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ABSTRACT 

In a foliage environment, radio wave propagation is subjected to fading on both large-

scales and small-scales that impair the quality and reliability of data link transmission.  

This has implications in many military applications.  An example is the performance of 

communications links and unmanned aerial vehicle radio links when the ground forces 

are operating in foliage environments. 

The purpose of this research is to evaluate some simple models for propagation of 

radio waves in foliage using an electromagnetic field simulation application. 

The three dimensional (3D) electromagnetic field simulation application, CST 

Studio Suite, was used in the modeling and simulation process.  Specifically, the CST 

Microwave Studio module was used to model the forest using dielectric blocks.  Various 

combinations of forest dimensions, material dielectric parameters and antenna placements 

were simulated to obtain propagation models of radio waves in foliage environment. 

The simulation models are compared to three empirical models presented in the 

literature for propagation in foliage environment.  Using the simulation model, we 

examined the coverage diagram for a transmitter antenna immersed in foliage.  The 

results show that the proposed simulation models provide a rough approximation to 

radiowave propagation in an actual rainforest environment.  Based on the simulated 

results, the path loss in foliage is affected by the forest’s electrical characteristics, the 

height of the transmitter and the height of receiver. 



 vi 

THIS PAGE INTENTIONALLY LEFT BLANK 



 vii 

TABLE OF CONTENTS 

I. INTRODUCTION........................................................................................................1 
A. MILITARY OPERATIONS IN THE TROPICS .........................................1 

1. Physical Characteristics of Tropical Rainforest ...............................2 
2. Electrical Properties of a Forest .........................................................3 

B. OBJECTIVES OF THESIS ............................................................................4 
C. THESIS OUTLINE ..........................................................................................4 

II. RADIOWAVE PROPAGATION IN FOLIAGE ......................................................7 
A. RADIOWAVE PROGATION MECHANISM IN FOLIAGE ....................7 

1. Representing the Forest as a Slab.......................................................7 
2. Forest GO Contribution ....................................................................10 
3. Lateral Wave Contribution ...............................................................11 

B. EMPIRICAL PROPAGATION MODELS IN FOLIAGE 
ENVIRONMENT ...........................................................................................12 
1. Tewari’s Basic Transmission Loss Model (Tewari) ........................12 
2. Jansky and Bailey Model...................................................................14 
3. Lateral ITU-R (LITU-R) Model .......................................................15 

D. COVERAGE DIAGRAMS WITH TRANSMISSION THROUGH 
FOLIAGE .......................................................................................................17 

C. SUMMARY ....................................................................................................19 

III. EM FIELD SIMULATION APPLICATION ..........................................................21 
A. REVIEW OF SIMULATION APPLICATION ..........................................21 
B. APPLICATION OF CST STUDIO TO SIMULATION OF 

RADIOWAVE PROPAGATION IN FOLIAGE ........................................21 
1. General CST MWS Studio® Set-up .................................................22 

a. General Simulation Settings ...................................................22 
b. Definition of Variables............................................................24 

2. Physical Construction ........................................................................25 
a. One Layer Dielectric Block .....................................................25 
b. Half –Wave Dipole Antenna ...................................................28 

3. Fields Monitors...................................................................................33 
C. SUMMARY ....................................................................................................34 

IV. SIMULATION AND ANALYSIS ............................................................................35 
A. COMPARISON WITH EMPIRICAL MODELS .......................................35 

1. Simulation Results of Propagation in a Dielectric Block ...............37 
2. Effects of Different εr and σ values on Simulation Results .............40 
3. Effects of Different Transmitter Heights on Simulation Results...50 
4. Observations .......................................................................................64 

B. COVERAGE DIAGRAMS ...........................................................................65 
1. Transmitter in Free Space.................................................................65 
2. Transmitter in Forest (εr = 1.065 and σ = 0.000135 S/m) ...............69 



 viii 

3. Transmitter in Forest (εr = 1.15 and σ = 0.00015 S/m) ....................73 
4. Observations .......................................................................................77 

C. COMMENTS ON SIMULATION USING CST .........................................77 
D. SUMMARY ....................................................................................................77 

V. SUMMARY AND CONCLUSION ..........................................................................79 
A. SUMMARY ....................................................................................................79 
B. CONCLUSIONS ............................................................................................79 
C. FUTURE WORK ...........................................................................................80 

1. Model the Forest as Multiple Smaller Blocks..................................80 
2. Perform the Simulation using FEKO ...............................................81 

APPENDIX A MATLAB CODE ...............................................................................83 

LIST OF REFERENCES ......................................................................................................89 

INITIAL DISTRIBUTION LIST .........................................................................................91 

 

  



 ix 

LIST OF FIGURES 

Figure 1. An example of battlefield communications application in forest 
environment (From [1]). ....................................................................................1 

Figure 2. Profile of a tropical rainforest (From [3]). .........................................................2 
Figure 3. Basic geometry of a forest dissipative dielectric slab (From [6]). .....................8 
Figure 4. Propagation mechanisms in a forest (From [6]). .............................................10 
Figure 5. Plot of basic transmission loss versus separation distance for vertically 

polarized transmission. ....................................................................................13 
Figure 6. Plot of loss versus separation distance for Jansky and Bailey empirical 

model................................................................................................................15 
Figure 7. Plot of path loss versus separation distance based on LITU-R model. ............16 
Figure 8. Mutipath effects from a flat earth in foliage. ...................................................17 
Figure 9. Example of a coverage diagram for a transmitter located inside foliage. ........19 
Figure 10. Mesh properties settings in CST. .....................................................................22 
Figure 11. Properties of the boundary conditions. ............................................................23 
Figure 12. Configuration of units used in CST. ................................................................23 
Figure 13. Frequency Range Setting window. ..................................................................24 
Figure 14. Properties of dielectric forest block. ................................................................25 
Figure 15. Parameters for material property of dielectric block. ......................................26 
Figure 16. Parameters for material property of dielectric block. ......................................27 
Figure 17. Forest dielectric block constructed in CST. .....................................................28 
Figure 18. Properties of Cylinder object used to construct dipole antenna. ......................29 
Figure 19. Properties of Brick object used to create space needed for discrete port. ........29 
Figure 20. Properties of PEC material for dipole antenna. ...............................................30 
Figure 21. Properties of Discrete Edge Port used to provide power to dipole antenna. ...31 
Figure 22. Dipole antenna constructed in CST. ................................................................31 
Figure 23. 11S  results for different dipole antenna lengths. ..............................................32 
Figure 24. Property window for a field monitor. ..............................................................33 
Figure 25. Setting the resolution of field data to be exported in CST. ..............................34 
Figure 26. Background properties setting. ........................................................................36 
Figure 27. Power flow plot at y = 0 m for test case A1. ....................................................37 
Figure 28. Loss–distance curves for hr = 1–5 m (test case A1). .......................................38 
Figure 29. Loss–distance curves for hr = 6–10 m (test case A1). .....................................39 
Figure 30. Loss–distance curves for hr = 11–15 m (test case A1). ...................................39 
Figure 31. Loss–distance curves for hr = 16–20 m (test case A1). ...................................40 
Figure 32. Power flow plot at y = 0 m for test case B1. ....................................................41 
Figure 33. Loss–distance curves for hr = 1–5 m (test case B1). ........................................41 
Figure 34. Loss–distance curves for hr = 6–10 m (test case B1). ......................................42 
Figure 35. Loss–distance curves for hr = 11–15 m (test case B1). ....................................43 
Figure 36. Loss–distance curves for hr = 16–20 m (test case B1). ....................................43 
Figure 37. Power flow plot at y = 0 m for test case B2. ....................................................44 
Figure 38. Loss–distance curves for hr  = 1–5 m (test case B2). .......................................45 
Figure 39. Loss–distance curves for hr = 16–20 m (test case B2). ....................................45 



 x 

Figure 40. Power flow plot at y = 0 m for test case B3. ....................................................46 
Figure 41. Loss–distance curves for hr = 1–5 m (test case B3). ........................................47 
Figure 42. Loss–distance curves for hr = 16–20 m (test case B3). ....................................47 
Figure 43. Power flow plot at y = 0 m for test case B4. ....................................................48 
Figure 44. Loss–distance curves for hr = 1–5 m (test case B4). ........................................49 
Figure 45. Loss–distance curves for hr = 16–20 m (test case B4). ....................................49 
Figure 46. Power flow plot at y = 0 m for test case C1. ....................................................51 
Figure 47. Loss–distance curves for hr = 1–5 m (test case C1). ........................................52 
Figure 48. Loss–distance curves for hr  = 11–15 m (test case C1). ...................................52 
Figure 49. Loss–distance curves for hr  = 26–30 m (test case C1). ...................................53 
Figure 50. Power flow plot at y = 0 m for test case C2. ....................................................53 
Figure 51. Loss–distance curves for hr  = 1–5 m (test case C2). .......................................54 
Figure 52. Loss–distance curves for hr = 11–15 m (test case C2). ....................................55 
Figure 53. Loss–distance curves for hr = 26–30 m (test case C2). ....................................55 
Figure 54. Power flow plot at y = 0 m for test case C3. ....................................................56 
Figure 55. Loss–distance curves for hr = 1–5 m (test case C3). ........................................56 
Figure 56. Loss–distance curves for hr = 11–15 m (test case C3). ....................................57 
Figure 57. Loss–distance curves for hr = 26–30 m (test case C3). ....................................58 
Figure 58. Power flow plot at y = 0 m for test case C4. ....................................................58 
Figure 59. Loss–distance curves for hr = 1–5 m (test case C4). ........................................59 
Figure 60. Loss–distance curves for hr = 11–15 m (test case C4). ....................................60 
Figure 61. Loss–distance curves for hr = 26–30 m (test case C4). ....................................60 
Figure 62. Power flow plot at y = 0 m for test case C5. ....................................................61 
Figure 63. Loss–distance curves for hr = 1–5 m (test case C5). ........................................61 
Figure 64. Loss–distance curves for hr = 11–15 m (test case C5). ....................................62 
Figure 65. Loss–distance curves for hr  = 26–30 m (test case C5). ...................................63 
Figure 66. Setting for background properties (for coverage diagram test cases). .............66 
Figure 67. Coverage diagram for a dipole antenna in free space (height 2 m). ................67 
Figure 68. Coverage diagram for a dipole antenna in free space (height 5 m). ................67 
Figure 69. Coverage diagram for a dipole antenna in free space (height 10 m). ..............68 
Figure 70. Coverage diagram for a dipole antenna in free space (height 20 m). ..............68 
Figure 71. Dipole antenna immersed in dielectric forest block and free space outside 

the block. ..........................................................................................................70 
Figure 72. Coverage diagram for dipole antenna in foliage (height 2 m). ........................70 
Figure 73. Coverage diagram for dipole antenna in foliage (height 5 m). ........................71 
Figure 74. Coverage diagram for dipole antenna in foliage (height 10 m). ......................72 
Figure 75. Coverage diagram for λ/2 dipole antenna in foliage (height 20 m). ................73 
Figure 76. Coverage diagram for a dipole antenna in foliage (height 2 m). .....................74 
Figure 77. Coverage diagram for a dipole antenna in foliage (height 5 m). .....................75 
Figure 78. Coverage diagram for a dipole antenna in foliage (height 10 m). ...................75 
Figure 79. Coverage diagram for a dipole antenna in foliage (height 20 m). ...................76 
 



 xi 

LIST OF TABLES 

Table 1. Values of α, A and B (From [9]). .....................................................................13 
Table 2. Constants for the Jansky and Bailey empirical model (From [10]). ................14 
Table 3. List of parameters defined in CST. ..................................................................24 
Table 4. Values used to set up model for test case A1...................................................37 
Table 5. List of εr, σ and dipole length 2  values used in test case B simulation 

runs. ..................................................................................................................40 
Table 6. List of difference transmitting antenna heights used in test case C 

simulation runs. ................................................................................................51 
Table 7. Effect of ht and hr on E(P) and L. ....................................................................64 
Table 8. Values used to set-up dipole antenna transmitting in free space. ....................66 
Table 9. Values used to set up model for examining coverage diagram with 

transmitting antenna immersed in foliage. .......................................................69 
Table 10. Values used to set up model for examining coverage diagram with 

transmitting antenna immersed in foliage. .......................................................74 
 



 xii 

THIS PAGE INTENTIONALLY LEFT BLANK 



 xiii 

LIST OF ACRONYMS AND ABBREVIATIONS 

3D  Three Dimensional 

CAD  Computer Aided Design 

CST  Computer Simulation Technology 

E-field  Electric Field 

EM  Electromagnetic 

GO  Geometric-Optical 

GUI  Graphics User Interface 

HF  High Frequency 

LITU-R Lateral ITU-R 

MWS  Microwave Studio 

PC  Personal Computer 

PEC  Perfect Electrically Conducting 

PGF  Path Gain Factor 

UAV  Unmanned Aerial Vehicle 

UHF  Ultra High Frequency 

VHF  Very High Frequency 



 xiv 

THIS PAGE INTENTIONALLY LEFT BLANK 



 xv 

EXECUTIVE SUMMARY 

The objective of this thesis is to investigate various simulation models for 

radiowave propagation in foliage environments.  There are relatively few attempts to 

conduct simulation studies on radiowave propagation in foliage.  The possibility of 

reliable simulation techniques bridges the gap between theoretical and field studies for 

propagation studies in a foliage environment.  As an alternative to conducting field 

measurements, simulation provides a means to validate performance of communications 

and radar systems during their design phase. 

