems
more effectively.
Like existing density estimation, mass estimation also re-
quires sufficiently large data set in order to get a good es-
timation. The bigger the data set the better the mass esti-
mation, and this leads to better classification accuracy. As
shown in Table 3 in section 5, MassCfier had 7 wins, 2 draws
and 1 loss over the best existing generative classifiers in 10
biggest data sets with data size n > 10000 instances.
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Figure 8: Effect of parameters sample size (ψ) and number
of trees (t) on the accuracy of MassCfier in four biggest real
data sets - CoverType, MiniBooNE, Shuttle and Magic04.

7. CONCLUSION
In this research, we proposed a new type of generative classi-
fier exploiting the notion of mass called MassCfier. Unlike
existing generative classifiers based on Bayes rule, MassCfier
has the following distinctive characteristics.

1. MassCfier estimates the joint distribution directly in
multi-dimensional space.

2. MassCfier utilises a new decision rule based on maxi-
mum mass rather than Bayes rule.

3. It has sub-linear time complexity and constant space
complexity.

Empirical results show that MassCfier is better or at least
competitive in terms of classification accuracy when com-
pared to the existing generative classifiers. MassCfier em-
powers generative classifiers to be more powerful and flexible
with no assumption and improved time complexity.
One direction for future work is to explore a non-grid based

implementation for mass estimation that eliminates the weak-
nesses of grid based implementation to deal with high-dimensional
problems.

The object code of MassCfier is available at:
https://lore.infotech.monash.edu/
It can be accessed with the following login details:
User name: testuser2
Password: testuser2
The zip file is stored under “File” pane.
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APPENDIX
A. RINGCURVE-WAVE-TRIGAUSSIAN
The characteristic of Ring-Curve-Wave-TriGaussian data set
used in Section 5 for scale-up set is shown in Figure 9. Each
of the Ring-Curve, Wave and Triangular-Gaussian, is a two-
dimensional data set; and together there is a total of seven
classes. Each class has 10000 instances. RingCurve and
Wave are also used in performance evaluation in Section 5.
When used in the scale up experiment, the data size in each
cluster was scaled by a factor of 7.5, 15 to 150.

(a) RingCurve (b) Wave (c) TriGaussian

Figure 9: Scatter plot of RingCurve-Wave-TriGaussian data
set, as used in [16], used in Section 5 for scale-up test.

B. ALGORITHMS
We use the same algorithms to generate binary trees to rep-
resent T (·|D) as used in [16] for multi-dimensional mass es-
timation with some minor modifications. Only the pertinent
details are provided here. Algorithm 1 generates t trees from
a given data set D. Algorithm 2 generates a single tree using
a subset D ⊂ D.
Function sample(D,ψ) samples ψ instances from each class
without replacement. If there are not enough instances in a

class to sample, then all the instances are picked from that
class.
Function InitialiseWorkSpace(D), extends the work space
that envelops D by randomly selecting a split point within
the range of each dimension and adjusting that split point
as the mid-point of the new extended work space.

Algorithm 1 : BuildTrees(D, t, ψ, h)

Inputs: D - input data, t - number of trees, ψ - sub-
sampling size, h - number of times an attribute is employed
in a path.
Output: F - a set of t h:d-Trees

1: MaxHeightLimit← h× d
2: Initialize F
3: for i = 1 to t do
4: D ← sample(D,ψ) {strictly without replacement}
5: (min,max) ← InitialiseWorkSpace(D)
6: F ← F ∪ SingleTree(D,min,max, 0)
7: end for

Algorithm 2 : SingleTree(D,min,max, `)
Inputs: D - input data, min & max - arrays of minimum
and maximum values for each attribute in A that define a
work space, ` - current height level, A - set of d attributes.
Output: an h:d-Tree

1: while (` < MaxHeightLimit and |D| > 1) do
2: {Retrieve an attribute from A based on height level.}
3: q ← nextAttribute(A, `)
4: p← (maxq +minq)/2
5: Dl ← filter(D, q < p)
6: Dr ← filter(D, q ≥ p)
7: if (|Dl| = 0 ) or (|Dr| = 0) then
8: {Reduce range for single-branch node.}
9: if (|Dl| > 0 ) then maxq ← p

10: else minq ← p
11: end if
12: `← `+ 1
13: continue at the start of while loop
14: end if
15: {Build two nodes: Left and Right as a result of a

split into two equal-volume half-spaces.}
16: temp← maxq; maxq ← p
17: Left← SingleTree(Dl,min,max, `+ 1)
18: maxq ← temp; minq ← p
19: Right← SingleTree(Dr,min,max, `+ 1)
20: end while
21: return Node(Left,Right, SplitAtt← q,

SplitV alue← p, Size← |D|)
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Abstract This paper introduces mass estimation—a base modelling mechanism that

can be employed to solve various tasks in machine learning. We present the theoretical

basis of mass and efficient methods to estimate mass. We show that mass estima-

tion solves problems effectively in tasks such as information retrieval, regression and

anomaly detection. The models, which use mass in these three tasks, perform at least

as well as and often better than eight state-of-the-art methods in terms of task-specific

performance measures. In addition, mass estimation has constant time and space com-

plexities.
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1 Introduction

‘Estimation of densities is a universal problem of statistics (knowing the densi-

ties one can solve various problems.)’ — V.N. Vapnik [23].

Density estimation has been the base modelling mechanism used in many techniques

designed for tasks such as classification, clustering, anomaly detection and information

retrieval. For example in classification, density estimation is employed to estimate the

class-conditional density function (or likelihood function) p(x|j) or posterior probabil-

ity p(j|x)—the principal function underlying many classification methods; e.g., mixture

models, Bayesian networks, Naive Bayes. Examples of density estimation include ker-

nel density estimation, k-nearest neighbours density estimation, maximum likelihood

procedures and Bayesian methods.

Rank data points in a given data set in order to differentiate core points from fringe

points in a data cloud is fundamental in many tasks, including anomaly detection and

information retrieval. Anomaly detection aims to rank anomalous points higher than
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normal points; information retrieval aims to rank points similar to a query higher than

dissimilar points. Many existing methods (e.g., [5, 6, 24]) have employed density to

provide the ranking; but density estimation is not designed to provide a ranking.

We show in this paper that a new base modelling mechanism called mass estima-

tion possesses different properties from those offered by density estimation:

• A mass distribution stipulates an ordering from core points to fringe points in a

data cloud. In addition, this ordering accentuates the fringe points with a concave

function derived from data, resulting in fringe points have markedly smaller mass

than points close to the core points.

• Mass estimation is more efficient than density estimation because mass is computed

by simple counting and it requires only a small sample through an ensemble ap-

proach. Density estimation (often used to estimate p(x|j) and p(j|x)) requires a

large sample size in order to have a good estimation and is computationally expen-

sive in terms of time and space complexities [8].

Mass estimation has two advantages in relation to efficacy and efficiency. First,

the concavity property mentioned above ensures that fringe points are ‘stretched’ to

be farther from the core points in a mass space—making it easier to separate fringe

points from those points close to core points. This property can then be exploited by a

machine learning algorithm to achieve a better result for the intended task than the one

without it. We show the efficacy of mass in improving the task-specific performance of

four existing state-of-the-art algorithms in information retrieval and regression tasks.

The significant improvements are achieved through a simple mapping from the original

space to a mass space using the mass estimation mechanism introduced in this paper.

Second, mass estimation offers to solve a ranking problem more efficiently using the

ordering derived from data directly—without expensive distance (or related) calcula-

tion. An example of inefficient application is in anomaly detection tasks where many

methods have employed distance or density—a computationally expensive process—to

provide the required ranking. An existing state-of-the-art density-based anomaly de-

tector LOF [6] (which has quadratic time complexity) completes a job involving half

a million data points in more than five hours; yet the mass-based anomaly detector

we have introduced here completes it in less than 20 seconds! Section 6.3 provides the

details of this example.

The rest of the paper is organised as follows. Section 2 introduces mass and

mass estimation, together with their theoretical properties. We also describe meth-

ods for one-dimensional mass estimation. We extend one-dimensional mass estimation

to multi-dimensional mass estimation in Section 3. We provide the algorithm for multi-

dimensional mass estimation in Section 4. Section 5 describes a mass-based formalism

which serves as a basis of applying mass to different data mining tasks. We realise

the formalism in three different tasks: information retrieval, regression and anomaly

detection, and report the empirical evaluation results in Section 6. The relations to

kernel density estimation, data depth and other related work are described in Sections

7, 8 and 9, respectively. We provide conclusions and suggest future work in the last

section.

2 Mass and mass estimation

Data mass or mass, in its simplest form, is defined as the number of points in a

region. Any two groups of data in the same domain have the same mass if they have
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Table 1 Symbols and notations.

Ru A real domain of u dimensions
x A one-dimensional instance in R
x An instance in Ru

D A data set of x, where |D| = n
D A subset of D, where |D| = ψ
z An instance in Rt

D′ A data set of z
c The ensemble size used to estimate mass
h Level of mass distribution
t Number of mass distributions in m̃ass(·)
mi(·) Mass base function defined using binary split si
mass(·) Mass function which returns a real value in one-dimensinal mass space
m̃ass(·) Mass function which returns a vector of t values in t-dimensional mass space

the same number of points, regardless of the characteristics of the regions they occupy

(e.g., density, shape or volume). Mass in a given region is thus defined by a rectangular

function which has the same value for the entire region in which the mass is measured.

To estimate the mass for a point and thus the mass distribution of a given data

set, a more sophisticated form is required. The intuition is based on the simplest form

described above, but multiple (overlapping) regions covering a point are generated. The

mass for the point is then derived from an average of masses from all regions covering

the point. We show two ways to define these regions. The first is to generate all possible

regions through binary splits from the given data points; and the second is to generate

random axis-parallel regions, each is within a workspace confined by a data sample.

The first is described in this section and the second is described in Section 3.

Each region can be defined in multiple levels where a higher level region covering

a point has a smaller volume than that of a lower level region covering the same point.

We show that the mass distribution has special properties: (i) the mass distribution

defined by level-1 regions is a concave function which has the maximum mass at the

centre of the data cloud, irrespective of its density distribution, including uniform and

U-shape distributions; and (ii) higher level regions are required to model multi-modal

mass distributions.

Note that mass is not a probability mass function, and it does not provide

probability, as the probability density function does through integration.

In Section 2.1, we show (i) how to estimate a mass distribution for a given data

set through binary splits and (ii) the theoretical properties of mass estimation. Section

2.2 describes an approximation to the theoretical mass estimation which works more

efficiently in practice. The symbols and notations used are provided in Table 1.

2.1 Mass distribution estimation

In this section, we first show in Section 2.1.1 a mass distribution estimation that uses

binary splits in the one-dimensional setting, where each binary split separates the one-

dimensional space into two non-empty regions. In Section 2.1.2, we then generalise the

treatment using multiple levels of binary splits.
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2.1.1 Mass distribution estimation using binary splits

Here, we employ a binary split to divide the data set into two separate regions and

compute the mass in each region. The mass distribution at point x is estimated to be

the sum of all ‘weighted’ masses from regions occupied by x, as a result of n−1 binary

splits for a data set of size n.

Let x1 < x2 < · · · < xn−1 < xn on the real line1, xi ∈ R and n > 1. Let si be the

binary split between xi and xi+1, yielding two non-empty regions having two masses

mL
i and mR

i .

Definition 1 Mass base function: mi(x) as a result of si, is defined as

mi(x) =

{

mL
i if x is on the left of si

mR
i if x is on the right of si

Note that mL
i = n−mR

i = i.

Definition 2 Mass distribution: mass(xa) for a point xa ∈ {x1, x2, · · · , xn−1, xn} is

defined as a summation of a series of mass base functions mi(x) weighted by p(si) over

n− 1 splits as follows.

mass(xa) =

n−1
∑

i=1

mi(xa)p(si)

=

n−1
∑

i=a

m
L
i p(si) +

a−1
∑

j=1

m
R
j p(sj)

=

n−1
∑

i=a

ip(si) +

a−1
∑

j=1

(n− j)p(sj) (1)

p(si) is the probability of selecting si. Note that we have defined
∑r
i=q f(i) = 0, when

r < q for any function f .

Example. For an example of five points x1 < x2 < x3 < x4 < x5, Figure 1

shows the resultant mi(x) due to each of the four binary splits s1, s2, s3, s4; and their

associated masses over four splits are given below:

mass(x1) = 1p(s1) + 2p(s2) + 3p(s3) + 4p(s4)

mass(x2) = 4p(s1) + 2p(s2) + 3p(s3) + 4p(s4)

mass(x3) = 4p(s1) + 3p(s2) + 3p(s3) + 4p(s4)

mass(x4) = 4p(s1) + 3p(s2) + 2p(s3) + 4p(s4)

mass(x5) = 4p(s1) + 3p(s2) + 2p(s3) + 1p(s4)

For a given data set, p(si) can be estimated on the real line as p(si) = (xi+1 −

xi)/(xn − x1) > 0, as a result of random selection of splits based on a uniform distri-

bution.2

For a point x /∈ {x1, x2, · · · , xn−1, xn}, mass(x) is defined as an interpolation

between two masses of adjacent points xi and xi+1, where xi < x < xi+1.

1 In data having a pocket of points of the same value, an arbitrary order can be ‘forced’ by
adding increasing multiples of an insignificant small value ǫ to each subsequent point of the
pocket, without changing the general distribution.

2 The estimated mass(x) values can be calibrated to a finite data range ∆ by multiplying a
factor (xn − x1)/∆.
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Fig. 1 Examples of mass base functionmi(x) due to each of the four binary splits: s1, s2, s3, s4.

Theorem 1: mass(xa) is the maximum at a = n/2 for any density distribution of

{x1, · · · , xn}; and the points xa, where x1 < x2 < · · · < xn−1 < xn on the real line,

can be ordered based on mass as follows.

mass(xa) < mass(xa+1), a < n/2

mass(xa) > mass(xa+1), a > n/2

Proof : The difference in mass between two consecutive points xa and xa+1 differs in

only one term, i.e., the mass associated with p(sa) only; and ∀i 6= a, the terms for p(si)

have the same mass.

mass(xa)−mass(xa+1) =
∑n−1
i=a ip(si) +

∑a−1
j=1 (n− j)p(sj)

−
∑n−1
i=(a+1) ip(si)−

∑a
j=1(n− j)p(sj)

= ap(sa)− (n− a)p(sa)

= (2a− n)p(sa) (2)

Thus,

sign(mass(xa)−mass(xa+1)) =







negative if a < n/2

0 if a = n/2

positive if a > n/2
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The point xn/2 can be regarded as the median. Note that the number of points with

the maximum mass depends on whether n is odd or even: When n is an odd integer,

only one point has the maximum mass at xmedian, where median = ⌈n/2⌉; when n is

an even integer, two points have the maximum mass at a = n/2 and a = 1 + n/2.

�

Theorem 2: mass(xa) is a concave function defined w.r.t. {x1, x2, . . . , xn}, when

p(si) = (xi+1 − xi)/(xn − x1) for n > 2.

Proof : We only need to show that the gradient of xa is non-increasing, i.e., g(xa) >

g(xa+1) for each a.

Let g(xa) be the gradient between xa and xa+1, and from (2):

g(xa) =
mass(xa+1)−mass(xa)

xa+1 − xa
=

n− 2a

xn − x1

The result follows: g(xa) > g(xa+1) for a ∈ {1, 2, . . . , n− 1}.

�

Corollary 1 A mass distribution estimated using binary splits stipulates an ordering,

based on mass, of the points in a data cloud from xn/2 (with the maximum mass) to

the fringe points (with the minimum mass at either side of xn/2), irrespective of the

density distribution including uniform density distribution.

Corollary 2 The concavity of mass distribution stipulates that fringe points have

markedly smaller mass than points close to xn/2.

The implication from Corollary 2 is that fringe points are ‘stretched’ to be farther away

from the median in a mass space than in the original space—making it easier to separate

fringe points from those points close to the median. (The mass space is mapped from

the original space through mass(x).) This property can then be exploited by a data

mining algorithm to achieve a better result for the intended task than the one without

it. We will show that this simple mapping significantly improves the performance of

four existing algorithms in information retrieval and regression tasks in Sections 6.1

and 6.2.

