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ABSTRACT 

Cognitive radio presents a unique challenge to source localization in that the radio has the 

ability to adapt to the environment, thus rendering current localization techniques 

ineffective due to a shifting combination of spatial, frequency, and temporal parameters.  

For any localization scheme to be effective, it must be able to adapt over time as a 

cognitive radio adapts to its surroundings.  In this thesis an extended semi range-based 

localization scheme is proposed to accomplish this task.  The proposed scheme estimates 

the position of a cognitive radio using the collaborative spectrum sensing results of a 

wireless radio frequency sensor network in a cognitive radio environment.  The central 

idea behind the proposed scheme is to exploit the relationships between spatial, 

frequency, and temporal parameters of the environment to solve for the position of the 

cognitive radio.  The proposed scheme is modeled in the MATLAB programming 

language, and its efficacy is demonstrated through simulation.  It is shown that over time 

the proposed scheme is capable of estimating the frequency band of operation and the 

location of a cognitive radio, and is thus capable of accounting for both frequency and 

spatial mobility inherent in the cognitive radio environment. 
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EXECUTIVE SUMMARY 

Presently, a growing conflict is emerging between the low utilization and 

increasing scarcity of electromagnetic spectrum around the globe.  Cognitive radio is 

considered the primary solution to this problem as a cognitive radio is capable of 

opportunistically seizing underutilized portions of the electromagnetic spectrum (i.e., 

white spaces) by adapting the radio’s attributes to match the available resources.  With 

such communication advancements rapidly developing, it is critical for the Department of 

Defense (DoD) to remain aware of the positioning techniques being utilized within these 

networks.  Furthermore, in the context of cyber warfare, it is crucial for the DoD to 

develop and enhance cognitive radio source localization techniques as cognitive radio can 

be adopted for military applications by adversaries and pose potential security risks if 

used internally.  Given these concerns, an effective solution to cognitive radio source 

localization is needed.   

The objective of this thesis is to estimate the position of a cognitive radio using 

the collaborative spectrum sensing results of a wireless radio frequency (RF) sensor 

network in a cognitive radio environment.  In the context of cognitive radio, the 

environment consists of two types of users.  First, a primary user has principle rights to 

the frequency spectrum but may not completely exhaust the resources available in the 

area.  Therefore, a secondary user network may also exist which can opportunistically use 

the available frequency spectrum leftover from the primary user network by employing 

cognitive radio technology.   

An extension of the semi range-based localization algorithm is proposed in this 

thesis to accomplish the aforementioned objective.  Semi range-based localization, 

originally proposed for primary user source localization in cognitive radio networks, is 

extended to secondary user source localization in this thesis.  The proposed extended 

semi range-based (ESRB) localization scheme utilizes n-bit spectrum sensing in the 

spectrum sensing process and semi range-based localization in the localization process.   



 xvi

The proposed scheme was modeled in the MATLAB programming language and 

its efficacy demonstrated through simulation.  Power estimation and the effects of n-bit 

spectrum sensing, the number of spectral scans per superframe, the number of 

superframes, and the number and position of sensor nodes were examined to determine 

the effect on the secondary user position estimate.  Frequency and spatial mobility of the 

secondary user were also examined to account for all possible variations in the secondary 

user’s activity.  Scalability of the ESRB localization scheme was also addressed with 

multiple secondary users present in the environment. 

Simulation results demonstrated that over time the proposed scheme is capable of 

estimating the frequency band of operation and the location of a cognitive radio.  The 

number of sensor nodes did not directly influence position estimation accuracy; however, 

adequate spatial separation among the sensor nodes proved to be a significant factor in 

the performance of the localization process.  Similar to position estimation, power 

estimation also improved as the number of samples from the sensor network increased.  

As the number of superframes increased and more decision data became available, the 

proposed scheme was capable of refining the position estimate using relevant decision 

data to deliver accurate results.   

Alternatively, the use of n-bit spectrum sensing significantly improved the 

performance of the ESRB localization scheme in terms of divergence percentage.  The 

decrease in divergence percentage also directly influenced the overall position estimation 

error, which allowed the proposed scheme to perform well with a limited amount of 

decision data from the sensor network.   

Finally, through instantaneous results, it was shown the ESRB localization is 

scalable to localize multiple secondary users in the environment and is capable of 

accounting for both frequency and spatial mobility when the secondary user is mobile. 

Limited frequency and spatial tracking was demonstrated for a mobile secondary user on 

a fixed trajectory at constant speed.  Frequency and spatial estimation was accomplished 

through repeated application of the proposed ESRB localization scheme. 
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I. INTRODUCTION 

Presently, a growing conflict is emerging between the low utilization and 

increasing scarcity of electromagnetic spectrum around the globe [1], [2].  The popularity 

of unlicensed bands has proven to be an effective solution to development and 

deployment of new wireless networks but has not abated the increasing demand for 

wireless spectrum [1].  Cognitive radio is considered the primary solution to this problem 

as a cognitive radio is capable of opportunistically seizing underutilized portions of the 

electromagnetic spectrum (i.e., white spaces) by adapting the radio’s attributes to match 

the resources available [1–6].  This is accomplished through two primary means: 1) 

spectral sensing of the environment and 2) informed decision making [3], [6].  The 

combination of awareness and decision making is the foundation for cognition in the 

system and distinguishes a cognitive radio from any other type of communications 

technology [2], [7], [8]. 

Future Department of Defense (DoD) communication technologies will depend 

heavily on the principles inherent in cognitive radio (e.g., dynamic spectrum access 

(DSA) in the Joint Tactical Radio System (JTRS) [9]) due to the growing spectrum 

shortage and the need for DoD operations to be less invasive when working in a counter-

insurgency or multi-national environment [9–12].  With such communication 

advancements rapidly developing, it is critical for the DoD to remain aware of the 

positioning techniques being utilized within these networks.  Furthermore, in the context 

of cyber warfare, it is crucial for the DoD to develop and enhance cognitive radio source 

localization techniques as cognitive radio can be adopted for military applications by 

adversaries and pose potential security risks if used internally.  Given these concerns, an 

effective solution to cognitive radio source localization is needed.   

Wireless radio frequency (RF) sensor networks offer a promising solution to the 

aforementioned problem [13], [14].  Low-powered and cost effective, a wireless RF 

sensor network can be deployed in a hostile or non-hostile area to detect signals of 

interest through spectrum sensing and aid in localization of a specific target [13–16].  

Such a scenario is shown in Figure 1, where multiple sensor nodes are deployed in an 
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environment to detect the presence of an emitter of interest.  In the context of cognitive 

radio, the environment consists of two different types of users [3], [6].  As shown in 

Figure 1, the present primary user has principle rights to the frequency spectrum in that 

geographical area [3], [5].  The primary user network operates without knowledge or 

coordination with any other type of user in the environment but may not completely 

exhaust the resources available in the area [3], [5], [6], [17].  Therefore, a secondary user 

network also exists which can opportunistically use the available frequency spectrum 

leftover from the primary user network by employing cognitive radio technology [3], [5].  

The secondary user has the responsibility to prevent interference with the primary user 

[3], [5].  A scenario where the secondary user is the target and a wireless RF sensor 

network is available to aid in localization is adopted in this thesis. 

Sensor Node

Secondary User (Target)

Decision 
Node

Primary User 
Networkf1

f2

f3

 

Figure 1.   Overall scenario using a wireless RF sensor network to determine the 
frequency bands and location of a cognitive radio. 
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A. THESIS OBJECTIVE 

The objective of this thesis is to estimate the position of a cognitive radio using 

the collaborative spectrum sensing results of a wireless RF sensor network in a cognitive 

radio environment.  In order to accomplish this objective, several additional tasks must be 

achieved.  First, any scheme used to localize the cognitive radio must be capable of 

tracking the frequency usage of the cognitive radio over time.  Second, any localization 

scheme must be able to decipher between the secondary users and primary users of the 

frequency spectrum. Third, given additional spectrum sensing results from the wireless 

sensor network, the localization scheme must have some method of position refinement 

to converge to the true position of the cognitive radio. 

An extension of the semi range-based localization algorithm [5], [17] is proposed 

in this thesis to accomplish these objectives.  Semi range-based localization was 

originally proposed for primary user source localization in cognitive radio networks [5], 

[17] but is extended to secondary user source localization.  The proposed extended semi 

range-based (ESRB) localization scheme utilizes n-bit spectrum sensing in the spectrum 

sensing process [18] and semi range-based localization [5], [17] in the localization 

process.  The proposed scheme will be modeled in the MATLAB programming language 

and its efficacy demonstrated through simulation. 