It has been postulated in [1] that the forest can be represented by dielectric blocks 

for a frequency up to 100 MHz.  These dielectric forest blocks are characterized by the 

quantities of relative permittivity εr and conductivity σ.  Based on [2], the value of the 

relative permittivity εr ranges between 1.01 and 1.065.  The value of σ ranges between  

10-4 S/m to 10-3 S/m.  This established a basis for studying propagation through forest via 

understanding the wave mechanism in the actual propagation process.  Hence, the 

simulation models are constructed based on a single dielectric slab to represent the forest.  

A vertical dipole antenna is used to as a transmitter in the simulations. 

Three theoretical propagation mechanisms in the transmitting–receiving path in a 

forest environment are described in [1].  The three mechanisms are the forest geometric 

optical (GO) components (consisting of direct and reflected rays), the sky wave and the 

lateral wave.  For distances larger than 0.5 km, the GO components are largely 

attenuated.  For short distances (i.e. much less than 100 km), the sky wave component is 

neglected.  Hence, lateral waves are the predominant propagation mechanism in a forest 

environment over relatively short distances.  The GO components and lateral wave are 

depicted in Figure 1. 
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Figure 1. Propagation mechanisms in a forest (From [1]). 

In this thesis, the simulation results are compared against three empirical models 

to determine the accuracy of the simulation models.  The models are Tewari’s model [3], 

the Jansky and Bailey model [4] and the LITU-R model [5].  The models were developed 

using experimental data obtained from actual measurements carried out in forests.  The 

models are applicable for the high frequency (HF) and very high frequency (VHF) bands 

and vertically (v) polarized radiowave transmission.  The effect of the forest on the 

coverage diagrams of a transmitter antenna immersed in foliage is also examined.  

Compared to free space, the electric field (E-field) for propagation through foliage has 

additional components of foliage attenuation and phase delay in foliage.  Due to the 

constructive and destructive interference of the ground reflected wave with the direct 

wave, the typical maxima and nulls of the fields in a coverage diagram are still present 

when transmitting in a foliage environment.  The reflections from the air–foliage 

interface can be neglected. 

CST Studio Suite™, which is an electromagnetic (EM) simulation application, is 

used in this thesis.  Specifically, the CST Microwave Studio (MWS) module is used to 

simulate the radiowave propagation in the dielectric forest block.  The dielectric forest 

block and dipole antenna are constructed in CST.  Several parameters, such as εr, σ and 
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the height of the transmitter antenna ht, are varied in the simulation to examine their 

effects on the path loss in foliage. 

From the various simulations, it is observed that the simulated results for sparse 

foliage (i.e., εr = 1.01 and σ = 10-5 S/m) do not closely follow the three empirical models.  

Generally, for denser foliage (i.e., εr ≥ 1.05 and σ ≥ 10-5 S/m), both Tewari’s model and 

the Jansky and Bailey model are better approximations to the simulation results than the 

LITU-R empirical model for receiver situated at greater heights.  Generally, the LITU-R 

model gives a better approximation to the simulation results for both transmitter and 

receiver situated near the ground.  While the simulated results do not exactly match those 

given by the three empirical models, the difference between the simulated result and 

empirical result is approximately 10 dB in most cases.  Given the lack of knowledge of 

the electrical properties (εr and σ) of the actual foliage, assumed values of the electrical 

properties are used in the simulations.  Hence, it is expected that there will be differences 

between the simulated and empirical results.  Nevertheless, given the observed 

difference, the simulation models can only be considered as a rough approximation to 

actual foliage propagation. 

The effects of the forest on the coverage diagram of a transmitting antenna 

immersed in foliage are also examined using simulation.  The coverage diagram for a 

transmitting antenna can be obtained from the electric field plots of a CST simulation.  

The height of the transmitter in foliage and the forest’s electrical properties are varied in 

the simulation in order to examine their effect on the coverage diagram.  From the 

simulation, it is observed that an increase in the height of the transmitter inside foliage 

results in more maxima (or lobes).  In addition, the angular difference between the 

maxima and nulls becomes smaller as the antenna height is increased until near the 

canopy of the foliage.  As the transmitter is sited higher up in the foliage, the path length 

of the reflected wave in foliage becomes longer and results in a lower E-field strength.  

For a transmitter sited inside a denser forest with higher εr and σ values, the lobes are 

shortened as compared to ones sited in a less dense forest.  This is due to the increased 

attenuation in denser foliage, which is a result of higher εr and σ values. 
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During the conduct of the various simulation runs, we made several observations 

on the limitations of CST with respect to foliage simulation.  The simulations are run on a 

personal computer equipped with Intel Xeon Quad-Core 2.53 GHz processor and 4 GB 

RAM memory.  One main limitation on the simulation with respect to total simulation 

time is the maximum frequency used.  An increase in the maximum frequency results in 

an exponential increase in number of mesh cells generated by CST.  This leads to a 

significant increase in simulation time.  In order for a simulation run to be completed 

within 12 hours, the frequency used should not exceed 75 MHz for a dielectric block of 

size 200 m by 100 m by 25 m. 

It has been shown that it is feasible to model foliage using EM simulation 

applications.  Using the simulation technique proposed in this thesis, a radio frequency 

(RF) engineer can model an RF system (especially the antenna) that is being developed 

for operations in foliage using CST.  The performance of the system can then be 

examined during the design phase.  This allows the designer to change the design before 

the actual system is built and is available for actual field tests. 
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I. INTRODUCTION  

A. MILITARY OPERATIONS IN THE TROPICS 

Tropical rainforests dominate large land masses in the equatorial region.  An 

example is Southeast Asia.  Thus, military forces of countries in these regions are trained 

to operate in such forest environments.  In the modern battlefield, network centric 

operations, as well as the utility of unmanned vehicles are key enablers for mission 

success.  Hence, the ability to find reliable communications channels for radio networks 

and unmanned aerial vehicle (UAV) datalinks underpins the successful execution of a 

mission.   

When operating in tropical rainforest, the foliage provides a natural camouflage 

for ground forces.  In order not to break cover and potentially expose one’s own location 

to the opposing force, the military hardware, including antennas, are kept hidden under 

foliage cover.  Military forces thus have to transmit their communications signals from 

under the foliage cover.  At the other end of the channel, the receiving party could be an 

UAV operating in the airspace above a forest or a friendly unit operating either outside or 

within the forest.  A typical scenario of military units operating in a forest environment is 

shown in Figure 1.  The implication of such an operational scenario is that the 

transmission path taken will be through the forest medium.  Likewise, any signal received 

by forces operating under foliage has to travel through the same environment.  The ability 

to understand propagation mechanisms in forest conditions will lead to the design of 

better systems for operations in a forest environment. 

 

Figure 1.   An example of battlefield communications application in forest 
environment (From [1]). 
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1. Physical Characteristics of Tropical Rainforest  

The physical structure of a typical tropical rainforest is described in this section.  

A rainforest is divided into five different layers [2].  A graphical depiction of the 

rainforest profile is shown in Figure 2.  The emergent layer contains a small number of 

very large trees which grow above the canopy layer, reaching heights of 45–55 m.  The 

canopy is the primary layer of the forest and consists of the leafy top of tall trees, which 

forms a roof over the remaining layers.  Shorter trees and tall shrubs form the understory 

layer.  The plants in this area seldom grow to 3 m.  The shrub layer and forest floor are 

very dark.  Few plants grow in this area as a result.  Hence, vegetation under the canopy 

layer is relatively sparse. 

 

Figure 2.   Profile of a tropical rainforest (From [3]). 
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As its name implies, the rainforest experiences rainfall throughout the year.  In 

equatorial regions, rainfall may be year round without apparent "wet" or "dry" seasons; 

although, many forests do have seasonal rains.  Even in seasonal forests, the period 

between rains is usually not long enough for the leaf litter to dry out completely.  Forests 

farther from the equator, like those of Thailand, Sri Lanka, and Central America, where 

rainy seasons are more pronounced, can only be considered "semi-evergreen" since some 

species of trees may shed all of their leaves at the beginning of the dry season [3].  The 

seasonal change in the physical make-up of the forest impacts the electrical properties of 

a forest and, consequently, how electromagnetic (EM) waves propagate. 

2. Electrical Properties of a Forest 

Electrical properties of a medium are specified by its constitutive parameters, i.e., 

permeability, permittivity and conductivity [4].  Permeability μ and permittivity ε are 

expressed by the following complex quantities 

 
Co rµ µ µ=  (1) 

 
Co rε ε ε=  (2) 

where μo = 4π ×  10-7 H/m and εo = 8.85 ×  10-12 F/m. 

The constant 
Cr

µ  is called the relative permeability and has a value of one for 

lossless, non-magnetic materials.  The constant 
Cr

ε  is called the relative dielectric 

constant or relative permittivity [5].  The imaginary terms in (1) and (2) give rise to 

propagation losses due to attenuation and absorption.  (The time convention used here is 

e+jωt.) 

Tamir proposed in [6] that the forest could be represented by dielectric blocks.  

This established a basis for studying propagation through forest via understanding the 

wave mechanism in the actual propagation process.  This was in contrast to propagation 

studies that are based on empirically or statistically derived models.  However, one main 

challenge in using dielectric models is the need for prior knowledge of the forest’s 

electrical properties. 



 4 

The forest’s electrical properties are related to characteristics of the forest’s 

physical structure, such as density of canopy, vegetation type and size of trees.  Given the 

diverse composition of tropical rainforest, the electrical properties differ for each 

rainforest.  In some cases, the electrical properties for a given forest changes according to 

seasonal variations that affect the canopy’s leaf density.  Hence, radiowave propagation 

in a forest medium can be explained via a simple propagation mechanism that is 

dependent on the electrical properties of the forest. 

B. OBJECTIVES OF THESIS 

Current and past research on radiowave propagation in foliage environments is 

largely centered on either theoretical or field studies.  While there are numerous 

simulation studies on propagation in other environments such as urban terrain, there are 

relatively few attempts to conduct simulation studies on radiowave propagation in 

foliage.  This can be attributed to the lack of information on the electrical properties of 

actual forests, which makes it difficult to build an accurate model to replicate actual field 

results in a simulation. 

The objective of this thesis is to investigate various simulation models for 

radiowave propagation in foliage environments.  The simulation results are compared 

with empirical results to determine the accuracy of the simulation models.  The 

possibility of reliable simulation techniques bridges the gap between theoretical and field 

studies for propagation studies in a foliage environment.  As an alternative to conducting 

field measurements, simulation provides a means to validate theoretical models of 

propagation and aid in the design of communications and radar systems. 