Equation (1) is sufficient to provide a mass distribution corresponding to a unimodal

density function or a uniform density function. To better estimate multi-modal mass

distributions, a high level of binary splits is required. This is provided in the following.
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2.1.2 Level-h mass distribution estimation

Definition 3 The level-h mass distribution for a point xa ∈ {x1, . . . , xn}, where h <

n, is expressed as

mass(xa, h) =

n−1
∑

i=1

massi(xa, h-1)p(si)

=

n−1
∑

i=a

mass
L
i (xa, h-1)p(si) +

a−1
∑

j=1

mass
R
j (xa, h-1)p(sj) (3)

Here a high level mass distribution is computed recursively by using the mass distri-

butions obtained at lower levels. A binary split si in a level-h(>1) mass distribution

produces two level-(h-1) mass distributions: (a) massLi (x, h-1)—the mass distribution

on the left of split si which is defined using {x1, . . . , xi}; and (b) massRi (x, h-1)—the

mass distribution on the right which is defined using {xi+1, . . . , xn}. Equation (1) is

the mass distribution at level-1.

Figure 2 shows two (out of 19 splits) required to compute level-2 mass estimation,

mass(x,h = 2), from a data set of 20 points. Each split produces two level-1 mass

estimations: massLi (x, h = 1) andmassRi (x, h = 1). Note that level-1 mass distribution

is concave, as proven in Theorem 2. This example shows the results of two splits si=7

and si=11, where each level-1 mass distribution is concave.
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Fig. 2 Two examples of massLi (x, h = 1) and massRi (x, h = 1) due to si=7 and si=11 in the
process to get mass(x, h = 2) from a data set of 20 points with uniform density distribution.
The resultant mass(x, h = 2) is shown in Figure 3(a).

Using the same analysis as in the proof for Theorem 1, the above equation can be

re-expressed as:

mass(xa+1, h) = mass(xa, h) +

{

[massRa (xa, h-1)−massLa (xa, h-1)]p(sa), h > 1

(n− 2a)p(sa), h = 1
(4)

As a result, only the mass for the first point x1 needs to be computed using Equation

(3). Note that it is more efficient to compute the mass distribution from the above
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equation which has time complexity O(nh+1); the computation using Equation (3) has

complexity O(nh+2).

Definition 4 A level-h mass distribution stipulates an ordering of the points in a

data cloud from α-core points to the fringe points. Each α-core point in a data cloud

has the highest mass value within α distance. α-core points are the set of points with

mass∗(h) −mass(x,h) ≤ α, where mass∗(h) = maxx mass(x, h). A small α defines

local core point(s); and a large α, which covers the entire value range for x, defines

global core point(s).

Examples of level-h mass estimation in comparison with kernel density estimation

are provided in Figure 3. Note that h = 1 mass estimation looks at the data as a

group, and it produces a concave function. As a result, an h = 1 mass estimation

always has its global core point(s) at the median, regardless of the underlying density

distribution—see the four examples of h = 1 mass estimation in Figure 3.
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Fig. 3 Examples of level-h mass distribution for h = 1, 2, 3 and density distribution from
kernel density estimation: Gaussian kernel with bandwidth = 0.1 (for the first three figures)
and 0.01 (for the last figure in order to show the density spike.) The data sets have 20 points
each for the first three figures, and the last one has 50 points.

For h > 1 mass distribution, though there is no guarantee for a concave function

any more as a whole, each cluster within the data cloud (if they exist) exhibits a

concave function and it becomes more distinct (as a concave function) as h increases.

This is shown in Figure 3(b) which has a trimodal density distribution. Notice that

the h > 1 mass distributions have three α-core points for some α, e.g., 0.2.
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Traditionally, one can estimate the core-ness or the fringe-ness of non-uniformly

distributed data to some degree by using density or distance (but not in uniform

density distribution.) Mass allows one to do that in any distribution without density

or distance calculation—the key computational expense in all methods that employ

them. For example in Figure 3(c) which has a skew density distribution, the distinction

between near fringe points and far fringe points are less obvious using density, unless

distances are computed to reveal the difference. In contrast, mass distribution depicts

the relative distance from xmedian using the fringe points’ mass values, without further

calculation.

Figure 3(d) shows an example where there are clustered anomalies which are denser

than the normal points (shown in the bigger cluster on the left of the figure.) Anomaly

detection based on density will identify all these clustered anomalies as more ‘normal’

than the normal points because anomalies are defined as points having low density.

In sharp contrast, h = 1 mass estimation will correctly rank them as anomalies which

have the third lowest mass values. These points are interpreted as points at the fringe

of the data cloud of normal points which have higher mass values.

This section has described properties of mass distribution from a theoretical per-

spective. Though it is possible to estimate mass distribution using Equations (1) and

(3), they are limited by its high computational cost. We suggest a practical mass esti-

mation method in the next subsection. We use the term ‘mass estimation’ and ‘mass

distribution estimation’ interchangeably hereafter.

2.2 Practical one-dimensional level-h mass estimation

Here we devise an approximation to Equation (3) using random subsamples from a

given data set.

Definition 5 mass(x, h|D) is the approximate mass distribution for a point x ∈ R,

defined w.r.t. D = {x1, . . . , xψ}, where D is a random subset of the given data set D,

and ψ ≪ |D|, h < ψ.

Here we employ a rectangular function to define mass for a region encompassing

each point x ∈ D. mass(x,h|D) is implemented using a lookup table where a region for

each point xi ∈ D covers a range (xi−1 + xi)/2 ≤ x < (xi+1 + xi)/2 and has the same

mass(xi, h|D) value for the entire region. The range for each of the two end-points is

set to have equal length on either side of the point. An example is provided in Figure

4(a).

In addition, a number of mass distributions needs to be constructed from different

samples in order to have a good approximation, that is,

mass(x, h) ≈
1

c

c
∑

k=1

mass(x, h|Dk) (5)

The computation of mass(x, h) using the given data set D costs O(|D|h+1) in terms

of time complexity; whereas mass(x,h|D) costs O(ψh+1).

Only relative, not absolute, mass is required to provide an ordering between in-

stances. Because the relative mass is w.r.t. the median and the median is a robust

estimator [3]—that is why small subsamples produce a good estimator for ordering.
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Fig. 4 (a) An example of practical mass distribution mass(x, h|D) for 5 points, assuming
a rectangular function for each point. (b) Correlation between the orderings provided by
mass(x, 1) and mass(x, 1|D) for two data sets: one-dimensional Gaussian density distribution
and the COREL data set used in Section 6.1 (whose result is averaged over 67 dimensions).

Figure 4(b) shows the correlation (in terms of Spearman’s rank correlation coef-

ficient) between the orderings provided by mass(x, 1) using the entire data set and

mass(x,1|D) using ψ = 8 in two data sets, each having 10000 data points. They

achieve very high correlations when c ≥ 100.

The ability to use a small sample, rather than a large sample, is a key characteristic

of mass estimation.

3 Multi-dimensional mass estimation

Here we propose a way to generalise the one-dimensional mass estimation we have

described in the last section. It eliminates the need to compute the probability of

binary split, p(si); and it gives rise to randomised versions of Equations (1), (3) and

(5).

The idea is to generate multiple random regions which cover a point, and then

the mass for that point is estimated by averaging all masses from all those regions.

We show that random regions can be generated using axis-parallel splits called half-

space splits. Each half-space split is performed on a randomly selected attribute in a

multi-dimensional feature space. For h-level split, each half-space split is carried out h

times recursively along every path in a tree structure. Each h-level (axis-parallel) split

generates 2h non-overlapping regions. Multiple h-level splits are used to estimate mass

for each point in the feature space.
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The multi-dimensional mass estimation requires two functions. First, it needs a

function that generates random regions covering each point in the feature space. This

function is a generalisation of the binary split into half-space splits or 2h-region splits

when h levels of half-space splits are used. Second, a generalised version of the mass

base function is used to define mass in a region. The formal definition follows.

Let x be an instance in Rd. Let Th(x) be one of the 2h regions in which x falls into;

Th(·) is generated from the given data set D, and Th(·|D) is generated from D ⊂ D;

and m be the number of training instances in the region.

The generalised mass base function: m(Th(x)) is defined as

m(Th(x)) =

{

m if x is in a region of Th having m instances,

0 otherwise.

In one-dimensional problems, Equations (1), (3) and (5) can now be approximated

as follows:
n−1
∑

i=1

mi(x)p(si) ≈
1

c

c
∑

k=1

m(T 1
k (x)) (6)

mass(x,h) ≈
1

c

c
∑

k=1

m(Thk (x)) (7)

mass(x, h) ≈
1

c

c
∑

k=1

m(Thk (x|Dk)) (8)

where c > 0 is the number of random regions to be used to define mass for x.

Here every Thk is generated randomly with equal probability. Note that p(si) in

Equation (1) has the same assumption.

Since Th is defined in multi-dimensional space, the multi-dimensional mass esti-

mation is the same as Equation (8) by simply replacing x with x:

mass(x, h) ≈
1

c

c
∑

k=1

m(Thk (x|Dk)) (9)

Like its one-dimensional counterpart, the multi-dimensional mass estimation stip-

ulates an ordering from core points (having high mass) to fringe points (having low

mass) in a data cloud, regardless of its density distribution. While we do not have a

proof of this property for multi-dimensional mass estimation, empirical results suggest

that it is. This property is shown in Figure 5 (a) using h = 1, where the highest mass

value is at the centre of the entire data cloud, when the four clusters are treated as a

single data cloud; while the four clusters are scattered in each of the four quadrants.

Mass values become lower as they move away from the centre. Figure 5 (b) shows the

contour map for h = 32 on the same data set. It demonstrates that multi-dimensional

mass estimation can use high h level to model multi-modal distribution.

We show in Section 6 that both mass(x,h|D) and m(Th(x|D)) (in Equations (5)

and (9), respectively) can be employed effectively for three different tasks: information

retrieval, regression and anomaly detection, through a mass-based formalism to be

described in Section 5.

m(Th(·|D)) is implemented using Half-Space Trees, first described by Ting, Liu

and Tan [19]. There are two variants: The first variant is based on mass only where

every external node in a tree has the same depth level. The second variant is based
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(b) h = 32

Fig. 5 Contour maps of multi-dimensional mass distribution for a two-dimensional data set
with four clusters (each containing 50 points), where points in each cluster are marked with
a distinct marker. The points are randomly drawn from Gaussian distributions with unit
standard deviation and means located at (2; 2), (-2; 2), (-2; -2) and (2; -2), respectively. The
two figures are produced using h = 1 and h = 32, respectively. Other parameters are set as
follows: c = 1000 and ψ = |D| = 64. The algorithm used to generate these contour maps will
be described in Section 4. The legend indicates the colour-coded mass values.

an augmented mass where the external nodes of a tree have differing depth levels.

Because the second variant builds smaller trees and it has similar performance as the

first variant, we will use it in this paper. The algorithm for Half-Space Trees and the

definition for augmented mass are given in next section. The motivation of Half-Space

Trees, described by Ting, Liu and Tan [19], is provided in Appendix A.

4 Algorithm to generate Half-Space Trees

Half-Space Trees estimate a mass distribution efficiently, without density or distance

calculations or clustering. We first describe the training procedure, then the testing

procedure, and finally the time and space complexities.

Training. The procedure to generate a Half-Space Tree is shown in Algorithm 1.

It starts by defining a (random) range for each dimension in order to form a work space

which covers all the training data. The InitialiseWorkSpace(·) function in Algorithm

1 is carried out as follows. For each attribute q, a random split value (zq) is chosen

within the range [Dminq ,Dmaxq], i.e., the minimum and maximum values of q in the

subsample. Then, attribute q of the work space is defined to have the range [minq ,

maxq] = [zq−r, zq+r], where r = 2 ·max(zq−Dminq , Dmaxq−zq). The ranges of all

dimensions define the work space used to generate a Half-Space Tree. The work space

defined by [minq , maxq] is then passed over to Algorithm 2 to construct a Half-Space

Tree.

Constructing a single Half-Space Tree is almost identical to constructing an ordi-

nary decision tree3 [14], except that no splitting selection criterion is required at each

node.

Given a work space, an attribute q is randomly selected to form an internal node

of an Half-Space Tree (line 4 in Algorithm 2). The split point of this internal node is

3 However, they are for different tasks: Decision trees are for supervised learning tasks;
Half-Space trees are for unsupervised learning tasks.
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simply the mid-point between the minimum and maximum values of attribute q (i.e.,

minq and maxq), defined by the work space (line 5). Data are filtered through one

of the two branches depending on which side of the split the data reside (lines 6-7).

This node building process is repeated for each branch (lines 9-12 in Algorithm 2)

until a size limit or a depth limit is reached to form an external node (lines 1-2 in

Algorithm 2). The training instances at the external node at depth level ℓ form the

mass m(Th(x|D)) to be used during the testing process for x. The parameters are set

as follows: S = log2(|D|) − 1 and h = |D| for all the experiments conducted in this

paper.

Algorithm 1 : Th(D, S, h)

Inputs: D - input data, S - data size limit at external node, h - maximum depth limit
Output: a Half-Space Tree

1: SizeLimit← S
2: MaxDepthLimit← h
3: (min,max) ← InitialiseWorkSpace(D)
4: return SingleHalf-SpaceTree(D, min,max, 0)

Algorithm 2 : SingleHalf-SpaceTree(D, min,max, ℓ)

Inputs: D - input data,min&max - arrays of minimum and maximum values for all attributes
in a work space, ℓ - current depth level
Output: a Half-Space Tree

1: if (|D| ≤ SizeLimit) or (ℓ ≥MaxDepthLimit) then

2: return exNode(Size← |D|)
3: else

4: randomly select an attribute q
5: p← (maxq +minq)/2
6: Dl ← filter(D, q < p) {Extract data satisfying condition: q < p.}
7: Dr ← filter(D, q ≥ p) {Extract data satisfying condition: q ≥ p.}
8: {Build two nodes: Left and Right as a result of a split into two equal-volume half-

spaces.}
9: temp← maxq ; maxq ← p
10: Left← SingleHalf-SpaceTree(Dl, min,max, ℓ+ 1)
11: maxq ← temp; minq ← p
12: Right← SingleHalf-SpaceTree(Dr, min,max, ℓ+ 1)
13: return inNode(Left, Right, SplitAtt← q,

SplitV alue← p)
14: end if

Ensemble. The proposed method uses a random subsample D to build one Half-

Space Tree (i.e., Th(·|D)), and multiple Half-Space Trees are constructed from different

random subsamples (using sampling without replacement) to form an ensemble.

Testing. During testing, a test instance x traverses through each Half-Space Tree

from the root to an external node, and the mass recorded at the external node is used

to compute its augmented mass (see Equation (10) below.) This testing is carried out

for all Half-Space Trees in the ensemble, and the final score is the average score from

all trees, as expressed in Equation (11) below.
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The mass, augmented by depth ℓ of the region of Half-Space Tree Th in which x

falls into, is given as follows.

s(x, h) = m(Th(x|D))× 2ℓ (10)

Mass needs to be augmented with depth ℓ of a Half-Space Tree in order to ‘nor-

malise’ the masses from different depths in the tree. See Appendix A for more details.

The mass for point x estimated from an ensemble of c Half-Space Trees is given as

follows.

mass(x, h) ≈
1

c

c
∑

k=1

sk(x, h) (11)

Time and Space complexities. Because it involves no evaluations or searches,

a Half-Space Tree can be generated quickly. In addition, a good performing Half-Space

Tree can be generated using only a small subsample (size ψ) from a given data set of

size n, where ψ ≪ n. An ensemble of Half-Space Trees has training time complexity

O(chψ) which is constant for an ensemble with fixed subsample size ψ, maximum depth

level h and ensemble size c. It has time complexity O(chn) during testing. The space

complexity for Half-Space Trees is O(chψ) and is also a constant for an ensemble with

fixed subsample size, maximum depth level and ensemble size.

5 Mass-based Formalism

The data ordering expressed as mass distribution can be interpreted as a measure

of relevance with respect to the concept underlying the data, i.e., points having high

mass are highly relevant to the concept and points having low mass are less relevant. In

tasks whose primary aim is to rank points in a database with reference to a data profile,

mass provides the ideal ranking measure without distance or density calculations. In

anomaly detection, high mass signifies normal points and low mass signifies anomalies;

in information retrieval, high (low) mass signifies that a database point is highly (less)

relevant to the query. Even in tasks whose primary aim is not ranking, the transformed

mass space can be better exploited by existing algorithms because the transformation

stretches concept-irrelevant points farther away from relevant points in the mass space.

We introduce a formalism in which mass can be applied to different tasks in this

section, and provide the empirical evaluation in the following section.

Let xi = [x1i , . . . , x
u
i ]; xi ∈ D; and zi = [z1i , . . . , z

t
i ]; zi ∈ D′ in the tranformed

mass space. The proposed formalism consists of three components:

C1 The first component constructs a number of mass distributions in a mass space. A

mass distribution mass(xd, h|D) for dimension d in the original feature space is ob-

tained using our proposed one-dimensional mass estimation, as given in Definition

5. A total number of t mass distributions is generated which forms m̃ass(x) → Rt,

where t ≫ u. This procedure is given in Algorithm 3. Multi-dimensional mass es-

timation m(Th(x|D)) (replacing one-dimensional mass estimation mass(xd, h|D))

can be used to generate the mass space similarly; see note in Algorithm 3.

