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Abstract— We will discuss our work on a one-way optical fiber 
frequency transfer system.  The link removes thermally 
generated delays through sensing the difference in temperature 
dependent changes in the group index of the fiber for two 
wavelengths.  The system monitors the phase difference between 
two amplitude-modulated lasers at the edges of the C-band.  
Using this signal, a temperature controlled spool of fiber 
compensates for thermally induced phase excursions in the link.  
We will present preliminary results as well as a discussion of 
performance limitations. 

I. INTRODUCTION 
As atomic clock technology has progressed, great 

improvements in stability and accuracy have been achieved.  
Atomic fountain clocks have short-term stabilities in the upper 
10-14’s at one second and integrate down to the low 10-16’s in a 
day [1].  Newer optical clocks are reaching short-term 
stabilities in the low    10-15’s and averaging down into the 10ିଵ଻’s in an hour [2].  It is necessary to have a time and 
frequency transfer method capable of supporting this level of 
performance. 

One of the standard ways of transmitting time and 
frequency is through two way satellite time and frequency 
transfer (TWSTFT).  While it is practical for transmitting time 
and frequency over long distance, the performance is not 
acceptable for some of the newer high quality clocks.  
Currently, TWSTFT can transmit frequencies with instabilities 
at the 10-15 level and time at the 1ns level after a day of 
integration [3].  It is clear that to transfer stabilities achieved 
with modern atomic clocks, both microwave and optical, 
better transfer methods are needed. 

One possibility is time and frequency transfer through 
fiber optic links.  There are many promising aspects for using 
fiber optic links.  First, there is an existing infrastructure that 
provides a large network for transferring time and frequency.  
The links are low loss over large distances and are well 
isolated.  The access to a common return path allows for 
measurement and compensation of phase fluctuations.  
Finally, there is great potential for scalability in fiber optic 
networks. 

Most methods for transferring time and frequency along 
fiber links involve establishing a two way link.  The timing 
signal is sent down the link and then returned to the 
transmitting station.  At the transmitting station, the phase 
variation brought about by fiber noise are measured and 
corrected for.  One approach is to use an amplitude modulated 
signal.  Short-term stabilities of 10-15 integrating down into the 
low 10-18’s have been demonstrated [4].  Another approach 
involves using the phase of the optical carrier itself.  Excellent 
performance has been achieved with short-term stabilities in 
the 10-16’s averaging down to the 10-19’s in a day [5].  An in 
depth overview of fiber transfer techniques can be found in 
[6]. 

Here we present results on a different type of fiber optic 
link.  This is a one-way temperature compensated fiber link 
[7].  A one-way, amplitude modulated signal is transmitted 
along the fiber along with a proxy for measuring the 
temperature.  The proxy signal is then used to compensate for 
temperature induced phase fluctuations along the link.  This 
approach differs from the previous methods in that it is a one-
way transfer.  Bidirectional access to the fiber is not necessary 
as in the case of two-way links.  Also, the ability to build 
simpler broadcast networks exists with improved scalability. 

This one-way transfer method relies on measuring 
temperature indirectly.  We use the phase difference between 
two separate colors propagating along the fiber to determine 
temperature.  This is due to the temperature dependence of 
dispersion in fiber.  All materials have an index of refraction 
for light and exhibit dispersion, meaning that the index is 
wavelength dependent.  But in addition to being wavelength 
dependent, the index is also temperature dependent. 

We can model the index of refraction for fiber by using the 
Sellmeier coefficients for fused silica [8].  In particular we can 
use temperature dependent coefficients to see the expected 
temperature dependent features.  The temperature dependent 
index of refraction has the following form 

 ݊ଶሺߣ, ܶሻ െ 1 ൌ ∑ ௌ೔ሺ்ሻ·ఒమఒమିఒ೔మሺ்ሻଷ௜ୀଵ  (1) 
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Figure 2.  Experimen
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multiplied up to 100MHZ and then fed to a phase locked DRO 
to produce 6.9GHz.  The 6.8GHz signal is mixed with the 
6.9GHz signal to create a 100MHz signal which is then mixed 
with the intermediate 100MHz signal in the send station.  This 
error signal is then used to phase lock the crystal to the 
transmitted signal, completing the clock recovery at the 
receive station. 