C. THESIS OUTLINE  

There are five chapters in this thesis.  In Chapter I, the background, objectives and 

scope of the thesis are presented.  The theoretical models of propagation in foliage and 

the various factors affecting performance of radiowave propagation in foliage 

environment are discussed in Chapter II. 
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In Chapter III, various EM field simulation applications which can be used to 

model and simulate radiowave propagation in foliage environment are presented.  The 

construction of the model is also presented here.  In Chapter IV, the simulation 

parameters and simulation results are presented.  In Chapter V, a conclusion to the work 

performed in this thesis and recommendations for future work are presented. 
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II. RADIOWAVE PROPAGATION IN FOLIAGE 

There are three possible scenarios involving a transmitter-receiver pair in a forest 

operating environment.  In the first scenario, both the transmitter and receiver are sited 

within the forest.  In the second scenario, the transmitter is sited within the forest, and the 

receiver is sited outside the forest.  The third scenario is similar to the second scenario, 

except that the locations for the transmitter and receiver are switched.  For scenarios two 

and three, the propagation process can be broken into two parts.  One part involves 

propagation in the absence of vegetation, while the other part involves propagation inside 

a forest environment.   

In this chapter, the propagation mechanism of radiowaves in a forest environment 

as well as several empirical propagation models for foliage are presented and discussed. 

A. RADIOWAVE PROGATION MECHANISM IN FOLIAGE 

1. Representing the Forest as a Slab 

In order to understand the EM wave mechanism in an actual propagation process, 

it has been proposed that the forest could be viewed as a dissipative dielectric slab [6].  

The basic slab structure is shown in Figure 3.  The dissipative dielectric slab is assumed 

to represent a forest with an average tree height of h.  The transmitter is located at a 

height zo above ground.  The forest is characterized by the complex dielectric constant 

given by [6] 

 60
Cr r r o

o

j jσε ε ε σλ
ωε

= − = −  (3) 

where εr denotes the average relative permittivity, σ denotes the averages conductivity of 

the forest and λo is the wavelength of a wave with frequency f.  The wavelength λo must 

be sufficiently large for the representation of the forest as a uniform, continuous medium 

to be valid [6].  Based on a reasonably assumed average separation between trees of 1–5 

m and that the intervening space is usually filled with foliage and other vegetation, an 
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upper frequency of f equals to 100 MHz (or a minimum wavelength λ0 of 3 m) seems 

reasonable [6]. 

 

Figure 3.   Basic geometry of a forest dissipative dielectric slab (From [6]). 

The forests’ electrical parameters εr and σ are critical in describing the EM 

propagation [7].  Unfortunately, there is very little data for these two parameters.  Based 

on [8], the value of εr, which was derived from field measurements, ranges between 1.01 

and 1.065.  The value for σ ranges from 0.01 to 0.160 mmho/m (equivalent to 10-5 S/m to 

1.6 x 10-4 S/m).  It was also observed in [8] that a larger εr corresponds to a larger σ.  In 

[6], the range of εr considered is from 1.01 to 1.5, and the range of σ considered is from 

10-5 S/m to 10-3 S/m.  A dense forest exhibits larger values for εr and σ, while a thin forest 

exhibits smaller values.  Hence, it is expected that the lower limits (i.e., εr = 1.01 and       

σ = 10-5 S/m) and the upper limits (i.e., εr = 1.5 and σ = 10-3 S/m) occur together. 
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From [4], for a z polarized plane wave propagating in the x-direction, 

  (4) 

where Eo is a complex constant, and γ is the propagation constant and can be expressed as 

  (5) 

where α is the attenuation constant (Np/m) and β is the phase constant (rad/m): 

  (6) 

 

1
22

1 1
2
µε σβ ω

ωε

     = + + ⋅       
 (7) 

The attenuation constant α affects the rate of decay of the wave travelling in the dielectric 

media. 

Three theoretical propagation mechanisms in the transmitting–receiving path in a 

forest environment are described in [6].  The three components are the forest geometric 

optical (GO) components (direct and reflected rays), the sky wave (or ionospheric wave) 

component and the lateral wave component.  For distances larger than 0.5 km from the 

antenna, the forest GO components are largely attenuated.  The sky wave component is 

only significant for distances larger than the one-hop distance.  In [6], a practical distance 

of over 100 km is required for the sky wave to be significant.  Hence, lateral waves are 

the predominant propagation mechanism in a forest environment over relatively short 

distances.  The discussion in the following section focuses on the GO and lateral wave 

components, which are depicted in Figure 4. 
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Figure 4.   Propagation mechanisms in a forest (From [6]). 

2. Forest GO Contribution 

From [6], in the absence of the ionosphere, the first scenario reduces to that of a 

single half-space problem (Figure 4).  The basic waves, which appear as a direct ray and 

a reflected ray, shown by the trajectories TR and TSR, respectively, constitute the GO 

contribution for this scenario.  The electric field (E-field) EF corresponding to these 

waves may be cast in the form [6] 

 30
o r dC o r rjk r jk r

F d r
d r

e eE I f f
r r

ε ε− − 
 = +
 
 
  (8) 

where I is the current in the transmitting antenna,   is the length of the transmitting 

antenna, rd is the distance travelled by the direct wave, rd is the distance travelled by the 

reflected wave, and ko is the wavenumber of air (vacuum) and can be expressed as 

 o o ok ω µ ε= ⋅  (9) 
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From (8), it can be seen that EF is inversely proportional to rd and rr, i.e., the field 

strength is dependent on 1
dr
−  and 1

rr
− .  The reflection from the ground is neglected. 

3. Lateral Wave Contribution 

If the forest is a lossless medium, the additional diffraction fields would be 

negligible compared to the GO contributions.  However, given that the forest is a 

dissipative medium, the diffraction component has a significant contribution to the field 

[6]. 

The lateral wave is represented by the trajectory TABR in Figure 4.  This wave 

corresponds to the radiation emitted at the critical angle of total reflection θc given by  

 1sin
C

c
r

θ
ε

= ⋅  (10) 

The lateral wave appears when radiation occurs from a denser medium to a less dense 

one [6].  From (10), it can be seen that the angle θc is defined for 
Cr

ε  real only.  However, 

the physical interpretations are still valid if the losses are small (i.e., Im(
Cr

ε ) << |
Cr

ε |), 

and the real part of 
Cr

ε  is implied in (10) [6]. 

When the ray of the lateral wave from the source hits the air-forest boundary (path 

TA in Figure 4), it is refracted into the air medium, where the ray travels tangentially 

along the boundary (path AB in Figure 4) while leaking energy back into the forest 

medium along the direction of θc [6].  Therefore, some of this leaked energy reaches the 

observation point in the forest (path BR in Figure 4).  From [6], it is shown that the lateral 

wave has the form 

 
( ) ( 1cos cos sin )L
z L rE E ε φ γ γ− +  (11) 

 ( ) [( 1)cos cos 1sin ]L
L r rE Eρ ε φ γ ε γ− + −  (12) 

 ( ) sin cosL
LE Eφ φ γ  (13) 
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where φ  is the angle measured from the x–axis, γ is the angle of incline of the 

transmitting dipole antenna with respect to the x–axis and EL is given by 

 
( 1 )

2

60
1

o L rjk r s

L
r L

I eE
r

ε

ε

− + −

= ⋅
−
  (14) 

where rL is the distance travelled by the lateral wave and s is the total separation of the 

source and observation points from the forest–air interface given by 

 2 t rs h h h= − − ⋅  (15) 

From (14), it can be seen that the electric field strength of the lateral wave is 

dependent 2
Lr
−  as compared to 1r−  for the GO waves.  This is due to the continuous 

leakage of energy back into the forest medium by the lateral wave across its path AB [6]. 

Both the GO and lateral wave contributions to the field observed in a forest 

environment have been explained.  Other diffraction components are ignored since they 

are of lower order [6]. 

B. EMPIRICAL PROPAGATION MODELS IN FOLIAGE ENVIRONMENT  

Some empirical propagation models for foliage environment are explained in this 

section.  These models were developed using experimental data obtained from actual 

measurements carried out in forests.  While there are many empirical foliage propagation 

models that have been proposed in the past thirty years, the models being discussed here 

apply to the high frequency (HF) and very high frequency (VHF) bands and vertically (v) 

polarized radiowave transmission. 

1. Tewari’s Basic Transmission Loss Model (Tewari)  

In [9], an empirical propagation model based on experimental data obtained in the 

rainforests of India yields a predicted basic transmission loss Lb expressed as 

 227.57 20log 20log
d

b
Ae BL f

d d

α− 
= − + − + 

 
 (16) 
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where f is the frequency (MHz), d is the separation distance (m), α is the rate of 

attenuation constant (dB/m), and A and B are constants evaluated from the measured data. 

For vertically polarized transmission, the values of α, A and B were determined 

using the experimentally observed data given in Table 1. 

Table 1.   Values of α, A and B (From [9]). 

Frequency (MHz) α (dB/m) A B 
50 - 0 1.9170 
200 0.0125 0.4989 1.8358 
500 0.0135 0.3658 0.9040 
800 0.0140 0.2661 0.5331 

 

A plot of the basic transmission loss Lb versus separation distance d curve for 

vertically polarized transmission is generated using MATLAB and is shown in Figure 5.  

The MATLAB code is given in the Appendix. 

 

Figure 5.   Plot of basic transmission loss versus separation distance for vertically 
polarized transmission. 
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From Figure 5, it can be observed that, for a given separation distance, path loss 

increases with higher frequency in a forest environment.  This is expected, since at higher 

frequencies, the wavelength is comparable to the dimensions of the forest’s constituents 

such as leaves and branches. 

2. Jansky and Bailey Model 

From [10], the Jansky and Bailey empirical model was developed using measured 

data obtained in the tropical forest of Thailand.  The model is valid for cases in which 

both transmitting and receiving antennas are immersed in foliage and are separated by 

distances between 8 to 1600 meters.  The model could be used for both horizontal and 

vertical polarization.  The frequency range is between 25 and 400 MHz.  The loss Lb is 

given by 

 
1609

236.57 20log 20log
d

b
Ae BL f

d d

α− 
= + − + 

 
 (17) 

where f is the frequency in MHz, d is the separation distance in statute miles, and A, B 

and α are empirical constants given in Table 2. 

Table 2.   Constants for the Jansky and Bailey empirical model (From [10]). 

Frequency (MHz) Polarization α (dB/m) A B 
25 V 0.0 0.0 0.00212 
50 V 0.0 0.0 0.00106 
100 V 0.045 0.615 0.000529 
250 V 0.050 0.759 0.000443 
400 V 0.055 1.02 0.000523 

Comparing (17) with (16), we observe that both empirical formulas have the same 

form.  However, their constants are different since the measured data on which the 

models are based are taken from forests in dissimilar locations. 

A plot of the basic transmission loss Lb versus separation distance d curve for 

vertically polarized transmission was generated using MATLAB and is shown in Figure 

6.  The MATLAB code is given in the Appendix. 
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Figure 6.   Plot of loss versus separation distance for Jansky and Bailey empirical 
model. 

From Figure 6, it can be observed that, for a given separation distance, path loss 

increases with higher frequency in a forest environment.  This is similar to that observed 

in Tewari’s model. 

3. Lateral ITU-R (LITU-R) Model 

In [1], an empirical model that accounts for the excess foliage loss for lateral 

waves is proposed.  The model was modified from ITU-R’s model for VHF transmission 

in a small forest.  The VHF frequency band is from 30 to 300 MHz.  The modified LITU-

R model is valid for VHF band transmission over a foliage depth of up to 5 km.  The 

expression for the LITU-R model is 

 0.43 0.13( ) 0.48LITU RL dB f d− ≅  (18) 

where f is the frequency in MHz and d is the separation distance in meters. 
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The path loss is obtained by including the effect of foliage loss LLITU-R in the plane 

earth path loss model [1].  Hence, the total pass loss in a foliage environment can be 

expressed as 

 10 10 10( ) 40log ( ) 20log ( ) 20log ( )t r LITU RL dB d h h L −= − − +  (19) 

where d is the separation distance in meters, ht is the transmitting antenna height in 

meters and hr is the receiving antenna height in meters.  From (19), it can be seen that 

path loss is also affected by the antenna height.  By increasing the transmitting or 

receiving antenna height, path loss is reduced. 

A plot of the path loss versus separation distance based on the LITU-R model is 

generated using MATLAB and is shown in Figure 7.  The MATLAB code is given in the 

Appendix.  Both the transmitting and receiving antenna heights are at 5 m. 

 

Figure 7.   Plot of path loss versus separation distance based on LITU-R model. 

