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ABSTRACT 

Over the past few decades, various algorithms have been developed for the retrieval of water constituents from the 
measurement of ocean color radiometry, and one of those approaches is spectral optimization. This approach defines an 
error function (or cost function) between the observed spectral remote sensing reflectance and an estimated spectral 
remote sensing reflectance over the range of observed wavelengths, with the latter modeled using a few variables that 
represent the optically active properties (such as the absorption coefficient of phytoplankton and the backscattering 
coefficient of particles). The values of the variables when the error function reaches a minimum are the optimized 
properties. The applications of this approach implicitly assume that there is only one global minimum condition, and that 
any local minimum (if exist) can be avoided through the numerical optimization scheme. Here, with data from numerical 
simulations, we show the shape of the error surface as a mechanism to visualize the solution space for the model 
variables. Further, using two established models as examples, we demonstrate how the solution space changes under 
different model assumptions as well as the impacts on the quality of the retrieved water properties. 

Keywords: ocean color remote sensing, optimization, algorithm 

1. INTRODUCTION 

The spectral distribution of reflected Sun light upwelling from beneath the ocean surface, which is often referred to as 
remote-sensing reflectance or Rrs(\), contains information on the composition of in-water constituents and forms the 
basis to retrieve such information from satellite measured radiance. Historically, the methods to quantitatively retrieve 
such information from ocean color radiometry include simple empirical regression techniques [1,2], algebraic solutions 
[3,4], and spectral optimization [5-7] of modeled spectrum based on inherent optical properties (IOP). One such spectral 
optimization algorithm (SOA) was proposed in the Coastal Zone Color Scanner (CZCS) era [8]. However, because it 
searches for the optimal set of solutions among numerous candidates for each measured reflectance spectrum, SOA was 
associated with large computational burden that consequently limited its application in processing satellite-measured 
ocean color images. In the recent decade, due to the rapid advancement of computer hardware and software, computation 
burden has become less critical and there is renewed interest in using SOA as an operational tool to process satellite 
ocean color data [9-11] from modern sensors such as Sea-viewing Wide Field-of-view Sensor (SeaWiFS), Moderate 
Resolution Imaging Spectroradiometer (MODIS), and Medium Resolution Imaging Spectrometer (MERIS). 

Various SOA schemes have been developed in the past three decades (e.g., [6, 7, 12, 13]). Two such algorithms include 
the Hyperspectral Optimization Process Exemplar (HOPE) model [5, 14] and the Garver-Siegel-Maritorena (GSM) 
model [ 15]. As with other published approaches, HOPE and GSM assume a spectral shape (or eigenvector) for the 
component lOPs (i.e., absorption due to phytoplankton and yellow substance, backscattering due to particles) and 
retrieve the optimal magnitudes (or eigenvalue) of those eigenvectors that best reproduce the spectral distribution of the 
observed ocean color signal. The principal differences between the models, therefore, rest with the assumed spectral 
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shapes of the component IOPs. The optimization schemes applied to these models assume that there is no local minimum 
in the error function or that any such local minimum can be overcome by an optimization scheme (e.g., [16-18]). Here, 
using data from numerical simulations, we visualize the shape of the solution space and demonstrate that the error 
function has a clearly defined global minimum. More importantly, we show that the assumed spectral models have 
significant consequences on the closure between measured and modeled remote sensing reflectance and thus on 
retrievals of spectral optical properties. 

2. BRIEF REVIEW OF SOA 

For optically deep waters, the spectral reflectance upwelling from beneath the ocean surface, /?„, can be modeled as a 
function of total absorption and total backscattering coefficients of the water column [19,20], i.e., 

Rrs(X) = Fun{a(X),B{r» (I) 
where a(X) and B(X) are the spectral absorption and backscattering coefficients, respectively. 

