Peop expendence of the calculation of the matter is a manufactory of the constraints of the matter of the calculation of the c	REPORT DOCUMENTATION PAGE					Form Approved OMB No. 0704-0188	
Indiated aggreenes to enserve the basement of between, Valentapor, Industry and Park Park Park Park Park Park Park Park	Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions					rching existing data sources, gathering and	
editerior dimension 4 see not apply a control, PLAEE 00 NOT RETURN YOUR FOR TO THE ADD/E ADDRESS. LARGORT DATE: CD2JAB/2VYY Difference 7:02 02:02:2012 Difference 7:02	including suggestions for redu	cing this burden to Department	of Defense, Washington Headqua	arters Services, Directorate for Ir	formation Operations	and Reports (0704-0188), 1215 Jefferson Davis	
02-02-2012 Briefing Charts 5. CONTRACT NUMBER Hydrocarbon Boost Technology for Future Spacelift 5. GRANT NUMBER 6. AUTHOR(5) 5. GRANT NUMBER 8. AUTHOR(5) 5. PROGRAM ELEMENT NUMBER 7. PERFORMING ORGANIZATION NAME(5) AND ADDRESS(ES) 5. WORK UNIT NUMBER Air Force Research Laboratory (AFMC) 5. WORK UNIT NUMBER AFRL/RZS 8. PERFORMING ORGANIZATION NAME(5) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION RAME(5) AND ADDRESS(ES) Air Force Research Laboratory (AFMC) 7. PERFORMING ORGANIZATION 8. PERFORMING ORGANIZATION RAME(5) AND ADDRESS(ES) Air Force Research Laboratory (AFMC) 7. PERFORMING ORGANIZATION 8. PERFORMING ORGANIZATION 7. PERFORMING / MONITORING AGENCY NAME(5) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(5) 9. SPONSORING / MONITORING AGENCY NAME(5) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(5) 14. FRL/RZS 11. SPONSOR/MONITOR'S NUMBER(5) 15. SUPPLEMENTARY NOTES 11. SPONSOR/MONITOR'S NUMBER/S) 14. ABSTRACT 11. SPONSOR (and engine mission is developing the technology trade space for high performance, affordable rocket angines. This can be accomplished by incrusing design space - not point designs; miggraned technology demonstrators; and a systems engineering agringmath – technologis, space - not point designs; miggraned technologis, and a systems engineering agringmach – technologis	collection of information if it do	es not display a currently valid	OMB control number. PLEASE D	O NOT RETURN YOUR FORM	TO THE ABOVE ADD	DRESS.	
4. TTLE AND SUBTTLE 5. CONTRACT NUMBER Hydrocarbon Boost Technology for Future Spacelift 5. GRANT NUMBER 5. AUTHOR(5) 5. GRANT NUMBER Richard Cohn 5. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(5) AND ADDRESS(ES) 5. WORK UNIT NUMBER Air Force Research Laboratory (AFMC) 8. PERFORMING ORGANIZATION NAME(5) AND ADDRESS(ES) Air Force Research Laboratory (AFMC) 8. PERFORMING ORGANIZATION AFRI /RZSE 10. SPONSOR/MONITOR'S Advards AFB CA 93524-7160 10. SPONSOR/MONITOR'S 9. SPONSORING / MONTORING AGENCY NAME(5) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S Air Force Research Laboratory (AFMC) 11. SPONSOR/MONITOR'S AFRI /RZS 11. SPONSOR/MONITOR'S You are a systems 11. SUBJECT TERMS		,	-		3.	DATES COVERED (From - To)	
Experience 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(\$) 5d. PROGRAM ELEMENT NUMBER 7. PERFORMING ORGANIZATION NAME(\$) AND ADDRESS(E\$) 8. PERFORMING ORGANIZATION NAME(\$) AND ADDRESS(E\$) Air Force Research Laboratory (AFMC) 8. PERFORMING ORGANIZATION NAME(\$) AND ADDRESS(E\$) Air Force Research Laboratory (AFMC) 8. PERFORMING ORGANIZATION NAME(\$) AND ADDRESS(E\$) Air Force Research Laboratory (AFMC) 10. SPONSOR/MONITOR'S AFRL/RZZS 10. SPONSOR/MONITOR'S Solution / MONITORING AGENCY NAME(\$) AND ADDRESS(E\$) 10. SPONSOR/MONITOR'S Air Force Research Laboratory (AFMC) 11. SPONSOR/MONITOR'S AFRL/RZZ 11. SPONSOR/MONITOR'S Solution / AVAILABILITY STATEMENT JUMBER(\$) Distribution A: Approved for public release; distribution unlimited. PA# 12079. 11. SPONSOR/MONITOR'S 13. SUPPLEMENTARY NOTES To be presented at the NRC Review of Reusable Booster System, Colorado Springs, CO, 15 Feb 2012. 14. ABSTRACT 14. ABSTRACT The ATRL Liquid engine mission is developing the technology trade space for high performance, alfordable rocket engines. This can be accomplished by increasing design space – not point designs, imegrated technology demonstrators; and a systems engineering approach – tech Section and exceed to be developing to enable model driven development that will replace empirically-based tools, enable new techonologies, and reduce development costs. T					5a	. CONTRACT NUMBER	
	Hydrocarbon Boos	t Technology for Fu	ıture Spacelift		5b	. GRANT NUMBER	
