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Abstract 

Feature matching is a key, underlying component in 
many approaches to object detection, localization, and 
recognition. In many cases, feature matching is accom- 
plished by nearest neighbor methods on extracted feature 
descriptors. This methodology works well for clean, out-of- 
water images; however, when imaging underwater, even an 
image of the same object can be drastically different due to 
varying water conditions. As a result, descriptors of the 
same point on an object may be completely different be- 
tween the clean and underwater images, and between dif- 
ferent underwater images taken under varying imaging con- 
ditions. This makes feature matching between such images 
a very challenging problem. In this paper, we present a new 
method for feature matching by first synthetically construct- 
ing a feature codebookfor all template features by simulat- 
ing different underwater imaging conditions. We then ap- 
proximate the target feature by a sparse linear combination 
of the features in the constructed codebook. The optimal 
sparse linear combination is found by compressive sensing 
algorithms. In the experiments, we show that the proposed 
method can produce better feature matching performance 
than the nearest neighbor approach and associated naive 
extensions. 

1. Introduction 

Detection, description, and matching of discriminative 
feature points from an image are fundamental problems 
in computer vision and have been studied for many years. 
Many feature detectors, descriptors, and feature matching 
algorithms have been developed and play key roles in many 

vision applications, such as image stitching [I, 10], image 
registration [6, 16], object detection [20], object localiza- 
tion [12], and object recognition [14]. In practice, we usu- 
ally require feature descriptors to be invariant to certain im- 
age spatial transformations, such as scaling and rotation. 

Geodesic Invariant Histograms (GIH) [13] model a 
grayscale image as a 2-dimensional surface embedded in 
3-dimensional space, where the height of the surface is 
defined by the image intensity at the corresponding pixel. 
Under this surface model a feature descriptor, based on 
geodesic distances on the surface, is then defined which is 
invariant to some general image deformations. A local-to- 
global framework was adopted in [3] where multiple sup- 
port regions are used for describing the feature at a single 
point. This removes the burden of finding the optimal scale 
and both local and global information is embedded in its de- 
scriptor. The Scale-Invariant Feature Transform (SIFT) [ 15] 
is a well-known choice for detecting and describing fea- 
tures. Comparison studies [ 17] have shown that SIFT and 
its derivatives [11, 19, 17] perform better than other feature 
detectors in various tasks. SIFT is rotation and scaling in- 
variant and has been shown to be invariant to small changes 
in illumination and perspectives up to 50 degrees. 

All of the previously mentioned feature detectors and 
descriptors only address invariance in the spatial domain. 
They are not invariant when the considered image under- 
goes a destructive intensity transformation, which changes 
the image intensity values substantially, inconsistently, and 
irreversibly. Such transformations often significantly in- 
crease the complexity in discerning any underlying features 
and structures in the image, as shown in [ 17]. A typical ex- 
ample that may be encountered is intensity transformation 
introduced by underwater imaging.   Light behaves differ- 
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ently underwater [ 18], and when dealing with impure water, 
issues such as turbulence, air bubbles, and particles such as 
sediments and organic matter can absorb and scatter light, 
resulting in a very blurry and noisy image. Since avail- 
able feature descriptors are not invariant under such inten- 
sity transformations, matching the features detected from 
an underwater image and a clean out of water image, or the 
features detected from two underwater images taken at dif- 
ferent underwater conditions, is a very challenging problem, 
as illustrated in Fig. I. 

In this paper, we present a new method for feature match- 
ing by first synthetically constructing a feature codebook 
for all template features by simulating different underwa- 
ter imaging conditions. We then approximate the feature to 
be matched by a sparse linear combination of the features in 
the constructed codebook. The optimal sparse linear combi- 
nation is found by the compressive sensing algorithm. The 
template feature in the codebook that contributes most to 
the resulting sparse linear combination is selected as the 
matched feature. In the experiments, we show that the pro- 
posed method can produce better feature matching than the 
widely used nearest neighbor approach and its associated 
naive extensions. 

Figure 1. Illustration of the same feature with very different de- 
scriptors due to varying underwater conditions. 