For SOA, an error function is defined and minimized to derive the optimal model variables, i.e., 

fift* rsW-RrsW)2 

nfiRrsW 
= VH 

J5ÜW rsW-RrsW)2 

mRrsW 
(2) 

where r\\\     represents the average of a spectrum between wavelengths of X] and X2 (« is the number of spectral bands), 
Rrs(X) is the spectrum from measurements, while Rrs(A) is the spectrum from modeling. 
Typically, a(X) and B(X) are modeled as spectral functions of a series of scalar variables Xb with i generally equal to or 
greater than 3. ßrs(A) then becomes a function of X,, and öRrs in general is: 

SRrs = FuniXt) (3) 
In spectral optimization, for a given R„(X)^tne values of A1, are optimal when <5Rr, reaches a minimum. For all SOA 
schemes, although there are subtle differences in handling the IOP to AOP model (Eq. I) and the error function (Eq. 2), 
most of the differences are embedded in the spectral models of a(X) and B(X). For example, when the spectrum of 
particle backscattering is modeled as a power-law function of wavelength [ 1 ], the exponent value is 1.03 in the GSM 
[15], while it varies with Rrs(X) in HOPE [3]. Further, because of the different spectral models, different SOAs may have 
different 5•" (minimized 5Rrs) (Figure la) or identical 5•" but Ä„(A) matches Ä„(X) at different wavelengths 
(Figure lb). Because of such characterizations, SOA schemes are not the same, and the assumed spectral treatment of the 
a(X) and B(X) in individual SOA schemes is the primary driver for differences in remote-sensing retrievals (see examples 
inIOCCGReport#5[21]). 

(a) -«-   target »pectrum 
•      HOPE 
•     GSM 
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Figure 1. Examples of target and optimized spectral remote sensing reflectance, (a) HOPE and GSM achieved different degree of 
goodness of fit; (b) HOPE and GSM achieved identical goodness of fit, but the matching is different spectrally. 

Compared with algebraic solutions, where all derivation steps are explicit, the solution steps of an SOA (i.e., numerical 
trial-and-error) are in general not explicit. To be able to have an unequivocal solution with an SOA scheme, 5Rrs must 
have a global minimum, and the design of the computer software must be able to overcome local minima if they exist. It 
is therefore useful to know the surface shape of 5Rrs, especially around the value of 5•". For instance, if the surface 
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shape of 5Rrs resembles the letter U, i.e., it changes very slowly around 5•" for changing X,, it will result in either more 
computation time to reach 5•" and/or ambiguity (large uncertainties) in the derived X, values. On the other hand, if the 
surface shape of 8Rre resembles the letter V, i.e., it changes sharply around 5•" for changing Xt, it will result in less 
computation time to reach 5•" and less or no ambiguity in the derived Xt values. 

3. DATA AND METHODS 

3.1 Model of /?„ 

Many studies were carried out in the past decades to find a suitable and accurate function to represent Eq. I (see review 
in Lee et al [22]). Without loss of generality, and to be consistent with an earlier effort (GSM), here the model of Gordon 
et al [19] is used to calculate sub-surface remote-sensing reflectance (r„) from absorption and backscattering 
coefficients: 

rrs = (0.0949 + 0.0794—)- rs       V a+BJ an 

This r„ is propagated through the surface to get the above-surface remote sensing reflectance (/?„) 

B 

1+fl 

Rrc   — 
0.52 r„ 

1-1.7 r„ 

(4) 

(?) 

3.2 Data 

The simulated dataset by the IOCCG Algorithm Working Group [21] is used in this study, which contains 500 spectral 
/?„ and the corresponding spectral IOP components, with wavelengths spanning the range of 400 - 800 nm at 10 nm 
spectral resolution. The dataset was sub-sampled to obtain wavelengths at 410,440,490, 510, 555, and 670 nm, spectral 
bands that closely match the settings of SeaWiFS. The values at 555 nm are simple averages of values at 550 nm and 
560 nm. For each spectrally sub-sampled data point, Wrs(A) was calculated with a(X) and B(X) that were used as inputs 
for the Hydrolight simulations, and then 8Rni is calculated. Figure 2 shows the distributions of 5R„ of the 500 points when 
sub-sampled to SeaWiFS bands. The median value of 5Rrs for this closure test is -6%, which is consistent with the 
conclusion of Gordon et al [19] as the particle phase functions used in the IOCCG simulation and that in Gordon et al 
[19] are not identical. Note that in the inversion process (no matter which scheme), it is always considered that Eq. 4 is 
error free, so this model introduced difference will be propagated to the derived properties. 