B. RELATED WORK 

Multiple technologies, such as the Institute of Electrical and Electronics 

Engineers (IEEE) standard 802.22 [1], [19], [20] and IEEE standard 802.11af [20], are 

being built to take advantage of cognitive radio.  Concurrently with their development, 

several techniques have been proposed for primary user source localization by a 

secondary user network [5], [6], [17].  However, very little work is being done in regards 

to cognitive radio source localization [21].  Current source localization techniques are 

rendered ineffective in the context of cognitive radio due to a shifting combination of 

spatial, frequency, and temporal parameters [5], [21].  One potential solution to this 

problem is semi range-based localization.   
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Originally proposed by Ma et al. in [5] for primary user source localization, semi 

range-based localization has an adaptive quality inherent in the localization process for 

use in cognitive radio networking.  In [17], Wang et al. have extended the localization 

algorithm proposed in [5] to remove any requirement for cooperation among the 

secondary and primary user networks in the localization process.  Both proposed semi 

rang-based localization algorithms make use of binary spectrum sensing to facilitate 

localization [5], [17].    

Spectrum sensing and cooperation in spectrum sensing remains an active area of 

research [2], [18].  Recently, two-bit and three-bit hard combination were proposed for 

use in wireless RF sensor networks to improve the overall detection performance of a 

sensor network [18], [22].  The two-bit and three-bit hard combination schemes presented 

in [18] and [22] for n-bit spectrum sensing and the semi range-based localization 

algorithms presented in [5] and [17] for the ESRB localization scheme are used in this 

thesis. 

C. THESIS OUTLINE  

The outline of this thesis is as follows.  Background on spectrum sensing and 

localization using a wireless RF sensor network along with an application area of these 

two concepts is provided in Chapter II.  The ESRB localization is described in detail and 

the fundamental methods used in the proposed scheme are presented in Chapter III.  The 

simulation scenario and simulation model used to implement the ESRB localization 

scheme along with simulation results are presented in Chapter IV.  A summary of the 

work completed, a summary of significant results, and ideas for future work are presented 

in Chapter V.  The MATLAB code used to support the work completed is given in the 

appendix. 
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II. BACKGROUND 

A brief introduction to the problems encountered with source localization of a 

cognitive radio was provided in Chapter I.  Two broad areas were identified as part of the 

solution to the problem: 1) spectrum sensing and 2) localization using a wireless RF 

sensor network.  Background on each of these areas and an implementation of these 

techniques in a specific application are presented in this chapter. 

A. SPECTRUM SENSING 

In general, spectrum sensing is the process of gaining awareness of the frequency 

usage and presence of users within a geographical area [2].  Typically, this involves 

examining a portion of the frequency spectrum through a selected method over an 

interval of time to identify whether or not the frequency spectrum is in use [2], [8].  In the 

context of cognitive radio, such awareness can be obtained through local measurements 

performed by the cognitive radio or through external resources independent of the radio 

itself (e.g., using a table lookup in a geo-location frequency occupancy database)  [2], [8].   

1. Spectrum Sensing Methods 

Several methods have been proposed to perform local spectrum sensing [2], [8], 

[18], [22].  The following section highlights three of the most relevant methods from the 

literature [22]: 1) energy detection based spectrum sensing, 2) cyclostationary-based 

spectrum sensing, and 3) matched filtering.  A brief overview of each technique is 

provided below along with the relative advantages and disadvantages of each. 

a. Energy Detection Based Spectrum Sensing 

Due to its low complexity and computational cost, energy detection based 

spectrum sensing is the most common spectrum sensing method [2].  It is performed by 

comparing the received energy of the signal against a predefined energy detection 

threshold to determine the presence or absence of the user in the frequency band of 

interest [2], [8], [23].  The energy of the received signal is determined by squaring and 

integrating the received signal strength (RSS) over the observation time interval [2], [8], 



 6

[23].  The energy detection threshold is determined using the noise variance of the 

environment [8].  Thus, small errors in the noise variance estimation can cause significant 

performance degradation [8].  Energy detection based spectrum sensing is the optimal 

detection method for zero-mean constellation signals when no information is known in 

advance about the user occupying the channel [8], [23].  However, energy detection 

based spectrum sensing cannot distinguish the type of user occupying the frequency band 

[2], [8].  In addition, under low signal-to-noise ratio (SNR) conditions, energy detection 

performs poorly [2], [8]. 

b. Cyclostationary-Based Spectrum Sensing 

Given the disadvantages of energy detection based spectrum sensing, 

cyclostationary-based spectrum sensing offers an attractive alternative [2], [8].  By 

exploiting the cyclostationary features of the received signal [2], cyclostationary-based 

spectrum sensing is capable of discriminating which type of user is present [2], [8] and 

detecting the presence of a user under low SNR conditions [8].  Such benefits come at the 

cost of additional hardware complexity and a lengthier detection process when compared 

to energy detection based spectrum sensing [8].  Cyclostationary features are the result of 

periodicity in the received signal or its statistical properties [2].  As such, detection is 

accomplished by finding the unique cyclic frequency of the spectral correlation function 

of the received signal [2], [8].  The spectral correlation function is determined by taking 

the Fourier transform of the cyclic autocorrelation function.  The spectral correlation 

function is given by [2] 

 ( ) ( ) 2, j f
xS f R e dς π τς τ τ

∞
−

−∞

= ∫  (1) 

where the cyclic autocorrelation function is determined by [8] 

 ( ) ( ) ( ){ }* 2j t
xR E x t x t eς πςτ τ τ −= + −  (2) 

where ( )x t  is the received signal and ς  is the cyclic frequency [8].  Under 

cyclostationary-based spectrum sensing, a priori knowledge of the cyclostationary 

features of the received signal is required for successful detection [2], [8].  However, if 
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complete knowledge of the received signal is known in advance, matched filtering based 

spectrum sensing provides the optimal solution [2], [8]. 

c. Matched Filtering 

Matched filtering is the optimal solution when complete a priori 

knowledge of the received signal is available [2], [8].  It is achieved by correlating the 

received signal with the known signal to be detected [2], [8].  In this way, the SNR of the 

received signal is maximized [8].  An additional benefit is the short time period necessary 

to achieve a specific probability of false alarm or probability of missed detection relative 

to energy detection or cyclostationary-based spectrum sensing [2].  However, the 

requirement for complete a priori knowledge of the signal is a significant drawback to 

this method given this information may not always be available in advance [2], [8].  

Further, to detect a large number of different signals, a separate matched filter must be 

used for each different signal [2], [8].  Thus, hardware complexity is a significant factor 

in implementation when detecting a large number of different signals [2]. 

2. Cooperative Spectrum Sensing 

Local spectrum sensing methods using distributed sensor nodes are limited in 

their effectiveness due to irregularities in the environment [2], [8], [22].  Multipath fading 

and non-line-of-sight (NLOS) conditions can significantly reduce the probability of 

detecting whether or not a user is present in the frequency band of interest at a single 

sensor node [8], [22].  Most damaging to the spectrum sensing process is the problem of 

the hidden node [8], which occurs when a particular sensor node suffers from NLOS 

conditions or severe multipath fading as shown in Figure 2.  The two sensor nodes 

experiencing multipath fading and NLOS conditions may not detect the presence of the 

user.  However, if the sensor nodes were to share their information with each other 

through a central decision node as illustrated in the figure, a more accurate global result 

may be achieved [8].  Such collaboration among the sensor nodes to overcome local 

environmental effects is the essence of cooperative spectrum sensing [8]. 

Cooperative spectrum sensing can be summarized in three primary steps [23].  

First, each sensor node performs local spectrum sensing at its position and determines 
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whether or not the frequency band of interest is occupied [23].  Second, all sensor nodes 

transmit their spectrum sensing decisions to a central decision maker [23].  Third, the 

decision maker aggregates the individual local spectrum sensing decisions and makes a 

final global decision as to the presence or absence of a user based on a decision rule [23].   

Sensor Node

User

Decision Node

Non-Line-of-Sight

Multipath Fading

 

Figure 2.   Illustration of cooperative spectrum sensing under shadowing and 
multipath fading. 

The benefit of cooperation in the spectrum sensing process necessitates 

employing a wireless RF sensor network to estimate the position of a cognitive radio.  