Richard Cohn Sf. WORK UNIT NUMBER S0260651 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) B. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Air Force Research Laboratory (AFMC) AFRL/RZSE B. PERFORT NUMBER 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACCONYM(S) Air Force Research Laboratory (AFMC) AFRL/RZS 11. SPONSOR/MONITOR'S NUMBER(S) Air Force Research Laboratory (AFMC) 4FRL-RZ-ED-VG-2012-022 12. DISTRIBUTION / AVAILABILITY STATEMENT NUMBER(S) Distribution A: Approved for public release; distribution unlimited. PA# 12079. 4FRL-RZ-ED-VG-2012-022 13. SUPPLEMENTARY NOTES To he presenting design page- not point designs; integrated exherology trade space for high performance, alfordable rocket engines. This engineering approach - tech selection and execution. Tools need to be developed to enable model driven development that will replace empirically-based tools with physics-based tools, enable model driven development coust. Technology may be developed during engine cycle via oxygen-rich staged combustion, expander, and inmovative cycles - BX-Hex, and Acrospike. Or it may be developed within the component, in hydrostatic bearings, combustion stability and ignition. 15. SUBJECT TERMS 17. LIMITATION of ABSTRACT 19. FILEPRONE MUMBER 20 19. NAME OF RESPONSIBLE PERSON D. Richard K. Cohn 19. TELEPRONE HUMBER 20					5c	. PROGRAM ELEMENT NUMBER	
f. WORK UNIT NUMBER 5026051 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Air Force Research Laboratory (AFMC) AFRL/RZSE 4 Draco Drive Edwards AFB CA 93524-7160 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) 11. SPONSOR/MONITOR'S POILUX Drive Edwards AFB CA 93524-7048 11. SPONSOR/MONITOR'S NUMBER(S) AFRL/RZS 21. DISTRIBUTION / AVAILABILITY STATEMENT 11. SPONSOR/MONITOR'S NUMBER(S) AFRL/RZ-ED-VG-2012-022 12. DISTRIBUTION / AVAILABILITY STATEMENT NUMBER(S) Distribution A: Approved for public release; distribution unlimited. PA# 12079. 13. SUPPLEMENTARY NOTES To be presented at the NRC Review of Reusable Booster System, Colorado Springs, CO, 15 Feb 2012. 14. ABSTRACT The AFRL Inguid engine mission is developing the technology trade space for high performance, affordable rocket engines. This can be accomplished by increasing design space – not point designs; integrated technology demonstrance; and a systems engineering approach – tech selection and execution. Tools need to be developed to enable model driven development that will replace empirically-based tools with physics-based tools, enable new technologies, and reduce development costs. Technology may be developed within the component, in hydrostatic bearings, combustion stability and ignition. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES Dr. Richard K. Cohn 19. TELEPHONE NUMBER PERSON Dr. Richard K. Cohn 19. TELEPHONE NUMBER PERSON N/A	6. AUTHOR(S)				5d	. PROJECT NUMBER	
5026051 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Air Force Research Laboratory (AFMC) AFRL/RZSE 4. Draco Drive 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACCOVYM(S) 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACCOVYM(S) Air Force Research Laboratory (AFMC) 11. SPONSOR/MONITOR'S MOMBER(G) AFRL/RZS 11. SPONSOR/MONITOR'S NUMBER(G) Air Force Research Laboratory (AFMC) 11. SPONSOR/MONITOR'S NUMBER(G) AFRL/RZS 11. SPONSOR/MONITOR'S NUMBER(G) AFRL/RZS 11. SPONSOR/MONITOR'S NUMBER(G) JOINT DAVAILABILITY STATEMENT 11. SPONSOR/MONITOR'S NUMBER(G) Distribution A: Approved for public release; distribution unlimited. PA# 12079. 14. ABSTRACT The AFRL Inguid engime mission is developing the technology trade space for high performance, affordable rocket engines. This can be accomplished by increasing design space – not point designs; integrated technology demostrators; and a systems engineering approach - tech selection and execution. Tools need to be developed to enable model driven development that will replace empirically-based tools with physics-based tools, enable new technologies, and reduce development that will replace empirically-based tools with physics-based tools, enable new technologies, and reduce development that will replace empirically-based tools with physics-based tools, enable n	Richard Cohn						