Figure 2. Distribution of "error" of Gordon et al [ 19] R„ model. 

3.3 Spectral model of IOPs 

5Rre is a complex function of X, used to generate spectral /?„. Defining the number of variables as N and the number of 
spectral bands of Rr, as n (n has to be equal to or greater than N for possible solutions), 8Rrs may reach 0 when n=N and 
increases with the value of (n-N) if Rrs is not spectrally correlated. For easier demonstrations and following a widely 
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applied practice, we selected a three-parameter model system [23] to calculate W„(A). Basically, spectral a(X) and B(\) 
are modeled as 

a(A) = aw(A) + aph(X) + adfl(A) 

BW = BwW + BPW 

(6) 

(7) 

a„.(>.) and BJX) are values of water molecules and are considered universal constants (although they may change slightly 
with temperature and salinity [24]), with a^A.), adl£k) and /?,,(>.) the absorption spectra of phytoplankton and detritus- 
gelbstoff and backscattering spectrum of suspended particles, respectively. Thus there are three unknown spectra (a,^(X.), 
ajf^X) and Bfjß.)) in Eq. 5, and they are further modeled as 

OphW = *i äph(X) 

adgW ~ X2 ädgW 

ßp(A) = X3 BP(X) 

(X) 

(9) 

(10) 

AVJ are the three scalar variables to be derived from a measured R„ via SOA. äph(A), ädg(A) and ßp(A) are spectral 
models (eigenvectors) determined based on field measurements [6, 7, 25, 26] or optimized from field-measured remote- 
sensing reflectance and concentration of chlorophyll [15]. 

In general, ädfl(A) and 5p(A) can be described as [1,27]: 

ädgW = e-^-'1») 

BPW = ft) 

(II) 

(12) 

The spectral slope (5) of ädg(X) and the power coefficient (Y) are not constants for global waters. To reduce variables, 5 
is set as 0.015 nm"' in HOPE, but 0.0206 nm"1 in GSM; while Kchanges with Rn in HOPE, but is fixed as 1.03 in GSM. 
The reference wavelength (Xo) is generally set as 440 nm. 

1 0 

08 /l\ 
• HOPE (0.1) 

—•— HOPE (3 0) 
• GSM 

%        1                       *\ * \ 

l;f"04 • 
\   * V 

02 

00  , , ,— f ;• is. 
400       450       500       550       600       650       700 

Wavelength |nm| 

Figure 3. Comparison of the api, spectral shapes used in HOPE and GSM. #'s in the parenthesis indicate likely concentration of 
chlorophyll. 

It is much more difficult to precisely model spectral aph(A) [13, 26, 28, 29], although better fits could be achieved by 
increasing the number of free variables. As an example, we selected two simple models (where Op/,(A) is modeled with 
one variable) to evaluate their impacts: one is the öph(A) in HOPE, for which the spectral shape varies with the value of 
ap/I(440) (which is equivalent to chlorophyll concentration); and one is the äp/1(A) in GSM, which is constant for 
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global waters. Figure 3 shows examples of the äph(A) for various eutrophication states, and the following provides a 
mathematical expression of the two approaches: 

HOPE: 

äph(A) = a0(A) + a,(A) ln(Oph(440)) (13) 
GSM: 

äphW = Aph-CS„W (14) 
Using SeaWiFS band setup as an example, there are Rrs data at 6 bands (411, 443, 490, 510, 555, and 670 nm) that are 
generally useful for remote sensing retrieval of in-water constituents. Data at the longer wavelengths are used for 
atmospheric corrections. 

3.4 Optimization setups and software 

For all numerical solutions, a set of initial values (first guess) is required to start the process. In HOPE, the initial values 
of the three variables are not kept constant, but are estimated for each given /?„(>.) as follow: 

X2=Xt (16) 

X3 = 20 (0.06 + 0.3 X,) R„(555) (17) 

Note that X, represents a,,A(440) in HOPE. For GSM, the same starting values are used, but in this case X, represents Chi, 
so ap/,(440) is converted to Chi following Eq. 8 by dividing the corresponding chlorophyll-specific value ( a*ph(440)) at 
440 nm. 