Cooperative spectrum sensing has proven to be an effective solution to overcome the 

aforementioned environmental effects [5], [8], [17], [22], [24].  This is achieved through 

spatial separation in the collective decisions of the received signal of interest from all 

sensor nodes [8].  The detection performance gain from spatial separation makes 

detection possible where it was once unachievable through local spectrum sensing alone 

[8].  In addition to overcoming environmental effects, cooperative spectrum sensing 
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increases the detection sensitivity of the overall network without the requirement for each 

sensor node to have high detection sensitivity [18], [24]. 

The benefits gained by cooperative spectrum sensing are costly [18], [24].  For 

collaboration to occur among the sensor nodes, some form of communication must 

happen, resulting in overhead to the spectrum sensing process [8], [24].  Additionally, 

some form of a control channel must be established to facilitate communication among 

the sensor nodes [8], [24].  The control channel may also be subject to the same adverse 

environmental conditions [8], [24].  Two classes of techniques have been proposed to 

address communication in cooperative spectrum sensing [8], [18], [22].  

a. Hard and Soft Combination 

Hard combination and soft combination are the two primary techniques by 

which cooperative spectrum sensing is conducted [8], [22].  In hard combination, also 

referred to as decision fusion [8], the local spectrum sensing decisions of each sensor 

node are transmitted to a decision node where they are fused into a global decision [8], 

[22].  Each sensor node must make a local decision declaring the presence or absence of 

the user [8], [17].  The local decision then results in a single bit being transmitted by each 

sensor node indicating its decision [8], [22].  Next, the global decision can be determined 

by a number of different fusion rules [23].  For example, the decision node may use a 

logical OR rule where if one sensor node declares the user present, the global decision is 

the user is present [8], [23].  By only transmitting the local decision from each sensor 

node, hard combination offers very little communication overhead [8], [22].  However, 

improved detection performance can be achieved when additional information is 

available [8], [22].   

In soft combination, also referred to as data fusion, the original sensing 

measurement data is transmitted to the decision maker without a local decision being 

made by the sensor nodes [8], [22].  Rather, the decision node is the only entity 

responsible for making a decision [8], [22].  In the context of energy based spectrum 

sensing, the measurement data from each sensor node is weighted and summed in 

accordance with the instantaneous SNR at that sensor node to determine the overall 
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energy in the frequency band of interest [22].  It has been shown that soft combination 

outperforms hard combination in terms of detection performance using energy based 

spectrum sensing [22].  Such gains come at the expense of additional communication 

overhead [22].  To strike a balance in the performance-communication tradeoff between 

hard and soft combination, hybrid solutions have been proposed to take advantage of the 

benefits of both schemes [22]. 

b. Two-bit Hard Combination Scheme 

Two-bit hard combination is considered a softened hard combination 

scheme where two bits are used to represent the local spectrum sensing decision of each 

sensor node [22].  As with soft combination, two-bit hard combination is applied in the 

context of energy detection based spectrum sensing [22].  Three energy detection 

thresholds are defined to break up the range of observed energy into four regions as 

shown in Figure 3 [22].  Each region is assigned a specific weight iw  in accordance with 

L, a performance parameter to be optimized.   Given the four energy regions defined, 

each sensor node must use two bits to represent the region of energy detected [22].  The 

energy detection thresholds are represented by 1 2 3, ,  and λ λ λ  in Figure 3 [22].   

3λ

2λ

1λ

 

Figure 3.   Energy regions of the two-bit hard combination scheme (From [22]). 
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Similar to soft combination, two-bit hard combination uses a weighted 

summation to develop the global decision [22].  The decision as to whether the user is 

present or absent in the frequency band of interest, is given by [18] 

 
3

2

0
i i

i
w A L

=

≥∑  (3) 

where iA  is the number of observed energies falling in region i over the sensing period 

[22].  The detection performance of two-bit hard combination is comparable with that of 

soft combination using equal gain combining [22].  Such an improvement in performance 

with little cost in communication overhead has motivated consideration of additional bits 

in the two-bit hard combination scheme [18].  In [18], three-bit hard combination is 

proposed for cooperative wideband spectrum sensing using RF sensor networks.  It is 

shown that three-bit hard combination outperforms traditional hard combination in false 

alarm performance [18]. 

B. LOCALIZATION USING WIRELESS RADIO FREQUENCY SENSOR 
NETWORKS 

To date, numerous propagation model-based localization schemes have been 

proposed to enable a wireless device to find its own position or the position of other 

devices [3], [6].  Such schemes can be broken down into two main categories: 1) range-

based and 2) range-free [5], [6].  The means by which position estimation is achieved 

distinguishes these two categories from one another [3], [5], [6].   

1. Range-Based Localization Schemes 

Position estimation occurs in two phases under range-based localization schemes: 

1) ranging and 2) localization [25].  In the ranging phase, point-to-point ranging 

estimations are made between a transmitter and receiver using metrics such as time-of-

arrival (TOA), time-difference-of-arrival (TDOA), angle-of-arrival (AOA), RSS, and 

others [3], [5], [6].    During the localization phase, the distances obtained in the ranging 

phase are translated into position through the intersection of three or more estimated 

distances from known positions [25]. 
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TOA is obtained from the internal clock of the receiver when the signal of interest 

arrives at its terminals [3].  Therefore, the degree of precision in the receiver’s clock is 

one of the greatest factors which can create error in TOA observations [3].  To convert 

TOA into distance, the receiver and transmitter’s clock must be perfectly synchronized 

[3], [25].  The estimated TOA at the receiver is the sum of the transmission time, the 

propagation delay, and the error in the transmitter and receiver’s clock synchronization 

[3].  Distance is obtained from the propagation delay between the transmitter and receiver 

[3], [25].   

 To alleviate the requirement for clock synchronization between the transmitter 

and receiver, TDOA-based methods utilize the difference between multiple TOA 

measurements [25].  This may be the difference in TOA for a single signal to reach 

multiple receivers, or the difference in TOA for multiple signals from one transmitter to 

reach one receiver [25].  Thus, TDOA-based methods require synchronization between 

receivers but not between transmitter and receiver [3], [25].  

AOA-based schemes utilize the angle at which the transmitter’s signal arrives at 

the receiver to estimate distance [3], [25].  To this end, directional antennas are required 

which can significantly increase cost and complexity [3], [25].  AOA-based methods are 

also strongly susceptible to adverse environmental effects such as multipath fading and 

shadowing [3], [25].   

As a low cost solution, RSS-based methods offer an effective alternative to the 

disadvantages of AOA-based methods [25].  Its low cost is attributed to the fact that most 

receivers are capable of performing RSS measurements [25], and it is simple to 

implement in hardware [26].  Given an accurate propagation model, the RSS can be used 

to estimate the distance between the transmitter and the receiver [3], [25].  The RSS is a 

measurement of the magnitude of the signal power observed by the receiver [3], [26].  

This measurement is also subject to significant deviations due the aforementioned 

environmental effects [3], [25]. 
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2. Range-Free Localization Schemes   

In the context of wireless sensor networking, range-free schemes are used to 

determine the position of the sensor nodes within the network [3], [5], [6], [16].  Multiple 

anchor nodes with known positions are used as the basis to determine the position of 

other sensor nodes [16], [27].  This is accomplished through such metrics as hop count or 

proximity vice triangulation or trilateration as in range-based localization schemes [27].  

As a result, less hardware is required for individual devices to be positioned [16].  

However, this also degrades the overall accuracy in the position estimate [3], [6].  Range-

based schemes require more hardware in the sensor node in order to deliver precise 

measurements for position estimation [16], [27].   

Ultimately, both classes of schemes fall short in cognitive radio source 

localization because they lack the ability to adapt as the cognitive radio would [21].  

Specifically, as the cognitive radio utilizes different portions of the frequency spectrum 

over time, the localization scheme must account for frequency mobility to continue 

position estimation.  When spatial mobility is additionally considered, the problem 

extends beyond what standard localization techniques can offer.  Therefore, source 

localization of a cognitive radio demands some level of adaptation in the localization 

process to accurately estimate position [21].  One potential solution to this problem is 

semi-range based localization. 