Air Force Research Laboratory (AFMC) AFRL/RZSE 4 Draco Drive Edwards AFB CA 93524-7160 REPORT NUMBER 9. SPONSORING / MONITORING AGENCY NAME(\$) AND ADDRESS(E\$) 10. SPONSOR/MONITOR'S ACRONYM(\$) Air Force Research Laboratory (AFMC) AFRL/RZS 5 Pollux Drive Edwards AFB CA 93524-7048 11. SPONSOR/MONITOR'S NUMBER(\$) 21. DISTRIBUTION / AVAILABILITY STATEMENT 11. SPONSOR/MONITOR'S NUMBER(\$) Distribution A: Approved for public release; distribution unlimited. PA# 12079. AFRL-RZ-ED-VG-2012-022 13. SUPPLEMENTARY NOTES To be presented at the NRC Review of Reusable Booster System, Colorado Springs, CO, 15 Feb 2012. I. 14. ABSTRACT The AFRL liquid engine mission is developing the technology trade space for high performance, affordable rocket engines. This can be accomplished by increasing design space – not point designs; integrated technology demonstrators; and a systems engineering approach – tech selection and execution. Tools need to be developed to enable model driven development that will replace empirically-based tools with physics-based ools, enable new technologies, and reduce development tosts. Technology may be developed during engine cycle via oxygen-rich staged combustion, expander, and innovative cycles – Ex-Hex, and Aerospike. Or it may be developed within the component, in hydrostatic bearings, combustion stability and ignition. 16. SECURITY CLASSIFICATION OF: 17. LIMITATION of ABSTRACT 18. NUMBER PRESON D. Richard K. Coln 18. REPORT b. ABSTRACT c. THIS PAGE Vinclussified 19. RAME OF RESPONSIBLE PRESON D. Richard K. Coln <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>					-		
Air Force Research Laboratory (AFMC) AFRL/RZSE 4 Draco Drive Edwards AFB CA 93524-7160 10. SPONSOR/MONITOR'S ACRONYM(S) 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) Air Force Research Laboratory (AFMC) AFRL/RZS 5 Pollux Drive Edwards AFB CA 93524-7048 11. SPONSOR/MONITOR'S NUMBER(S) AFRL-RZ-ED-VG-2012-022 12. DISTRIBUTION / AVAILABILITY STATEMENT 11. SPONSOR/MONITOR'S NUMBER(S) AFRL-RZ-ED-VG-2012-022 13. SUPPLEMENTARY NOTES To be presented at the NRC Review of Reusable Booster System, Colorado Springs, CO, 15 Feb 2012. 14. ABSTRACT The AFRL liquid engine mission is developing the technology trade space for high performance, affordable rocket engines. This can be accomplished by increasing design space – not point designs; integrated technology demonstrators; and a systems engineering approach – tech selection and execution. Tools need to be developed to enable model driven development that will replace empirically-based tools, enable new technologies, and reduce development that will replace empirically-based tools, enable new technologies, and reduce development that will replace empirically-based tools, enable new technologies, and reduce development that will replace empirically-based tools, enable new technologies, and reduce development that will replace empirically-based tools, enable new technologies, and reduce development that will replace empirically-based tools, enable new technologies, and reduce development that will replace empirically-based tools, enable new technologies, and reduce development that will replace empirically-based tools, the phises and the origin exclusion stability and ignition. 15. SUBJECT TERMS 15. SUBJECT TERMS	7. PERFORMING ORC	GANIZATION NAME(S)	AND ADDRESS(ES)				
Air Force Research Laboratory (AFMC) ACRONYM(S) AFRL/RZS 11. SPONSOR/MONITOR'S S Pollux Drive 11. SPONSOR/MONITOR'S Edwards AFB CA 93524-7048 11. SPONSOR/MONITOR'S NUMBER(S) AFRL-RZ-ED-VG-2012-022 12. DISTRIBUTION / AVAILABILITY STATEMENT Distribution A: Approved for public release; distribution unlimited. PA# 12079. 13. SUPPLEMENTARY NOTES To be presented at the NRC Review of Reusable Booster System, Colorado Springs, CO, 15 Feb 2012. 14. ABSTRACT The AFRL liquid engine mission is developing the technology trade space for high performance, affordable rocket engines. This can be accomplished by increasing design space – not point designs; integrated technology demonstrators; and a systems engineering approach – tech selection and execution. Tools need to be developed to enable model driven development costs. Technology may be developed during engine cycle via oxygen-rich staged combustion, expander, and innovative cycles – Ex-Hex, and Aerospike. Or it may be developed within the component, in hydrostatic bearings, combustion stability and ignition. 15. SUBJECT TERMS 17. LIMITATION OF ABSTRACT 18. NUMBER OF RESPONSIBLE PERSON D/ F. Ex-Hex, and Aerospike. Or it may be developed within the component, in hydrostatic bearings, combustion stability and ignition. 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF RESPONSIBLE PERSON D/ F. Richard K. Cohn 17. LIMITATION Unclassified b. ABSTRACT c. THIS PAGE 20 <td colspan="5">AFRL/RZSE 4 Draco Drive</td> <td>FORT NUMBER</td>	AFRL/RZSE 4 Draco Drive					FORT NUMBER	