From Figure 7, it can be observed that, for a given separation distance, path loss 

increases with higher frequency. 
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D. COVERAGE DIAGRAMS WITH TRANSMISSION THROUGH FOLIAGE 

In a foliage environment, it is highly likely for both the transmitter and receiver to 

be operating near the surface of the earth.  In such a situation, multipath or multiple 

reflections can cause fading of the signal [4].  A flat earth is assumed in this discussion.  

The geometry of the reflections from the ground in a foliage environment is shown in 

Figure 8.  Reflections from the boundary between the foliage and air are neglected. 

 

Figure 8.   Mutipath effects from a flat earth in foliage. 

In Figure 8, the transmitter antenna is low gain and assumed to be pointing at the 

horizon.  The receiver is located in free space outside of the foliage.  Hence, the 

transmitter’s height ht is less than the forest’s height h, while the receiver’s height hr is 

greater than h.  If the transmitter is very near to the ground, the angle ψ is both the 

grazing angle and the elevation angle.  The path lengths of the rays in foliage are given 

by lo, l1 and l2. 

The foliage attenuation α and phase constant in foliage β are given by (6) and (7), 

respectively.  The phase constant in free space can be expressed as  

 0
0

2
o o c

ω πβ ω µ ε
λ

= = = ⋅  (20) 
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The reference field (or direct path in free space) can be expressed as  

 0 01
0

0

( ) j RG
E e

R
βθ −=  (21) 

where G(θ1) is the gain of the transmit antenna.  Hence, the path gain factor (PGF) F is 

given by 

 
0

( )E PF
E

=  (22) 

where E(P), which is the field at point P, is expressed as (for the case of point P outside 

the foliage, i.e., hr ≥ h) 

 0 0 0 0 0 0 12 1212 12( ) ( )1 2

0 12

( ) ( )
( ) l j R l j l j R ll j lG G

E P e e e e e e
R R

α β β βα βθ θ− − − − − −− −= + Γ  (23) 

where Г is the reflection coefficient, R12 = R1 + R2 and l12 = l1 + l2.  If the ground is 

assumed to be perfect electrically conducting (PEC), Г has a value of −1.  For the case 

where point P is inside the foliage (i.e., hr < h), E(P) is expressed as 

 0 0 12 121 2

0 12

( ) ( )
( ) j R R j R RG G

E P e e e e
R R

β α β αθ θ− − − −= + Γ ⋅  (24) 

 A coverage diagram can be plotted with F shown as contours in relation to d and 

hr.  An example of a coverage diagram is shown in Figure 9.  The diagram is plotted for a 

vertical λo/2 dipole located at height 20 m above ground in 25 m high foliage.  The 

frequency is 50 MHz, εr = 1.01, σ = 410− S/m and the reference distance is 1000 m. 
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Figure 9.   Example of a coverage diagram for a transmitter located inside foliage. 

In Figure 9, the contours represent the PGF for 10 dB, 0 dB, −10 dB, −20 dB and 

−40 dB relative to free space at the reference distance.  From the diagram, the maxima 

and nulls of the fields can be observed.  This phenomenon is due to the constructive and 

destructive interference of the reflected wave with the direct wave. 

C. SUMMARY 

In this chapter, the mechanism of EM wave propagation through foliage was 

examined.  Three empirical propagation models for foliage environment are also 

discussed in this chapter.  The effect of a dielectric forest block on the coverage diagram 

of a transmitter in foliage was also examined.  In the next chapter, the simulation results 

are analyzed with respect to the theory discussed in this chapter. 
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III. EM FIELD SIMULATION APPLICATION 

In this chapter, various EM field simulation applications which can be used to 

model and simulate radiowave propagation in foliage environment are presented.  In 

addition, the method to construct the foliage model and set-up the simulation using CST 

Studio Suite™ is also presented. 

A. REVIEW OF SIMULATION APPLICATION 

There are many EM simulation applications in the market to aid in the study of 

electromagnetic related problems.  The CST Studio Suite ™ was selected for this 

problem.  The CST Studio Suite™ (CST) is developed by Computer Simulation 

Technology AG.  The electromagnetic simulation software CST STUDIO SUITE™ 

comprises CST’s tools for the design and optimization of devices operating over a wide 

range of frequencies.  CST consists of several modules.  The module that is useful for 

simulating radiowave propagation in foliage is CST Microwave Studio® (CST MWS).  

CST MWS is a specialist tool for fast and accurate three dimensional (3D) EM simulation 

of high frequency problems [10].  CST MWS enables the fast and accurate analysis of 

high frequency devices such as antennas, filters, couplers, planar and multi-layer 

structures [10]. 

For creation of the computer aided design (CAD) models, CST Studio Suite™ 

supports both options of drawing the model within CST or importing from an external 

file.  There is a wide range of primitives available to create complex structures. 

B. APPLICATION OF CST STUDIO TO SIMULATION OF RADIOWAVE 
PROPAGATION IN FOLIAGE 

The CST MWS module is used to simulate radiowave propagation through 

foliage.  The transient solver in CST is used for the simulation in this thesis.  The 

transient solver is a general purpose 3D simulator.  The solver can be used to study the 

fields propagating through a component.  It can also deliver broadband frequency domain 

results such as scattering parameters (S-parameters) [10]. 
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1. General CST MWS Studio® Set-up 

a. General Simulation Settings 

In order to optimize the simulation in CST, there are several settings to 

configure so that the results are sufficiently accurate for analysis.  At the same time, these 

settings also ensure that the simulation does not consume too many computing resources. 

The mesh is set to Hexahedral type.  Under the mesh properties (Figure 

10), the Lines per wavelength is set to 10, which provides a good compromise between 

calculation time and achievable accuracy.  The Mesh line ratio limit is set to the default 

value of 10. 

 

Figure 10.   Mesh properties settings in CST. 

The boundary conditions are configured using the selections shown Figure 

11.  The Xmin, Xmax, Ymin, Ymax and Zmax boundaries are configured as “open (add 

space)”, which acts as free space and waves can pass through the boundary with minimal 

reflections.  The Zmin boundary is configured as a ground plane using “electric (Et = 0)”. 
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Figure 11.   Properties of the boundary conditions. 

For the units used in the simulation (Figure 12), dimensions are defined in 

meters and frequency is defined in MHz. 

 

Figure 12.   Configuration of units used in CST. 

The range of frequencies (i.e., minimum frequency Fmin to maximum 

frequency Fmax) to be used in the simulation is defined using the frequency Range 

Settings shown in Figure 13. 
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Figure 13.   Frequency Range Setting window. 

b. Definition of Variables 

In CST, parameters can be defined for use in the simulation model.  The 

parameters are defined in the parameter list table on the graphic user interface (GUI).  

The parameters shown in Table 3 are defined for the model used in CST to simulate 

radiowave propagation through foliage. 

Table 3.   List of parameters defined in CST. 

 Parameter Value Description Units 
1 H varies according 

to simulation run 
Height of dielectric block meters 

2 L varies according 
to simulation run 

Length of dielectric block meters 

3 W varies according 
to simulation run 

Width of dielectric block meters 

4 c 3 x 108 Speed of light meters/second 
5 f varies according 

to simulation run 
Transmission frequency MHz 

6 lamda c/(f·106) Wavelength  meters 
7 2  varies according 

to simulation run 
Dipole length meters 

8 r 0.0005·lamda Dipole radius meters 
9 xd varies according 

to simulation run 
X-coordinate of dipole meters 

10 yd varies according 
to simulation run 

Y-coordinate of dipole meters 

11 zd varies according 
to simulation run 

Z-coordinate of dipole and 
represents the transmitter height, ht 

meters 

12 d 0.025·lamda For mating discrete port to dipole meters 
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2. Physical Construction 

Based on [6], the forest can be modeled as a single homogeneous dielectric block 

to represent the entire vegetation for frequency up to 100 MHz.  A half-wave (λo/2) 

dipole is used as the transmitting antenna. 

a. One Layer Dielectric Block 

A single homogenous dielectric block with length (L), width (W) and 

height (H) is constructed to represent the forest.  The dielectric block is constructed using 

a Brick object in CST with the properties shown in Figure 14.  The variables used to 

construct the dielectric block are obtained from the variable list in Table 3. 

 

Figure 14.   Properties of dielectric forest block. 

The dielectric block is configured as a dielectric material, which has the 

properties shown in Figure 15 and 16.  The material type is set as Normal.  The value for 

Epsilon (relative permittivity εr) is set according to the test case in each simulation run.  

Since the forest is considered a non-magnetic structure, the value of Mue (relative 
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permeability μr) is set to a value of one.  The electrical conductivity σ is set accordingly 

for each simulation run. 

 

Figure 15.   Parameters for material property of dielectric block. 
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Figure 16.   Parameters for material property of dielectric block. 

From the settings in Figures 14, 15 and 16, the forest block is constructed 

in CST and is shown in Figure 17. 
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Figure 17.   Forest dielectric block constructed in CST. 

b. Half –Wave Dipole Antenna 

The dipole antenna is modeled as a long thin rod with an impedance of   

73 Ω.  The length of the rod 2  is set to slightly less than half a wavelength.  The rod’s 

length affects the matching of antenna.  The length, which provides the optimum 

transmitted power (i.e., least reflected power), is set during each simulation run.  The 

method for obtaining the matched length is described at the end of this section.  The 

radius of the rod is set to 0.0005λo.  A discrete port is inserted at the rod’s center to act as 

the excitation source.  In order to construct the dipole antenna, a Cylinder object with the 

properties shown in Figure 18 is used.  A small Brick object with properties shown in 

Figure 19 is also defined.  The gap space for inserting the discrete port is created by 

subtracting the Brick object from the Cylinder object via a Boolean subtract operation in 

CST.  The variables defined in Table 3 are used to construct the dipole antenna.  The 

material of the dipole antenna is set as PEC with the properties shown in Figure 20. 
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Figure 18.   Properties of Cylinder object used to construct dipole antenna. 

 

Figure 19.   Properties of Brick object used to create space needed for discrete port. 



 30 

 

Figure 20.   Properties of PEC material for dipole antenna. 

A discrete port is required to feed the dipole antenna with power for the 

simulation.  In CST, the radiated power from the antenna is normalized to 1 W or 0 dBW.  

A Discrete Edge Port is defined with the properties shown in Figure 21. 
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Figure 21.   Properties of Discrete Edge Port used to provide power to dipole antenna. 

From the settings in Figures 18, 19, 20 and 21, the dipole antenna of 

length 2  is constructed and shown in Figure 22. 

 

Figure 22.   Dipole antenna constructed in CST. 

2

2  
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The dipole antenna has to be matched to ensure that most of the energy is 

transmitted.  When the antenna is matched, the reflection coefficient or scattering 

parameter ( 11S ) is the lowest at the frequency of interest.  In order to match the antenna, a 

suitable dipole length has to be obtained for use in the simulation.  This is achieved by 

using the parameter sweep functionality in CST.  In the parameter sweep dialog box, the 

range of values to sweep and number of steps are defined.  The parameter sweep function 

produces a series of S-parameter curves corresponding to different antenna lengths.  The 

most appropriate length is chosen based on the curve whose minima coincides with the 

frequency of interest.  This means that 11S  is lowest at the transmission frequency for the 

given length.  Using Figure 23 as an example, we see that a dipole length 2  of 2.52 m 

gives the smallest 11S  at a frequency of 50 MHz.  The selected length is then used as the 

length of the dipole antenna for the simulation to produce the EM fields in the dielectric 

block. 

 

Figure 23.   11S  results for different dipole antenna lengths. 

 

Frequency (MHz) 
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3. Fields Monitors 

In order to monitor the fields produced by the simulation, E–field and Powerflow 

monitors are used.  In CST, the E–field monitor stores the electric field vectors, while the 

Powerflow monitor stores the Poynting vector of the EM field.  For each frequency to be 

monitored, one E–field monitor and one Powerflow monitor has to be defined.  A typical 

property window for a field monitor is shown in Figure 24. 

 

Figure 24.   Property window for a field monitor. 

The generated electric fields and Poynting vector can be exported to an ASCII 

file.  When exporting the generated field data, a resolution of step size one is selected for 

the x, y and z components.  This is shown in Figure 25.  By exporting the data to ASCII, 

the generated field data can be manipulated in MATLAB for analysis purposes. 
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Figure 25.   Setting the resolution of field data to be exported in CST. 