3. Semi-Range Based Localization Schemes 

Semi-range based localization has recently been proposed for primary user source 

localization via a cognitive radio network [5], [17].  Positioning information about the 

primary users is essential to identify which frequency bands are available for use and to 

prevent interference between the secondary user and primary user networks [5].  In this 

scenario, the secondary users act as a wireless RF sensor network by performing 

spectrum sensing to identify unused portions of the frequency spectrum for opportunistic 

usage [5], [17].  The positions of the primary users are determined using only the local 

spectrum sensing decisions from the secondary user network [5], [17].  In this way, 

frequency awareness is maintained throughout the localization scheme, which is also a 
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desirable property for source localization of a cognitive radio.  The central idea behind 

semi range-based localization is exploiting the relationship between the distance of the 

secondary user to the primary user and the probability of the secondary user detecting the 

primary user [5], [17].  Thus, spatial awareness is also inherent in semi-range based 

localization.  Given these two characteristics, semi-range based localization is extended 

in this thesis for cognitive radio source localization using a wireless RF sensor network. 

a. Semi-Range Based Iterative Localization Algorithm (ISRB) 

Semi-range based localization was originally introduced by Ma et al. [5].  

Their distinct contribution is the introduction of a hybrid localization algorithm that takes 

advantage of key features from both range-based and range-free localization schemes in a 

cognitive radio environment.  This is accomplished in two ways.  First, the local binary 

spectrum sensing decisions of all secondary users in range of one specific primary user 

are used to estimate the probability of detection at all secondary users.  All positions of 

the secondary users are assumed to be known in advance as each secondary user acts as 

an anchor node to calculate the final position estimate.  Second, the probability of 

detection is used to estimate the distance from each secondary user to the primary user 

similar to the way range-based schemes utilize a specific metric to estimate point-to-point 

distance.  In these two ways, Ma’s localization algorithm behaves in a range-based as 

well as range-free manner.  Therefore, because of its hybrid nature, Ma et al. have 

appropriately entitled their technique a semi-range based iterative localization algorithm 

(ISRB). [5] 

b. Practical Semi-Range Based Localization Algorithm (PSRB) 

One shortfall of ISRB is the requirement for advance knowledge of the 

primary user’s transmission power given that one of the fundamental goals of a cognitive 

radio is no explicit cooperation from the primary user of that frequency spectrum [5], 

[17].  As such, there can be no expectation of knowing the primary user’s exact 

transmission power in advance [17].  Wang et al. has sought to correct this deficiency by 

proposing a practical semi range-based localization algorithm (PSRB) which does not 

require the primary user’s transmission power to be known in advance [17].  Rather, it 
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becomes an additional parameter to be estimated during the localization process [17].  

This is accomplished by approximating the primary user’s power through the iterative 

non-linear least squares method (NLSM) [17].  However, both ISRB and PSRB rely on 

the local binary spectrum sensing decisions obtained by the secondary users in the 

cognitive radio network. 

C. APPLICATION AREA OF COGNITIVE RADIO, SPECTRUM SENSING, 
AND LOCALIZATION IN WIRELESS SENSOR NETWORKS: IEEE 
STANDARD 802.22 – WIRELESS REGIONAL AREA NETWORKS 
(WRAN)  

The most immediate application of cognitive radio technology comes from the 

IEEE 802.22 Working Group (WG), which aims to provide last mile rural broadband 

wireless access through Wireless Regional Area Networks (WRAN) operating in 

television (TV) white spaces [1], [19], [20].  Completed earlier this year, the IEEE 802.22 

WRAN standard employs cognitive radio technology in an unlicensed fashion on top of 

legacy TV broadcasting networks [1], [19], [20].  As such, the cognitive radio network 

cannot interfere with the operation of the existing legacy TV broadcast network [1], [19], 

[20].  Having rights to the allocated spectrum, those radios within the legacy TV 

broadcast network are identified as primary users [1], [3], [5], [19], [20].  Those cognitive 

radios operating within the WRAN are secondary users because they have limited or no 

rights to the allocated spectrum and must perform spectrum sensing to prevent incumbent 

interference [1], [3], [5], [19], [20].  It is important to note that the 802.22 WG is not 

alone in their ambition for the development of cognitive radio technologies [20].  

Multiple other technologies, such as IEEE standard 802.11af for wireless local area 

networks in the TV whitespaces [20], are also being developed to take advantage of 

cognitive radio.  

The network topology of the IEEE 802.22 WRAN is shown in Figure 4 [28].  The 

802.22 WRAN is a point-to-multipoint system where a single base station (BS) manages 

all consumer premise equipment (CPE) within its cell [1], [19].  The average cell is 

intended to cover a 33 kilometer radius but may extend up to 100 kilometers if power is 

not restricted [1], [19].  A maximum of 255 CPEs are supported per BS per TV channel 
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[1].  The BS controls medium access and communicates in the downstream direction to 

all CPE, while the CPE respond in the upstream direction to the BS [1], [19].  The 802.22 

physical (PHY) layer is based on orthogonal frequency-division multiple access 

(OFDMA) with support for data rates of 1.5 Mbps in the downstream direction and 384 

kbps upstream [1], [19].  To facilitate medium access control (MAC), a superframe 

structure is introduced at the MAC layer as shown in Figure 5 [1].  Superframes are used 

to facilitate incumbent protection, synchronization with adjacent 802.22 WRAN cells, 

and self-coexistence [1], [19].  Such actions are coordinated through superframe control 

headers (SCH) and MAC frame control headers (FCH) at the beginning of each frame 

[1], [19].  One superframe consists of 16 MAC frames, which are further divided into 

downstream and upstream sub-frames [1], [19].  The duration of one MAC frame is 10 

milliseconds, which implies that one superframe lasts 160 milliseconds [1]. 

 

Figure 4.   IEEE 802.22 WRAN topology (From [28]). 
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Figure 5.   IEEE 802.22 MAC and superframe structure (From [1]). 

Spectral awareness in IEEE 802.22 is gained through TV channel usage database 

access and spectrum sensing [29].  Spectrum sensing is performed in a cooperative 

distributed manner and is controlled by the base station [1], [19].  In the SCH, designated 

quiet periods (QP) are established within a superframe where no transmission by the CPE 

is authorized [1], [19].  Rather, the BS directs any or all CPE to perform spectrum 

sensing in various TV channels of interest to identify the presence or absence of primary 

users [1], [19].  QP can take place within a MAC frame (i.e., intra-frame QP) for fast 

sensing or between MAC frames (i.e., inter-frame QP) for fine sensing as depicted in 

Figure 6 [1], [19].  Fast sensing is conducted very quickly (e.g., less than 1 millisecond 

per channel) to be extremely efficient [1], [19].  Based on the results of fast sensing, the 

BS may direct fine sensing as needed to develop more detailed measurements [1], [19].  

During fine sensing, alternative spectrum sensing methods other than energy detection 

are used, potentially lasting on the order of a few milliseconds [1], [19]. 
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Figure 6.   IEEE 802.22 intra-frame and inter-frame quiet periods (From [1]). 
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Localization is performed through both geo-location database access and satellite-

based geo-location technology (e.g., Global Positioning System (GPS), Galileo, etc.) in 

the IEEE 802.22 standard [29].  The former is used to verify the presence and channel 

occupancy of the primary users, while the latter is used for self-location among the BS 

and CPEs [29].  All BSs and CPEs are required to know their position before any 

transmission can occur [29].  Since positioning information, spectrum sensing, and 

channel usage database access drive interference prevention, spatial awareness is central 

to enabling cognitive functionality in the 802.22 standard [29]. 

An overview of spectrum sensing methods and localization using a wireless RF 

sensor network was presented in this chapter.  An application area was also presented to 

illustrate how these concepts fit together in the context of cognitive radio and cognitive 

radio networking.  These ideas are built upon and extended to solve the problem of 

cognitive radio source localization in Chapter III.  The proposed extended semi range-

based localization scheme is presented in detail.   



 19

III. EXTENDED SEMI RANGE-BASED (ESRB) LOCALIZATION 
SCHEME FOR COGNITIVE RADIO POSITIONING 

An overview of spectrum sensing and localization in wireless RF sensor networks 

was presented in Chapter II.  Specifically, the semi-range based localization algorithm 

was introduced to illustrate how a wireless RF sensor network can be used to determine 

the location of an emitter of interest in a single frequency band using spectrum sensing as 

shown in Figure 1 [5], [17].  The ideas previously presented are extended to the problem 

of source localization of a cognitive radio using multiple frequency bands in this chapter.  

An in depth explanation of the proposed ESRB localization scheme is provided to 

accomplish this task.  Four fundamental aspects of the scheme are examined: 1) 

cooperative spectrum sensing, 2) spectral environment mapping, 3) localization through 

the iterative NLSM, and 4) position refinement. 