Air Force Research Laboratory (AFMC) ACRONYM(S) AFRL/RZS 11. SPONSOR/MONITOR'S S Pollux Drive 11. SPONSOR/MONITOR'S Edwards AFB CA 93524-7048 11. SPONSOR/MONITOR'S NUMBER(S) AFRL-RZ-ED-VG-2012-022 12. DISTRIBUTION / AVAILABILITY STATEMENT Distribution A: Approved for public release; distribution unlimited. PA# 12079. 13. SUPPLEMENTARY NOTES To be presented at the NRC Review of Reusable Booster System, Colorado Springs, CO, 15 Feb 2012. 14. ABSTRACT The AFRL liquid engine mission is developing the technology trade space for high performance, affordable rocket engines. This can be accomplished by increasing design space – not point designs; integrated technology demonstrators; and a systems engineering approach – tech selection and execution. Tools need to be developed to enable model driven development costs. Technology may be developed during engine cycle via oxygen-rich staged combustion, expander, and innovative cycles – Ex-Hex, and Aerospike. Or it may be developed within the component, in hydrostatic bearings, combustion stability and ignition. 15. SUBJECT TERMS 17. LIMITATION OF ABSTRACT 18. NUMBER OF RESPONSIBLE PERSON D/ F. Ex-Hex, and Aerospike. Or it may be developed within the component, in hydrostatic bearings, combustion stability and ignition. 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF RESPONSIBLE PERSON D/ F. Richard K. Cohn 17. LIMITATION Unclassified b. ABSTRACT c. THIS PAGE 20 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
AFRL/RZS 5 Pollux Drive Edwards AFB CA 93524-7048 11. SPONSOR/MONITOR'S NUMBER(S) AFRL-RZ-ED-VG-2012-022 12. DISTRIBUTION / AVAILABILITY STATEMENT Distribution A: Approved for public release; distribution unlimited. PA# 12079. 13. SUPPLEMENTARY NOTES To be presented at the NRC Review of Reusable Booster System, Colorado Springs, CO, 15 Feb 2012. II. ABSTRACT 14. ABSTRACT The AFRL liquid engine mission is developing the technology trade space for high performance, affordable rocket engines. This can be accomplished by increasing design space – not point designs; integrated technology demonstrators; and a systems engineering approach – tech selection and execution. Tools need to be developed to enable model driven development that will replace empirically-based tools with physics-based tools, enable new technologies, and reduce devolopment toxts. Technology may be developed during engine cycle via oxygen-rich staged combustion, expander, and innovative cycles – Ex-Hex, and Aerospike. Or it may be developed within the component, in hydrostatic bearings, combustion stability and ignition. 19a. NAME OF RESPONSIBLE PERSON Dr. Richard K. Cohn 15. SUBJECT TERMS 17. LIMITATION OF ABSTRACT 18. NUMBER C THIS PAGE SAR 19a. NAME OF RESPONSIBLE PERSON Dr. Richard K. Cohn	9. SPONSORING / MC	DNITORING AGENCY I	NAME(S) AND ADDRES	S(ES)	-		
AFRL/RZS 5 Pollux Drive Edwards AFB CA 93524-7048 11. SPONSOR/MONITOR'S NUMBER(S) AFRL-RZ-ED-VG-2012-022 12. DISTRIBUTION / AVAILABILITY STATEMENT Distribution A: Approved for public release; distribution unlimited. PA# 12079. 13. SUPPLEMENTARY NOTES To be presented at the NRC Review of Reusable Booster System, Colorado Springs, CO, 15 Feb 2012. II. ABSTRACT 14. ABSTRACT The AFRL liquid engine mission is developing the technology trade space for high performance, affordable rocket engines. This can be accomplished by increasing design space – not point designs; integrated technology demonstrators; and a systems engineering approach – tech selection and execution. Tools need to be developed to enable model driven development that will replace empirically-based tools with physics-based tools, enable new technologies, and reduce devolopment toxts. Technology may be developed during engine cycle via oxygen-rich staged combustion, expander, and innovative cycles – Ex-Hex, and Aerospike. Or it may be developed within the component, in hydrostatic bearings, combustion stability and ignition. 19a. NAME OF RESPONSIBLE PERSON Dr. Richard K. Cohn 15. SUBJECT TERMS 17. LIMITATION OF ABSTRACT 18. NUMBER C THIS PAGE SAR 19a. NAME OF RESPONSIBLE PERSON Dr. Richard K. Cohn	Air Force Research	I aboratory (AFMC)					