C. SUMMARY 

In summary, the steps for setting up CST to perform the simulation for radiowave 

propagation in foliage were covered in this chapter.  The steps for constructing the forest 

dielectric block and the dipole antenna were also covered.  The results and analysis of the 

simulation runs are presented in the next chapter. 
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IV. SIMULATION AND ANALYSIS 

The various simulation runs performed in CST to model the radiowave 

propagation in foliage are presented in this chapter.  The analysis of the simulation runs is 

also discussed and presented in this chapter. 

A. COMPARISON WITH EMPIRICAL MODELS 

In this section, the objective is to validate the results of the simulation model 

against empirical models.  In this simulation model, the forest is represented as a single 

dielectric block.  The transmitter is a dipole antenna that is immersed inside the forest.  

The generated Poynting vector data is then processed in MATLAB to obtain a loss versus 

distance curve.  The steps to construct the model were described in Chapter III.   

As the empirical models did not specify the range of values for εr and σ of the 

forest from which their measured data from obtained, a reasonable assumption was made 

on the values to be used in the simulations.  Based on [6, 8], the range of εr used in the 

simulation is from 1.01 to 1.5, and the range of σ is from 10-5 S/m to 10-3 S/m. 

In order to generate the loss–distance curve, only the field data inside the 

dielectric block are considered.  Since there is no receiving antenna in the simulation, the 

Poynting vector at any point in space (coordinates of x, y, z) represents the available 

power at a receiver located at that point.  Hence, the loss L can be represented by 

 ( ) 10log ( ) 10log ( )t rL dB P dB P dB= −  (25) 

where Pt is the transmit power in W and Pr is the receive power in W. 

Given that the radiated power is 1 W, Pt is 0 dBW and (25) can be simplified to  

 ( ) 10log ( )rL dB P dB= − ⋅  (26) 

In (25), L ignores the losses incurred in the receiver and represents the path loss between 

the transmitter and receiver.  The MATLAB code to plot the loss–distance curves is 

given in the Appendix.  The loss–distance curve is used to compare against various 

empirical models to validate the simulation results from CST. 
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As there is no requirement to examine the fields outside the dielectric block in this 

section, the background properties are configured as shown in Figure 26. 

 

Figure 26.   Background properties setting. 

Several variations of the simulation model are executed to examine the effects of 

different variables on the closeness of the simulation results to the empirical models.  The 

variables are electrical properties of dielectric block (i.e., εr and σ) and height of 

transmitting antenna.  The general observations for the simulation results are discussed at 

the end of this section. 
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1. Simulation Results of Propagation in a Dielectric Block 

Test case A1 was constructed using the values shown in Table 4.  The transmitter 

is at a height of 5 m from the ground.  In order avoid effects due to reflections from the 

forest edges, the transmitter is sited at a position such that it is at least 50 m away from all 

the side walls of the dielectric block. 

Table 4.   Values used to set up model for test case A1. 

 Parameter Description Value 
1 2  Length of dipole antenna 2.54 m 
2 f Frequency of interest 50 MHz 
3 H Height of dielectric block 20 m 
4 L Length of dielectric block 200 m 
5 W Width of dielectric block 100 m 
6 xd x-coordinate of dipole center 50 m 
7 yd y-coordinate of dipole center 0 m 
8 zd z-coordinate of dipole center 5 m 
9 εr Relative permittivity 1.065 
10 σ Conductivity 0.000135 S/m 

Based on the values in Table 4, the simulated power flow plot of the fields along 

the x-z plane (i.e., y = 0 m) in the dielectric block is shown in Figure 27. 

 

Figure 27.   Power flow plot at y = 0 m for test case A1. 

4.68 dB 

-95.3 dB 
Type Powerflow (peak) 
Monitor Power (f=50) [1] 
Component Abs 
Plane at y 0 
Maximum-2D 4.67899 dbVA/m^2 at 49.8007 / 0 / 4.925 
Frequency 50 
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From the exported data, the loss–distance curves are plotted in MATLAB for 

different transmitter heights ht that are parallel to the x-y plane.  The height hr also 

represents the height of a receiver.  The loss–distance curves for different hr are shown in 

Figures 28, 29, 30 and 31.  In the figures, the Tewari model [9], the Jansky and Bailey 

model [10] and the LITU-R model curves are plotted for comparison with the simulated 

results [1]. 

From Figures 28, 29, 30 and 31, it can be observed that the loss–distance curves 

for the simulated results are close to those predicted by LITU-R model (19) for low 

receiver heights (i.e., hr = 1–5 m).  As the receiver height is increased, the loss–distance 

curves exhibit a downward shift towards the curves predicted by Tewari’s model (16) and 

the Jansky and Bailey model (17). 

 

Figure 28.   Loss–distance curves for hr = 1–5 m (test case A1). 
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Figure 29.   Loss–distance curves for hr = 6–10 m (test case A1). 

 

Figure 30.   Loss–distance curves for hr = 11–15 m (test case A1). 
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Figure 31.   Loss–distance curves for hr = 16–20 m (test case A1). 

2. Effects of Different εr and σ values on Simulation Results 

In test case B, the effects of different εr and σ values on the simulation results 

with respect to the empirical models are examined.  The set-up for the simulation is 

similar to Table 4.  However, in this test case, the pairs of εr and σ values as shown in 

Table 5 are used for each simulation run.  In addition, different lengths are used for the 

dipole antenna so that the antennas are matched at the transmitting frequency.  The 

transmitter antenna is sited at 5 m above the ground. 

Table 5.   List of εr, σ and dipole length 2  values used in test case B simulation runs. 

Test Case. εr σ (S/m) 2  (m) 
B1 1.01 0.00001 2.6 
B2 1.08 0.000135 2.54 
B3 1.1 0.000135 2.54 
B4 1.5 0.000135 2.54 
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For test case B1, the simulated power flow plot of the fields along the x-z plane 

(i.e., y = 0 m) in the dielectric block is shown in Figure 32.  The transmitter antenna is 

sited at 5 m above the ground. 

 

Figure 32.   Power flow plot at y = 0 m for test case B1. 

The “test case B1” loss–distance curves for different values of hr are shown in 

Figures 33, 34, 35 and 36. 

 

Figure 33.   Loss–distance curves for hr = 1–5 m (test case B1). 

4.65 dB 

-75.4 dB 
Type Powerflow (peak) 
Monitor Power (f=50) [1] 
Component Abs 
Plane at y 0 
Maximum-2D 4.64894 dbVA/m^2 at 50 / 0 / 4.925 
Frequency 50 
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In Figure 33 it is observed that the loss–distance curves for the simulated results 

approximate the LITU-R model at small separation distance from the transmitting 

antenna. 

 

Figure 34.   Loss–distance curves for hr = 6–10 m (test case B1). 

In Figure 34, it is observed that the loss–distance curves for the simulated results 

approximate the LITU-R model at distances of 40–80 m from the transmitting antenna.  

In this test case, the receiver antennas are sited at heights of 6–10 m from the ground. 

In Figure 35, it is observed that the loss–distance curves for the simulated results 

approximate the LITU-R model at distances of 80–100 m from the transmitting antenna.  

In this case, the receiver antennas are sited at heights of 11–15 m from the ground. 

80 m 40 m 
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Figure 35.   Loss–distance curves for hr = 11–15 m (test case B1). 

 

Figure 36.   Loss–distance curves for hr = 16–20 m (test case B1). 
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In Figure 36, it is observed that the loss–distance curves for the simulated results 

approximate the LITU-R model at distances of 100–120 m from the transmitting antenna.  

In this case, the receiver antennas are sited at heights of 16–20 m from the ground. 

For test case B2, the simulated power flow plot of the fields along the x-z plane 

(i.e., y = 0 m) in the dielectric block is shown in Figure 37.  The transmitter antenna is 

sited at 5 m above the ground. 

 

Figure 37.   Power flow plot at y = 0 m for test case B2. 

The “test case B2” loss–distance curves for different values of hr are shown in 

Figures 38 and 39. 

In Figure 38, it is observed that the loss–distance curves for the simulated results 

approximate the LITU-R model at separation distances up to 100 m from the transmitting 

antenna.  In this case, the receiver antennas are sited at heights of 1–5 m from the ground. 

Type Powerflow (peak) 
Monitor Power (f=50) [1] 
Component Abs 
Plane at y 0 
Maximum-2D 4.61952 dbVA/m^2 at 50 / 0 / 4.925 
Frequency 50 
 

4.62 dB 

-85.4 dB 
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Figure 38.   Loss–distance curves for hr  = 1–5 m (test case B2). 

 

Figure 39.   Loss–distance curves for hr = 16–20 m (test case B2). 
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Comparing Figure 39 to Figure 38, we observe that as the height of the receiving 

antenna increases (i.e., from 1 m to 20 m), the loss for a given separation distance 

increases.  At higher receiving antenna heights (i.e., 16–20 m), the loss–distance curves 

are closer to those predicted by Tewari’s model and the Jansky and Bailey model. 

For test case B3, the simulated power flow plot of the fields along the x-z plane 

(i.e., y = 0 m) in the dielectric block is shown in Figure 40.  The transmitter antenna is 

sited at 5 m above the ground. 

 

Figure 40.   Power flow plot at y = 0 m for test case B3. 

The “test case B3” loss–distance curves for different values of hr are shown in 

Figures 41 and 42. 

In Figure 41 it is observed that the loss–distance curves for the simulated results 

approximate the LITU-R model at separation distances up to 120 m from the transmitting 

antenna.  In this case, the receiver antennas are sited at heights of 1–5 m from the ground. 

Type Powerflow (peak) 
Monitor Power (f=50) [1] 
Component Abs 
Plane at y 0 
Maximum-2D 4.61328 dbVA/m^2 at 49.7998 / 0 / 4.925 
Frequency 50 
 

4.61 dB 

-85.4 dB 
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Figure 41.   Loss–distance curves for hr = 1–5 m (test case B3). 

 

Figure 42.   Loss–distance curves for hr = 16–20 m (test case B3). 
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Comparing Figure 42 to Figure 41, we observe that as the height of the antennas 

increases (i.e., from 1 m to 20 m), the loss for a given separation distance increases.  At 

higher antenna heights (i.e., 16–20 m), the loss–distance curves are closer to those 

predicted by Tewari’s model and the Jansky and Bailey model. 

For test case B4, the simulated power flow plot of the fields along the x-z plane 

(i.e., y = 0 m) in the dielectric block is shown in Figure 43.  The transmitter antenna is 

sited at 5 m above the ground. 

 

Figure 43.   Power flow plot at y = 0 m for test case B4. 

The “test case B4” loss–distance curves for different values of hr are shown in 

Figures 44 and 45. 

In Figure 44, it is observed that the loss–distance curves for the simulated results 

approximate the LITU-R model at separation distances up to 150 m from the transmitting 

antenna.  In this case, the receiver is sited at heights of 1–5 m from the ground. 

Type Powerflow (peak) 
Monitor Power (f=50) [1] 
Component Abs 
Plane at y 0 
Maximum-2D 4.64543 dbVA/m^2 at 49.8000 / 0 / 4.925 
Frequency 50 
 

4.65 dB 

-85.4 dB 
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Figure 44.   Loss–distance curves for hr = 1–5 m (test case B4). 

 

Figure 45.   Loss–distance curves for hr = 16–20 m (test case B4). 
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Comparing Figure 45 to Figure 44, we observe that as the height of the antennas 

increases (i.e., from 1 m to 20 m), the loss for a given separation distance increases.  At 

higher receiving antenna heights (i.e., 16–20 m), the loss–distance curves are closer to 

those predicted by Tewari’s model and the Jansky and Bailey model. 

In general, for denser forest (i.e., having higher εr values of at least 1.08 and σ on 

the order 10-4 S/m and higher), the simulated results approximate those predicted by the 

LITU-R model when the receiver is sited at low heights (i.e., 1–5 m) in the simulation.  

At higher antenna heights (i.e., 16–20 m), both Tewari’s model and the Jansky and Bailey 

model provide a closer approximation to the simulated results than the LITU-R model.  