A.  PROPOSED ESRB LOCALIZATION SCHEME  

A conceptual diagram of the proposed ESRB localization scheme is shown in 

Figure 7.  Each block represents a specific function of the ESRB localization scheme.  

The italicized phrases within each block represent what element is responsible for 

performing the function and where the function takes place in the environment.  The text 

over each arrow represents either the information exchanged between two functions or a 

brief procedural summary of the actions taking place between sub-functions.  The 

breakdown of each function shown in Figure 7 is discussed below.   

Spectrum sensing describes an energy detection process where a determination is 

made as to whether or not a user is occupying a specific band of the frequency spectrum 

(i.e., a channel).  Spectral environment mapping involves interpretation of the spectral 

scanning results from the wireless sensor network to build an occupancy map of the 

environment’s frequency usage (i.e., which channels are occupied and which are not).  

Localization estimates the position of a user within an occupied channel.  Lastly, position 

refinement encompasses evaluation and addition of potential secondary users discovered 

in the environment and recalculation of previous position estimates using new 
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measurement data.  The proposed ESRB localization scheme utilizes n-bit spectrum 

sensing at the wireless sensor nodes [18], the majority rule [17], [23] for global decision 

making during spectral environment mapping at the decision maker, and semi range-

based localization [5], [17] in the localization and position refinement processes at the 

decision maker. 
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Figure 7.   Conceptual diagram of the proposed extended semi range-based (ESRB) 
localization scheme for cognitive radio positioning. 

The execution of the ESRB localization scheme begins with spectrum sensing at 

the wireless sensor nodes in the wireless sensor network.  Each sensor node examines a 

fixed portion of bandwidth (i.e., a channel) of the entire frequency spectrum of interest 

(i.e., all channels) over a fixed interval of time and records the presence or absence of a 
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user.  After examining a single channel, the sensor node moves to an adjacent channel 

and performs spectrum sensing once again.  After the entire spectrum of interest is 

examined, a sensor node has completed one spectral scan.  All sensor nodes then report 

their spectral scanning results to a single decision maker for processing and repeat the 

spectral scanning process indefinitely.   

The decision maker in turn begins to aggregate the spectral scanning results of the 

entire wireless sensor network in order to make a global decision in regards to the 

occupancy of the frequency spectrum.  This process is called spectral environment 

mapping because a map of the environment’s channel occupancy can be created as time 

progresses and more spectral scanning results become available.  From this map, the 

decision maker can understand which portions of the frequency spectrum are occupied 

and which are not.  For those channels that are occupied, the decision maker hastily 

localizes the user in the channel.  These unrefined position estimates are then fed back 

into the spectral environment mapping process where a decision is made as to whether a 

primary or secondary user is occupying that channel.  To discriminate between which 

estimated positions are primary or secondary users, the decision maker references a geo-

location database of primary users located within the environment.  The assumption is 

made that the decision maker has access to the same primary user geo-location database 

as the secondary user network has access to, such as in the IEEE 802.22 standard [30–

32].   

Once the decision maker has completed user discrimination of all occupied 

channels, those users of interest, along with their recorded measurements and estimates 

(e.g., estimated position, estimated transmission power, channel occupied, etc.), are 

stored in memory to develop a history of secondary user activity.  As new spectral scans 

become available, the decision maker references this history to cross-reference newly 

discovered positions of potential secondary users with positions previously found.  If a 

match is identified within an acceptable level of tolerance, the previous spectral scanning 

results contained in memory are merged with the latest spectral scanning results.  The 

updated spectral scanning history is then fed back into the localization process to refine 

the position estimate of all potential secondary users discovered.  Finally, the decision 
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maker screens the refined positions against the primary user geo-location database again 

to confirm the refined positions are not those of primary users.  Those secondary user 

position estimates, which have been validated for more than one localization iteration, are 

declared to be secondary users.  If the secondary user moves during ESRB localization 

scheme, the decision maker will record the estimated positions of the mobile secondary 

user after each localization attempt. 

The subsequent sections provide greater detail of the methods used to facilitate 

execution of the ESRB localization scheme. 

B. COOPERATIVE SPECTRUM SENSING IN THE ESRB LOCALIZATION 
SCHEME 

The incorporation of cooperative spectrum sensing in the ESRB localization 

scheme is shown in Figure 8.  The dashed box symbolizes the single box used in Figure 7 

to describe the overall cooperative spectrum sensing function.  Each of the boxes inside 

the dashed box symbolizes sub-functions of the cooperative spectrum sensing function.  

The single boxes outside the dashed box indicate the summary function blocks from 

Figure 7 which interact with the cooperative spectrum sensing sub-functions.  The text 

over each arrow continues to represent either the information exchanged between 

functions or a brief procedural summary of the actions taking place between sub-

functions. 

Each of the sensor nodes within the wireless RF sensor network performs energy 

detection in a fixed bandwidth W (i.e., channel k) over a time interval T [5], [17], [23] 

with the intent of deciding between two hypotheses [5], [17], [23] 
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where ( ) ( )k
ix t  is the observed signal at the ith sensor node in channel k, ( ) ( )k

is t  is the 

signal of interest at the ith sensor node in channel k, and ( )n t  is bandlimited additive 

white Gaussian noise (AWGN) with zero mean and variance of 2
0σ  [17].  The channel is 

assumed to be time-invariant during the spectrum sensing process [5], [17], [23]. 
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Figure 8.   Detailed conceptual diagram of cooperative spectrum sensing in the 
proposed ESRB localization scheme for cognitive radio positioning. 

To account for multipath fading and path loss in the environment, the 

instantaneous received signal power is modeled as a Rayleigh random variable, while the 

average signal power is inversely proportional to distance raised to a power [5], [17], 

[23].  Thus, at time t, the probability density function (PDF) of the amplitude ( ) ( )k
is t  of 

the received signal of interest is [17] 
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where 
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 ( ) ( ) ( )( )k k k
i tx ip cP d

α−
=  (6) 

is the average power of the received user signal at the ith sensor node in channel k.  The 

distance between the user occupying channel k and the ith sensor node is represented by 
( )k
id , the transmission power of the user occupying channel k is represented by ( )k

txP , the 

scalar c is a constant which encompasses all else which can influence the received signal 

power (e.g., antenna gains, antenna heights, etc.), and α  is the path loss factor [17].  The 

assumption is made that all other factors encompassed in the constant c are identical for 

all receivers (e.g. antenna heights, etc.) and that all antenna gains are approximated as 

independent of direction.   When the occupying user’s signal is present in channel k, the 

instantaneous SNR at the ith sensor node is given by [17] 

 ( )
( )( )2

2
0

k
ik

i

s
γ

σ
=  (7) 

which is an exponential random variable [17].  Therefore, the average SNR is [17] 
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=

=

 (8) 

The energy collected over the sensing period T in the bandwidth W at the ith 

sensor node in channel k is designated as ( )k
iX  and has the distribution [5], [17], [23]     

 ( )
( )( )

2
2 0

2
12

,
       

2 ,
uk

i k
u i

H
X

H

χ

χ γ

⎧⎪≈ ⎨
⎪⎩

 (9) 

where u TW= is the time-bandwidth product, 2
2uχ is the central chi-square distribution 

with 2u degrees of freedom, and ( )( )2
2 2 ku

u iχ γ  is the non-central chi-square distribution 

with 2u degrees of freedom and non-centrality parameter ( )2 k
iγ  [5], [17], [23]. 

The average probability of false alarm ( )
,
k

f iP  over a Rayleigh fading channel at the 

ith sensor node in channel k is given by [5], [17], [23] 
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where iλ  is the energy detection threshold at the ith sensor node, ( )Γ ⋅ is the gamma 

function, and ( ),Γ ⋅ ⋅  is the incomplete gamma function.  The average probability of 

detection ( )
,
k

d iP  is given by [5], [17] 
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∑ ∑
  (11) 

For the purposes of the ESRB localization scheme, the desired ( )
,
k

f iP  is declared in 

advance as a performance requirement for each sensor node.  Furthermore, it is held 

constant for all sensor nodes in all channels [5], [17].  Therefore, given a universal 

desired fP  and a specified time-bandwidth product u, the energy detection threshold iλ  

is determined using (10) [5], [17].  Furthermore, since all nodes are assigned the same 

fP , they all have the same λ  [5], [17].  Finally, with u and λ  pre-determined, ( )
,
k

d iP  can 

be considered solely a function of ( )k
iγ  [5], [17].   