5 Pollux Drive Edwards AFB CA 93524-7048 NUMBER(\$) AFRL-RZ-ED-VG-2012-022 12. DISTRIBUTION / AVAILABILITY STATEMENT Distribution A: Approved for public release; distribution unlimited. PA# 12079. 13. SUPPLEMENTARY NOTES To be presented at the NRC Review of Reusable Booster System, Colorado Springs, CO, 15 Feb 2012. 14. ABSTRACT The AFRL liquid engine mission is developing the technology trade space for high performance, affordable rocket engines. This can be accomplished by increasing design space – not point designs; integrated technology demonstrators; and a systems engineering approach – tech selection and execution. Tools need to be developed to enable model driven development that will replace empirically-based tools with physics-based tools, enable new technologies, and reduce development tosts. Technology may be developed during engine cycle via oxygen-rich staged combustion, expander, and innovative cycles – Ex-Hex, and Aerospike. Or it may be developed within the component, in hydrostatic bearings, combustion stability and ignition. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION of ABSTRACT 18. NUMBER of RESPONSIBLE PERSON 16. SECURITY CLASSIFICATION OF: 17. LIMITATION of ABSTRACT 19a. NAME OF RESPONSIBLE PERSON 17. LIMITATION unclassified 19a. NAME OF RESPONSIBLE PERSON Dr. Richard K. Cohn 19. TELEPHONE NUMBER 19b. TELEPHONE NUMBER 19b. TELEPHONE NUMBER		Eutoriatory (Fil Me)			11	. SPONSOR/MONITOR'S	
12. DISTRIBUTION / AVAILABILITY STATEMENT Distribution A: Approved for public release; distribution unlimited. PA# 12079. 13. SUPPLEMENTARY NOTES To be presented at the NRC Review of Reusable Booster System, Colorado Springs, CO, 15 Feb 2012. 14. ABSTRACT The AFRL liquid engine mission is developing the technology trade space for high performance, affordable rocket engines. This can be accomplished by increasing design space – not point designs; integrated technology demonstrators; and a systems engineering approach – tech selection and execution. Tools need to be developed to enable model driven development that will replace empirically-based tools with physics-based tools, enable new technologies, and reduce development costs. Technology may be developed during engine cycle via oxygen-rich staged combustion, expander, and innovative cycles – Ex-Hex, and Aerospike. Or it may be developed within the component, in hydrostatic bearings, combustion stability and ignition. 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF RESPONSIBLE PERSON 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF RESPONSIBLE PERSON 18. REPORT b. ABSTRACT c. THIS PAGE 20 19. TELEPHONE NUMBER (mode area code) 19. TELEPHONE NUMBER (mode area code) 19. TELEPHONE NUMBER (mode area code)						NUMBER(S)	
Distribution A: Approved for public release; distribution unlimited. PA# 12079. 13. SUPPLEMENTARY NOTES To be presented at the NRC Review of Reusable Booster System, Colorado Springs, CO, 15 Feb 2012. 14. ABSTRACT The AFRL liquid engine mission is developing the technology trade space for high performance, affordable rocket engines. This can be accomplished by increasing design space – not point designs; integrated technology demonstrators; and a systems engineering approach – tech selection and execution. Tools need to be developed to enable model driven development that will replace empirically-based tools with physics-based tools, enable new technologies, and reduce development costs. Technology may be developed during engine cycle via oxygen-rich staged combustion, expander, and innovative cycles – EX-Hex, and Aerospike. Or it may be developed within the component, in hydrostatic bearings, combustion stability and ignition. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF RESPONSIBLE PERSON 16. SECURITY CLASSIFICATION OF: 0. ABSTRACT c. THIS PAGE 19. NAME OF RESPONSIBLE PERSON 19. TELEPHONE NUMBER (include area code) Unclassified Unclassified 20 19. TELPHONE NUMBER (include area code)	Edwards AFB CA 9	3524-7048			A	FRL-RZ-ED-VG-2012-022	
13. SUPPLEMENTARY NOTES To be presented at the NRC Review of Reusable Booster System, Colorado Springs, CO, 15 Feb 2012. 14. ABSTRACT The AFRL liquid engine mission is developing the technology trade space for high performance, affordable rocket engines. This can be accomplished by increasing design space – not point designs; integrated technology demonstrators; and a systems engineering approach – tech selection and execution. Tools need to be developed to enable model driven development that will replace empirically-based tools with physics-based tools, enable new technologies, and reduce development costs. Technology may be developed during engine cycle via oxygen-rich staged combustion, expander, and innovative cycles – Ex-Hex, and Aerospike. Or it may be developed within the component, in hydrostatic bearings, combustion stability and ignition. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF BASTRACT 18. NUMBER OF RESPONSIBLE PERSON Dr. Richard K. Cohn a. REPORT b. ABSTRACT c. THIS PAGE SAR 20	12. DISTRIBUTION / A		IENT				