C2 The second component maps the data set D in the original space of u dimensions

into a new data set D′ in t-dimensional mass space using m̃ass(x) = z. This

procedure is described in Algorithm 4.
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C3 The third component employs a decision rule to determine the final outcome for

the task at hand. It is a task-specific decision function applied to z in the new mass

space.

Algorithm 3 : Mass Estimation(D,ψ, h, t)

Inputs: D - input data; ψ - data size for Dk; h - level of mass distribution; t - number of mass
distributions.
Output: m̃ass(x) → Rt - a function consists of t mass distributions, using either one-
dimensional or multi-dimensional mass estimation: mass(xd, h|Dk) or m(Th

k
(x|Dk)).

1: for k = 1 to t do
2: Dk ← a random subset of size ψ from D;
3: d← a randomly selected dimension from { 1,. . . ,u };
4: Build mass(xd, h|Dk);
5: end for

Note: For multi-dimensional mass estimation, steps 3 and 4 are replaced with one step:
Build m(Th

k
(x|Dk));

Algorithm 4 : Mass Mapping(D, m̃ass)

Inputs: D - input data; m̃ass - a function consists of t mass distributions.
Output: D′ - a set of mapped instances zi in t dimensions.

1: for i = 1 to |D| do
2: zi ← m̃ass(xi);
3: end for

Algorithm 5 : Perform task in MassSpace(D, ψ, h, t)

Inputs: D - input data; ψ - data size for D; h - level of mass distribution; t - number of mass
distributions.
Output: Task-specific model in mass space.
1: m̃ass(·)← Mass Estimation(D,ψ, h, t);
2: D′ ← Mass Mapping(D, m̃ass);
3: Perform task (information retrieval or regression) in the mapped mass space using D′;

The formalism becomes a blueprint for different tasks. Components C1 and C3 are

mandatory in the formalism, but component C2 is optional, depending on the task.

For information retrieval and regression, the task-specific C3 procedure is simply

using an existing algorithm for the task except that the process is carried out in the

new mapped mass space, instead of the original space. The MassSpace procedure is

given in Algorithm 5.

The task-specific C3 procedure for anomaly detection is shown in steps 2-5 in

Algorithm 6: MassAD. Note that anomaly detection requires C1 and C3 only; whereas

the other two tasks require all three components.

In our experiments described in the next section, the mapping from u dimensions

to t dimensions using Algorithm 3 is carried out one dimension at a time when using

one-dimensional mass estimation; and all u dimensions at a time when using multi-

dimensional mass estimation. Each such mapping produces one dimension in mass space
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and is repeated t times to get a t-dimensional mass space. Note that randomisation

gives different variations to each of the t mappings. The first randomisation occurs at

step 2 in Algorithm 3 in selecting a random subset of data. Additional randomisation

is applied to attribute selection at step 3 in Algorithm 3 for one-dimensional mass

estimation, or at step 4 in Algorithm 2 for multi-dimensional mass estimation.

Algorithm 6 for Anomaly Detection : MassAD(D, ψ, h, t)

Inputs: D - input data; ψ - data size for D; h - level of mass distribution; t - number of mass
distributions.
Output: Ranked instances in D.
1: m̃ass(·)← Mass Estimation(D,ψ, h, t);
2: for i = 1 to |D| do
3: Mi ← Average of t masses from m̃ass(xi);
4: end for

5: Rank instances in D based on Mi with low mass denotes anomalies and high mass denotes
normal points;

6 Experiments

We evaluate the performance of MassSpace and MassAD for three tasks in the follow-

ing three subsections. We denote an algorithm A using one-dimensional and multi-

dimensional mass estimations as A′ and A
′′, respectively.

In information retrieval and regression tasks, the mass estimation uses ψ = 8 and

t = 1000. These settings are obtained by examining the rank correlation as shown

in Figure 4(b)—having a high rank correlation between mass(x, 1) and mass(x,1|D).

Note that this is done before any method is applied and no further fine-tuning. In

anomaly detection tasks, ψ = 256 and t = 100 are used so that they are comparable

to those used in a benchmark method for a fair comparison. In all tasks, h = 1 is used

for one-dimensional mass estimation, and it cannot afford to use a high h because of

its high cost O(ψh). h = ψ is used for multi-dimensional mass estimation in order to

reduce one parameter setting.

All the experiments were run in Matlab and conducted on a Xeon processor which

ran at 2.66 GHz and with 48 GB memory. The performance of each method was

measured in terms of task-specific performance measure and runtime. Paired t-tests at

5% significance level were conducted to examine whether the difference in performance

is significant between two algorithms under comparison.

Note that we treated information retrieval and anomaly detection as unsupervised

learning tasks. Classes/labels in the original data were used as ground truth for evalu-

ation of performance only; they were not used in building mass distributions. In regres-

sion, only the training set was used to build mass distributions in step 1 of Algorithm

5; the mapping in step 2 was conducted for both the training and testing sets.

6.1 Content-Based Image Retrieval

We use a Content-Based Image Retrieval (CBIR) task as an example of information

retrieval. The MassSpace approach is compared with three state-of-the-art CBIR meth-

ods that deal with relevance feedbacks: a manifold based method MRBIR [11], and two
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Table 2 CBIR results (the higher the better for BEP.) An algorithm A using one-dimensional
and multi-dimensional mass estimations are denoted as A′ and A′′, respectively.

MRBIR′′ MRBIR′ MRBIR Qsim′′ Qsim′ Qsim InstR′′ InstR′ InstR

One query 12.65 10.70 9.69 12.38 10.35 7.78 12.38 10.35 7.78
Round 1 16.58 14.24 12.72 19.18 15.46 10.59 13.88 13.33 9.40
Round 2 18.41 16.05 13.90 21.98 17.58 11.81 15.12 14.95 9.99
Round 3 19.69 17.34 14.75 23.67 18.71 12.59 16.19 16.07 10.36
Round 4 20.48 18.20 15.33 24.65 19.50 13.16 16.88 16.93 10.78
Round 5 21.15 19.86 15.71 25.42 19.96 13.55 17.49 17.58 11.05

recent techniques for improving similarity calculation, i.e., Qsim [27] and InstR [10];

and we employ the Euclidean distance to measure the similarity between instances in

these two methods. The default parameter settings are used for all these methods.

Our experiments were conducted using the COREL image database [26] of 10000

images, which contains 100 categories and each category has 100 images. Each image is

represented by a 67-dimensional feature vector, which consists of 11 shape, 24 texture

and 32 color features. To test the performance, we randomly selected 5 images from

each category to serve as the queries. For a query, the images within the same category

were regarded as relevant and the rest were irrelevant. For each query, we continued to

perform up to 5 rounds of relevance feedback. In each round, 2 positive and 2 negative

feedbacks were provided. This relevance feedback process was also repeated 5 times

with 5 different series of feedbacks. Finally, the average results with one query and

in different feedback rounds were recorded. The retrieval performance was measured

in terms of Break-Even-Point (BEP) [27, 26] of the precision-recall curve. The online

processing time reported is the time required in each method for a query plus the

stated feedback rounds. The reported result is an average over 5 × 100 runs for query

only; and an average over 5× 100 × 5 runs for query plus feedbacks. The offline costs

of constructing the one-dimensional mass estimation and the mapping of 10000 images

were 0.27 and 0.32 seconds, respectively. The multi-dimensional mass estimation and

the corresponding mapping took 1.72 and 5.74 seconds, respectively.

The results are presented in Table 2 where the retrieval performance better than

that conducted in the original space at each round has been boldfaced. The results are

grouped for ease of comparison.

The BEP results clearly show that the MassSpace approach achieves a better re-

trieval performance than that using the original space in all three methods MRBIR, Qsim

and InstR, for one query and all rounds of relevance feedbacks. Paired t-tests with 5%

significance level also indicate that the MassSpace approach significantly outperforms

each of the three methods in all experiments, without exception. These results show

that the mass space provides useful additional information that is hidden in the original

space.

The results also show that the multi-dimensional mass estimation provides better

information than the one-dimensional mass estimation—MRBIR′′ , Qsim′′ and InstR′′

give better retrieval performance than MRBIR
′, Qsim′ and InstR

′, respectively; only

some exceptions occur in the higher feedback rounds for InstR′, with minor differences.

The processing time for the MassSpace approach is expected to be longer than

each of the three methods because the number of dimensions in the mass space is

significantly higher than those in the original space, where t = 1000 and u = 67.

Despite that, MRBIR′′, MRBIR′ and MRBIR all have similar level of runtime.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



18

Table 3 CBIR results (time in seconds.)

MRBIR′′ MRBIR′ MRBIR Qsim′′ Qsim′ Qsim InstR′′ InstR′ InstR

One Query 0.714 0.785 0.364 0.715 0.822 0.093 0.715 0.822 0.093
Round1 0.762 0.893 0.696 0.207 0.208 0.035 0.197 0.198 0.026
Round2 0.763 0.893 0.696 0.228 0.231 0.058 0.200 0.200 0.028
Round3 0.763 0.893 0.696 0.257 0.259 0.086 0.200 0.200 0.028
Round4 0.764 0.893 0.696 0.291 0.294 0.122 0.200 0.200 0.028
Round5 0.764 0.893 0.697 0.335 0.341 0.167 0.200 0.200 0.028
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Fig. 6 An example of CBIR-round 5 result: The retrieval performance and the processing
time as t increases for InstR′.

Figure 6 shows an example of performance for InstR′—BEP increases as t increases

until it reaches a plateau at some t value; and the processing time is linear w.r.t. the

number of dimensions of the mass space, t.

6.2 Regression

In this experiment, we compare SVR
′′ and SVR

′ with SVR—support vector regression

[23] that employs the mapped mass space versus that employs the original space. SVR

is the ǫ-SVR algorithm with RBF kernel, implemented by LIBSVM [7]. SVR is chosen

here because it is one of the top performing models.

We utilize five benchmark data sets including four selected from UCI repository [4]

and one earthquake data [18] from www.cs.waikato.ac.nz/ml/weka/distribution. The

data characteristics are summarized in the first three columns of Table 4. We select only

those data sets which are more than 1000 data points with all real-valued attributes

and without missing values—in order to get a result with a higher confidence than

those obtained from small data sets.

In each data set, we randomly sampled two-thirds of the instances for training and

the remaining one-third for testing. This was repeated 20 times and we report the

average result of these 20 runs. The data set, whether in the original space or the mass

space, was min-max normalized before an ǫ-SVR model was trained. To select optimal

parameters for the ǫ-SVR algorithm, we conducted a 5-fold cross validation based on

mean squared error using the training set only. The kernel parameter γ was searched in

the range {2−15, 2−13, 2−11, · · · , 23, 25}; the regularization parameter C in the range
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Table 4 Regression results (the smaller the better for MSE.)

data MSE (×10−2) W/D/L
size SVR′′ SVR′ SVR SVR′′ SVR′

tic 9822 5.56 5.58 5.62 18/0/2 17/0/3
wine white 4898 1.08 1.21 1.36 20/0/0 20/0/0

quake 2178 2.87 2.86 2.92 17/0/3 18/0/2
wine red 1599 1.50 1.62 1.62 19/0/1 11/0/9
concrete 1030 0.28 0.33 0.57 20/0/0 20/0/0

Table 5 Regression results (time in seconds).

#Dimension Processing time Factor increase
SVR′′ SVR′ SVR time(SVR′′) time(SVR′) #dimension

tic 85 23.4 26.6 11.9 2.0 2.2 12
wine white 11 8.2 9.2 4.2 2.0 2.2 91

quake 3 2.5 3.4 1.0 2.5 3.4 333
wine red 11 1.7 2.6 1.0 1.6 2.5 91
concrete 8 1.2 2.3 0.9 1.3 2.6 125

{0.1, 1, 10}, and ǫ in the range {0.01, 0.05, 0.1}. We measured regression performance

in terms of mean squared error (MSE) and runtime in seconds. The runtime reported

is the runtime for SVR only. The total cost of mass estimation (from the training

set) and mapping (of training and testing sets) in the largest data set, tic, was 1.8

seconds for one-dimensional mass estimation, and 8.5 seconds for multi-dimensional

mass estimation. The cost of normalisation and the parameter search using 5-fold

cross-validation was not included in the reported result for all SVR′′, SVR′ and SVR.

The result is presented in Table 4. SVR′ performs significantly better than SVR in

all data sets in MSE measure; the only exception is in the wine red data set. SVR′′ per-

forms significantly better than SVR in all data sets, without exceptions. SVR′′ generally

performs better than SVR
′.

Although both SVR
′′ and SVR

′ take more time to run because each of them runs on

the data with a significantly higher dimension, yet the factor of increase in time (shown

in the last three columns of Table 5) ranges from 1.3 to 3.4 only, when the factor of

increase in the number of dimensions ranges from 12 to over 300. This is because the

time complexity in the key optimisation process in SVR is not dependent on the number

of dimensions.

6.3 Anomaly Detection

This experiment compares MassAD with four state-of-the-art anomaly detectors: isola-

tion forest or iForest [12], a distance-based method ORCA [5], a density-based method

LOF [6], and one-class support vector machine (or 1-SVM) [17]. MassAD was built with

t = 100 and ψ = 256, the same default settings as used in iForest [12], which also

employed a multi-model approach. The parameter settings employed for ORCA, LOF and

1-SVM were as stated by Liu, Ting and Zhou [12].

All the methods were tested on the eight largest data sets used by Liu, Ting and

Zhou [12]. The data characteristics are summarized in Table 6, which include one

anomaly data generator Mulcross [15] and the other seven are from UCI repository [4].

The performance was evaluated in terms of averaged AUC (area under ROC curve)
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Table 6 Data characteristics of the data sets in anomaly detection tasks. The percentage in
brackets indicates the percentage of anomalies.

data size #Dimension anomaly class
Http 567497 3 attack (0.4%)
Forest 286048 10 class 4 (0.9%) vs class 2

Mulcross 262144 4 2 clusters (10%)
Smtp 95156 3 attack (0.03%)
Shuttle 49097 9 classes 2,3,5,6,7 (7%) vs class 1

Mammography 11183 6 class 1 (2%)
Annthyroid 7200 6 classes 1, 2 (7%)
Satellite 6435 36 3 smallest classes (32%)

Table 7 AUC values for anomaly detection.

MassAD iForest ORCA LOF 1-SVM

Mass′′ Mass′

Http 1.00 1.00 1.00 0.36 0.44 0.90
Forest 0.90 0.92 0.87 0.83 0.56 0.90

Mulcross 0.26 0.99 0.96 0.33 0.59 0.59
Smtp 0.91 0.86 0.88 0.87 0.32 0.78
Shuttle 1.00 0.99 1.00 0.55 0.55 0.79

Mammography 0.86 0.37 0.87 0.77 0.71 0.65
Annthyroid 0.75 0.71 0.82 0.68 0.72 0.63
Satellite 0.77 0.62 0.71 0.65 0.52 0.61

Table 8 Runtime (second) for anomaly detection.

MassAD iForest ORCA LOF 1-SVM

Mass′′ Mass′

Http 168 18 74 9487 18913 35872
Forest 63 10 39 6995 10853 9738

Mulcross 52 10 38 2512 5432 7343
Smtp 27 4 13 267 540 987
Shuttle 20 3 8 157 368 333

Mammography 21 1 3 4 39 11
Annthyroid 7 1 3 2 9 4
Satellite 13 1 3 9 10 9

and processing time (a total of training time and testing time) over ten runs (following

[12]).

MassAD and iForest were implemented in Matlab and tested on a Xeon processor

ran at 2.66 GHz. LOF was written in Java in ELKI platform version 0.4 [1]; and ORCA

was written in C++ (www.stephenbay.net/orca/). The results for ORCA, LOF and 1-SVM

were conducted using the same experimental setting but on a slightly slower 2.3 GHz

machine, the same machine used by Liu, Ting and Zhou [12].

The AUC values of all the compared methods are presented in Table 7 where the

figures boldfaced are the best performance for each data set. The results show that

MassAD using the multi-dimensional mass estimation achieves the best performance in

four data sets, and close to the best (the difference which is less than 0.03 AUC) in

two data sets; MassAD using the one-dimensional mass estimation achieves the best

performance in three data sets, and close to the best in one data set. iForest performs

best in four data sets. The results are close for these three algorithms because they

share many similarities (see Section 9 for details.)
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Table 9 Training time and testing time (second) for MassAD and iForest, using t = 100 and
ψ = 256.