In order to test the stability of the transmitted signal, a 
portion of the 100MHz signal from the transmit station and the 
send station are mixed together.  The resulting beat note is 
recorded with an analog to digital convert and later analyzed 
for stability. 

III. RESULTS AND CONCLUSIONS 
A first test was to measure the size of the two color signal 

as a function of temperature change.  A 5km spool of fiber 
was used for the link.  The environmental chamber cycled the 
temperature with 4oC linear ramps every two hours.  The PI 
controller for the compensation spool was turned off, and the 
temperature set at a fixed value.  The two color signal was 
recorded as was the 100MHz beat note between the transmit 
and receive stations. 

Figure 3 show the results of the measurement.  As can be 
seen, as the temperature changes, there is a change in the 
relative phase between the transmit and receive stations.  For 
the given link length and temperature difference this is 
approximately 300ps.  Likewise, a phase change in the two 
color signal is evident, although with a lower magnitude.  For 
the same length and temperature change, the phase change is 
about 1ps.  There is excellent correlation between the 100MHz 
beat note phase change and the two color signal phase change.  
The lever arm, or ratio of actual phase change to two color 
signal phase change, is about a factor of 300.  This is an 
important value in that any noise on the two color signal will 
get multiplied by the lever arm and written on the actual 
signal. 

 

 

 

 

 

 

 

 

 
Figure 3.  Lever arm measurement.  The phase change for the two color 
signal (red) and the 100MHz beatnote (blue) as a function of changing 

temperature.  The two color signal changes by approximatel 1ps while the 
100MHz beatnote changes by over 300ps. 

As a note, these results were achieved after ensuring 
similar fiber throughout the link.  The scheme relies on a 
direct correspondence between temperature and expansion 
since the actual phase variations are not measured [9].  This 
means that the coefficient of thermal expansion must be 

constant for the entire link otherwise different temperature 
changes give rise to different phase variations.  Therefore, 
bare single mode fiber was used throughout the experiment. 

The next test was to use the temperature controlled spool 
to cancel out the temperature induced phase fluctuations and 
lock the link.  The same 5km spool was used for the link and 
the same cycling conditions were used in the environmental 
chamber.  The PI controller was turned on and used to adjust 
the temperature of the compensation spool.  The net effect was 
to drive the two color signal to zero. 

The results of locking the link are shown if Figure 4.  The 
link was locked for approximately one day.  The two color 
signal held constant near zero while there are small 
fluctuations on the 100MHz beat note.  For comparison, the 
link was unlocked, denoted by the black vertical line in Figure 
4, and allowed to run for about one day.  It is clear that the two 
color signal as well as the 100MHz signal have much larger 
phase variations when unlocked. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.  Locked and unlocked link performance.  The plot in blue is the 

100MHz beatnote signal and the plot in red is the two color signal.  The first 
half of the data set corresponds to the link being locked and compensated.  At 

the black line, the compensation is turned off. 

Figure 5 shows the stability of the locked and unlocked 
links when the environmental chamber is cycling.  The Allan 
deviation is plotted for both situations.  First, consider the 
unlocked case.  The stability starts of at 6x10-14 at 1 second.  It 
integrates down as 1/τ until about 100 seconds.  At that point, 
the effects of temperature cycling become apparent causing 
the stability to increase as τ with a peak at half the cycling 
time of 2 hours. 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 
Figure 5.  Link Stability.  Plotted are the Allan deviations for the locked and 
unlocked data presented in Figure 4.  A reference line of 10-12/τ2/3 is plotted 

as well. 