To be presented at the NRC Review of Reusable Booster System, Colorado Springs, CO, 15 Feb 2012. 14. ABSTRACT The AFRL liquid engine mission is developing the technology trade space for high performance, affordable rocket engines. This can be accomplished by increasing design space – not point designs; integrated technology demonstrators; and a systems engineering approach – tech selection and execution. Tools need to be developed to enable model driven development that will replace empirically-based tools with physics-based tools, enable new technologies, and reduce development costs. Technology may be developed during engine cycle via oxygen-rich staged combustion, expander, and innovative cycles – Ex-Hex, and Aerospike. Or it may be developed within the component, in hydrostatic bearings, combustion stability and ignition. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF RESPONSIBLE PERSON Dr. Richard K. Cohn a. REPORT b. ABSTRACT c. THIS PAGE 20 20 (inclassified Unclassified Unclassified 20 10. NUMBER (inclared area code)	Distribution A: App	proved for public rele	ease; distribution unlin	nited. PA# 12079.			
To be presented at the NRC Review of Reusable Booster System, Colorado Springs, CO, 15 Feb 2012. 14. ABSTRACT The AFRL liquid engine mission is developing the technology trade space for high performance, affordable rocket engines. This can be accomplished by increasing design space – not point designs; integrated technology demonstrators; and a systems engineering approach – tech selection and execution. Tools need to be developed to enable model driven development that will replace empirically-based tools with physics-based tools, enable new technologies, and reduce development costs. Technology may be developed during engine cycle via oxygen-rich staged combustion, expander, and innovative cycles – Ex-Hex, and Aerospike. Or it may be developed within the component, in hydrostatic bearings, combustion stability and ignition. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF RESPONSIBLE PERSON Dr. Richard K. Cohn a. REPORT b. ABSTRACT c. THIS PAGE 20 20 (inclassified Unclassified Unclassified 20 10. NUMBER (inclared area code)							
The AFRL liquid engine mission is developing the technology trade space for high performance, affordable rocket engines. This can be accomplished by increasing design space – not point designs; integrated technology demonstrators; and a systems engineering approach – tech selection and execution. Tools need to be developed to enable model driven development that will replace empirically-based tools with physics-based tools, enable new technologies, and reduce development costs. Technology may be developed during engine cycle via oxygen-rich staged combustion, expander, and innovative cycles – Ex-Hex, and Aerospike. Or it may be developed within the component, in hydrostatic bearings, combustion stability and ignition. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF RESPONSIBLE PERSON Dr. Richard K. Cohn a. REPORT b. ABSTRACT c. THIS PAGE SAR 20 10b. TELEPHONE NUMBER (include area code)			eusable Booster Syste	m, Colorado Springs,	, CO, 15 Feb 20)12.	
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON Dr. Richard K. Cohn a. REPORT b. ABSTRACT c. THIS PAGE SAR 20 19b. TELEPHONE NUMBER (include area code) N/A	The AFRL liquid engine mission is developing the technology trade space for high performance, affordable rocket engines. This can be accomplished by increasing design space – not point designs; integrated technology demonstrators; and a systems engineering approach – tech selection and execution. Tools need to be developed to enable model driven development that will replace empirically-based tools with physics-based tools, enable new technologies, and reduce development costs. Technology may be developed during engine cycle via oxygen-rich staged combustion, expander, and innovative cycles – Ex-Hex, and						
of ABSTRACT of PAGES PERSON Dr. Richard K. Cohn a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (include area code) N/A Unclassified Unclassified SAR 20	15. SUBJECT TERMS						
of ABSTRACT of PAGES PERSON Dr. Richard K. Cohn a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (include area code) N/A Unclassified Unclassified SAR 20				47 I MATATION			
a. REPORT b. ABSTRACT c. THIS PAGE SAR 20 19b. TELEPHONE NUMBER (include area code) N/A	TO. SECURITY CLASS	SIFICATION OF:				PERSON	
UnclassifiedUnclassifiedSAR20(include area code) N/A							
Unclassified Unclassified Unclassified ⁻ N/A				SAR	20	(include area code)	
	Unclassified	Unclassified	Unclassified				