Training time Testing time
MassAD iForest MassAD iForest

Mass′′ Mass′ Mass′′ Mass′

Http 16.2 14.3 14.4 151.8 3.3 59.6
Forest 10.3 8.2 8.6 53.1 2.0 30.8

Mulcross 9.1 7.9 8.1 42.8 2.1 29.4
Smtp 5.4 3.9 3.5 21.9 0.6 9.9
Shuttle 6.1 3.1 2.8 14.1 0.3 5.6

Mammography 8.4 1.3 1.2 12.8 0.1 1.8
Annthyroid 3.1 1.3 1.1 3.4 0.1 1.5
Satellite 6.6 1.2 1.6 5.9 0.0 1.9

Again, the multi-dimensional version of MassAD generally performs better than the

one-dimensional version, with five wins, one draw and two losses. Most importantly,

the worst performance in the Mulcross data set can be easily ‘corrected’ using a better

parameter setting—by using ψ = 8, instead of 256, the multi-dimensional version of

MassAD improves its detection performance from 0.26 AUC to 1.00 AUC.4

It is also noteworthy that the multi-dimensional MassAD significantly outperforms

the traditional density-based, distance-based and SVM anomaly detectors in all data

sets, except two: one in Annthyroid when compared to ORCA; the poor performance

in Mulcross was discussed earlier. The above observations validate the effectiveness of

our proposed mass estimation on anomaly detection tasks.

Table 8 shows the runtime result. Although MassAD was run on a slightly faster

machine, the result still shows that it has a significant advantage in term of processing

time over ORCA, LOF and 1-SVM. The comparison with iForest is presented in Table 9

with a breakdown of training time and testing time. Note that one-dimensional MassAD

took the same time as iForest in training, but it only took about one-tenth of the

time required by iForest in testing. On the other hand, the multi-dimensional MassAD

took slightly more time than iForest in training, but it took up to three times the

time required by iForest in testing.

The time and space complexities for five anomaly detection methods are given

in Table 10. The one-dimensional MassAD and iForest have the best time and space

complexities due to their ability to use small ψ ≪ n and h = 1. Note that the one-

dimensional MassAD (h = 1) is faster by a factor of log(ψ = 256) = 8 which shows

up in the testing time—ten times faster than iForest given in Table 9. The training

time disadvantage, compared to iForest, did not show up because of small ψ. The

one-dimensional MassAD also has an advantage over iForest in space complexity by

a factor of log(ψ). The multi-dimensional MassAD has similar order of worst-case time

and space complexities as iForest, though it might have a larger constant.

In contrast to ORCA and LOF (distance-based and density-based methods), the time

complexity (and the space complexity) for both MassAD and iForest are independent

of the number of dimension u.

4 Mulcross produces anomaly clusters rather than scattered anomalies. Detecting anomaly
clusters are more effective using a low ψ setting when the multi-dimensional version of MassAD
is employed.
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Table 10 A comparison of time and space complexities. The time complexity includes both
training and testing. n is the given data set size and u is the number of dimensions. For MassAD
and iForest, the first part of the summation is the training time and the second the testing
time.

Time complexity Space complexity
MassAD (multi-dimensional) O(t(ψ + n)h) O(tψh)
MassAD (one-dimensional) O(t(ψh+1 + n)) O(tψ)
iForest O(t(ψ + n) · log(ψ)) O(tψ · log(ψ))
ORCA O(un · log(n)) O(un)
LOF O(un2) O(un)

6.4 Constant time and space complexities

In this section, we show that mass(x, h|D) (in step 4 of Algorithm 3) takes only con-

stant time, regardless of the given data size n, when the algorithmic parameters are

fixed. Table 11 reports the runtime time for sampling (to get a random sample of

size ψ from the given data set—steps 2 and 3 of Algorithm 3) and the runtime for

one-dimensional mass estimation—to construct mass(x,h|D) t times, for five data sets

which include the largest and smallest data sets in regression and anomaly detection

tasks.

Table 11 Runtime (second) for sampling, mass(x, 1|D) and mass(x, 3|D), where t = 1000
and ψ = 8.

data size sampling mass(x, 1|D) mass(x, 3|D)
Http 567497 138.30 0.33 10.96

Shuttle 49097 16.16 0.39 10.97
COREL 10000 1.23 0.27 11.03

tic 9822 1.09 0.43 11.14
concrete 1030 0.18 0.31 10.95

The results show that the sampling time increased linearly with the size of the

given data set, and it took significantly longer (in the largest data set) than the time

to construct the mass distribution—which was constant, regardless of the given data

size. Note that the training time provided in Table 9 includes both the sampling time

and mass estimation time, and it is dominated by the sampling time for large data

sets.

The memory required for each construction of mass(x, h|D) is to store one lookup

table of size ψ which is constant.

The constant time and space complexities apply to multi-dimensional mass estima-

tion too.

6.5 Runtime comparison between one-dimensional and multi-dimensional mass

estimations

In terms of runtime, the comparison so far in the experiments might give the impression

that multi-dimensional mass estimation is worse than one-dimensional mass estimation.
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In fact, the opposite is true because the above results are obtained from h = 1 for one-

dimensional mass estimation and h = ψ for multi-dimensional mass estimation. Figure

7 shows the head-to-head comparison for different h values in the COREL data set.

When h increases from 1 to 5, the runtime for the one-dimensional mass estimation

increases by a factor of 33. In contrast, the runtime for the multi-dimensional mass

estimation increases by a factor of 1.5 only.
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Fig. 7 Runtime comparison: One-dimensional mass estimation versus multi-dimensional mass
estimation for different values of h in the COREL data set, where both are using ψ = 8 and
t = 1000. In this experiment, we set h to the required value for multi-dimensional mass
estimation, rather than h = ψ which was used in all experiments reported in the previous
sections.

Summary

The above results in all three tasks show that the orderings provided by mass distri-

butions deliver additional information about the data that would otherwise hidden in

the original features. The additional information, which accentuates fringe points with

a concave function, improves the task-specific performance significantly, especially in

the information retrieval and regression tasks.

Using Algorithm 5, the runtime is expected to be higher because the new space

has much higher dimensions than the original space (t≫ u). It shall be noted that the

runtime increase (linearly or worse) is solely a characteristic of the existing algorithms

used, and is not due to the mass space mapping which has constant time and space

complexities.

We believe that a more tailored approach that better integrates the information

provided by mass (into theC3 component in the formalism) for the specific task can po-

tentially further improve the current level of performance in terms of either task-specific

performance measure or runtime. We have demonstrated this ‘direct’ application using

Algorithm 6 for the anomaly detection task, in which MassAD performs equally well

or significantly better than four state-of-the-art methods in terms of task-specific per-

formance measure, and the one-dimensional mass estimation executes faster than all

other methods in terms of runtime.
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Why does one-dimensional mapping work when tackling multi-dimensional prob-

lems? We conjecture that if there is no or little interaction between features, then the

one-dimensional mapping will work because the ordering that accentuates the fringe

points for each original dimension making it easy for existing algorithms to exploit.

When there are strong interactions between features, then one-dimensional mapping

might not achieve good results. Indeed, our results in all three tasks show that multi-

dimensional mass estimation does perform better than one-dimensional mass estima-

tion in general, in terms of task-specific performance measures.

The ensemble method for mass estimation usually needs only a small sample to

build each model in an ensemble. In addition, in order to build all t models for an

ensemble, tψ could be more than n when ψ > n/t.

The key limitation of the one-dimensional mass estimation is its high cost when a

high value of h is applied. This can be avoided by implementing it using a tree structure

rather than a lookup table, as we have done using Half-Space Trees which reduces the

time complexity to O(th(ψ + n)) from O(t(ψh+1 + n)).

7 Relation to Kernel Density Estimation

A comparison of mass estimation and kernel density estimation is provided in Table 12.

Table 12 A comparison of kernel density estimation and mass estimation. Kernel density
estimation requires two parameter settings: kernel function K(·) and bandwidth hw; mass
estimation has one: h.

Kernel density(x) = 1

nhw

∑n
i=1

K(x−xi

hw
)

mass(x, h) =

{
∑n−1

i=1
massi(x, h-1)p(si), h > 1

∑n−1

i=1
mi(x)p(si), h = 1

Like kernel estimation, mass estimation at each point is computed through a sum-

mation of a series of values from a mass base function mi(·), equivalent to a kernel

function K(·). The two methods differ in the following ways:

• Aim: Kernel estimation is aimed to do probability density estimation; whereas mass

estimation is to estimate an order from the core points to the fringe points.

• Kernel function: While kernel estimation can use different kernel functions for prob-

ability density estimation; we doubt that mass estimation requires a different base

function for two reasons. First, a more sophisticated function is unlikely to provide

a better ordering than a simple rectangular function. Second, the rectangular func-

tion keeps the computation simple and fast. In addition, a kernel function must

be fixed (i.e., having user-defined values for its parameters); e.g., the rectangular

kernel function has fixed width or fixed per unit size. But the rectangular function

used in mass has no parameter and no fixed width.

• Sample size: Kernel estimation or other density estimation methods require a large

sample size in order to estimate the probability accurately [8]. Mass estimation

using mass(x, h|D) needs only a small sample size in an ensemble to accurately

estimate the ordering.
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Here we present the results using a Gaussian kernel density estimation, replacing

the one-dimensional mass estimation, using the same subsample size in an ensemble ap-

proach. The bandwidth parameter is set to be the standard deviation of the subsample;

and all the other parameters are the same.

The results for information retrieval and anomaly detection are provided in Tables

13 and 15. Compared to mass, density performed significantly worse in information

retrieval tasks in all experiments using Qsim and InstR, denoted as QsimK and InstRK ,

respectively. They were even worse than those run in the original space. In anomaly

detection, DensityAD, which used a Gaussian kernel density estimation, performed

significantly worse than MassAD in six out of eight data sets in the anomaly detection

tasks, and better in the other two data sets.

Table 13 CBIR results (in BEP ×10−2).

(a) Compare with QsimK (using kernel density estimation), QsimD (using data depth),
QsimLD (using local data depth).

Qsim′′ Qsim′ QsimK QsimD QsimLD Qsim

One Query 12.38 10.35 2.90 10.39 7.60 7.78
Round 1 19.18 15.46 3.01 15.02 10.95 10.59
Round 2 21.98 17.58 2.74 17.16 12.50 11.81
Round 3 23.67 18.71 2.54 18.37 13.42 12.59
Round 4 24.65 19.50 2.42 19.20 14.03 13.16
Round 5 25.42 19.96 2.34 19.74 14.36 13.55

(b) Compare with InstRK , InstRD and InstRLD .

InstR′′ InstR′ InstRK InstRD InstRLD InstR

One Query 12.38 10.35 2.90 10.39 7.60 7.78
Round 1 13.88 13.33 2.91 13.05 8.71 9.40
Round 2 15.12 14.95 2.55 14.73 9.68 9.99
Round 3 16.19 16.07 2.25 15.98 10.28 10.36
Round 4 16.88 16.93 2.06 16.82 10.78 10.78
Round 5 17.49 17.58 1.99 17.50 11.17 11.05

Table 14 CBIR results (time in seconds).

(a) Compare with QsimK , QsimD , QsimLD .

Qsim′′ Qsim′ QsimK QsimD QsimLD Qsim

One Query 0.715 0.822 0.820 0.840 0.829 0.093
Round 1 0.207 0.208 0.224 0.237 0.226 0.035
Round 2 0.228 0.231 0.279 0.288 0.276 0.058
Round 3 0.257 0.259 0.348 0.355 0.343 0.086
Round 4 0.291 0.294 0.435 0.438 0.425 0.122
Round 5 0.335 0.341 0.547 0.543 0.531 0.167

(b) Compare with InstRK , InstRD and InstRLD .

InstR′′ InstR′ InstRK InstRD InstRLD InstR

One Query 0.715 0.822 0.820 0.840 0.829 0.093
Round 1 0.197 0.198 0.203 0.215 0.206 0.026
Round 2 0.200 0.200 0.205 0.216 0.206 0.028
Round 3 0.200 0.200 0.206 0.217 0.207 0.028
Round 4 0.200 0.200 0.207 0.218 0.208 0.028
Round 5 0.200 0.200 0.207 0.218 0.208 0.028
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Table 15 Anomaly detection: MassAD vs DensityAD and DepthAD (AUC).

MassAD DensityAD DepthAD

Mass′′ Mass′ Depth LDepth

Http 1.00 1.00 0.99 0.98 0.52
Forest 0.90 0.92 0.70 0.85 0.49

Mulcross 0.26 0.99 1.00 0.99 0.93
Smtp 0.91 0.86 0.59 0.92 0.93

Shuttle 1.00 0.99 0.90 0.87 0.72
Mammography 0.86 0.37 0.27 0.36 0.79
Annthyroid 0.75 0.71 0.80 0.58 0.86

Satellite 0.77 0.62 0.61 0.59 0.69

Table 16 Anomaly detection: MassAD vs DensityAD and DepthAD (time in seconds).

MassAD DensityAD DepthAD

Mass′′ Mass′ Depth LDepth

Http 168 18 17 38 38
Forest 63 10 10 31 31

Mulcross 52 10 10 31 31
Smtp 27 10 10 26 26
Shuttle 20 4 4 25 25

Mammography 21 3 3 24 24
Annthyroid 7 1 1 23 23
Satellite 13 1 1 23 23

8 Relation to Data Depth

There is a close relationship between the proposed mass and data depth [13]: they both

delineate the centrality of a data cloud (as opposed to compactness in the case of the

density measure.) The properties common to both measures are: (a) the centre of a

data cloud has the maximum value of the measure; (b) an ordering from the centre

(having the maximum value) to the fringe points (having the minimum values).

However, there are two key differences. First, not until recently (see [2]) data depth

always models a given data with one centre, regardless whether the data is unimodal or

multi-modal; whereas mass can model both unimodal and multi-modal data by setting

h = 1 or h > 1. Local data depth [2] has a parameter (τ ) which allows it to model

multi-modal data as well as unimdal data. However, the performance of local data

depth appears to be sensitive to the setting of τ (see a discussion of the comparison

below.) In contrast, a single setting of h in mass estimation had produced good task-

secific performance in three different tasks in our experiment.

Second, mass is a simple and straightforward measure, and has efficient estima-

tion methods based on axis-parallel partitions only. Data depth has many different

definitions, depending on the construct used to define depth. The constructs could be

Mahalanobis, Convex Hull, simplicial, halfspace and so on [13], all of which are expen-

sive to compute [3]—this has been the main obstacle in applying data depth for real

applications in multi-dimensional problems. For example, Ruts and Rousseeuw [16]

compute the contour of data depth of a data cloud for visualization, and employ depth

as the anomaly score to identify anomalies. Because of its computational cost, it is

limited to small data size only. In contrast to the axis-parallel partitions used in mass
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estimation, halfspace data depth5 [22], for example, requires to consider all halfspaces

which demands high computational time and space.

To provide a comparison, we replace the one-dimensional mass estimation (defined

in Algorithm 3) with data depth (defined by simplicial depth [13]). We repeat the

experiments by employing the data depth implementation in R by Agostinelli and

Romanazzi [2] (accessible from r-forge.r-project.org/projects/localdepth.) Data depth

is carried out in the same approach by using sample size ψ to build each of the t

models in an ensemble 6. The number of simplices used to do the empirical estimation

is set to 10000 for all runs. Default settings are used for all other parameters (i.e., the

membership of a data point in simplices is evaluated in the “exact” mode rather than

the approximate mode, and the tolerance parameter is fixed to 10−9). Note that local

depth uses an additional parameter τ to select candidate simplices, where a simplex

volumed larger than τ is excluded from consideration. As the performance of local

depth is sensitive to τ , we employ the quantile order of τ of 10%, the low value of the

range 10%-30% suggested by Agostinelli and Romanazzi [2]. Because both data depth

and local data depth are estimated using the same procedure, their runtimes are the

same.

The task-specific performance results for information retrieval and anomaly detec-

tion are provided in Tables 13 and 15. Note that local data depth could produce worse

retrieval results than those in the original feature space. Data depth performs close to

that achieved by the one-dimensional mass estimation, but is significantly worse than

the multi-dimensional mass estimation. In anomaly detection, data depth performs

worse than both versions of mass estimation in six out of eight data sets; local data

depth performs worse than multi-dimensional mass estimation in five out of eight data

sets; local data depth versus one-dimensional mass estimation have four wins and four

losses. Note that though local data depth achieves the best result in two data sets, it

also produces the worst in three data sets which are significantly worse than others (in

http, forest and shuttle.)