After the received signal energy is compared against the energy detection 

threshold of the sensor node, a decision is made with regards to the presence or absence 

of a user, and the result is recorded as a binary one or zero, respectively [5], [17].  Each 

sensor node then observes the adjacent channel and repeats the spectrum sensing 

procedure.  After all channels have been examined, each node reports their 1-bit spectrum 

sensing results as a single row vector (i.e., a spectral scan) to the decision maker [5], [17]. 
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C. SPECTRAL ENVIRONMENT MAPPING IN THE ESRB 
LOCALIZATION SCHEME 

The incorporation of spectral environment mapping in the ESRB localization 

scheme is shown in Figure 9.  Spectral environment mapping takes places at the decision 

maker where additional computational resources are assumed available.  The goal of the 

spectral environment mapping function is to fuse all decision data from the wireless 

sensor network to create an overall map of the spectral environment.  From this map, a 

decision can be made as to whether a secondary user exists in the environment and which 

channel it is occupying.  The function consists of four sub-functions: 1) decision 

aggregation, 2) decision refinement, 3) channel identification for localization, and 4) 

position comparison and user identification. 

 

Figure 9.   Detailed conceptual diagram of spectral environment mapping in the 
proposed ESRB localization scheme for cognitive radio positioning. 
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1. Decision Data Fusion 

Spectral environment mapping begins once the decision maker has collected PN  

spectral scans from the sensor network [17].  Under the decision aggregation sub-

function, the collected spectral scans at the decision maker are organized as a three-

dimensional tensor  

 
P

ijk N N K
z

× ×
⎡ ⎤= ⎣ ⎦Z  (12) 

where N is the number of sensor nodes, PN  is the number of spectral scans, K is the total 

number of channels examined, and  

 0

1

0
       

1ijk

H
z

H
⎧

= ⎨
⎩

 (13) 

represents the local spectrum sensing decision at the ith sensor node from the jth spectral 

scan of channel k [17].  The user occupancy within each channel is assumed to be 

independent of one another.  Therefore, the decision maker breaks down the collected 

spectral scanning decisions on a per channel basis to perform data fusion.  Thus, for a 

single channel k, (12) is reduced to a two-dimensional matrix [17] 

 ( ) ( )

P

k k
ij N N

x
×

⎡ ⎤= ⎣ ⎦X  (14) 

and (13) is reduced to [17] 

 ( ) 0

1

0
        

1 .

k
ij

H
x

H
⎧⎪= ⎨
⎪⎩

 (15) 

Data fusion is performed using the majority decision rule which is shown in [23] 

to optimize the sensor network’s detection performance when ,d iP  and ,f iP  have the 

same order.  That is, if more than / 2N  nodes indicate the channel is occupied, the user 

is declared present.  Applying this rule to ( )kX , a global decision is acquired for channel k 

[17] 

 ( ) ( )
1 P

k k
j N

y
×

⎡ ⎤= ⎣ ⎦y  (16) 

where ( )k
jy is the data fusion result of the jth spectral scan.  From the global decision 

vector ( )ky , a two-dimensional decision matrix is formed for channel k [17] 
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 ( ) ( ) ( ) ( )
1 2diag , , ,

P

k k k k
Ny y y⎡ ⎤= ⎣ ⎦MY K  (17) 

which is used by the measurement refinement sub-function to filter the spectral scanning 

results by the following operation [17]  
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MX X Y

�
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This same process is applied to all channels to develop a complete global spectral 

occupancy map.     

2. Using Position Estimation to Establish User Identity 

The completed map indicates occupied channels and where white space exists 

over PN  spectral scans, but it does not indicate which type of user is present in the 

occupied channels.  To answer this question, the decision maker localizes the users in all 

channels which are occupied.  The central idea is that the decision maker uses the 

position information from the spatial domain to establish user identity in the frequency 

domain.  This process is accomplished by the channel identification sub-function, which 

utilizes the localization function to develop an unrefined position estimate.  Accuracy of 

the position estimate increases when the number of spectral scans increases (see Chapter 

IV.C.2).  Those unrefined position estimates from the localization process are used to 

establish user identity through the position comparison sub-function. 

Given the coarse positions of all users in occupied channels, the position 

comparison sub-function accesses a primary user database to determine which unrefined 

positions match known primary users’ positions within a level of tolerance.  An error 

tolerance radius is defined around the true positions of the primary users gleaned from the 

database.  If a position estimate falls within the tolerance radius of a true primary user’s 

position, then the hastily localized user is declared to be a primary user.  If a position 

estimate does not match any primary user, the user becomes a user of interest as it may be 

a secondary user.  For all users of interest identified, their position estimates, channel 

occupancy, and associated spectral scanning decision data from the sensor network are 
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stored in memory at the decision maker and passed to the position refinement function.  

In this way position estimation is used to establish user identity. 

D. LOCALIZATION THROUGH THE ITERATIVE NON-LINEAR LEAST 
SQUARES METHOD IN THE ESRB LOCALIZATION SCHEME 

The incorporation of localization through the iterative non-linear least squares 

method in the ESRB localization scheme is shown in Figure 10.  The localization 

function occurs at the decision maker.  Each time the localization function is invoked, the 

localization function determines the position of one user occupying one channel.  The 

spectral environment mapping function utilizes the unrefined position results of the 

localization function to distinguish between primary or secondary users in the 

environment.  As such, multiple localization attempts are made.  This is symbolized by 

multiple arrows leading into the detailed localization function block.  The position 

refinement function utilizes the localization function to increase the accuracy of the 

position estimates for probable secondary users.  Localization is accomplished in four 

steps: 1) estimation of the probabilities of detection for all sensor nodes in channel k, 2) 

conversion of the probabilities of detection estimates into SNR estimates, 3) conversion 

of the SNR estimates into distances, and 4) position estimation using the NLSM. 

( )
,
k

d iP

( )
,
k

d iP

 

Figure 10.   Detailed conceptual diagram of localization through the iterative non-
linear least squares method (NLSM) in the proposed ESRB localization scheme 

for cognitive radio positioning. 
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1. Average SNR Estimation Through the Probability of Detection 
Estimates 

From ( )� kX , an estimate of the average probability of detection at the ith sensor 

node of the user occupying channel k is obtained as 

 ( )

( )

( )( )
1

,
tr

.

PT
k

ij
k j

d i k

x
P ==

∑

MY
 (19) 

As in the ISRB [5] and PSRB [17] localization algorithms, the estimate of ( )
,
k

d iP  is used to 

obtain ( )k
iγ  by (11); however, ( )k

iγ cannot be directly obtained from (11) due to its 

complexity [5], [17].  Instead, a table lookup method is used to solve for ( )k
iγ  given the 

estimate of ( )
,
k

d iP .  Tables of ( )k
iγ  for various values of u and λ  are generated and stored 

in memory at the decision maker so that, given a specific pair of values for u and λ , the 

correct ( )k
iγ  is obtained within the level of tolerance of the table calculations [5], [17].  

The assumption is made that the decision maker has enough memory and computational 

resources to perform such an operation [17]. 

2. Position and Power Estimation Through the Average SNR Estimates 
and the Iterative Non-Linear Least Squares Method 

The value of the SNR estimate ( )k
iγ  is the relationship between the distance of the 

sensor node from the user occupying channel k and the SNR at the sensor node [5], [17].  

In general, the farther the sensor node is away from the user occupying the channel, the 

lower the SNR will be at the sensor node [5], [17].  This relationship is illustrated by (8), 

where the distance of the occupying user ( )k
id can be solved for directly from the SNR 

estimate ( )k
iγ .  However, to accomplish this, the transmission power of the occupying 

user ( )k
txP , the noise variance 2

0σ , the path loss factor α , and the constant c must be 

known in advance.  Even when precise values for these parameters are not known in 

advance, the overall localization process is capable of handling such inaccuracies as 
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demonstrated through simulation in [5].  This is possible because of adequate spatial 

separation amongst the sensor nodes and resiliency in the estimation process through 

collaborative spectrum sensing [5]. 

As mentioned in Chapter II.B.3.b, the motivation behind the PSRB localization 

algorithm is to remove any requirement for cooperation between the secondary user 

network and the primary user network in the localization process [17].  As such, ( )k
txP  

becomes an additional parameter to be estimated.  It is assumed to be unavailable due to 

lack of cooperation between networks [17].  This assumption is carried forward into the 

ESRB localization scheme, where the position and transmission power of the secondary 

user are parameters estimated by the sensor network.  No cooperation is assumed 

between the sensor network and the primary or secondary user networks.    