In the case of the locked link, the effects of temperature 
cycling are removed.  Initially, the stability is 6e-14/τ like the 
unlocked case.  At around 10s the stability turns up and 
eventually latches on to a trend of 1x10-12 /τ 2/3.  This comes 
about because of the temperature control loop and the noise 
floor of the two color signal.  The temperature controlled 
spool has a time constant on the order of 10 seconds hence the 
deviation from the unlocked loop around 10 seconds.  The 
stability eventually rolls over to a line defined by the noise 
floor of the two color signal and the lever arm of the system.  
For a 10km length of fiber, the noise floor of the two color 
signal is ~ 3x10-15/τ2/3.  The measured lever arm is 
approximately 300; therefore the noise floor is multiplied up 
by 300 and added to the stability of the loop.  That 
corresponds to ~9x10-13/ τ 2/3. 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.  Extended link stability plot.  Plotted are the Allan deviation and 
TDEV for a 5 day continual run of the locked link.  .  A reference line of 

9x10-13/τ2/3 is plotted as well. 

 

The results of a longer run with the link locked for 5 days 
are shown in Figure 6.  Throughout, the environmental 
chamber was changing the temperature as in Figures 3 and 4.  
From the Allan deviation, we see that the locked link 

integrates down to the mid 10-16’s in one day with the phase 
fluctuations suppressed.  Also shown is the TDEV for that run.  
After a day if integration, the TDEV is less than 20ps. 

As was pointed out, one of the limiting factors for the 
performance of the locked link is the noise floor of the two 
color signal.  The limiting stability follows the noise floor 
times the lever arm.  Therefore it is important to know how 
the noise floor scales with link length.  Figure 7 show 
measurements of the 1 second fractional frequency stability as 
a function of fiber length.  As can be seen, the stability 
degrades with increasing length and shows that the inherent 
short term stability increases at 3x10-16 per kilometer.  To 
ensure that the effect was due to length and not attenuation, 
the 5km link was remeasured with attenuation equivalent to a 
30km link.  The results matched the stability of the original 
5km link.  From this we can infer the performance of longer 
links.  Assuming the same set of transmitting wavelengths, 
and hence same lever arm, for a 50km link, we should expect 
the long term stability to behave as 5x10-12.  There is evidence 
that the polarization scramblers used in the link are not 
properly optimized.  It is possible that improvement of their 
operation may improve the scale of noise with fiber length. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.  Stability versus length.  Plotted is the 1 second stability 

measurement for the locked link as a function of link length.  A fit line 
corresponding to 1.5x10-16 + 3x10-16/km * distance is plotted as well.  The 
blue data point corresponds to a 5km link with attenuation equivalent to a 

30km link. 

One means of improving the stability of the link is to 
decrease the lever arm.  This can be done by changing the 
wavelengths used by the transmit laser modules.  A larger 
wavelength separation gives rise to a larger two color signal 
and smaller lever arm.  Figure 8 shows the possible 
improvement.  By using wavelengths at the edge of the C band 
(shown in green in the figure), there should be an 
improvement of roughly a factor of two.  By extending even 
further and using a wavelength in the C band and one at 



1300nm (shown in grey in the figure), there is almost an order 
of magnitude improvement in stability at the cost of no longer 
being able to use erbium doped amplifiers in the link. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8.  Wavelength improvements. The red curve is the Allan deviation 
shown in Fig 6.  Plotted as well are simulations of changes to the trend line 

for different wavelength combinations.  Black is a fit to the data 
corresponding to 9x10-13/τ2/3.  Green is a simulation for a wavelength 

combination of 1530nm and 1565nm corresponding to a trend line of 5x10-

13/τ2/3.  Grey is a simulation for a wavelength combination of 1560nm and 
1300nm corresponding to a trend line of 1.5x10-13/τ2/3. 

In conclusion, we have demonstrated a one-way 
temperature compensated fiber optic link.  We have shown 
that by sending two amplitude modulated signals along a fiber 
optic link, it is possible to recover a record of the thermally 

induced phase variations and to compensate for them in real 
time.  Some of the length based limitations to performance 
were discussed as well as possible improvements by 
appropriate choice of transmit wavelengths.  This technology 
shows promise a viable alternative to two way compensated 
links when bidirectional access to the fiber is not possible.  It 
also points to easier time transfer through a broadcast protocol 
as opposed to individual compensated links. 
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