The remainder of this paper is organized as follows: Sec- 
tion 2 gives a brief introduction to the difficulties of imaging 
underwater and the models we use to simulate this, Sec- 
tion 3 covers SIFT matching and introduces a simple exten- 
sion to SIFT and an explanation of the proposed method, 
Section 4 presents the experimental setup and the perfor- 
mance results, and Section 5 presents the problems that still 
need to be addressed for this approach to be more feasible; 
this is followed by a conclusion. 

2. Imaging In Underwater Environments 

Underwater Imaging is an area with many applications 
including defense, mine countermeasures, security, search 
and rescue, and conducting scientific experiments in harsh, 
unreachable environments. On a clear day, a person can see 
miles to the horizon out-of-water, and yet in many underwa- 
ter conditions, one cannot see more than a few meters; and 
what can be seen is blurred and difficult to discern. This re- 
duction in visibility is due to the absorption and scattering 

of light by the water and particles in the water. There are 
numerous particles such as sediment, plankton, and organic 
cells in the water which cause this scattering and absorp- 
tion. Even water turbulence and bubbles effect how light is 
transmitted. Fig. 2 illustrates how light can be scattered by 
a particle. Light that is spread out by this scattering is what 
causes the blurriness and fuzziness common in underwater 
images (see Fig. 3). 

Figure 2. How a particle might scatter light in the water. 

J 
(b) 

Figure 3. underwater images of a Secchi disk, an instrument used 
to measure diver visibility, (a) Diver with Secchi disk: notice bub- 
bles and general fuzziness. (b) Same diver and Secchi disk taken 
from only a few meters further away from (a). Notice how this 
small change in distance greatly reduced the visibility of the disk. 

This absorption and scattering of light in water can be 
modeled mathematically, and much work has been done 
to develop robust models to this effect [l), 4, S, 7]. These 
models are typically some form of a point spread func- 
tion (PSF) which models a system's response to an impulse 
signal (point source). For this work, we use a simplified 
version of Dolin's PSF model [4, S], to simulate underwa- 
ter conditions. Given an out-of-water image, convolution 
with the PSF creates a synthetic underwater image. Dolin's 
model takes the form 

G(9b, Tb)=SJ^ exp(-Tfc) + 0.525 

£ exp(-2.6fl»-7 - Tfc) + #P - (1 + 7i)exp(-7i)] 

•exp[-ft (&*,)*-(&«,)* + &] 

.it 

where, 0q is the scattering angle—the angle at which light 
is reflected away from its original direction—and TJ, = rw, 
where r is the optical depth and u> is the single scattering 



albedo, the ratio of light scattered to total light attenuation. 
For the inclined reader more details can be found in [4, 8]. 
In this paper we will use the notation PSF(-,r, w) to refer 
to the operation of convolution with a PSF with parameters 
T and <jj. 

3. Feature Matching 

Given two images of an object, S and T, imaged un- 
der different conditions (i.e. out-of-water, in clean water, 
in slightly turbid water, etc), we would like to determine 
if these two images contain the same (or similar) object(s). 
One approach is as follows: 

1. Detect sets of features from each image S and T. 

2. Match features between S and T. 

3. "Goodness" of the matching gives likelihood of being 
the same object. 

As stated previously, available detectors are not designed 
to account for the large differences in descriptors that are 
present due to the underwater conditions. This makes the 
matching step difficult because the descriptors lose a great 
deal of their discriminative power due to these conditions. 
We would like to investigate the problem of matching un- 
der these conditions. In the rest of this section we examine 
three matching algorithms to address these issues. First we 
look at how SIFT points are matched, then give a simple 
extension for SIFT matching which can address some of 
these concerns, and finally present the proposed matching 
approach. 

3.1. General Feature Matching 

In general feature matching is based on a comparison 
of Euclidean distances between feature descriptors. Some 
schemes match if this distance is below a given threshold, 
Let Pand Q be two feature points with descriptors p and q 
respectively. Matching with a threshold is defined as 

matcht(P, Q) {1 
l|p-q||a<* 
llp-q||2>*. 