A two-dimensional Cartesian coordinate system is used to establish true positions 

for all elements in the environment with the decision maker located at the origin [17].  

This arrangement is shown in Figure 11.  The true position and power of the user 

occupying channel k is represented by a row vector [17]  

 ( ) ( ) ( ) ( ), ,k k k k
txx y Pθ ⎡ ⎤= ⎣ ⎦  (20) 

where ( )kx  and ( )ky  are the Cartesian position coordinates of the user occupying channel 

k, and ( )k
txP is the transmission power of the user occupying channel k [17].  Similarly, for 

the ith sensor node, its Cartesian coordinates are represented as ( ),i ia b  where ia is the 

horizontal Cartesian coordinate and ib is the vertical Cartesian coordinate [17]. 

To solve for the true position of the user occupying channel k using the spectral 

scanning decision data available, (8) is rewritten as [17]  

 ( )( )
( )

( )

2

2

2
0

0
k

k tx
k

i

cPd
n

α

γ

⎛ ⎞
⎜ ⎟− =
⎜ ⎟×⎝ ⎠

 (21) 

which, for the ith sensor node, is further expanded to [17]  
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0
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Primary User 2

Primary User 3

Primary User 4

Primary User 5

Decision Maker
[0, 0]

Sensor Nodes

( ) ( ) ( ) ( ), ,k k k k
txx y Pθ ⎡ ⎤= ⎣ ⎦

( ) ( ) ( ) ( )1 1 1 1, ,k k k k
txx y Pθ + + + +⎡ ⎤= ⎣ ⎦

( ) ( ) ( ) ( )2 2 2 2, ,k k k k
txx y Pθ + + + +⎡ ⎤= ⎣ ⎦

( ) ( ) ( ) ( )3 3 3 3, ,k k k k
txx y Pθ + + + +⎡ ⎤= ⎣ ⎦

( ) ( ) ( ) ( )4 4 4 4, ,k k k k
txx y Pθ + + + +⎡ ⎤= ⎣ ⎦

( ) ( ) ( ) ( )5 5 5 5, ,k k k k
txx y Pθ + + + +⎡ ⎤= ⎣ ⎦

( ),i ia b

( )1 1,i ia b+ +

( )2 2,i ia b+ +

( )3 3,i ia b+ +

 

Figure 11.   Two-dimensional Cartesian coordinate system of the environment in the 
ESRB localization scheme. 
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2
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i

cx a x y b y a b P
n
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α

γ

⎛ ⎞
⎜ ⎟− + − + + − × =
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 (22) 

using the fact that the square of distance d between any two points in a Cartesian 

coordinate system can be expressed as 

 ( ) ( )2 22
2 1 2 1d x x y y= − + −  (23) 

with the first point located at ( )1 1,x y  and the second point located at ( )2 2,x y .  Equation 

(22) is then rewritten as a function of ( )kθ to aid in developing an estimate of the user’s 

position and power [17]: 
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n
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The estimate of the user’s true position and transmit power through the iterative NLSM is 

defined as  

 ( )� ( )� ( )� ( )�, ,
.

k k k k
txx y Pθ ⎡ ⎤

⎢ ⎥⎣ ⎦
�  (25) 

To achieve the Minimum Mean Square Error (MMSE) of ( )� kθ , the following relationship 

must be satisfied [17] 

 ( )�( ) ( )( )2 2

1 1

min
.

N N
k k

i i
i i

f fθ θ
= =

=∑ ∑  (26) 

This can be accomplished through various numerical optimization techniques [33].  

Given the overdetermined nature of the system of equations to be solved, where N sensor 

nodes are used to solve for three unknown variables, the iterative non-linear least squares 

method can provide an optimal local numerical solution [17], [33]. 

Application of the iterative non-linear least squares method begins by choosing 

initial values for ( )� kθ [17], [33].  These initial values are denoted as [17] 

 ( )� ( )� ( )� ( )�( ),0 ,0 ,0 ,0, ,k k k k
txx y Pθ =  (27) 

where the superscript ( ),k l  indicates the lth iteration of the non-linear least squares 

method for the user occupying channel k.  It is critical that these initial values be as close 

as possible to the true values in order for the iterative NLSM to converge to a local 

solution [17], [33].  Locally convergent methods, such as the iterative NLSM, will fail 

when the initial values are not close to the true solution [33].  Such failures become a 

significant issue when a small number of spectral scans are available at the decision 

maker (see Chapter III.C.3 and Chapter IV.C.1).  To overcome this drawback, n-bit 

spectrum sensing is incorporated in the cooperative spectrum sensing process of the 

ESRB localization scheme.  Additional logic is also added at the decision maker to 

overcome failure in any localization attempt. 
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To develop accurate initial values to seed the iterative NLSM, ( ),0k
txP  is set to the 

median transmission power of all secondary and primary users in the environment [17].  

The initial Cartesian coordinates ( )� ( )�( ),0 ,0,k kx y  for the user occupying channel k are 

derived from the sensor node with the highest probability of detection [17].  As in the 

PSRB localization scheme, the assumption is made that the sensor node with the highest 

probability of detection lies in the same general direction as the user occupying channel k 

[17].  To exploit this assumption, sensor node m is assumed closest to the user occupying 

channel k.  Equation (22) can then also be rewritten in polar form as [17] 

 ( )( ) ( ) ( ) ( )( )
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 (28) 

where [17] 

 2 2
m m mr x y= +  (29) 

and ( ),0kd  is the initial estimate of the distance between the decision maker at the origin 

and the occupying user, and ( ),0kϕ  is the angle from the decision maker at the origin to 

sensor node m.  The angle ( ),0kϕ  is given by [17]  
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Solving (28) for ( ),0kd , we obtain [17] 
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The initial estimate of the distance between the decision maker at the origin and the 

occupying user can be translated into initial coordinates ( ) ( )( ),0 ,0,k kx y by  

 ( ) ( ) ( )( ),0 ,0 ,0cos  k k kx d ϕ=  (32) 

 ( ) ( ) ( )( ),0 ,0 ,0sin
.

k k ky d ϕ=  (33) 

With ( )� ,0kθ  obtained, the first iteration of the non-linear least squares method can 

begin [17], [33].  Each iteration centers around the relationship given by [17] 

 ( )� ( )� ( ), 1 , ,k l k l k lθ θ κ+ = + ψ  (34) 

where ( )� ,k lθ is the current estimate of the position and power of the user occupying 

channel k, the vector 
( ),k l

ψ  contains the Gauss-Newton direction, κ  is a scalar which 

adjusts the magnitude and sign of the Gauss-Newton direction, and ( )� , 1k lθ + is the updated 

estimate at the end of the iteration.  The Gauss-Newton direction 
( ),k l

ψ and the scalar κ  

provide a correction to the estimate throughout each iteration of the non-linear least 

squares method [17], [33].  Provided the initial estimate is close to the true solution, the 

estimate will converge toward the local solution with each correction [17], [33].  In each 

iteration, the Gauss-Newton direction is obtained by solving the normal equations [17], 

[33]  

 ( )( ) ( ) ( ) ( )( ) ( ), , , , ,T Tk l k l k l k l k l= −A A ψ A f  (35) 

where [17] 

 ( ) ( )�( ) ( )�( ) ( )�( ), , , ,
1 2, , ,

T
k l k l k l k l

Nf f fθ θ θ⎡ ⎤= ⎢ ⎥⎣ ⎦
f K  (36) 

and 
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The scalar κ  is found by satisfying [17] 

 ( )�( ) ( )� ( )( ), 1 , ,2 2

1 1

min
.

N N
k l k l k l

i i
i i

f f
κ

θ θ κ+

= =
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As iterations proceed, once [17] 

 ( )� ( )�, 1 ,k l k lθ θ ε+ − <  (39) 

is satisfied, where ε  is a predefined level of tolerance in the difference between position 

estimates after each iteration, the iterative method ceases, and ( )� , 1k lθ + is the optimal 

estimate.  

3. Protection Against Divergence Through n-bit Spectrum Sensing 

As mentioned in Chapter III.C.2, the iterative non-linear least squares method can 

and will fail when ( )� ,0kθ  is not close to the true solution [33].  The failure is due either to 

the Gauss-Newton direction not being in a direction of descent for ( )( )k
if θ  or the length 
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of the Gauss-Newton direction may be too great [33].  This results in an increase of 
( )( )k

if θ  and divergence of the iteration [33].  When this occurs, a solution cannot be 

obtained from the iterative non-linear least squares method [33]. 