The runtime results are provided in Tables 14 and 15. These results do not reveal the

time complexities of the algorithms. We conducted a scale up test using the Mulcross

data set by increasing the subsampling size ψ from 8 to 4096, doubling at each step

increase. The result is presented in Figure 8. It shows that data depth or local data

depth had the worst runtime ratio which increased its runtime 58 times when ψ was

increased by a factor of 512. The multi-dimensional mass estimation had the best

runtime ratio of 6.6, followed by KDE (24) and one-dimensional mass estimation (34)

5 Zuo and Serfling [28] define halfspace data depth (HD) of a point x in Ru w.r.t. a prob-
ability measure P on Ru as the minimum probability mass carried by any closed halfspace
containing x:

HD(x;P ) = inf{P (H) : H a closed halfspace, x ∈ H}, x ∈ Ru

In the language of data depth, the one-dimensional mass estimation may be interpreted as
a kind of average probability mass of halfspaces containing x, weighted by mass covered by
halfspace. But the one-dimensional mass estimation defined in Equation (1) allows mass to
be computed by a summation of n− 1 components from the given data set of size n, whereas
data depth does not. In addition, our implementation of multi-dimensional mass estimation
using a tree structure with axis-parallel splits cannot be interpreted using any of the constructs
employed by data depth.

6 Our experiments indicate that using the entire data set to estimate data depth or local
data depth produces worse results than those using an ensemble approach. This result is shown
in Appendix B.
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when ψ ratio = 512. The actual runtimes in seconds are 126.6 (Mass′′), 166.7 (KDE),

239.4 (Mass′), and 600.5 (Data Depth). This result shows that the multi-dimensional

mass estimation has the best time complexity and data depth has the worst time

complexity among the four algorithms.
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Fig. 8 Scale up test using the Mulcross data set. The base subsampling data size (ψ) is 8;
doubling at each step until ψ = 4096. Each point in the graph is an average over 10 runs.

9 Other work based on mass

iForest [12] and MassAD share some common features: Both are ensemble methods

which build t models, each from a random sample of size ψ, and they both combine

the outputs of the models through averaging during testing. Although iForest [12]

employs path length—an instance traverses from the root of a tree to its leaf—as the

anomaly score, we have shown that the path length used in iForest is in fact a proxy

to mass [19] (see Appendix A for a brief description.) In other words, iForest is a

kind of mass-based method—that is why MassAD and iForest have similar detection

accuracy. Multi-dimensional MassAD has the closest resemblance to iForest because

of the use of tree. The key difference is that MassAD is just one application of the

more fundamental concept of mass introduced here, whereas iForest is for anomaly

detection only. The trees in iForest are completely random whereas Half-Space Trees

are partially random.

How easily can the proposed formalism be applied to other tasks? In addition to the

tasks we have applied in this paper, we have applied mass estimation ‘directly’, using

the proposed formalism, to solve problems in content-based multimedia information

retrieval [25] and clustering [20]. While the ‘indirect’ application is straightforward

which simply uses the existing algorithms in the mass space, a ‘direct’ application

requires a complete rethink of the problem and produces a totally different algorithm.
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However, this rethink of a problem in terms of mass often results a more efficient

and sometimes more effective algorithm than existing algorithms. We provide a brief

description of the two applications in the following two paragraphs.

In addition to the mass-space mapping we have shown here (i.e., components C1

and C2), Zhou et al [25] present a content-based information retrieval method that

assigns a weight (based on iForest, thus, mass) to each new mapped feature w.r.t. a

query; and then it ranks objects in the database according to their weighted average

feature values in the mapped space. The method also incorporates relevance feedback

which modifies the ranking based on the feedbacks through reweighted features in the

mapped space. This method forms the third component of the formalism stated in

Section 5. This ‘direct’ application of mass has been shown to be significantly better

than the ‘indirect’ approach we have shown in Section 6.1, in terms of both task-specific

measure and runtime [25]. It is interesting to note that, unlike existing retrieval systems

which rely on a metric, the new mass-based method does not employ a metric—it is

the first information retrieval system that does not use a metric, as far as we know.

Ting and Wells [20] use a variant of Half-Space Trees we have employed here and

apply mass directly to solve clustering problems. It is the first mass-based clustering

algorithm, and it is unique because it does not use any distance and density measure.

In this task, like in the case of anomaly detection, only two components are required.

After building a mass model (in the C1 component), the C3 component consists of

linking instances with non-zero mass connected by the mass model and making each

group of connected instances a separate cluster; and all other unconnected instances

are regarded as noise. This mass-based clustering algorithm has been shown to perform

equally well as DBSCAN [9] in terms of clustering performance, but it runs orders of

magnitude faster [20].

The earlier version of this paper [21] establishes the properties of mass estima-

tion in the one-dimensional setting only; and use it in all three tasks. This paper ex-

tends one-dimensional mass estimation to multi-dimensional mass estimation using the

same approach as described by Ting and Wells [20], and implements multi-dimensional

mass estimation using Half-Space Trees [19]. This paper reports new experiments us-

ing the multi-dimensional mass estimation, and shows the advantage of using multi-

dimensional mass estimation over one-dimensional mass estimation in the three tasks

reported earlier [21]. These related works show that mass estimation can be imple-

mented in different ways using tree-based or non-tree-based methods.

10 Conclusions and future work

This paper makes two key contributions. First, we introduce a base measure, mass, and

delineate its three properties: (i) a mass distribution stipulates an ordering from core

points to fringe points in a data cloud; (ii) this ordering accentuates the fringe points

with a concave function—a property that can be easily exploited by existing algorithms

to improve their task-specific performance; and (iii) the mass estimation methods have

constant time and space complexities. Density estimation has been the base modelling

mechanism employed in many techniques thus far. Mass estimation introduced here

provides an alternative choice, and it is better suited for many tasks which require an

ordering rather than probability density estimation.

Second, we present a mass-based formalism which forms a basis to apply mass

for different tasks. The three tasks (i.e., information retrieval, regression and anomaly
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detection) in which we have successfully applied are just examples of its application.

Mass estimation has potentials in many other applications.

There are potential extensions to the current work. First, the algorithms for the

three tasks and the formalism can be improved or extended to include more tasks. Sec-

ond, because the purposes and their properties differ, mass estimation is not intended

to replace density estimation—it is thus important to identify areas in which each is

best suited for. This will ascertain (i) areas in which density has been a mismatch,

unbeknown up to now, and (ii) areas in which mass estimation is weak. We postulate

that density does not perform as well as mass in our experiments is because of a lack of

concavity. This will be determined in the future. Third, the current implementation of

multi-dimensional mass estimation using Half-Space Trees limits its applications to low

dimensional problems because it suffers the same problem as in all other grid oriented

methods. We will explore non-grid oriented implementations of mass which have poten-

tial to tackle high dimensional problems more effectively than existing density-based

and distance-based methods.

The Matlab source code of mass estimation is available at
http://sourceforge.net/projects/mass-estimation/.
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Appendix A: Half-Space Trees for Mass Estimation

This section describes the implementation of Th using Half-Space Tree. Two variants

are provided. We have used the second variant of Half-Space Tree to implement the

multi-dimensional mass estimation.

Half-Space Tree

The motivation of the proposed method, Half-Space Tree, comes from the fact that

equal-size regions contain the same mass in a space with uniform mass distribution,

regardless of the shapes of the regions. This is shown in Figure 9(a), where the space
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enveloped by the data is split into equal-size half-spaces recursively three times into

eight regions. Note that the shapes of the regions may be different because the splits

at the same level may not use the same attribute.

x x x x x x x x

x x x x x x x x

x x x x x x x x

x x x x x x x x

(a) Uniform mass distribution.

x

x

x x x

x x x x

x x x x x

x x x x x

x x x x x x x

x x x x

x x

(b) Non-uniform mass distribution.

Fig. 9 Half-space subdivisions of: (a) uniform mass distribution; and (b) non-uniform mass
distribution.

The binary half-space split ensures that every split produces two equal-size half-

spaces, each containing exactly half of the mass before the split under a uniform mass

distribution. This characteristic enables us to compute the relationship between any two

regions easily. For example, the mass in every region shown in Figure 9(a) is the same,

and it is equivalent to the original mass divided by 23 because three levels of binary

half-space splits have been applied. A deviation from the uniform mass distribution

allows us to rank the regions based on mass. Figure 9(b) provides such an example in

which a ranking of regions based on mass provides an order of the degrees of anomaly

in each region.

Definition 6 : Half-Space Tree is a binary tree in which each internal node makes a

half-space split into two equal-size regions, and each external node terminates further

splits. All nodes record the mass of the training data in their own regions.

Let Th[i] be a Half-Space Tree with depth level i; and m(Th[i]) or short for m[i]

be the mass in one of the regions at level i.

The relationship between any two regions is expressed using mass with reference

to m[0] at depth level=0 (the root) of a Half-Space Tree.

Under uniform mass distribution, the mass at level i is related to mass at level 0

as follows:

m[0] = m[i]× 2i,
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or mass values between any two regions at levels i and j, ∀i 6= j, are related as follows:

m[i]× 2i = m[j]× 2j .

Under non-uniform mass distribution, the following inequality establishes an ordering

between any two regions at different levels:

m[i]× 2i <m[j]× 2j .

We employ the above property to rank instances and define the (augmented) mass

for Half-Space Tree as follows.

s(x) = m[ℓ]× 2ℓ, (12)

where ℓ is the depth level of an external node with m[ℓ] instances in which a test

instance x falls into.

Mass is estimated using m[ℓ] only if a Half-Space Tree has all external nodes at

the same depth level. The estimation is based on augmented mass, m[ℓ] × 2ℓ, if the

external nodes have differing depth levels. We describe two such variants of Half-Space

Tree below.

HS-Tree: based on mass only. The first variant, HS-Tree, builds a balanced

binary tree structure which makes a half-space split at each internal node and all

external nodes have the same depth. The number of training instances falling into each

external node is recorded and it is used for mass estimation. An example of HS-Tree

is shown in Figure 10(a).

HS*-Tree: based on augmented mass. Unlike HS-Tree, the second variant,

HS*-Tree, whose external nodes have differing depth levels. The mass estimated from

HS*-Tree is Equation (1) in order to account for different depths. We call this aug-

mented mass because the mass is augmented in the calculation by the depth level in

HS*-Tree, as opposed to mass only in HS-Tree.

In a special case of HS*-Tree, the tree growing process at a branch will terminate to

form an external node when the training data size at the branch is 1 (i.e., the size limit

is set to 1.) Here the mass estimated depends on depth level only, i.e., 2ℓ or simply ℓ.

In other words, the depth level becomes a proxy for mass in HS*-Tree when

the size limit is set to 1. An example of HS*-Tree, when the size limit is set to 1, is

shown in Figure 10(b).

Since the two variants have similar performance, we focus on HS*-Tree only in

this paper because it builds a smaller size tree than HS-Tree which may grow many

branches with zero mass—this saves on training time and memory space requirements.
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(a) HS-Tree.
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(b) HS*-Tree.

Fig. 10 Half-Space Tree: (a) HS-Tree: An HS-Tree for the data shown in Figure 9a has
mi = 4, ∀i, which are m[ℓ = 3] (i.e., mass at level 3). (b) HS*-Tree: An example of a special
case of HS*-Tree when the size limit is set to 1.

Appendix B: Anomaly detection using data depth that builds a single model

from the entire data set

This appendix provides the results in anomaly detection task where data depth and

local data depth built a single model from the entire data set, i.e., DepthADs. This is

in contrast to DepthAD which employed an ensemble approach in Section 8.

Table 17 shows that MassAD generally has higher AUC than DepthADs which em-

ployed either data depth or local data depth. The only exception is the Annthyroid

data set. Note that these resutls are generally worse than those employing an ensemble

approach, reported in Table 15.
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Abstract—Density estimation is the ubiquitous base mod-
elling mechanism employed for many tasks including cluster-
ing, classification, anomaly detection and information retrieval.
Commonly used density estimation methods such as kernel
density estimator and k-nearest neighbour density estimator
have high time and space complexities which render them inap-
plicable in problems with large data size and even a moderate
number of dimensions. This weakness sets the fundamental
limit in existing algorithms for all these tasks.

We propose the first density estimation method which
stretches this fundamental limit to an extent that dealing with
millions of data can now be done easily and quickly. We
analyse the error of the new estimation (from the true density)
using a bias-variance analysis. We then perform an empirical
evaluation of the proposed method by replacing existing density
estimators with the new one in three current density-based
algorithms, namely, DBSCAN, LOF and Bayesian classifier,
representing three different data mining tasks of clustering,
anomaly detection and classification respectively. The results
show that the new density estimation method significantly
improves their time complexities, while maintaining or im-
proving their task-specific performances in clustering, anomaly
detection, and classification respectively. The new method
empowers these algorithms, currently limited to small data
size only, to process very large databases — setting a new
benchmark for what density-based algorithms can achieve.

Keywords-density estimation; density-based algorithms;

I. INTRODUCTION

Density estimation is ubiquitously applied to various tasks
such as clustering, classification, anomaly detection and
information retrieval. Despite its pervasive use (‘estimation
of densities is a universal problem of statistics’ [22]), there
are no efficient density estimation methods thus far. Most ex-
isting methods such as kernel density estimator and k-nearest
neighbour (k-NN) density estimator cannot be applied to
problems with even a moderate number of dimensions and
large data size. This paper is motivated to introduce the first
efficient method for density estimation. We show that three
existing density-based algorithms, when employ the new
density estimator, set a new runtime benchmark that is orders
of magnitude faster. For example, two of these algorithms
now take only days instead of months to complete tasks
involving millions of instances, after the existing density
estimators are replaced with the new one.

We make four contributions in this paper:
1) Propose a new density estimation method which has a

significant advantage over existing methods in terms
of time and space complexities.

2) Establish the characteristics of the method through a
bias-variance analysis.

3) Verify the generality of the method by replacing
existing density estimators with the new one in three
current density-based algorithms.

4) Significantly simplify and speed up the current al-
gorithms using set-based definitions instead of the
common point-based definitions (see Section V.)

The new density estimation method distinguishes itself
from existing methods by:
• Employing no distance measures in the density estima-

tion process.
• Having average case sublinear time complexity and

constant space complexity. Thus, it can be applied to
very large databases in which current methods such
as kernel and k-NN density estimators are infeasible
because they are prohibitively expensive to compute.

Two existing density estimators are presented in Sec-
tion II, in order to contrast with the new density estimator
we introduce in Section III. We analyse the error produced
by the new estimator by a bias-variance analysis and provide
a comparison of the estimation results between the new
estimator and kernel density estimator in Section IV. Sec-
tions V and VI describe how the new estimator can replace
existing density estimators in three current state-of-the-
art density-based algorithms and their empirical evaluation
results, respectively. A discussion of the related issues and
the conclusions are provided in the last two sections.

II. DENSITY ESTIMATION

This section describes two, probably the most commonly
used, density estimation methods, namely kernel density
estimator and k-nearest neighbour density estimator.

A. Kernel Density Estimator

Let x be an instance in a d-dimensional space Rd. The
kernel density estimator (KDE) defined by a kernel function

Click here to download Manuscript: MassDE.tex Click here to view linked References
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K(·) and bandwidth b is given as follows [17].

f̄KDE(x) =
1

nbd

n∑
i=1

K(
x− xi

b
)

The difference x − xi requires some form of distance
measure; and n is the number of instances in the given data
set D. An example of K(·), as a rectangular function, is
given as follows.

K(x) =

{
1
2 if |x| < 1
0 otherwise.

B. k-NN Density Estimator

A k-nearest neighbour (k-NN) density estimator can be
expressed as follows [18].

f̄kNN (x) =
|N(x, k)|

n
∑

x′∈N(x,k)

distance(x,x′)

where N(x, k) is the set of k nearest neighbours to x; and
the search for nearest neighbours is conducted over D of
size n.

Both KDE and k-NN density estimators have O(n2)
time complexity and O(n) space complexity in order to
estimate the densities of n instances. Although there are
various indexing schemes to speed up the search for nearest
neighbour in order to aid the k-NN density estimator, they
are not satisfactory in terms of dealing with high dimen-
sional problems and large data sets. We will provide further
discussion of this issue in Section VII.

III. DENSITY ESTIMATOR BASED ON MASS

A recently introduced base measure called mass [21] has
demonstrated its wide application to solve various data min-
ing tasks such as regression, information retrieval, clustering
and anomaly detection, including one in data stream [21],
[20], [19].

Because mass is more fundamental than density, we show
in this paper that a density estimator can be constructed
from mass. The key advantage of mass is that it can be
computed very quickly. The new density estimator based on
mass inherits this advantage and executes significantly faster
than existing density estimators such as KDE and k-NN. It
raises the capability of density-based algorithms to handle
large data sets to a new high level.