(1) 

This method of matching has the added difficulty that a 
good threshold must be chosen. Another choice would 
be to match nearest neighbors: a descriptor p is matched 
to q if it is closer to q than any other descriptor. Let 
P1,..., PN be a set of feature points with respective de- 
scriptors p1,..., pN. Then nearest neighbor matching is 
defined as 

matchNw(P ,Q) 

1    k = argminllp1 - q||2 
t=l,...,JV 

0    fc/argmin||p'-q||2 
t=i N 

To match SIFT points, an approximate nearest neighbor 
approach is implemented. An approximation is used be- 
cause efficient nearest neighbor algorithms usually do not 
perform better than brute force search in dimensions larger 
than 10. SIFT descriptors are of dimension 128, so using 
k-d trees to do nearest neighbor search is not very efficient. 
SIFT descriptors are matched with the Best Bin First al- 
gorithm, which is a nearest neighbor approximation which 
returns the nearest neighbor with high probability [15]. 

3.2. A Simple Extension 

This simple extension is derived from the intuition that 
nearest neighbor matching will fail if the descriptors are 
highly varied due to very different water conditions; how- 
ever, if the water conditions show some similarity then the 
difference in descriptor will not be as great and a nearest 
neighbor approach should handle this reasonably well. With 
this in mind, we can process two images, S and T, taken 
in very different water conditions, by simulating another 
underwater environment on S, denoted PSF(S', r, w), such 
that this environment is closer to that of Ts. We can then 
easily apply a nearest neighbor approach to match them. 

There are a few complications with this approach. First, 
it is unclear how, from T, can we determine the correct pa- 
rameters, T and u), needed to estimate its conditions. Sec- 
ond, if S was also taken underwater, applying a PSF to 
an underwater image may not correctly model the under- 
water environment. To address these issues our approach 
does not try to estimate the exact parameters for the PSF, 
instead sampling a range of parameters and attempting to 
match with each one, choosing the matching with the best 
matching score. See Fig. 4 for an example. 

Formally, let S\,..., Sn be the set of images obtained 
from simulating n different PSFs on S: Si = PSFj(S) = 
PSF(5, Ti,uJi). The notation PSFi is used as shorthand to 
refer to the PSF with parameters TV and u)%. Feature points 
are detected on the original S and then the points are used 
to build descriptors on each Si. So for any feature point 
P^ 6 S, j = 1,..., N, there is a corresponding feature 
point P/ € Si with descriptor p^. With this notation, su- 
perscripts denote a particular feature point and subscripts 
denote the simulated condition under which the descriptor 
was obtained. The extension can then be formulated as 

matchENN(Pfc,Q) = 

1    k = argmin [  min 
j = l N '=!.••• 

0    &7^argmin[  min   ||pj 
j = l N «=i.   .« 

Pi - q||2j 

•J - qlb] 
(3) 

(2) 

If we can obtain a set of PSFs that closely approximate 
the conditions in T, then this approach should work well. 
Because the parameter space is continuous, it is infeasible 
to compute all possible PSFs, but the parameter space can 
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Figure 4. Illustration of matching with the best guess. Each Si is the original S convoluted with a PSF with parameters r< and ui,. Matching 
is carried out for each Si and the matching with best matching score is chosen. 

be discretized while still representing much of the variation 
in the PSF. Because convolution is not a cheap operation, 
trying all possible PSFs in our discretized parameter space 
is inefficient, so we would like to use as few PSFs as possi- 
ble. Lastly, this approach will suffer if noise or conditions 
not represented by the PSF model are present. 

3.3. Compressive Sensing Approach 

The proposed matching algorithm is motivated by the 
previous extension of the nearest neighbor approach: Even 
the best simulated environment might not be a very good ap- 
proximation, so can the true conditions be better simulated 
by finding the best combination of simulated environments 
that explains the observed feature descriptors well? 

One example where this might be the case is to consider 
the image of a torpedo taken from the front looking down its 
length, so you can see the side of the torpedo and its nose 
is much closer than its tail. Our model of PSF assumes a 
single optical depth T, but in this case the nose of the tor- 
pedo obviously has a different optical depth than the tail 
and points in between. Our chosen PSF does not consider 
this, but it can easily occur in real situations. Even if we use 
a PSF which represents the conditions at the nose and an- 
other which represents the conditions at the tail, the points 
in between might not be well represented. But if we assume 
that the PSF changes fairly smoothly from nose to tail, then 
some linear combination of the PSFs could potentially cap- 
ture the conditions in the middle. 