Prescribed by ANSI Std. 239.18

Integrity **★** Service **★** Excellence

Hydrocarbon Boost Technology for Future Spacelift

15 Feb 2012

Dr. Richard Cohn Chief, Liquid Rocket Engines Branch Propulsion Directorate Air Force Research Laboratory

AFRL Edwards Rocket Site: Liquid Rocket Technology Development

AFRL Liquid Engine Mission Developing the Technology Trade Space

- Develop the trade space for high performance, affordable rocket engines
 - Increase design space not point designs
 - Integrated technology demonstrators
 - Systems engineering approach tech selection and execution
 - •Develop the tools enable model driven development
 - Replace empirically-based tools with physics-based tools
 - Enables new technologies
 - Reduces development costs
 - Develop the technology
 - Cycle
 - Oxygen-rich staged combustion
 - Expander
 - Innovative cycles Ex-Hex, Aerospike
 - Component
 - Hydrostatic Bearings
 - Combustion Stability
 - Ignition

AFRL/RZSE LRE Roadmap As of FY12 PB

Drive Towards Model Driven Development

- Industry standard modeling, simulation, and analysis tools need to be updated
 - Existing empirically based tools require hundreds of tests
 - Could not handle new technologies like hydrostatic bearings
 - Major contributor to failure of prior R&D tech demo effort
 - Industry losing greybeard design and analysis experience
 - Current computational capabilities enable physics-based tools
 - Testing drives the cost of rocket programs
 - Necessary
 - Need to be smart

– The F-1 Engine development cost: \$2.77 Billion (2007 \$)

USET developed MDD tools

utilized TDD process

engines

-Demonstrated liquid hydrogen turbopump

Liquid Rocket Engine development has

- Completed test campaign
 - 29 tests-Steady and transient performance, pump mapping, suction performance, cavitation testing
 - 332 instruments—most highly instrumented turbopump ever!!!