A mass base function is defined as follows by [20]

m(T (x)) =

{
m if x is in a region of T (·),
0 otherwise,

where T (·) is function which subdivides the feature space
into non-overlapping regions based on the given data set D;
and m is the number of samples in a region of T (x) in
which x falls into.

Ting and Wells [20] shows that mass can also be effec-
tively estimated using data subsets Di ⊂ D (i = 1, . . . , t)
and its associated Ti(x|Di), where |Di| = ψ � n. Each Di

is sampled without replacement from D. The mass estimated
using subsamples is defined as

mass(x) =
1

t

t∑
i=1

m(Ti(x|Di)).

We now introduce the new density estimators based on
mass (DEMass) and describe its implementation in the next
two subsections.

A. DEMass

Once mass is estimated, density can be estimated as a
ratio of mass and volume.

Thus, the new density estimators based on mass functions
m(T (x)) and m(Ti(x|Di)) are defined respectively as

fm(x) =
m(T (x))

nv
. (1)

f̄m(x) =
1

t

t∑
i=1

m(Ti(x|Di))

ψvi
. (2)

where v and vi are the volumes of regions T (x) and
Ti(x|Di), respectively.

We use the term DEMass to refer to density estimator
f̄m(x) in the rest of this paper.

DEMass has two key differences/advantages when com-
pared to the one based on a kernel method or k-NN:
• f̄m is estimated from tψ instances only which are

significantly smaller than D in a large data set. It sums
over t number of randomly generated regions; whereas
f̄KDE sums over n number of instances in D, and
f̄kNN also requires a search on the entire data set. For
a large data set, f̄ is prohibitively expensive to compute
in these two methods 1.

• f̄m needs no distance measures.

B. Implementation

Mass estimation can be implemented in different ways
[21], [20], [19].

When T (·|D) is implemented using a binary tree, the
volumes of regions in T (·|D) are controlled by a parameter
h which defines the level of binary subdivision.

Let ∆i be a work space in Rd which envelops Di;
and ∆i has its length along each dimension j as ∆ij =
max(xkj |xk ∈ Di) − min(xkj |xk ∈ Di). Each Ti(·|Di) is
constructed within work space ∆i, resulting in 2hd hyper-
rectangular regions where every region has an equi-width
δxij = ∆ij/2

h on each dimension j and a volume vi =

1While there are ways to reduce the computational cost of KDE and
k-NN, they are usually limited to low dimensional problems or incur
significant preprocessing cost. See Section VII for a discussion.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



δxi1 × · · · × δxid. For example, in a one-dimensional space
with work space ∆i derived from Di and h = 3, Ti(·|Di)
subdivides the work space into 23 equi-width regions. We
use Ti to denote Th

i , unless h is required in the context; and
Ti is built from Di, for each i.

We use the implementation of T (·|D) as described in [20]
as the basis to build density estimator f̄m.
T (x|D) is represented as a binary tree (called h:d-Tree

in [20]), where each path from the root to a leaf has h× d
nodes such that each of the d attributes appears exactly h
times.

Let ` = h×d, and mk be the mass of region k. There is a
total of 2` regions which have a total mass: |D| =

∑2`

k=1 mk,
where mk = m(T (x|D)); and x is in region k of T .

Algorithm 1 generates t trees from a given data set D.
Algorithm 2 generates a single tree using a subset D ⊂ D,
where |D| = ψ.

Algorithm 1 : BuildTrees(D, t, ψ, h)

Inputs: D - input data, t - number of trees, ψ - sub-
sampling size, h - number of times an attribute is employed
in a path.
Output: F - a set of t h:d-Trees

1: MaxHeightLimit← h× d
2: Initialise F
3: for i = 1 to t do
4: D ← sample(D,ψ) {strictly without replacement}
5: (min,max) ← InitialiseWorkSpace(D)
6: F ← F ∪ SingleTree(D,min,max, 0)
7: end for

The time complexity of constructing the trees is O(tψhd).
The space complexity is O(thd + n) during construction.
After the trees are built, the data set is discarded, yielding
O(thd).

To estimate the density of a given instance x, only these
trees are used according to Equation (2).

In the next section, we will show that the bias between
f̄m(x) and the true probability density function pd(x) con-
verges asymptotically.

IV. ERROR ANALYSIS THROUGH
BIAS-VARIANCE DECOMPOSITION

The density estimator based on mass (DEMass) f̄m(x)
can be thought of as a random variable because of its depen-
dence on D and its random subsamples Di (i = 1, . . . , t).
Accordingly, we analyse Mean Squared Error (MSE) of
f̄m(x) from its true probability density pd(x). It is defined
as

MSE(f̄m(x)) = E
[
{f̄m(x)− pd(x)}2

]
where the expectation E[·] is taken over the distribution of
f̄m(x). This is rewritten by introducing the expectation of

Algorithm 2 : SingleTree(D,min,max, `)
Inputs: D - input data, min & max - arrays of minimum
and maximum values for each attribute in A that define a
work space, ` - current height level, A - set of d attributes.
Output: an h:d-Tree

1: while (` < MaxHeightLimit) do
2: {Retrieve an attribute from A based on height level.}
3: q ← nextAttribute(A, `)
4: p← (maxq +minq)/2
5: Dl ← filter(D, q < p)
6: Dr ← filter(D, q ≥ p)
7: if (|Dl| = 0 ) or (|Dr| = 0) then
8: {Reduce range for single-branch node.}
9: if (|Dl| > 0 ) then maxq ← p

10: else minq ← p
11: end if
12: `← `+ 1
13: continue at the start of while loop
14: end if
15: {Build two nodes: Left and Right as a result of a

split into two equal-volume half-spaces.}
16: temp← maxq; maxq ← p
17: Left← SingleTree(Dl,min,max, `+ 1)
18: maxq ← temp; minq ← p
19: Right← SingleTree(Dr,min,max, `+ 1)
20: end while
21: return Node(Left,Right, SplitAtt← q,

SplitV alue← p, Size← |D|)

f̄m(x): E[f̄m(x)] as follows [17].

MSE(f̄m(x)) =
{
E[f̄m(x)]− pd(x)

}2
+E
[
{f̄m(x)− E[f̄m(x)]}2

]
.

The first term on the rhs is called “square bias ” and the
second “variance.” We evaluate the magnitude of each of
these two terms in the following.

To simplify notations for the rest of the paper, we have
used Ti(x) to denote Ti(x|Di), and p(Ti(x)) to denote
p(xk ∈ Ti(x)| xk ∈ Di).

Let ci be the center of a region of Ti(x) where each
element cij of ci is a middle point of the interval on each
dimension j. The second order Taylor approximation of
pd(x) around ci for Ti(x) is given as

pd(x)|ci∈Ti(x) ≈ pd(ci) + (x− ci)
T∇pd(x)|x=ci

+
1

2
{(x− ci)

T∇}2pd(x)|x=ci
, (3)

where ∇ = [∂/∂x1, . . . , ∂/∂xd]T.
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Note that m(Ti(x)) follows a binomial distribution2

B(ψ, p(Ti(x))). Therefore, E[f̄m(x)] is expressed by sub-
stituting E[m(Ti(x))] = ψp(Ti(x)) in Eq. (2).

E[f̄m(x)] =
1

t

t∑
i=1

E[m(Ti(x))]

ψvi

=
1

t

t∑
i=1

p(Ti(x))

vi

=
1

t

t∑
i=1

1

vi

∫
Ti(x)

pd(x∗)dx∗. (4)

Accordingly, the square bias is evaluated as follows by
applying Eq. (3) and the fact that the integral of an odd
function over [cij − δxj/2, cij + δxj/2] for each dimension
j is zero.

{
E[f̄m(x)]− pd(x)

}2
≈
[

1

t

t∑
i=1

{
1

24

d∑
j=1

∂2pd(x)

∂x2j

∣∣∣
x=ci

δx2ij

−(x− ci)
T∇pd(x)|x=ci

−1

2
{(x− ci)

T∇}2pd(x)|x=ci

}
ci∈Ti(x)

]2
≤
[

1

t

t∑
i=1

{
1

24

∣∣∣∣ d∑
j=1

∂2pd(x)

∂x2j

∣∣∣
x=ci

∣∣∣∣∆2
ij2
−2h

+
d∑

j=1

∣∣∣∣∂pd(x)

∂xj

∣∣∣
x=ci

∣∣∣∣∆ij2
−h

+
1

2

d∑
j=1

d∑
k=1

∣∣∣∣∂2pd(x)

∂xj∂xk

∣∣∣
x=ci

∣∣∣∣∆ij∆ik2−2h
}

ci∈Ti(x)

]2
= O(4−h)

This result shows that the square bias diminishes as level h
increases, i.e., as the size of the regions decreases. Though
this analysis uses the second order approximation of pd(x),
the result using the higher order approximation is the same
since the first order term dominates in the above formula.

Because m(Ti(x)) follows the binomial distribution
B(ψ, p(Ti(x))), the variance of m(Ti(x)) is

var[m(Ti(x))] = ψp(Ti(x))(1− p(Ti(x))).

In concert with Eq. (2), the variance of f̄m(x) is represented

2The implementation of T (·) used in this paper is a tree-based nonpara-
metric method. The binomial distribution is required for the error analysis
only.

as follows.

E
[
{f̄m(x)− E[f̄m(x)]}2

]
=

1

t2

t∑
i=1

p(Ti(x))(1− p(Ti(x)))

ψv2i

=
1

t2

t∑
i=1

1

ψv2i

∫
Ti(x)

pd(x∗)dx∗

(
1−

∫
Ti(x)

pd(x∗)dx∗

)
.

Using the similar calculus as applied to the square bias, we
obtain the variance as follows where ci is a center of Ti(x).

E
[
{f̄m(x)− E[f̄m(x)]}2

]
≈ 1

t2

t∑
i=1

1

ψ

{
pd(ci) +

1

24

d∑
j=1

∂2pd(x)

∂x2j

∣∣∣
x=ci

δx2ij

}

×
{

1

vi
− pd(ci)−

1

24

d∑
j=1

∂2pd(x)

∂x2j

∣∣∣
x=ci

δx2ij

}
.

=
1

t2

t∑
i=1

1

ψ

{
pd(ci) +

1

24

d∑
j=1

∂2pd(x)

∂x2j

∣∣∣
x=ci

∆2
ij2
−2h
}

×
{

2dh∏d
j=1 ∆ij

− pd(ci)−
1

24

d∑
j=1

∂2pd(x)

∂x2j

∣∣∣
x=ci

∆2
ij2
−2h
}
.

= O(2dh)

This result indicates that the variance increases when level
h increases. Also, the result does not change even if we use
the higher order approximation because the term pd(ci)/vi
dominates in the above formula.

The property of DEMass, revealed from this error anal-
ysis, is similar to that of the conventional kernel density
estimator which shows a bias-variance trade off—the bias
decreases as the kernel bandwidth b decreases but this
increases the variance; and the reverse is true if the kernel
bandwidth in increased [17]. The parameter k in k-NN
density estimator has the same effect.

In conclusion, DEMass has a comparable estimation of
density with the kernel density estimator if both trade-off
bias and variance equally well; and it is indeed the case in
practice. Figure 1 shows the estimation result of a normal
distribution using KDE and DEMass, respectively. It demon-
strates that DEMass produces similar result to that generated
by KDE, for different data sizes. Smoothing can be applied
by increasing b for KDE or decreasing h for DEMass which
produces the estimation results as shown in Figure 2. The
parameters used for DEMass are: t = 1000 and ψ = n when
n = 10, 100; ψ = 1000 when n = 1000000.

Note that in either settings shown in Figures 1 and 2,
the estimations of both KDE and DEMass approach the true
distribution as the number of instances increases.
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Figure 1: Example estimations of Kernel Density Estimator
(with Gaussian kernel) using b = 0.1 and DEMass using
h = 5 for different data sizes, n = 10, 100, 1000000. The
true data distribution is a normal distribution.

KDE (b = 0.3) DEMass (h = 3)
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Figure 2: Example estimations of Kernel Density Estimator
(with Gaussian kernel) using b = 0.3 and DEMass using
h = 3 for the same data used in Figure 1.

V. USING DEMASS IN EXISTING
DENSITY-BASED ALGORITHMS

This section describes how DEMass can be applied to
three current density-based algorithms, DBSCAN [7], LOF
[5] and Bayesian classifier, in place of their existing density
estimators. DBSCAN, LOF and Bayesian classifier, are one
of the best algorithms for clustering, anomaly detection and
classification, respectively.

Using DEMass automatically carries the two advantages
mentioned in Section III: (i) The estimation requires no
distance measures, thus, it completely saves the cost of
distance calculations for every pair of instances; and (ii)
DEMass enables small samples to construct the required
regions T (·|D), overcoming the key limitation of DBSCAN

and LOF in handling very large databases. We will discuss
further advantages specific to individual algorithms in the
following subsections.

A. DEMass-DBSCAN

The principal steps of DEMass-DBSCAN is the same as
DBSCAN, except that no border points and their associated
step are required. A comparison of the two algorithms are
provided in Table I. The algorithm for DBSCAN is adapted
from [18].

step DBSCAN DEMass-DBSCAN
1 Label all points as core, Label all T (x) satisfying

border, or noise points, Definition 1 as core
based on f̄kNN (x) regions, based on f̄m(x).

Points not covered by
core regions are noise.

2 Eliminate noise points Eliminate noise points
3 Connect all core points that Connect all core regions

are within ε of each other. that have non-zero
intersections.

4 Make each group of Make each group of
connected core points connected core regions
into a separate cluster into a separate cluster.

5 Assign each border point
to one of the clusters
of its associated core points.

Table I: Algorithms for DBSCAN and DEMass-DBSCAN.
Note that border points are not required with DEMass-
DBSCAN; thus step 5 is not needed. Both versions of
DBSCAN could include an additional cluster size threshold
to eliminate small size clusters in the last step.

While following its principal steps, the use of DEMass
simplifies DBSCAN in two ways, in addition to the two
advantages already mentioned above. First, DEMass enables
regions to be labelled instead of individual points. Because
the number of regions is significantly less than the number
of points, linking regions to form a cluster becomes sig-
nificantly faster than connecting points. Second, no border
points need to be defined because the connections within a
cluster are established via core regions only when DEMass
is used. The first simplification is the key reason for the
significant speed up achieved by DEMass-DBSCAN, which
we will show in Section VI-A.

The DEMass-DBSCAN algorithm shown in Table I is
derived from set-based definitions; and the DBSCAN al-
gorithm is derived from point-based definitions. We can
use point-based definitions for DEMass-DBSCAN, except
that the neighbourhood definition needs to be adapted to
DEMass. Although point-based definitions can be defined
as in DBSCAN [7], set-based definitions are simpler. The
formal point-based and set-based definitions for DEMass-
DBSCAN are given in table II.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Point-based definitions Set-based definitions
Definition P1: The h-neighbourhood of a point p, denoted by Nh(p),
is defined by Nh(p) = {q ∈ D|q ∈ Th(p)}.
In contrast, the ε-neighbourhood for DBSCAN is defined as
Nε(p) = {q ∈ D|dist(p, q) ≤ ε}, which requires a distance function
dist(·, ·). No distance functions are required for Nh(·).
Definition P2: A point p is directly density-reachable from a point q Definition S1: T (x) is a core region of point x wrt h and MinPts if
wrt h and MinPts if m(T (x)) vmax

v
≥MinPts.

(i) p ∈ Nh(q) and where vmax = maxi vi, and v is the volume of region T (x). The
(ii) |Nh(q)| ≥MinPts (core point condition). normalisation factor

v

vmax
ranges from 0 to 1.

Definition P3: A point p is density-reachable from a point q wrt h and
MinPts if there is a chain of points p1, . . . , pn, where p1 = p and
pn = q such that pi+1 is directly density-reachable from pi.
Definition P4: A point p is density-connected to a point q wrt h and Definition S2: Tr(·) is density-connected to Ts(·) wrt h and MinPts
MinPts if there is a point o such that both p and q are density- if there is a chain of regions T1(·), . . . , Tg(·) where r = 1 and s = g
reachable from o wrt h and MinPts. such that Tı(·) ∩ Tı+1(·) 6= ∅ and Tı(·) is a core region for all ı wrt h

and MinPts.
Definition P5: Let D be a database of points. A cluster C wrt h and Definition S3: An arbitrary-shape cluster C wrt h and MinPts is a
MinPts is a non-empty subset of D satisfying the following conditions: non-empty subset of a database D satisfying the following condition:
(i) ∀p, q: if p ∈ C and q is density-reachable from p wrt h and ∀r, s;Tr(·), Ts(·) ⊂ C: Tr(·) is density-connected to Ts(·) wrt h
MinPts, then q ∈ C. (Maximality) and MinPts.
(ii) ∀p, q ∈ C: p is density-connected to q wrt h and MinPts.
(Connectivity)
Definition P6: Let C1, . . . , Ck be the clusters of the database D wrt h Definition S4: Let C1, . . . , Ck be the clusters of D wrt h and MinPts.
and MinPts. Then we define noise as the set of points in the database Noise is the set of points in D not belonging to any cluster C,
D not belonging to any cluster Cj , i.e., noise = {p ∈ D|∀j : p /∈ Cj}. i.e., noise = {x ∈ D|∀ : x /∈ C}.