This is expected as both empirical models were proposed based on measured data 

obtained in dense forest with similar electrical characteristics (i.e., εr values of at least 

1.08 and σ of the order 10-4 S/m) as that used in the simulation.  Conversely, it is 

observed that the simulated results based on smaller values of εr (i.e., 1.01) and σ (i.e., 10-

5 S/m) do not closely match the three empirical models.  This is evidenced by comparing 

the slope of the loss–distance curves for the simulated results to the curves for the three 

empirical models.  The slope of the curves for the simulated results are much flatter as 

compared to the empirical models.  This is because the smaller εr and σ values represent a 

less dense forest that is very much different from the forests used to obtain both Tewari’s 

model and the Jansky and Bailey model. 

3. Effects of Different Transmitter Heights on Simulation Results 

In test case C, the effects of different transmitter heights on the simulation results 

with respect to the empirical models are examined.  However, in this test case, different 

transmitter antenna heights ht, as shown in Table 6, are used in each simulation run.  The 

height, H, of the dielectric block is 30 m.  The values of the other variables needed to set-

up the simulation are kept constant for all the simulation runs in this test case and are 

shown in Table 4. 
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Table 6.   List of difference transmitting antenna heights used in test case C 
simulation runs. 

Test Case. ht (m) 
C1 2 
C2 5 
C3 10 
C4 20 
C5 25 

For test case C1, the simulated power flow plot of the fields along the x-z plane 

(i.e., y = 0 m) in the dielectric block is shown in Figure 46.  The transmitter antenna is 

sited at 2 m above the ground. 

 

Figure 46.   Power flow plot at y = 0 m for test case C1. 

For test case C1, the loss–distance curves for different values of hr are shown in 

Figures 47, 48 and 49. 

From Figures 47, when the receiver is at a height of 1–5 m, it is observed that the 

loss–distance curves for the simulated results are bunched together.  The curves for the 

simulated results are closer to the curves for the LITU-R model than the curves for both 

Tewari’s model and the Jansky and Bailey model. 

4.95 dB 

-95.1 dB 
Type Powerflow (peak) 
Monitor Power (f=50) [1] 
Component Abs 
Plane at y 0 
Maximum-2D 4.85167 dbVA/m^2 at 49.8007 / 0 / 1.925 
Frequency 50 
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Figure 47.   Loss–distance curves for hr = 1–5 m (test case C1). 

 

Figure 48.   Loss–distance curves for hr  = 11–15 m (test case C1). 
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Figure 49.   Loss–distance curves for hr  = 26–30 m (test case C1). 

From Figures 48 and 49, it is observed that, as the receiver height increases, the 

loss–distance curves for the simulated results exhibit a downward shift and move closer 

to the curves predicted by Tewari’s model and the Jansky and Bailey model.  

For test case C2, the simulated power flow plot of the fields along the x-z plane 

(i.e., y = 0 m) in the dielectric block is shown in Figure 50.  The transmitter antenna is 

sited at 5 m above ground. 

 

Figure 50.   Power flow plot at y = 0 m for test case C2. 

4.68 dB 

-95.3 dB 
Type Powerflow (peak) 
Monitor Power (f=50) [1] 
Component Abs 
Plane at y 0 
Maximum-2D 4.68128 dbVA/m^2 at 49.8007 / 0 / 4.925 
Frequency 50 
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For test case C2, the loss–distance curves for different values of hr are shown in 

Figures 51–53. 

 

Figure 51.   Loss–distance curves for hr  = 1–5 m (test case C2). 

From Figure 51, when the receiver is at a height of 1–5 m, it is observed that the 

loss–distance curves for the simulated results are bunched together.  The curves for the 

simulated results are closer to the curves for the LITU-R model than the curves for both 

Tewari’s model and the Jansky and Bailey model. 

From Figures 52 and 53, it is observed that, as the receiver height increases, the 

loss–distance curves for the simulated results exhibit a downward shift and move closer 

to the curves predicted by Tewari’s model and the Jansky and Bailey model. 
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Figure 52.   Loss–distance curves for hr = 11–15 m (test case C2). 

 

Figure 53.   Loss–distance curves for hr = 26–30 m (test case C2). 
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For test case C3, the simulated power flow plot of the fields along the x-z plane 

(i.e., y = 0 m) in the dielectric block is shown in Figure 54.  The transmitter antenna is 

sited at 10 m above ground. 

 

Figure 54.   Power flow plot at y = 0 m for test case C3. 

For test case C3, the loss–distance curves for different values of hr are shown in 

Figures 55–57. 

 

Figure 55.   Loss–distance curves for hr = 1–5 m (test case C3). 

4.66 dB 

-95.3 dB 
Type Powerflow (peak) 
Monitor Power (f=50) [1] 
Component Abs 
Plane at y 0 
Maximum-2D 4.65549 dbVA/m^2 at 49.8007 / 0 / 9.925 
Frequency 50 
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From Figure 55, when the receiver is at a height of 1–5 m and separation distance 

of 40–110 m from the transmitter, it is observed that the loss–distance curves for the 

simulated results are closer to the curves for the LITU-R model than the curves for both 

Tewari’s model and the Jansky and Bailey model. 

 

Figure 56.   Loss–distance curves for hr = 11–15 m (test case C3). 

From Figures 56 and 57, it is observed that, as the receiver height increases from 

11–30 m, the loss–distance curves for the simulated results are fairly similar.  The curves 

are closer to the curves predicted by Tewari’s model and the Jansky and Bailey model 

than the LITU-R model. 

For test case C4, the simulated power flow plot of the fields along the x-z plane 

(i.e., y = 0 m) in the dielectric block is shown in Figure 58.  The transmitter antenna is 

sited at 20 m above ground. 
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Figure 57.   Loss–distance curves for hr = 26–30 m (test case C3). 

 

Figure 58.   Power flow plot at y = 0 m for test case C4. 

4.66 dB 

-95.3 dB 
Type Powerflow (peak) 
Monitor Power (f=50) [1] 
Component Abs 
Plane at y 0 
Maximum-2D 4.65807 dbVA/m^2 at 49.8007 / 0 / 19.925 
Frequency 50 
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For test case C4, the loss–distance curves for different values of hr are shown in 

Figures 59–61. 

 

Figure 59.   Loss–distance curves for hr = 1–5 m (test case C4). 

From Figure 59, when the receiver is at a height of 1–5 m, it is observed that the 

loss–distance curves for the simulated results are between the curves for the LITU-R 

model and both curves for Tewari’s model and the Jansky and Bailey model. 

From Figures 60 and 61, it is observed that, as the receiver height increases from 

11–30 m, the loss–distance curves for the simulated results are fairly similar.  The curves 

are closer to the curves predicted by Tewari’s model and the Jansky and Bailey model 

than the LITU-R model. 
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Figure 60.   Loss–distance curves for hr = 11–15 m (test case C4). 

 

Figure 61.   Loss–distance curves for hr = 26–30 m (test case C4). 
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For test case C5, the simulated power flow plot of the fields along the x-z plane 

(i.e., y = 0 m) in the dielectric block is shown in Figure 62.  The transmitter antenna is 

sited at 25 m above ground. 

 

Figure 62.   Power flow plot at y = 0 m for test case C5. 

For test case C5, the loss–distance curves for different values of hr are shown in 

Figures 63–65. 

 

Figure 63.   Loss–distance curves for hr = 1–5 m (test case C5). 

Type Powerflow (peak) 
Monitor Power (f=50) [1] 
Component Abs 
Plane at y 0 
Maximum-2D 4.65509 dbVA/m^2 at 49.8007 / 0 / 24.925 
Frequency 50 
 

4.66 dB 

-95.3 dB 
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From Figure 63, it is observed that, as the receiver height increases from 1–5 m, 

the loss–distance curves for the simulated results exhibit a downward shift and move 

closer to the curves predicted by curves Tewari’s model and the Jansky and Bailey 

model. 

 

Figure 64.   Loss–distance curves for hr = 11–15 m (test case C5). 

From Figures 64 and 65, it is observed that, as the receiver height increases from 

11–30 m, the loss–distance curves for the simulated results are fairly similar.  The curves 

are closer to the curves predicted by Tewari’s model and the Jansky and Bailey model 

than the LITU-R model. 

At any given point inside the foliage, the field is the sum of a direct wave and 

reflected wave and is given by (24).  When the receiver is in foliage, the point P (as 

shown in Figure 8) is in foliage, and the path length for the direct wave R0 is given by 

 2 2
0R d h= + ∆  (27) 
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where Δh is the difference between the transmitter height, ht (defined by the variable zd 

in the simulation setup) and receiver height, hr and is expressed as 

 t rh h h∆ = − ⋅  (28). 

The path length of the reflected wave R12 is given  

 12 1 2R R R= + ⋅  (29) 

 

Figure 65.   Loss–distance curves for hr  = 26–30 m (test case C5). 

From (24), the total field at P, E(P) is related to R0 and R12.  In addition, a higher 

E(P) results in a lower path loss, L.  The effect of ht and hr on E(P) and L is shown in 

Table 7. 

From Table 7, when the transmitter and receiver at sited near the ground, the path 

loss is the lowest.  This is substantiated by Figure 47 that represents the simulation run 

with both transmitter and receiver near the ground, and the loss–distance curves for the 

simulation results show the lowest L as compared to other simulation runs.  This occurs 

because the direct and reflected waves are nearly in phase for a vertical dipole. 
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Table 7.   Effect of ht and hr on E(P) and L. 

Case ht and hr R0 R1, R2 R12 E(P) L 

1 High ht 

High hr 

Smaller Larger R1 

Larger R2 

Larger Lower Higher 

2 Low ht 

Low hr 

Smaller  Smaller 

R1 

Smaller 

R2 

Smaller Highest Lowest 

3 High ht 

Low hr 

Larger Larger R1 

Smaller 

R2 

Larger Lower Higher 

4 Low ht 

High hr 

Larger Smaller 

R1 Larger 

R2 

Larger Lower Higher 

For the scenarios described by cases 3 and 4 in Table 7, the path loss is 

approximately the same since the effect of a smaller R1 is negated by a larger R2 or vice 

versa.  Similarly for case 1, the effect of a larger path length for the reflected wave is 

compensated by a smaller path length for the direct wave and results in a path loss 

comparable to cases 3 and 4.  This is evidenced from the simulation results in test cases 

C2, C3, C4 and C5. 

4. Observations 

From the various simulation runs, it is observed that the simulated results for 

sparse foliage (i.e., εr = 1.01 and σ = 10-5 S/m) does not closely follow the three empirical 

models, i.e., Tewari’s model, the Jansky and Bailey model or the LITU-R model.  

Generally, for denser foliage (i.e. εr ≥ 1.05 and σ ≥ 10-5 S/m), both Tewari’s model and 

the Jansky and Bailey model are better approximations to the simulation results than the 

LITU-R empirical model for receiver situated at higher heights.  Generally, the LITU-R 

model gives a better approximation to the simulation results for both transmitter and 
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receiver situated near the ground.  While the simulated path losses do not exactly match 

those given by the three empirical models, the difference between the simulated result 

and empirical result is approximately 10 dB in most cases.  This could be due to various 

factors.  While the empirical models were proposed to be an approximation to the loss 

experienced for foliage propagation, it should be noted that these models were formulated 

based on measured data from foliage in a particular geographical location.  Given the 

lack of knowledge on the electrical properties (εr and σ) of the actual foliage, assumed 

values of the electrical properties were used in the simulations.  Hence, it was expected 

that there would be difference between the simulated results and empirical figures.  

Nevertheless, given the observed difference, the simulation models can only be 

considered as a rough approximation to actual foliage propagation. 

B. COVERAGE DIAGRAMS 

In this section, the effects of the forest on the coverage of a transmitting antenna 

immersed in foliage are examined.  The coverage diagram for a transmitting antenna can 

be obtained from the electric field plots of a CST simulation.  A simulation is first carried 

out for the transmitting antenna in free space.  This is to establish a baseline for 

comparison purposes.  Subsequent simulation runs are carried out to examine the effects 

of the forest on radiowave propagation with respect to height of the transmitter in foliage 

and forest’s electrical properties.  The general observations for the simulation results are 

discussed at the end of this section. 