Models validated on USET are being used on HCB and provide critical risk reduction for EELV

Hydrocarbon Boost Overview

- Demonstrator pursuing performance and operability goals
 - Expendable and reusable
 - Tech applicable and necessary for both applications
- Develops crit tech for domestic LOX/RP ORSC rocket engines
 - Ensures domestic sources
 - 250k lbs skid-based demo
 - Optimized for data collection
 - Scalable to 1.6 Mlbf thrust
- 14 year, funding limited effort
 - System testing completes in FY19
 - Prime contractor: Aerojet
- Cost-effective, MDD

Hydrocarbon Boost State of the Industry and Program Goals

A DACE RESEARCH LIBORING

Domestically

- No large domestic HC engines
 - > 250 klbf thrust
- NASA HC efforts ended in 2005
 - RS-84 & TR-107
- Space-X has integrated 9 GG LREs (Merlin 1C)
 - Demonstrated 6/2010
 - Designed for re-use

Internationally

 RD-151 (de-rated RD-191) reusable engine flown on Naro-1

HCB Upgrades the Domestic Technology Base

What is Oxygen-Rich Staged Combustion?

ORSC is a higher performance cycle, providing a smaller launch vehicle or an increase in delivered payload

HCB Goals Jointly Developed through IHPRPT

GOALS	HCB Demo
Isp* (seconds) Sea Level/Vacuum	+15%
Thrust to Weight* Sea Level/Vacuum	+62%
Production Cost	-50%
Failure Rate	-75%
Mean Time Between Replacement (Cycles)	defined
Mean Time Between Overhaul (Cycles)	defined
Turnaround time (hrs)	defined
Throttle range	defined
Sustainability	Must derive from sustainable materials and processes

- Integrated High Payoff Rocket Propulsion Technology
 - Develops goals for Rocket Tech
 - Liquids, Solids, & Spacecraft
 - 3-phased tech development
 - Began in 1996
- Steering Committee
 - OSD and NASA Hq Co-Chair
 - OSD
 - DoD Services
 - NASA
 - Industry
- Semi-Annual Meetings
- Goal: Achieve TRL 5

HCB Provides a Reusable, Robust, and High Performance Engine Required for Current and Future Spacelift Concepts

System TRL – Purple

Systems Engineering Approach to Operational HC Engine Development

HCB Demonstration Engine

Technical risk buy-down plan Within HCB

NASA/AFRL Collaborations

Collaborations

Project	AF Program
Water Rig Testing	НСВ
Aero-spike Nozzle Testing	3GRB
Real Time Vibrational Monitoring System	USET
Ox rich Preburner Combustion Stability Assessment	НСВ
ALREST	НСВ
Promoted Combustion Testing & Oxygen Compatibility	
Assessment	НСВ

Leveraging technical expertise for oversight

Project	AF Program
General Fluid System Simulation Program	НСВ
Technical Advisors	USET/HCB
AFRL Turbomachinery Independent Review Board Members	USET/HCB

Hydrocarbon Boost Key Supporting Technology Efforts

HC Boost Components & Demo Engine CRAD: Aerojet, FTT

Additional Risk Reduction

Combustion Instabilities

- Combustion instabilities are a key risk to any rocket engine development program
- •Can be extremely destructive and can destroy the engine and the test stand
- Complex interaction between many phenomena

Advanced Liquid Rocket Engine Stability Technology (ALREST)

Develop a suite of multi-scale combustion stability models

Combustion stability is high risk

- ALREST program models key physics
 - Kinetics
 - Hydrocarbon mixtures
- Tools developed can be extended
 - Military and commercial rockets
 - Solid and liquid
 - Gas turbines
 - Flight and land based power
 - Other combustion systems

Multi-scale physics based modeling mitigates combustion stability risk and reduces development costs

- •Spearheaded development of Mondaloy[™], a new, high strength, oxygen compatible metal
 - Required for reusable high pressure ox-rich staged combustion engine
- •Spearheaded development of nano-aluminum which has greater strength than typical aluminum alloys

Full-scale turbine housing & high speed rotor

- AFRL/RZS is leading the development of the next generation of rocket engine technology
 - Drive towards model driven development
 - Strong emphasis on Systems Engineering
 - Working both cost and technologies
- Pursuing performance and operability goals in support of Air Force space access (expendable or reusable)
 - Critical tech for high performance domestic ORSC liquid rocket engine
 - Program goals defined by DoD, NASA and industry partnership
 - Strong focus on systems engineering
 - Periodic data transfer to industry throughout the program
 - Collaborations with NASA fully leverages domestic expertise and facilities