To generate physically meaningful solutions, boundaries of the three variables have to be set up, and they are (for 
HOPE): 

0.002 <X,< 1.0 m"'; 

0.002 < X2 < 5.0 m"1; 

0.0001 <X3<0.5 m"1. 

When using the Oph(A) model of GSM, while the boundaries for X2 and X3 are kept the same, X, (for Chi) is set as 

0.02 <X,< 100 mgm"3. 

To derive the 3 scalar variables for each Rrs(\), we used the Solver tool included in Microsoft Excel. This tool uses 
several algorithms to find optimal solutions that include the Generalized Reduced Gradient Nonlinear Solving Method 
developed by Lasdon et al [30] and the Simplex LP Solving Method implemented by Fylstra et al [31]. 

After the optimization is reached for each /f„(A.), we not only recorded the 6•r
l? (the global minimum of SRrs), but also 

the difference between the derived spectral IOPs and the known spectral IOPs, which is calculated using Eq. 2, except 
that RrsW is replaced by the spectral IOPs that formed the optimized Rrs(X), and /?„(A.) is replaced by the 
corresponding known spectral IOPs. We calculated 5„ (for total absorption coefficient), 5Bp (for particle backscattering 
coefficient), 5^/, (for phytoplankton absorption coefficient), and 8^s (for CDOM/gelbstoff coefficient), respectively. The 
wavelength range for these IOPs are from 410 nm to 555 nm, as there is limited information that can be derived in the 
longer wavelengths for most oceanic waters. These 5,op values provide a measure of the goodness of the derived spectral 
inherent optical properties. 

4. RESULTS AND DISCUSSIONS 

The surface shape of SR„ provides an indicator of the effectiveness of an SOA approach. For the spectral IOP models 
evaluated here, examples of the surface shapes are presented in Figure 4, while the overall distributions of 5•" are 

shown in Figure 5. 
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4.1 5Rra surface 

Figure 4 shows examples of 8Rrs (expressed as the percentage change of OR,, in relation to the percentage of change of 
aph, a^, and Bp) of both HOPE and GSM models. Generally, 8Rrs is monotonic in relation to X, before and after SRT, 
reaches its global minimum. To understand the shape of 5Rnr, consider a simplified R„ model where the total 
backscattering and total absorption spectra are modeled as one variable, respectively, then the model of remote sensing 
reflectance can be simplified as 

R„{X) = A{X) 
g'w(-*)+£nw 
a'w(A)+anw, 

(18) 

Here, B '.^and a W(X) are spectra associated with the backscattering and absorption coefficients of pure seawater, 
respectively, and are considered as constant; and B„w and anw are two scalar variables for the backscattering and 
absorption coefficients of non-water constituents, respectively. A(K) represents a combination of the spectral shapes of 
the two components and is constant for a given /?„(>.). 

ce"ta« change 

Figure 4. (a) Examples of surface shape of &„ resulted from change of Bp and ajg. (left) HOPE; (right) GSM; (b) Examples of surface 
shape of <5i,rs resulted from change of Bp and a,*, (left) HOPE; (right) GSM. 
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With such a simplified model, we examine the variation of/?„ resulting from the change of B„w and a„w. Note that, since 
the denominator of Eq. 2 is a fixed value for a given R„(k) (does not change with X,), the SOA is optimal when the 
following error-measure reaches a minimum, 

4«rs = I^(/UA)-ß„(A))2 (19) 

And, dRrs changes with B„w through 

while JRrs changes with anH. through 

3anw 
= -2 s$j frw !1!!!!" - fl»w) /i(A) /"T,6• (2D "' V awW+anw J (aw(4)+anw)' 

aaRrs For a given anH„ there is a value of ß„«, that makes —— equal to zero (same for anH,). When optimization is reached, both °Bnw 

Rrs and    Rrs reach zero. Furthermore,    "" is negative (negative slope) when ß„», is smaller than the optimized B„w oBnw oanw oBnw 

value, and ARrs decreases with the increase of B„w toward the optimum value; similarly, —— is positive (positive slope) 

when B„w is larger than the optimized B„w value, and ARrs increases with the increase of B„w away from the optimum 
value. This monotonic behavior on either side of the global minimum just illustrates that there is no local minimum. 