1. Transmitter in Free Space 

A dipole antenna is set up as the transmitting antenna.  The antenna’s height is 

very close to the ground.  The ground is represented by the x-y plane ( minz  = 0) with the 

boundary condition configured as “electric (Et = 0)”.  The simulation is carried out with 

the antenna at four different heights.  The heights ht are 2 m, 5 m, 10 m and 20 m.  The 

values used to set up the test case in CST are summarized in Table 8.  Due to practical 

reasons, an adjacent volume of space is defined as free space to define the computational 

domain for the simulation of fields in free space.  This is achieved via the background 
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properties in CST, and the settings are shown in Figure 66.  E-field and Power monitors 

are added to monitor the fields at a frequency of 50 MHz. 

Table 8.   Values used to set-up dipole antenna transmitting in free space. 

 Parameter Description Value 
1 2  Length of dipole antenna 2.6 m 
2 f Frequency of interest 50 MHz 
3 xd x-coordinate of dipole center 50 m 
4 yd y-coordinate of dipole center 0 m 
5 zd z-coordinate of dipole center 2, 5, 10 or 20 m 

 

 

Figure 66.   Setting for background properties (for coverage diagram test cases). 

The generated E-fields for the dipole antenna at heights of 2 m, 5 m, 10 m and 20 

are shown in Figures 67, 68, 69 and 70, respectively. 
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Figure 67.   Coverage diagram for a dipole antenna in free space (height 2 m). 

In Figure 67, the transmitting antenna is at a height of 2 m.  It can be observed 

that there is only one main lobe radiating out from the antenna. 

 

Figure 68.   Coverage diagram for a dipole antenna in free space (height 5 m). 

In Figure 68, the transmitting antenna is at a height of 5 m.  It can be observed 

that there are two main lobes radiating out from the antenna.  One of the lobes is 

0 dB 

-75.0 dB 

0 dB 

-60.0 dB 

150 m 

150 m 

52 m 

55 m 
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seemingly along the ground, while the other is at an angle of approximately 30o from the 

ground. 

 

Figure 69.   Coverage diagram for a dipole antenna in free space (height 10 m). 

In Figure 69, the transmitting antenna is at a height of 10 m.  Compared to Figure 

28, it can be observed that the number of lobes increases as the antenna height increases.  

In this case, three main lobes can be observed. 

 

Figure 70.   Coverage diagram for a dipole antenna in free space (height 20 m). 
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In Figure 70, the transmitting antenna is at a height of 20 m.  Compared to Figures 

28 and 29, there are more lobes and the lobes are also narrower. 

2. Transmitter in Forest (εr = 1.065 and σ = 0.000135 S/m) 

In this test case, the objective is to examine the coverage diagram with the 

transmitting dipole antenna immersed in foliage.  The antenna is set up in the same 

manner as the free space test case.  A rectangular dielectric block is added to the model.  

The antenna and forest are created using the values shown in Table 9.  Free space is 

defined around the dielectric block using the settings in Figure 66.  The amount of free 

space added is 50 m above the forest (i.e., along the positive z-direction) and 50 m to the 

right of the forest (i.e., along the positive x-direction).  The constructed model in CST is 

shown in Figure 71. 

Table 9.   Values used to set up model for examining coverage diagram with 
transmitting antenna immersed in foliage. 

 Parameter Description Value 
1 2  Length of dipole antenna 2.54 m 
2 f Frequency of interest 50 MHz 
3 H Height of dielectric block 25 m 
4 L Length of dielectric block 300 m 
5 W Width of dielectric block 100 m 
6 xd x-coordinate of dipole center 50 m 
7 yd y-coordinate of dipole center 0 m 
8 zd z-coordinate of dipole center 2, 5, 10 or 20 m 
9 εr Relative permittivity 1.065 
10 σ Conductivity 0.000135 S/m 
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Figure 71.   Dipole antenna immersed in dielectric forest block and free space outside 
the block. 

The simulation is executed for varying antenna heights of 2, 5 , 10 and 20 m with 

the corresponding E-field plots (generated by CST) shown in Figures 72, 73, 74 and 75, 

respectively. 

 

Figure 72.   Coverage diagram for dipole antenna in foliage (height 2 m). 
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Comparing Figure 72 and Figure 67, we observe that the addition of the forest 

dielectric block causes the main lobe (i.e. maxima) along the ground to be shorter.  For a 

point located at a separation distance of 50 m from the transmitter and just above the 

ground, the E-field strength is −24.5 dBV/m in Figure 72 versus −13.7 dBV/m in Figure 

67.  This is due to the attenuation as the EM wave propagates through the lossy dielectric 

media. 

 

Figure 73.   Coverage diagram for dipole antenna in foliage (height 5 m). 

Comparing Figure 73 with Figure 68, we observe that there are still two main 

lobes in the coverage diagram.  However, for the case of the transmitter immersed in 

foliage, the maximum of each lobe is reduced.  At a point given by the coordinates x = 

100 m, y = 0 m and z  = 35 m just above the foliage block along one of the maxima, the 

E-field strength is −25.1 dBV/m in Figure 73 versus −15.4 dBV/m in Figure 68.  This is 

because the EM waves experience a higher attenuation when travelling through the lossy 

dielectric media as compared to free space. 
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Figure 74.   Coverage diagram for dipole antenna in foliage (height 10 m). 

Comparing Figure 74 with Figure 69, we observe that there are still two main 

lobes in the coverage diagram.  However, for the case of the transmitter immersed in 

foliage, the maximum of each lobe is reduced.  At a point given by the coordinates x = 

100 m, y = 0 m and z = 38 m above the foliage block along one of the maxima, the E-

field strength is −24.7 dBV/m in Figure 74 versus −15.6 dBV/min Figure 69.  This is 

because the EM waves experience a higher attenuation when travelling through the lossy 

dielectric media as compared to free space. 

In Figure 75, the main lobes can be faintly observed.  While the number of main 

lobes is comparable to the free space case (Figure 70), the maxima of the main lobes are 

greatly reduced.  At a point given by the coordinates x = 100 m, y = 0 m and z = 28 m 

above the foliage block along one of the maxima, the E-field strength is −22.4 dBV/m in 

Figure 75 versus −15.4  dBV/m in Figure 70.  The lobes are due to the reflections of EM 

waves by the ground.  As the antenna is sited higher, the path length that the reflected 

wave has to travel becomes longer.  When the transmitter is sited in the lossy dielectric 

media, the reflected waves experience higher attenuation as compared to the free space 

case.  This results in much shorter lobes (as evidenced in Figure 75). 
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Figure 75.   Coverage diagram for λ/2 dipole antenna in foliage (height 20 m). 

3. Transmitter in Forest (εr = 1.15 and σ = 0.00015 S/m) 

In this test case, the coverage diagram is examined with higher εr and σ values, 

which represent denser foliage.  The antenna is set up in the same manner as the free 

space test case.  A rectangular dielectric block is added to the model.  The antenna and 

forest are created using the values shown in Table 10.  Free space is defined around the 

dielectric block using the settings in Figure 76.  The amount of free space added is 50 m 

above the forest (i.e., along the positive z-direction) and 50 m to the right of the forest 

(i.e., along the positive x-direction).  The constructed model in CST is similar to that 

shown in Figure 71. 

The simulation is executed for varying antenna heights of 2, 5 , 10 and 20 m with 

the corresponding E-field plots (generated by CST) shown in Figures 76, 77, 78 and 79, 

respectively. 
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Table 10.   Values used to set up model for examining coverage diagram with 
transmitting antenna immersed in foliage. 

 Parameter Description Value 
1 2  Length of dipole antenna 2.54 m 
2 f Frequency of interest 50 MHz 
3 H Height of dielectric block 25 m 
4 L Length of dielectric block 300 m 
5 W Width of dielectric block 100 m 
6 xd x-coordinate of dipole center 50 m 
7 yd y-coordinate of dipole center 0 m 
8 zd z-coordinate of dipole center 2, 5, 10 or 20 m 
9 

Cr
ε  Relative permittivity 1.15 

10 σ Conductivity 0.00015 S/m 

Comparing Figure 76 and Figure 72, we observe that the main lobe (i.e., maxima) 

along the ground is slightly shorter in the denser foliage block.  For a point located at a 

separation distance of 50 m from the transmitter and just above the ground, the E-field 

strength is −25 dBV/m in Figure 72 versus −24.5 dBV/m in Figure 72.  This is due to the 

increased attenuation of the wave in the denser foliage with higher values of εr and σ. 

 

Figure 76.   Coverage diagram for a dipole antenna in foliage (height 2 m). 
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Figure 77.   Coverage diagram for a dipole antenna in foliage (height 5 m). 

Comparing Figure 77 with Figure 73, we observe that there are still two main 

lobes in the coverage diagram.  However, the maximum of each lobe is reduced in the 

denser foliage block.  At a point given by the coordinates x = 100 m, y = 0 m and z = 35 

m above the foliage block along one of the maxima, the E-field strength is −25.9 dBV/m 

in Figure 77 versus −25.1 dBV/m in Figure 73.  This is due to the increased attenuation 

of the wave in the denser foliage with higher values of εr and σ. 

 

Figure 78.   Coverage diagram for a dipole antenna in foliage (height 10 m). 
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Comparing Figure 78 with Figure 74, we observe that there are still two main 

lobes in the coverage diagram.  However, the maximum of each lobe is reduced for the 

case of the denser foliage block.  At a point given by the coordinates x = 100 m, y = 0 m 

and z = 38 m above the foliage block, the E-field strength is −27.3 dBV/m in Figure 78 

versus −24.7 dBV/m in Figure 74.  This is due to the increased attenuation of the wave in 

the denser foliage with higher values of εr and σ.  It is also observed that the point (x = 

100 m, y = 0 m, z = 38 m) does not lie exactly on the maxima.  From Figure 74, the E-

field strength at point (x = 101 m, y = 0 m, z = 33 m) along one of the maxima is −25 

dBV/m. 

 

Figure 79.   Coverage diagram for a dipole antenna in foliage (height 20 m). 

In Figure 79, the difference between the maxima and nulls is much smaller. 

Hence, the lobes in Figure 79 are not easily discernible.  Comparing Figure 79 with 

Figure 75, we observe that the number of lobes is the same.  However, the maximum of 

each lobe is reduced for the case of the denser foliage block.  At a point given by the 

coordinates x = 100 m, y = 0 m and z = 28 m above the foliage block, the E-field strength 

is −28.3 dBV/m in Figure 79 versus −22.4 dBV/m in Figure 75.  This is due to the 

increased attenuation of the wave in the denser foliage with higher values of εr and σ. 
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4. Observations 

In general, it is observed that an increase in the height of the transmitter inside the 

foliage results in more maxima (or lobes).  In addition, the angular difference between the 

maxima and nulls becomes smaller as the antenna height is increased until near the 

canopy of the foliage.  As the transmitter is sited higher up in foliage, the path length of 

the reflected wave in foliage becomes longer and results in a lower E-field strength.  For 

a transmitter sited inside a denser forest with higher εr and σ values, the lobes are 

shortened as compared to ones sited in a less dense forest.  This is due to the increased 

attenuation in denser foliage, which is a result of higher εr and σ values. 

C. COMMENTS ON SIMULATION USING CST 

General comments on using CST for the simulation of radiowave propagation in 

foliage are made in this section.  During the conduct of the various simulation runs, we 

made several observations on the limitations of CST with respect to foliage simulation.  

The simulations are run on a personal computer (PC) equipped with Intel Xeon Quad-

Core 2.53 GHz processor and 4 GB RAM memory.  The PC is running on the Windows 7 

Professional operating system.  One main limitation on the simulation with respect to 

total simulation time is the maximum frequency used.  In order for a simulation run to be 

completed within 12 hours, the frequency used should not exceed 75 MHz for a dielectric 

block of size 200 m by 100 m by 25 m.  An increase in the maximum frequency results in 

an exponential increase in the number of mesh cells generated by CST.  A larger number 

of mesh cells requires more computer resources and leads to an increase in simulation 

time. 