As before, we have 5, = PSFj(S'), with feature 
points P1,..., PN and corresponding feature descriptors 
p,-,..., pf, all for i = 1,..., n. Then we want to find a 
combination of descriptors such that 

q = £/3lP*. 

for some k (see Fig. 5). A sharp equality is probably un- 
likely, so in practice we want the combination that can best 
approximate q. 

To facilitate this we build a feature descriptor codebook 
containing all of the simulated descriptors. The codebook is 
a matrix 3> with each column apj: $= [p}p2...pj,...p^]. 
Then, to best approximate q, a coefficient vector a is 
needed such that 

$a = q. (4) 

It should now be noted that this coefficient vector a should, 
ideally, be sparse or have most values close to zero. To 
see why, assume that the true matching for feature Q is 
Pk, Then only the coefficients corresponding to p*,..., p* 
should be large, or non-zero, all others should be zero or 
close to zero. To enforce this we find a which is sparsest 

a = argmin||a||0. (5) 

Solving this problem, (Eq. >) is well-known to be NP-hard; 
however, since our solution is sparse this can be solved 
with good approximation by L-l minimization according to 
compressed sensing [2, 5] 

f* argmin||a||i. 
«t>*>     q 

(6) 

Now being able to solve for sparse linear combinations 
of our codebook, we compare how closely each set of de- 
scriptors, pj,..., p£, for each j = 1,..., N, approximates 
q. Then Pk is matched to Q if it has the smallest residual, 

i=\ 

matches^*, <3) = 

1    k = argmin||q-X;r=i"iPill2 
3=1 N 

0    k ± argmin ||q - £"=1 "iPi lb 
j=l,...,JV 

(7) 
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Figure 5. Matching using a linear combination of descriptors to estimate the matching descriptor. 

This formulation of the matching problem allows us to 
perform matching that can account for variation under the 
water by matching against a sparse linear combination of 
descriptors as opposed to a single descriptor. This combi- 
nation of descriptors is shown to give more discriminative 
matching power than the previously detailed approaches. 

4. Experiments and Results 

4.1. Experiment Setup 

To quantitatively evaluate the feature matching, we need 
a ground-truth matching to compare against. In this pa- 
per, we construct synthetic underwater images with known 
ground-truth feature matching for performance evaluation. 
Underwater images usually contain relatively few objects 
on dark backgrounds. We pick several such clean images 
taken out of water as the base for synthesizing test under- 
water images. One of these images (shown in Fig. 6) is 
a stuffed bear chosen for the textured fur and the other is a 
Secchi disk, an instrument used to measure underwater visi- 
bility. In each of our experiments, we run all three matching 
algorithms described in Section 3. In addition, we set n = 2 
to construct the feature codebook. A smaller-size codebook 
means less space for storage and fewer computations in fea- 
ture matching. 

Figure 6. An image used for constructing synthetic underwater im- 
ages. 

Given a clean image S, as shown in Fig. 6, we construct 
three synthetic images Si, S2 and T by applying PSFs with 
different parameters to S. We then use features on Si and 
S2 to build the feature codebook and match features be- 
tween S and T by matching the features on T to the fea- 
ture codebook. Clearly, we know the ground-truth feature 
matching: the features at the same locations on T and S 
should be matched to each other since we do not introduce 
any spatial transformation in image synthesis. We use two 
strategies to detect features on S, Si, S2 and T. 