If anw (or B„w) is modeled with two or more components (e.g., Eq. 13), the variation of ARrs for each individual 
component becomes more complex. In particular, it will depend on whether the two (or more) components are spectrally 
distinguishable enough, otherwise the solution for these components will not be unique and thus the separation cannot be 
resolved (such as the separation of absorption between detritus and gelbstoff). Fortunately, the spectral shapes between 
aph and a^ are significantly different in the 410 - 670 nm range, which ensures a general resolution of these two 

components, although uncertainty of each derived component varies case by case [32] and the impact on both   . "" and 
dadg 

"" is strong (see Figure 4). 
r) a p/i 

The spectral models for IOPs not only affect the shape of the error function, but also the value of 5•" (a measure of 
closure). Figure 5a presents the 6•? values from both HOPE and GSM models for the 500 simulated data, respectively, 
and Figure 5b shows the distribution of the 6"^" values. The X-axis of Figure 5a is roughly arranged in order from low- 
complexity, oligotrophic waters (a(440) -0.016 m"') to higher-complexity, eutrophic waters (a(440) ~ 3.2 m"'). 
Generally, 6•? from the HOPE model is smaller than that from the GSM model (0"•" is centered around 0.03 for 
HOPE while it spans between 0.04 and 0.10 for GSM). The S^f value from the HOPE model increases with the 
complexity of the water, which is expected because, for eutrophic waters, it is less likely that the assumed öph(A) 
matches perfectly the actual phytoplankton absorption spectrum. However, it is interesting and intriguing that the 5•" 
value of GSM increases then decreases with the increasing of complexity. 
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Figure 5. Values and distributions of 6%.? from HOPE and GSM. 

4.3 SI0P distribution 

After optimization was achieved, the derived spectral models of the lOPs were compared with the known IOP inputs 
used to generate the simulated Rrs spectra to measure the quality of the SOA retrievals. Different from the usual 
evaluation of retrieved IOPs at a single wavelength, the scheme here basically considers the IOP spectrum as a whole. 
This is valuable because both the quantity and quality of the sub-surface light field are determined by the IOP spectra. 
Figures 6-9 present the values ofSWP (spectra of total absorption, phytoplankton absorption, detritus-gelbstoff 
absorption, and particle backscattering, respectively) obtained from both HOPE and GSM. Sl0P is calculated following 
Eq. 2, but restricting the wavelength range to 410-555 nm, as the longer wavelength (670 nm here) has limited 
information of the active optical components. A few general points are observed for this dataset: 

a) 8I0P of HOPE is smaller than that of GSM 
b) For absorption spectrum, mean Sa is -8% and smaller for low complexity (blue) waters (Figure 6) when HOPE is 

used 
c) &aph an(J $adg are much higher than Sa , and 8aph of GSM is much higher than that of HOPE. This is probably 

because the äph(.X) used in GSM does not well represent the spectral shape observed from sample measurements 
d) 8Bp of HOPE is centered -10% while SBp from GSM spans a range of-10-50%. Again, SBp from HOPE increases 

with increasing complexity, but SBp from GSM slightly decreases then increases with water complexity. 
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5. SUMMARY 
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With a simplified model for remote sensing reflectance, we proved that the error function used to measure the goodness- 
of-fit is in general a monotonic function of backscattering and absorption before and after the optimization point 
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(especially for blue waters with a spectral range of 400-700 nm). It is not possible for the SOA solution of such a model 
to become trapped in a local minimum before reaching the global minimum. However, this ultimately depends on other 
factors such as the complexity of the models and water properties and the spectral range and resolution of the observed 
spectral /?„. Further, we applied two spectral model formulations (HOPE and GSM) to the IOCCG numerically 
simulated data and showed how the different model assumptions affect the closure between modeled and known Rrs, the 
surface shape of the error function, and the quality of SOA retrieved spectral IOPs. Results here further highlight the 
necessity and importance to develop and utilize appropriate models for the spectral shape of the IOPs for SOA schemes. 
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