Table II: Point-based and set-based definitions for DEMass-DBSCAN. Note that the point-based definitions are adopted from
those defined for DBSCAN [7].

AB

C

ε ε ε

Figure 3: An example for DBSCAN for Minpts = 5. A is
a core point, B is a border point, and C is a noise point.

T
1

T
2

T
5

T
4

T
3

Figure 4: An example for DEMass-DBSCAN for Minpts =
5. The circle symbol indicates core points and the star
symbol indicates noise points. T3, T4, and T5 are core
regions. T3 and T4 are linked by a common core point.

A comparison between DBSCAN and DEMass-DBSCAN
is provided using two examples showed in Figures 3 and
4. They show how core points and non-core points are la-
belled in DBSCAN and DEMass-DBSCAN. One superficial
difference in these examples is that DBSCAN uses hyper-
spheres and DEMass-DBSCAN uses hyper-rectangles. This
difference can be easily eliminated by using L∞-norm
(instead of L2-norm) in DBSCAN.

B. DEMass-LOF
Table III compares the algorithms for LOF and DEMass-

LOF which have three identical principal steps: Compute
density distribution and LOF , and then rank all instances
based on their LOF values. The key difference is the density
estimator used in step 1 which changes the computation of
LOF in step 2.

In addition to the two advantages due to the use of
DEMass mentioned in Section III, the advantage specific
to LOF is that DEMass enables the computation of the
relative density to be substantially simplified, changing from
nearest-neighbour-based to set-based. Instead of finding the
neighbours of x and then compute the density of each neigh-
bours, the modified ranking measure LOFp is computed
based on the region T (x) and its immediate larger region
T̆i(x) ⊃ Ti(x). In the tree implementation of T (·), this
corresponds to computing the density of the node in which
x falls into, relative to the density of its parent node.

In steps 1 and 2, the time complexities of DEMass-
LOF and LOF are O(ntψ) and O(n2), respectively. Since
DEMass-LOF does not need to perform neighbourhood
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step LOF DEMass-LOF
1 Compute density distribution: Compute density distribution:

f̄kNN (x) f̄m(x)
2 Compute LOF (x) using Compute LOFp(x) using:∑

x′∈N(x,k)

f̄kNN (x′)

|N(x, k)|

f̄kNN (x)

1

t

t∑
i=1

m(T̆i(x))

ψ̆v̆i

f̄m(x)
3 Rank all instances based on Rank all instances based on

their LOF values in their LOFp values in
descending order descending order

Table III: Algorithms for LOF and DEMass-LOF. f̄kNN (x)
and N(x, k) are defined in Section II-B; f̄m(x) is defined
in Section III. T̆i(x) ⊃ Ti(x) correspond to the parent and
child nodes in our tree implementation; ψ̆ and v̆i are the data
size and volume of T̆i(x), respectively. Note that T̆i(x), the
next superset of Th

i (x), is not necessarily Th−1
i (x) because

there are d levels in the tree for each increment of h and
the implementation allows single branch extensions if there
are no data in other branches. See III-B for the details of
the implementation.

search as in LOF, it is much faster, especially in large data
sets. This is because DEMass-LOF does not need to compute
the density of all neighbours of each instance.

The parameter k in LOF has an inverse relationship with
h in DEMass-LOF, i.e., high h corresponds to low k (which
covers a smaller region than that using low h or high k).

A larger k increases LOF’s processing time so as a larger
h increases DEMass-LOF’s processing time.

Note that both LOF and LOFp are relative density
scores, which range from 0 to +∞, indicating the degree
of anomaly; the higher the score, the higher the degree of
anomaly.

C. DEMass-Bayes

Bayesian classifiers require density estimation in order to
estimate the class conditional probability. Classifiers based
on Bayes rule estimate the likelihood of test instance x given
class y i.e. p(x|y). Because it has been difficult to compute
p(x|y) directly even in problems with a moderate number
of dimensions, a number of assumptions has been made to
simplify the computation. We describe those used in Naive
Bayes (NB) [12], Bayesian Networks (BayesNet) [9], and
Aggregating One-Dependence Estimator (AODE) [23], in
the following two paragraphs.

Naive Bayes assumes class conditional independence and
estimates density distribution on each dimension separately
[12].

p(x|y) =
d∏

i=1

p(xi|y) (5)

The assumption made by Naive Bayes is often violated in
the real world where attributes are related in some way.
Other Bayesian classifiers such as BayesNet [9] and AODE

[23], employ less restrictive assumptions. BayesNet learns
probabilistic relationships among the attributes in the form
of directed acyclic graph (DAG) from the training data. In a
graph, edges represent conditional dependencies and nodes
which are not connected are conditionally independent. At
each node, joint probabilities with respect to its parents are
learned from the training data. AODE allows conditional
dependence with one ’privileged’ attribute. Other attributes
are conditionally independent given the class label y and
a privileged attribute xi and conditional probabilities are
computed as follows.

p(x|xi, y) =
d∏

j=1

p(xj |xi, y) (6)

As BayesNet and AODE can not handle numeric at-
tributes, they discretise numeric attributes and compute the
conditional probabilities. For numeric attributes, p(xi|y) in
Naive Bayes can either be estimated by Gaussian distribution
(through normal distribution assumption)(NB-GD) [12] or
by kernel density estimation (NB-KDE) [13].

In contrast to the existing implementation of Bayesian
classifiers, the implementation based on DEMass estimates
p(x|y) directly, without any assumptions. In order to use
DEMass in classification, we made the following adjust-
ments to estimate p(x|y).

• Instead of randomly selecting ψ samples from the
training data to construct a tree, ψ samples are selected
from and a tree is built separately for each class. If
there are not enough data to sample in a class, all data
from that class are used i.e. ψy = min(ψ, |Cy|), where
Cy is the set of instances belonging to class y. We build
t trees per class and hence, c× t trees are constructed
in total, where c is the number of classes.

• Instead of growing the tree to the maximum height, we
stop growing when the number of instances in a node
is less than or equal to one. This provides a smoother
estimation.

We compute the class conditional probability based on
DEMass as:

p(x|y) ≡ f̄m(x|y) =
1

t

t∑
i=1

m(Ti(x|Di,y))

ψvi
(7)

where Di,y is a subset of ψ samples from class y. The
rest of the steps in DEMass-Bayes are the same as existing
Bayesian classifiers. The prior probabilities p(y) are calcu-
lated from the training data. Finally, Bayes rule is used to
predict the class which has the maximum posterior p(y|x).

ŷ = arg max
y

(p(x|y)p(y)) (8)

The decision rules of existing Bayesian classifiers and
DEMass-Bayes are provided in Table IV.
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Classifier Decision Rule Remarks

arg max
y

(p(x|y)p(y))

p(xi|y) in eq.5
NB- is estimated with
GD norm. dist.

p(xi|y) in eq.5
NB- is estimated with
KDE KDE.

DEMass p(x|y) is estimated
-Bayes using eq.7.

arg max
y

(

d∏
i

p(xi|πi, y)p(πi, y))

πi = parents(xi);
Bayes Joint probabilities

Net are estimated by
discretisation.

arg max
y

(

d∑
i=1

p(x|xi, y)p(xi, y))
p(xj |xi, y) in eq.6

AODE is estimated by
discretisation.

Table IV: Decision rules of different existing Bayesian
classifiers and DEMass-Bayes.

VI. EMPIRICAL EVALUATION

The evaluations in clustering and anomaly detection tasks,
are conducted in the unsupervised learning setting, whereas
classification task in the supervised setting. We will compare
DBSCAN with DEMass-DBSCAN in the first subsection
and then compare LOF with DEMass-LOF in the second
subsection. Finally, we will compare DEMass-Bayes with
four existing Bayesian classifiers namely, NB-GD, NB-KDE,
BayesNet and AODE in the last subsection.

All experiments were conducted as single thread jobs
processed at 2.3 GHz in a Linux cluster (www.vpac.org)
using a node with 32 GB memory. All DEMass based
algorithms were written in JAVA in WEKA platform [24],
so as DBSCAN and existing Bayesian classifiers. LOF was
written in Java in ELKI platform version 0.4 [1]. The data
sets used are from UCI Machine Learning Repository [2],
unless stated otherwise.

The clustering result was reported in terms of CPU run-
time (in seconds), number of clusters identified, number of
unassigned instances, and F-measure which was calculated
based on assigned instances only. F-measure = 1 when all
assigned instances are in the correct clusters, i.e., perfect
clustering; and F-measure = 0 if all instances are assigned
to wrong clusters. The anomaly detection result was reported
in terms of CPU runtime and AUC (Area Under ROC Curve)
based on the ranked result. The classification result was
reported in terms of classification accuracy and CPU runtime
(in seconds). We tuned the parameters of each algorithm in
the unsupervised learning setting and reported the best result.
In the supervised learning, the default parameter settings
were used for all the classifiers; and the reported results
were from a 10-fold cross validation.

A. DEMass-DBSCAN versus DBSCAN

DEMass-DBSCAN had ψ = 256 and t = 1000 as
default; and both DEMass-DBSCAN and DBSCAN used
MinPts = 6 in all experiments. As a result, only one

Table V: Clustering results in the Ring-Curve+Wave+Tri-
Gaussian data sets for DEMass-DBSCAN (h = 7 for 3-
dimensional data; h = 6 for 48-dimensional data) and
DBSCAN (ε = 0.01).

3-dimensional data 48-dimensional data
DEMass- DBSCAN DEMass- DBSCAN

DBSCAN DBSCAN
Runtime 135 2391 1261 21906

#cluster [7] 9 8 7 8
#unassigned 535 332 61 332
F-measure 0.9999 0.9999 1.0000 0.9999

parameter needed to be tuned for a particular data set: h
for DEMass-DBSCAN and ε for DBSCAN.

Ring-Curve-Wave-Tri-Gaussian. It has three two-
dimensional synthetic data embedded in either a 3-
dimensional data set or a 48-dimensional data set (where 42
dimensions are irrelevant with a constant value). The three
two-dimensional data are Ring-Curve, Wave and Triangular-
Gaussian shown in Figure 10 in Appendix, which have a
total of seven clusters. Each cluster has 10000 instances with
a total of 70000 instances.

The clustering results from DEMass-DBSCAN and DB-
SCAN are shown in Table V. DEMass-DBSCAN ran faster
than DBSCAN by a factor more than 17 in both data sets. In
terms of #clusters and #unassigned, DEMass-DBSCAN per-
formed slightly worse than DBSCAN in the 3-dimensional
data set, but better in the 48-dimensional data set. DEMass-
DBSCAN decreased its number of unassigned instances
from 535 to 61 when the number of dimensions was
increased from 3 to 48; whereas DBSCAN had the same
332 unassigned instances in both cases. DEMass-DBSCAN
performs either similarly to or better than DBSCAN in terms
of F-measure in these two data sets.

In order to examine how well the algorithms scale up
to large data size, we used the 48-dimensional data set and
increased the data size from 7000 to 70000, half-a-million, 1
million and 10 million. Figure 5 plotted runtime ratio versus
data size ratio (1, 10, 75, 150 and 1500) by using 7000 as
the base. The result showed that DEMass-DBSCAN had a
sublinear increase in runtime: The runtime ratio increased
from 1 to 101 when the data size ratio increased from 1 to
150. In contrast, DBSCAN’s runtime ratio increased from 1
to 18000 with the same increase in data size ratio. DEMass-
DBSCAN was faster than DBSCAN by a factor of 193
when the one-million data set is used. Even the data size
was increased by a factor of 1500, the runtime of DEMass-
DBSCAN increased by a factor of 862 only.

OneBig and Pendigits. The OneBig data set [15] has
20 attributes, 9 clusters and a total of 68000 instances. The
biggest cluster has 50011 instances, and each of the other
eight clusters has approximately 1000 instances. In addition,
there are 10000 noise instances randomly distributed in the
feature space. The Pendigits data set has 16 attributes and
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Figure 5: Scale up: DEMass-DBSCAN vs DBSCAN in
the 48-dimensional Ring-Curve-Wave-TriGaussian data set.
Note that DBSCAN completed the task of the one-million
data set (at data size ratio=150) in 36 days versus DEMass-
DBSCAN’s 4.5 hours. Even with the 10-million data set,
DEMass-DBSCAN completed it in 38 hours.

Table VI: Clustering results in the OneBig and Pendigits
data sets for DEMass-DBSCAN (h = 3 for OneBig; h = 2
for Pendigits) and DBSCAN (ε = 0.1 for OneBig; ε = 0.2
for Pendigits).

OneBig Pendigits
DEMass- DBSCAN DEMass- DBSCAN

DBSCAN DBSCAN
Runtime 1145 8544 91 204
#cluster [9] 9 9 [10] 47 65

#unassigned 10021 10005 2166 6251
F-measure 1.00 1.00 0.65 0.75

10 clusters. Each cluster has approximately 1100 instances
which makes up a total of 10992 instances.

The result in Table VI showed that DEMass-DBSCAN
and DBSCAN for OneBig had the same clustering result in
terms of F-measure and number of clusters; but DEMass-
DBSCAN ran faster than DBSCAN by a factor of 7. Note
that DEMass-DBSCAN had correctly identified all but one
of the 10000 noise instances; whereas DBSCAN correctly
identified all of the noise instances. For Pendigits, the result
showed that although DEMass-DBSCAN had a lower F-
Measure than DBSCAN, it was better than DBSCAN in
all other measures: it had only 20% instances unassigned
whereas DBSCAN had 57% instances unassigned; DEMass-
DBSCAN found 47 cluster whereas DBSCAN detected 65.

B. DEMass-LOF versus LOF

For anomaly detection tasks, we compared LOF with
DEMass-LOF in this section. Table VII provided the prop-
erties of the data sets used. Note that Http and Smtp are
subsets of the network intrusion data set used in KDDCUP
99 [25]; and an anomaly data generator, ”Mulcross” [16]
is used to generate a synthetic data set. All the data sets
used have nearly fifty thousand or more instances, with the

Table VII: Data sets used for the anomaly detection task for
comparing DEMass-LOF with LOF.

Data Size n d anomaly class
Http 567497 3 attack (0.4%)

ForestCover (FC) 286048 10 class 4 (0.9%) vs. class 2
Mulcross 262144 4 2 clusters (10%)

Smtp 95156 3 attack (0.03%)
Shuttle 49097 8 classes 2,3,5,6,7 (7%)

Table VIII: Compare LOF and DEMass-LOF in terms of
AUC (Area Under ROC Curve) and time (in seconds).
AUC=1 is the perfect detection performance and AUC=0
is the worst. The default settings for DEMass-LOF were
h = 1, ψ = 256 and t = 100 which were used for all data
sets. The parameter k (for LOF) and h (for DEMass-LOF)
were changed in order to explore a better result.

AUC Time (seconds)
LOF DEMass- LOF DEMass-

LOF LOF
k=10 k=60 h=1 h=4 k=10 k=60 h=1 h=4

Http 0.44 0.35 0.99 0.93 18913 19818 19 42
FC 0.57 0.58 0.74 0.77 10835 11147 39 40

Mulcross 0.59 0.59 0.96 0.09 5432 5486 12 53
Smtp 0.32 0.85 0.29 0.89 540 552 2 5

Shuttle 0.55 0.62 0.94 0.71 368 380 5 12

largest up to half a million instances. The default settings
for DEMass-LOF were ψ = 256 and t = 100.

Table VIII compares LOF with DEMass-LOF in terms of
detection performance AUC and time. DEMass-LOF using
either h=1 or 4 obtained better AUC results than LOF. It
is interesting to note that DEMass-LOF achieved extreme
results in the Smtp and Mulcross data sets between the
two h settings; and it behaved differently in these two data
sets, where a low h setting is better in Mulcross but a high
h setting is better in Smtp. This is because the two data
sets have two different types of anomalies: clustered and
scattered anomalies [14]. Mulcross has clustered anomalies,
i.e., outlying clusters with high density but a small number
of instances. DEMass-LOF with a high h setting (i.e., h=4)
regarded these anomaly clusters more ‘normal’ than normal
instances, which was reflected in the result: AUC=0.09. In
contrast, the Smtp data set has scattered anomalies which
are isolated outlying instances around normal clusters. This
scenario requires a high h setting in order for DEMass-LOF
to compute the right densities for these anomalies.