D. SUMMARY 

In summary, the feasibility of using a single dielectric block to model foliage 

propagation at the HF/VHF frequency band was examined.  It was found that the 

proposed simulation model using CST provides a rough approximation to actual foliage 

propagation.  From the simulation results, it was also shown that the path loss in foliage 

is affected by transmitter height, receiver height and foliage electrical characteristic (εr 
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and σ).  The effect of foliage on a transmitter (located inside the foliage) was also 

examined.  Compared to free space, the lobes from a transmitter in foliage is shorter due 

to the increased attenuation experienced by radiowave propagating in foliage.  Increasing 

the height of a transmitter in foliage leads to a smaller difference between the maxima 

and nulls in the coverage diagram.  In a practical application such as radar, this would 

improve consistency in tracking a target flying at a constant height.  However, the 

detection range is also reduced due to the increased attenuation through foliage. 
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V. SUMMARY AND CONCLUSION 

A. SUMMARY 

The main objective of this thesis was to investigate the various simulation models 

for radiowave propagation in foliage environments.  The simulation models are built 

upon the concept of representing the forest as a single dielectric block.  The model is 

valid for frequencies up to 100 MHz.  There are two important parameters that represent 

the forest electrical characteristics.  They are εr and σ.  These parameters affect the 

radiowave propagation in foliage.  The values used for εr and σ in the simulation models 

are obtained from literature that document the values derived from measured data in real 

forest. 

The EM simulation application, CST Studio Suite, is used for the simulation.  

After the simulation is completed, MATLAB was used to process the field data and 

display the loss–distance curves.  The contour plots for the E-field strength are given 

directly by CST. 

In order to examine the suitability of the proposed simulation models, three 

empirical models are selected for comparison with the simulated results.  The models are 

Tewari’s model, the Jansky and Bailey model and the LITU-R model.  The effect of the 

foliage’s characteristic (εr and σ), height of transmitter and height of receiver were also 

examined in this thesis. 

The coverage diagram for a transmitter located inside foliage was also examined 

in this thesis.  Different values for the foliage electrical characteristics and height of 

transmitter were used in the simulation runs to examine their effects on the coverage 

diagram  

B. CONCLUSIONS 

The results and data analysis from the simulation show that the proposed 

simulation models provide a rough approximation to radiowave propagation in an actual 

rainforest environment.  It is feasible to model foliage using EM simulation applications.  
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From the simulation technique proposed in this thesis, an RF engineer could model an RF 

system (especially the antenna) that is being developed for operations in foliage in CST.  

The performance of the system could then be examined during the design phase.  This 

would allow the designer to change the design before the actual system was built and 

available for actual field tests. 

Based on the simulation results, it can be concluded that different values of εr, σ, 

height of transmitter and height of receiver affect the path loss in foliage.  The coverage 

diagram for a transmitter immersed in foliage is also similarly affected by εr, σ and the 

height of the transmitter.  For a transmitter located near the foliage canopy, the resulting 

coverage diagram has maxima and nulls closer to each other. 

C. FUTURE WORK 

1. Model the Forest as Multiple Smaller Blocks 

Further investigation work should be carried out to determine the usefulness of 

higher fidelity physical model of the forest.  Instead of representing the forest as a single 

dielectric block, the forest could be decomposed into smaller blocks.  This “small block” 

structure would be useful for conducting foliage propagation studies at a higher 

frequency, where the smaller wavelength is considered to be significant compared to the 

dimensions of the leaves and branches.  The forest could also be further sub-divided into 

multiple layers to represent the undergrowth layer, tree trunks and canopy layer.  

Different εr and σ could be assigned to the different layers. 

As actual trees in a forest are not uniform in height, the smaller blocks could have 

different heights.  The heights are randomly generated.  This is a model of the roughness 

of the air-canopy interface.  Simulation could be conducted to investigate the effect of the 

roughness (i.e., non-uniform canopy heights) on the propagation of lateral waves along 

the air-canopy interface. 
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2. Perform the Simulation using FEKO 

Another possibility for future work is to conduct the simulation with another EM 

simulation application such as FEKO.  FEKO is an EM simulation software tool, based 

on computational electromagnetics (CEM) techniques.  The objectives would be to 

determine the suitability of other EM simulation application for conducting propagation 

studies in foliage environment as well as to validate the results obtained in CST.  Another 

objective is to also find an application which could simulate foliage propagation at higher 

frequencies in a more efficient manner than CST. 



 82 

THIS PAGE INTENTIONALLY LEFT BLANK 



 83 

APPENDIX A MATLAB CODE 

This MATLAB code was used to plot the loss–distance curves for the empirical 

models, i.e., Tewari’s model, the Jansky and Bailey model and the LITU-R model. 

 
%Plot Empirical Models of Propagation in Foliage 
  
clear all 
close all 
  
%Tewari's model model 
%Vertical Polarization 
f = [50 200 500 800]; 
A = [0 0.4989 0.3658 0.2661]; 
alpha = [0 0.0125 0.0135 0.0140]; 
B = [1.917 1.8358 0.9040 0.5331]; 
c = ['b', 'g', 'r', 'm']; 
set(gca,'YDir','reverse'); 
  
for x=1:4 
    for i = 10:200 
        Lb(i-9)=-27.57+20*log10(f(x))-20*log10((A(x)*exp(-alpha(x)*i)/i)+(B(x)/(i^2))); 
        d(i-9)=i; 
    end 
    plot(d,Lb,c(x)); 
    set(gca,'YDir','reverse','FontName','Times New Roman','FontSize',18); 
    hold all; 
    xlabel('Distance, d (m)','FontName','Times New Roman','FontSize',18) 
    ylabel('Loss, L_b (dB)','FontName','Times New Roman','FontSize',18)    
end 
legend('50 MHz','200 MHz','500 MHz','800 MHz'); 
  
clear d; 
clear f; 
  
%Jansky and Bailey model 
f = [25 50 100 250 400]; 
A = [0 0 0.615 0.759 1.02]; 
alpha = [0 0 0.045 0.050 0.055]; 
B = [0.00212 0.00106 0.000529 0.000443 0.000523]; 
c = ['b', 'g', 'r', 'm','k']; 
set(gca,'YDir','reverse'); 
figure; 



 84 

for x=1:5 
    for i = 10:200 
        z = i/1609; 
        LJ(i-9)= 36.57+20*log10(f(x))-20*log10((A(x)*exp(-
1609*alpha(x)*z)/z)+(B(x)/(z^2))); 
        d(i-9)=i; 
    end 
    plot(d,LJ,c(x)); 
    set(gca,'YDir','reverse','FontName','Times New Roman','FontSize',18); 
    hold all; 
    xlabel('Distance, d (m)','FontName','Times New Roman','FontSize',18) 
    ylabel('Loss, L_b (dB)','FontName','Times New Roman','FontSize',18)    
end 
legend('25 MHz','50 MHz','100 MHz','250 MHz','400 MHz'); 
  
clear d; 
clear f; 
  
%Lateral ITU-R (LITU-R) model 
%VHF bands 
clear d; 
clear f; 
f = [30 50 100 300]; 
T = 5; 
R = 5; 
c = ['b' 'g' 'r' 'm']; 
figure; 
for x = 1:4 
    for i = 20:200 
        Litur(i-19)=40*log10(i)-20*log10(T)-20*log10(R)+0.48*f(x)^0.43*i^0.13; 
        d(i-19)=i;         
    end 
    plot(d,Litur,c(x)); 
    set(gca,'YDir','reverse','FontName','Times New Roman','FontSize',18); 
    hold all; 
end 
xlabel('Distance, d (m)','FontName','Times New Roman','FontSize',18) 
ylabel('Loss, L (dB)','FontName','Times New Roman','FontSize',18) 
legend('30 MHz H_t=H_r=5m','50 MHz H_t=H_r=5m','100 MHz H_t=H_r=5m','300 
MHz H_t=H_r=5m'); 
  
xlim([0 200]); 
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This MATLAB code was used to plot the loss–distance curves for the simulated 

results in Chapter IV. 

 

% Plot Loss versus Seperation Distance Curves 
% Using ASCII file of powerflow data (absolute values) exported from CST Studio 
% Only for fields projected onto the X-Z plane in CST 
% created by Chan Chung Wei, ECE Dept, Naval Postgradute School 
  
clear all 
close all 
  
% Import data from Ascii file into Matlab 
filename = input('Enter file name: ','s'); 
file = importdata(filename); 
len = length(file.data); 
  
L = input('max x coord of block (len): '); 
W = input('max y coord of block (wt): '); 
H = input('max z coord of block (ht): '); 
L0 = input('x origin of block: '); 
W0 = input('y origin of block: '); 
H0 = input('z origin of block: '); 
x0 = input('dipole centre,x: '); 
y0 = input('dipole centre,y: '); 
z0 = input('dipole centre,z: '); 
zoffset = input('Enter offset of z steps in data file: ');   
%offet obtained by looking at z data in ASCII file  
% e.g. offset for z = 3.1 is 0.1 
  
% Calculate separation distance and poynting vector at each point (x,y,z) 
j = 0; 
for i=1:len-L0 
    x(i)=single(file.data(i,1));   %import x     
    y(i)=single(file.data(i,2));   %import y 
    z(i)=single(file.data(i,3));   %import z 
    PxRe(i)=single(file.data(i,4));   %import Px Re     
    PyRe(i)=single(file.data(i,5));   %import Py Re    
    PzRe(i)=single(file.data(i,6));   %import Pz Re    
    PxIm(i)=single(file.data(i,7));   %import Px Imag     
    PyIm(i)=single(file.data(i,8));   %import Py Imag  
    PzIm(i)=single(file.data(i,9));   %import Pz Imag    
     
    if (x(i)<=L && x(i)>=x0) && (y(i)<=W && y(i)>=W0) && (z(i)<=H && z(i)>=H0) 
        j = j+1; 
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        r(j) = sqrt((x(i)-x0)^2+(y(i)-y0)^2+(z(i)-z0)^2);   %calculate distance 
        Px(j) = sqrt(PxRe(i)^2+PxIm(i)^2); 
        Py(j) = sqrt(PyRe(i)^2+PyIm(i)^2); 
        Pz(j) = sqrt(PzRe(i)^2+PzIm(i)^2); 
        Pr(j) = -10*log10(sqrt(Px(j)^2+Py(j)^2+Pz(j)^2)); %calculate magnitude of 
Poinyting vector 
        %loss(j) = 0-Pr(j);  Transmit Power is 1 W = 0 dBW 
        ht(j)=z(i); 
    end 
end 
  
  
hl=input('lower height limit to plot: '); 
hu=input('upper height limit to plot: '); 
  
for disph=hl:hu 
    clear dispr; 
    clear dispPr; 
    clear index; 
     
    dht = disph+zoffset; 
     
    j = 0; 
    for i=1:length(ht) 
        if ht(i)==dht      
            j=j+1; 
            index(j) = i; 
        end     
    end 
     
    for i=1:j 
        dispr(i)=r(index(i)); 
        dispPr(i)=Pr(index(i)); 
    end 
    semilogx(dispr,dispPr); 
    set(gca,'YDir','reverse','FontName','Times New Roman','FontSize',18); 
    hold all 
end 
     
  
title('Plot of Loss vs Distance at different Height, Ht'); 
xlabel('Distance, r (m)') 
ylabel('Loss, L (dB)') 
     
%plot Tewari Basic Transmission Loss Model 
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f = 50; 
A = 0; 
alpha = 0; 
B = 1.917; 
for i = 10:300 
    Lb(i-9)=-27.57+20*log10(f)-20*log10((A*exp(-alpha*i)/i)+(B/(i^2))); 
    d(i-9)=i; 
end 
semilogx(d,Lb,'--r'); 
     
%Jansky and Bailey Model 
clear d; 
f = 50; 
A = 0; 
alpha = 0; 
B = 0.00106; 
    
for i = 10:300 
    z = i/1609; 
    LJ(i-9)= 36.57+20*log10(f)-20*log10((A*exp(-1609*alpha*z)/z)+(B/(z^2))); 
    d(i-9)=i; 
end 
semilogx(d,LJ,'--m'); 
            
%lateral ITU-R model 
clear d; 
f=50; 
% plot curve for receiver height from hu to hl 
for x = 1:hu-hl+1  
    hr = hl-1+x+offset; 
    for i = 20:300 
        Litur(i-19)=40*log10(i)-20*log10(z0)-20*log10(hr)+0.48*f^0.43*i^0.13; 
        d(i-19)=i; 
    end 
    semilogx(d,Litur,'-.')         
end 
     
xlim([20 150]); 
%legend('Ht = 20','Ht = 21','Ht = 22','Ht = 23','Ht = 24', 'Ht = 25','Tewari model','Jansky 
& Bailey Model','Lateral ITU-R'); 
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