4.2. First Strategy 

In Strategy I, we simply detect SIFT feature points and 
features on S and then assume the feature points on Si, S2 
and T are in the same location as the SIFT points detected 
on S. However, the feature descriptor at each feature point 
on Si, S2 and T is calculated using its own image inten- 
sities, but using the optimal scale and orientation parame- 
ters derived from the same feature point on S. We apply 
the three matching algorithms described in Section 3: The 
classical SIFT matching directly matches features between 
T and S by using the nearest neighboring technique; the 
extended SIFT matching matches T and Si, i = 1,2 inde- 
pendently using classical SIFT matching and then picks the 
better matching results. The proposed algorithm matches 
T and the codebook built on Si and S2 by sparse linear 
combination. We found that, the classical SIFT matching 
completely fails with a near-zero precision, recall, and F- 
score. We only compare the performance of the extended 
SIFT matching and the proposed matching algorithms. We 
tried different PSF parameters for constructing S\, S2 and 
T and find that the proposed algorithm consistently shows 
higher precision, recall, and F-score than the extended SIFT 
matching algorithm. Several sample results are shown in 
Fig. 7 and 8. 



4.3. Second Strategy 

In Strategy II, we independently run SIFT feature detec- 
tion on S, S\, and S2. We then take the union of the detected 
feature points on S, Si and 52- At this set of features points 
on Si and S2, we extract their SIFT descriptors to build the 
codebook. On T, we independently run SIFT detection to 
detect its own SIFT features. We then run the three feature 
matching algorithms to solve this feature matching prob- 
lem. Again, we find that classical SIFT matching fails in 
almost every experiment and the proposed algorithm per- 
forms better than the extended SIFT matching algorithm. 
Samples results are shown in Fig. 7 and X. Note that the 
precision, recall, and F-score obtained in Strategy II exper- 
iments are much lower than the ones obtained in Strategy I 
experiments. The reason for this is that many feature points 
detected in T are not coincident with the feature points de- 
tected in S, Si and S2. 

We also try to match features between two images with 
spatial transformations. As shown in Fig. 9, we take two 
clean images out of water that contain the same object. We 
then detect SIFT points on both of them. We apply a strat- 
egy similar to Strategy I mentioned above where we apply 
two PSFs to an image shown in Fig. 9(a) to get two syn- 
thetic images Si (r = 10, w = 1.0) and S2 (r = 10, 
UJ = 0.9) to construct the feature codebook (feature descrip- 
tors are calculated at the same locations as the SIFT points 
in Fig. 9(a)). We apply a different PSF (r = 10, u = 0.5) 
to the image shown in Fig. 9(b) to construct features T (fea- 
ture descriptors are calculated at the same locations as the 
SIFT points in Fig. 9(b)). Figure 9(c) and (d) and show the 
feature matching results between T and the codebook using 
the proposed algorithm and the SIFT matching algorithm 
respectively. 

5. Future Work 

The proposed approach for feature matching lays the 
groundwork for performing object detection, localization, 
and recognition in underwater conditions. But there are still 
many problems which need to be addressed. First a reliable 
scheme for detecting feature points that is repeatable in the 
water is sorely needed. We used a few simple techniques 
in our experiments but, as shown in the real examples, this 
approach is far from adequate. Second, better models of 
the underwater conditions need to be integrated into the ap- 
proach. 

6. Conclusion 

In this paper, a method for matching features in under- 
water environments was proposed. The approach is based 
on synthesizing possible conditions and looking for linear 
combinations of these conditions which can explain the ob- 

Figure 9. The feature matching results between two images with 
spatial transformations, (a) and (b) are two clean images, (c) and 
(d) are the matching results from the proposed algorithm and the 
extended SIFT matching algorithm, respectively. 

served features in an underwater image. Experimental re- 
sults show that the approach performs better than single 
nearest neighbor based methods when good feature points 
are found. However, when detecting features in an un- 
derwater image, there is no guarantee that detect features 
matchable to the out-of-water image can be obtained. 
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F-score 0.857 0.384 0.97 0.696 

SIFT -Ext Proposed 

Strat. I Strat. II Strat. I Strat. II 
Precision 0.947 0.303 0.978 0.378 
Recall 0.741 0.238 0.896 0.533 
F-score 0.609 0.267 0.935 0.443 

SIFT -Ext Proposed 

Strat. I Strat. II Strat. I Strat. II 
Precision 0.932 0.048 0.971 0.067 
Recall 0.729 0.281 0.877 0.423 
F-score 0.818 0.083 0.921 0.116 

Figure 8. More results of our experiments. 
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