LOF was not competitive, and the AUC results did not
change much from the presented results even other k values
were used (we had tried k=30, 40, 50, 80, 100, 120.)

However, it shall be noted that LOF could achieve good
detection accuracy with an appropriate k. For example,
LOF obtained AUC=0.99 when k = 4000 was used in the
shuttle data set. But similar search in the largest three data
sets failed with out of memory problem even though the
computer system was allocated 32 GB memory! This result
reveals two universal problems with k-NN approaches like
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Figure 6: Scale up: LOF versus DEMass-LOF in Mulcross.
The base for data size ratio is 8192 instances and the base
for runtime ratio is the runtime on 8192 instances.

LOF: (i) An extensive parameter search is required to obtain
good detection accuracy; this search adds a significant cost
to the already long runtime process. The total time cost is
often prohibitive; and (ii) high memory requirement.

Table VIII also compares these detectors in terms of
processing time. DEMass-LOF was one to near-three orders
of magnitude faster than LOF in these data sets.

Figure 6 showed the runtime of both algorithms when
scaling from 8192 instances up to a million instances in
the Mulcross data set. The data size was increased by a
factor of 16, 32, 64, 128 from 8192 instances. DEMass-
LOF increased its runtime by a factor of 11, 23, 25 and
86, respectively. In contrast, LOF increased its runtime by
a factor of 217, 845, 2371, 11173, respectively. At data size
ratio = 128, which has a million instances, LOF completed
the task in 28 hours whereas DEMass-LOF accomplished it
in 45 seconds!

C. DEMass-Bayes versus Bayesian classifiers

In this subsection, we compare the performance of
DEMass-Bayes with four existing Bayesian classifiers: NB-
GD, NB-KDE, BayesNet and AODE.

For better estimation of multidimensional density, we need
sufficient training data. Hence, we chose bigger data sets
with size n > 10000. We tested on 10 data sets with
different sizes, dimensions, number of classes and class
distributions. The properties of the data sets are provided in
Table IX. Out of 10 data set used, Wave, RingCurve, OneBig
and Mulcross are synthetic and the rest are real data sets.
RingCurve and Wave are the subsets of Ring-Curve-Wave-
Tri-Gaussian data set described in section VI-A, each having
two classes with 10000 data points in each class. OneBig and
Pendigits are the same data sets as discussed in section VI-A.
In OneBig, noise in the data set are treated as a separate
class, hence, it has 10 classes. Mulcross is a synthetic data
set used in section VI-B. It has two classes with 235930

Table IX: Data set used in classification task to compare the
performance of DEMass-Bayes with other existing Bayesian
classifiers.

Data set Size(n) Attributes# Classes
Pendigits 10992 16 10
Magic04 19020 10 2

Wave 20000 2 2
RingCurve 20000 2 2
LetRecog 20000 16 26

Shuttle 58000 8 7
OneBig 68000 20 10

MiniBooNE 129596 50 2
Mulcross 262144 4 2

CoverType 581012 10 7

and 26214 instances. Magic04 has two classes with 12332
and 6688 instances. Letter Recognition (LetRecog) is a data
set of 26 characters with approximately 750 data instances
in each class. Out of 7 classes in Shuttle, approximately
80% of the data belongs to the first class whereas the
smallest class has 10 instances only. MiniBooNE is a dataset
from an experiment to distinguish electron neutrinos (signal)
from muon neutrinos (background). The class distribution
is approximately 7:3. CoverType is a data set of forest
cover type with 7 classes. It is the biggest data set used
with more than half a million data. The class distribution
is unbalanced as two classes have more than two hundred
thousand instances each and the smallest class has 2747
instances.

The default setting for DEMass-Bayes were t = 1000,
ψ = 1024 and h was set as:

h =

{
dlog2(ψ)e if d = 1
dlogd(ψ)e otherwise.

We normalised the data in the range of [0 − 1] to avoid
attributes with large values affecting volume calculation.

Since AODE can not handle continuous attributes, we
discretised the attributes using the method proposed in [8].
BayesNet does discretization before building the classifica-
tion model.

We performed 10-fold cross validation and reported the
average accuracy and total run time including training and
testing over all 10 folds. The classification accuracies and
runtime (in seconds) of all classifiers over a 10-fold cross
validation on each data set are provided in Table X and Table
XII respectively.

Empirical observations showed that DEMass-Bayes
yielded better classification accuracies in most of the data
sets. DEMass-Bayes outperformed existing Bayesian clas-
sifiers in 6 data sets namely Pendigits, Wave, RingCurve,
Letter Recognition, OneBig, and Covertype. In case of
Wave, Covertype and Letter Recognition, DEMass-Bayes
had significant difference in accuracy over existing Bayesian
classifiers with improvement of 20%, 9% and 6% respec-
tively. It had slightly poorer accuracy than the existing
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Table X: Classification accuracies (%) on different data
sets over 10-fold cross validation for DEMass-Bayes and
existing Bayesian classifiers: NB-KDE, NB-GD, BayesNet
and AODE with default parameters.

Data set DEMass NB- NB- Bayes AODE
-Bayes KDE GD Net

Pendigits 98.89 88.64 85.75 87.90 97.84
Magic04 82.12 76.12 72.69 77.78 83.00

Wave 99.99 77.91 66.80 78.27 78.50
RingCurve 100.00 99.26 90.11 99.38 99.98
LetRecog 94.45 74.20 64.01 74.31 88.81

Shuttle 99.75 92.67 85.66 94.48 99.85
OneBig 99.99 99.98 99.89 99.98 99.69

MiniBooNE 85.95 86.06 83.40 86.18 89.58
Mulcross 100.00 100.00 100.00 100.00 100.00

CoverType 81.91 66.72 63.05 66.57 72.89

Table XI: Win:Loss:Draw counts, as a result of a significant
test based on two standard errors, for the classifier on the
row versus the classifier on the column.

AODE BayesNet NB-GD NB-KDE
DEMass-Bayes 6:3:1 7:0:3 9:0:1 7:0:3

NB-KDE 1:7:2 0:2:8 9:0:1
NB-GD 1:8:1 0:9:1

BayesNet 1:7:2

Bayesian clasifiers in three data sets - Magic04, Shuttle, and
MiniBooNE.

A statistical test based on two standard errors was per-
formed to examine whether the difference is significant.
The win:loss:draw counts between each pair of classifiers
are reported in Table XI. A win or loss is counted if the
difference is significant; otherwise it is a draw. DEMass-
Bayes had 6 wins, 3 losses and 1 draw when compared
to AODE, a Bayesian classifier with the state-of-the-art
performance. It had 7 wins, and 3 draws in comparison to
NB-KDE and BayesNet.

Table XII shows that DEMass-Bayes was expensive in
terms of run time. However, the increase in run time was
not significant when compared to the existing Bayesian
classifiers with increase in data size and the number of

Table XII: Run time (in seconds) of a 10-fold cross vali-
dation for DEMass-Bayes and existing Bayesian classifiers:
NB-KDE, NB-GD, BayesNet and AODE with default pa-
rameters.

Data set DEMass NB- NB- Bayes AODE
-Bayes KDE GD Net

Pendigits 2562 16 3 6 5
Magic04 423 93 4 9 5

Wave 237 24 2 4 3
RingCurve 227 22 3 4 4
LetRecog 4492 23 9 10 11

Shuttle 608 14 9 20 9
OneBig 3611 2361 28 101 32

MiniBooNE 3919 8594 134 375 119
Mulcross 1037 1832 29 64 20

CoverType 14088 1006 173 388 102

dimensions. We conduct a scale up test in the following
subsection.

1) Scale up test: In order to examine how well the
classifiers scale-up to large data size, we used the 48-
dimensional Ring-Curve-Wave-TriGaussian data set, used in
section VI-A. Data size was increased from 7000 to 70000,
half-a-million, 1 million and 10 million. Figure 7 showed
the increase in runtime of DEMass-Bayes and the existing
Bayesian classifiers. With the increase in data size by a factor
of 10, 75, and 150, DEMass-Bayes increased its runtime
by a factor of 2, 9, and 17. The closest contender AODE
increased its runtime by a factor of 6, 45, and 91, followed
by NB-GD (12, 128, 286), BayesNet (15, 167, 374), and NB-
KDE (38, 2345, 8721). Even with the data size increase by
a factor of 1500, DEMass-Bayes only increased its runtime
by a factor of 190, whereas BayesNet, NB-GD and AODE
increased their runtime by factors of 7046, 6665 and 1038
respectively. DEMass-Bayes has a better scale up capability
than the existing Bayesian classifiers.
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Figure 7: Scale up: DEMass-Bayes versus existing
Bayesian Classifiers in the 48-dimensional Ring-Curve-
Wave-TriGaussian data set. The base for data size ratio is
7000 instances and the base for runtime ratio is the runtime
on 7000 instances. Axes are on logarithmic scale of base 10.

2) Sensitivity of parameters: In order to examine the ef-
fect of two parameters, sample size ψ and number of trees t
on the classification accuracy of DEMass-Bayes, we ran two
experiments on 6 real data sets, namely Pendigits, Shuttle,
Letter Recognition, Magic04, MiniBooNE and Covertype:

1) Vary sample size ψ with a fixed number of trees,
t =100.

2) Vary number of trees t with a fixed sample size,
ψ =256.

Figures 8 and 9 showed the results of these two expriments
respectively.

With increase in sample size ψ, the accuracy increased
up to a certain point and then remained flat except in
MiniBooNE, where the accuracy decreased as the sample
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Figure 8: Effect of sample size (ψ) on the accuracy of
DEMass-Bayes (t=100) in real data sets. Horizontal axis is
on logarithmic scale of base 2. Accuracies were measured
on ψ=64, 256, 1024, 4096, and 16384.

size was increased from 4096. But, in case of Covertype,
accuracy kept increasing because the two biggest classes
have more than two hundred fifty thousand instances each
and the continuous accuracy improvements is a result of
improved accuracy for these two classes.

When the number of trees t was increased, the accuracy
increased initially and remained constant after reaching a
certain point.

VII. DISCUSSION

What we have presented is the first density estimation
method that utilizes no distance measures. It potentially
solves fundamental problems such as the curse of dimen-
sionality in which the use of a distance measure plays a key
part in creating the problem [3], [10].

There are significant improvements of nearest neighbour
search in recent times. For example, indexing schemes to
speed up nearest neighbour search such as Cover Trees
[4] and M-Trees [6] are claimed to have time complexity
significantly better than O(n2). Indexing schemes such as
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Figure 9: Effect of number of trees (t) on the accuracy of
DEMass-bayes (ψ=256) in real data sets. Horizontal axis is
on logarithmic scale of base 10. Accuracies were measured
on t=10, 100, 1000, 2500, 5000, and 10000. We could not
run DEMass-Bayes on Letter Recognition with t =5000, and
10000 and on Pendigits with t =10000 due to insufficient
memory.

Cover Trees or M-Trees rely on distance-based pruning
methods in both the index tree construction and range query
processes. Distance-based pruning methods cannot scale up
to massive data, and they are known to be inefficient even for
a moderate number of dimensions. Thus, it is unlikely that
any of the recent indexing schemes can be used to speed up
nearest neighbour search to the level that has been achieved
already by DEMass-DBSCAN and DEMass-LOF, especially
in large data sets.

Note that the purpose of trees used in DEMass differs
from that used for Cover Trees or M-Trees. Trees in DEMass
are used to estimate mass, the core computation process. In
contrast, Cover Trees or M-Trees are indices used to speed
up nearest neighbour search. The indices are required be-
cause the core computation, i.e., the requirement to calculate
distance for every pair of instances, is slow. In other words,
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one uses trees directly in the core process; and the other
uses trees to aid the core process where trees are not used
in the actual computation of distance.

The cost of KDE estimation can be lowered, for example,
by reducing the given data set D to some ‘representative’
subset, where each representative kernel is derived from a
subsample using a maximum likelihood method such as EM.
This reduces the KDE estimation time; but it comes with a
cost of an expensive pre-processing step.

It is possible to use neighbours to compute LOF for
DEMass-LOF. However, the runtime advantage over LOF
will be significantly reduced because of the additional com-
putations required to calculate the density of each neighbour,
even though it does not need to find neighbours based on
distance calculations.

DENCLUE [11], a generic density-based algorithm,
builds a density distribution from data, and then uses a
threshold to determine clusters—all connected points above
the threshold form a cluster. DBSCAN is a special case
of DENCLUE. DEMass-DENCLUE has exactly the same
procedure as DEMass-DBSCAN, where Minpts or the
equivalent density threshold stated in Section V-A is em-
ployed as the threshold.

DEMass sets a new benchmark of what density-based
algorithms can achieve. In contrast to the density-based
approaches, mass-based approaches [21], [20] solve prob-
lems without the use of a density estimator. Mass-based
approaches have been shown to perform better than the
current density-based approaches in terms of time and space
complexities. It is thus interesting to compare the new
benchmark achieved by DEMass-density-based approaches
with mass-based approaches.

The current implementation of DEMass has two limita-
tions. First, it has step subdivisions controlled by a global
parameter h. The limited possible steps may be too coarse
for some applications and the setting is not adaptive to local
variations in density. Second, the grid-based implementa-
tion carries all the limitations associated with grid-based
approaches, especially dealing high dimensional problems.
All these limitations can be overcome by using a non-grid
method which is adaptive to the local data distribution. This
non-grid-based implementation will eliminate one global
parameter and potentially tackle high-dimensional problems
more effectively.

VIII. CONCLUSIONS AND FUTURE WORK

The new density estimation method we introduced have
two unique features which cannot be found in existing
density estimation methods. First, it is the first density
estimator that utilizes no distance measures. Second, it has
average case sublinear time complexity and constant space
complexity. Existing density estimators must use a distance
measure and have time and space complexities a lot worse
than linear. The time and space complexities achieved set

a new benchmark for density-based algorithms, of what
previously thought impossible.

The bias-variance analysis reveals that the new density
estimator has the same characteristic as kernel density
estimator, i.e., both have a smoothing parameter used to
trade-off between systematic error (bias) and random error
(variance).

Making full use of the features in the new density estima-
tor, we show that two current algorithms, in the unsupervised
learning setting from two key areas of data mining, can be
significantly simplified through set-based definitions rather
than the current point-based definitions. This has directly
contributed to their improved time complexities. In the su-
pervised learning setting, DEMass enables direct estimation
of p(x|y) for the first time, without any assumption.

Our evaluation shows that the new density estimator
not only successfully replaces existing density estimators
in three density-based algorithms, DBSCAN, LOF and
Bayesian classifiers, but reduces their runtime to become al-
gorithms with the lowest sub-linear time complexity. In addi-
tion, DEMass-DBSCAN, DEMass-LOF and DEMass-Bayes
often achieve equivalent or better task-specific performances
than DBSCAN, LOF and existing Bayesian classifiers.

Our result implies that most, if not all, density-based
algorithms can reap the immediate benefit of significantly
lowering their time complexities by simply replacing the
existing density estimators with the new one, with a potential
further improvement in the task-specific performance.

Future work has three directions. First, we will apply
the new density estimator in existing algorithms in more
areas. We will ascertain whether there are areas in which the
new density estimator cannot replace existing density esti-
mators. Second, compare DEMass-density-based approaches
with mass-based approaches to determine their relative
strengths and weaknesses. Third, we will explore DEMass’s
ability to deal with high dimensional problems.
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APPENDIX - DATA CHARACTERISTIC

The characteristic of the data set, Ring-Curve-Wave-
TriGaussian, used in Section V-A is shown in Figure 10.
Each of the Ring-Curve, Wave and Triangular-Gaussian is
a two-dimensional data set; and together there is a total of
seven clusters. Each cluster has 10000 instances. When used
in the scale up experiment, the data size in each cluster was
scaled by a factor of 0.1, 1, 75, 150 to 1500.

(a) Ring-Curve (b) Wave (c) Tri-Gaussian

Figure 10: Scatter plot of the clusters in the Ring-Curve-
Wave-TriGaussian data set, as used in [20].
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Table 17 AUC values for anomaly detection, comparing MassAD with DepthADs (which em-
ployed either data depth or local data depth) that build a single model from the entire data
set.

MassAD DepthADs
Mass′′ Mass′ Depth LDepth

Http 1.00 1.00 0.84 0.50
Forest 0.90 0.92 0.50 0.55

Mulcross 0.26 0.99 0.88 0.61
Smtp 0.91 0.86 0.86 0.76
Shuttle 1.00 0.99 0.51 0.70

Mammography 0.86 0.37 0.73 0.62
Annthyroid 0.75 0.71 0.59 0.85

Satellite 0.77 0.62 0.50 0.70
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