To help overcome this issue, n-bit spectrum sensing is incorporated in the overall 

ESRB localization scheme to develop accurate initial values as quickly as possible.  This 

is accomplished by modifying the cooperative spectrum sensing process outlined in 

Chapter III.B.  Rather than simply rely on a single bit to indicate the presence or absence 

of a user, multiple bits are used to indicate how strong the received energy is at the sensor 

node during each sensing period [18].  The trade-off for this improved resolution is 

additional overhead in communication between the wireless sensor network and the 

decision maker [18].  For a single channel k, the n-bit spectral scanning results comprise 

a two-dimensional matrix 

 ( ) ( )

P

k k
ij N N

m
×

⎡ ⎤= ⎣ ⎦M  (40) 

where 

 ( ) 0
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1, 2,3,..., 2 1
k

ij n

H
m

H
⎧

= ⎨ −⎩
 (41) 

is the n-bit spectrum sensing result for the ith sensor node in the jth spectral scan of 

channel k. 

As in two-bit [22] and three-bit [18] hard combination, multiple energy detection 

thresholds are established to make the determination as to which energy region the 

received signal energy falls into [18], [22].  The thresholds are determined using 

Neyman-Pearson criterion [18], [22].  The fP is fixed in advance while the ( )
,
k

d iP  is 

maximized [18], [22].  The fP values for each of the energy detection regions are shown 

in Table 1 [18].  The false alarm values for each threshold are determined by the 

coefficients nβ  [18].  These coefficients are determined by [18] 

 10 ,         2,3,..., 2 1n n
n nβ −= = −  (42) 
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where n is the threshold index and 0 1β =  [18].  As shown in [18], determining thresholds 

are design issues. 

Table 1.   Thresholds and false alarm values for n-bit spectrum sensing (From [18]). 

Threshold
fP , False Alarm

2 1nλ
−

 
2 1n fPβ
−

 
… … 

3λ  
3 fPβ  

2λ  
2 fPβ  

1λ  
1 fPβ  

Unlike two-bit hard combination, the presence of the user occupying the channel 

is not determined by the weighting scheme given by (3).  Rather, the presence of the user 

occupying the channel is determined by the majority rule for binary spectrum sensing as 

previously discussed in Section B.  To facilitate use of the majority decision rule, the n-

bit spectrum sensing results are converted into binary spectrum sensing results in 

accordance with 
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The binary spectrum sensing results are then used to filter the n-bit spectrum sensing 

results by 
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Finally, a weighted estimate of ( )
,
k

d iP  is obtained as 
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E. POSITION REFINEMENT IN THE ESRB LOCALIZATION SCHEME 

The incorporation of position refinement in the ESRB localization scheme is 

shown in Figure 12.  The position refinement process takes place at the decision maker.  

The purpose of the position refinement function is to manage the history of the potential 

secondary users discovered in the environment.  This includes refining previous position 

estimates for users of interest already discovered.  The position refinement function 

consists of two sub-functions: 1) spectrum sensing isolation and 2) secondary user 

position refinement. 

 

Figure 12.   Detailed conceptual diagram of position refinement in the proposed ESRB 
localization scheme for cognitive radio positioning. 

1. Using Position Estimation to Track Frequency 

The essence of the position refinement function is managing the secondary user 

history at the decision maker.  Through this process the decision maker is able to track 

the channel occupancy of secondary users based on estimates of their position.  Users of 

interest and their selected decision data become available after PN  spectral scans from 
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the spectral environment mapping function.  As time progresses, new users of interest 

will become identified after another PN  spectral scans have taken place.  The position 

refinement process determines if the newly discovered users match the positions of any 

previously discovered users.  If so, the matched users’ channels and position estimates 

are recorded under the previously discovered users’ information.  In this way, as multiple 

secondary users move into new channels over time, the decision maker is able to track 

which channels have been occupied by the same user.  This process begins with the 

spectrum sensing isolation sub-function. 

2. Isolating Spectrum Sensing Results 

 The goal of the spectrum sensing isolation sub-function is to pair old spectrum 

sensing decision data to new decision data for matching position estimates.  This is 

accomplished by determining if any new position estimates fall within a radius of 

tolerance from old position estimates for users of interest.  If a match is found, then the 

old and new spectral scanning results from the wireless sensor network are merged.  If a 

match is not found, then the newly discovered user is considered a different user and not 

considered to be one of the users previously recorded prior to that point in time.  The 

unmatched user is recorded in the secondary user history without any relationship to any 

previously discovered results.  The number of times a user has been successfully paired 

with new measurement results is also recorded for each user contained in memory.  

Those users, which have been discovered more than once, are declared to be secondary 

users. 

3. Position Refinement 

As decision data is aggregated by the spectrum sensing isolation sub-function, the 

secondary user position refinement sub-function reevaluates the position estimate of all 

potential secondary users.  With additional spectral scans available for matched users of 

interest, the localization process is capable of increasing the accuracy of the position 

estimate.  These position estimates are fed back into the position refinement process and 

recorded in memory.  As additional decision data is made available through the spectrum 
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sensing isolation sub-function, the position refinement process is repeated to continue 

updating potential secondary users’ positions.   

An in-depth explanation of the proposed ESRB localization scheme was provided 

in this chapter.  Four aspects of the scheme were examined in detail: 1) cooperative 

spectrum sensing, 2) spectral environment mapping, 3) localization through the iterative 

NLSM, and 4) position refinement.  It was proposed that n-bit spectrum sensing may 

improve the performance of the iterative NLSM through accurate estimation of ( )
,
k

d iP  in a 

shorter period of time than binary spectrum sensing.  The performance of the proposed 

ESRB localization scheme is demonstrated through simulation in the following chapter.  

Specifically, an in depth examination of the simulation scenario, simulation model, and 

results are provided, which illustrate the strengths and weaknesses of the proposed ESRB 

localization scheme. 
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IV. SIMULATION MODEL AND RESULTS 

A detailed explanation of the ESRB localization scheme was provided in Chapter 

III.  The proposed scheme was summarized by its four primary functions: 1) cooperative 

spectrum sensing, 2) spectral environment mapping, 3) localization through the iterative 

NLSM, and 4) position refinement.  An implementation of the ESRB localization scheme 

in a specific simulation scenario and a simulation model is presented in this chapter to 

demonstrate its performance.  The simulation scenario and simulation model are 

described in detail in the sections immediately following.  Power estimation and the 

effects of n-bit spectrum sensing, the number of spectral scans, and the number and 

position range of sensor nodes on the ESRB localization scheme are shown in Section C.  

Frequency mobility, spatial mobility, and scalability of the proposed scheme are 

addressed in the instantaneous results shown in Section D. 

A. SIMULATION SCENARIO 

The overall simulation scenario was originally introduced in Figure 1.  It is 

presented again, in greater detail, in Figure 13 to give a clearer picture of how the ESRB 

localization scheme is implemented.  In this scenario, three networks are present: 1) the 

primary user network, 2) the secondary user network, and 3) the wireless RF sensor 

network.  A frequency-division multiple access (FDMA) network is assumed for the 

primary user network.  That is, the entire frequency spectrum is broken up into a series of 

non-overlapping frequency bands or channels [5].  All channels are assumed to have one 

primary user present.  Each primary user operates in one channel of the entire frequency 

band at random discrete intervals, leaving unused portions of the frequency spectrum 

available over time.  All secondary users attempt to transmit at each corresponding time 

interval as the primary users do; however, the secondary users may transmit only over 

unused portions of the frequency spectrum.  In addition, only one secondary user is 

assumed able to transmit in one unoccupied channel in one time interval.  If more than 

one unoccupied channel is available, then more than one secondary user can transmit.  
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Secondary users perform spectrum sensing to determine where white spaces exist to 

facilitate continual transmission without incumbent interference [1], [19].   
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Figure 13.   Simulation scenario using a wireless RF sensor network to determine the 
frequency bands and location of a stationary cognitive radio. 

The wireless RF sensor nodes are randomly dispersed within a confined 

geographic area around the decision maker.  All sensor nodes perform spectrum sensing 

in each channel across the entire frequency band of interest.  Path loss, shadowing, 

multipath fading, and noise all influence the spectrum sensing results of the sensor nodes 

[5], [17].  However, the channel is assumed to be time-invariant during each spectrum 

sensing period [5], [17].  The sensor nodes are assumed to be capable of sensing the 

spectrum in a much shorter time interval than the occupancy duration of the primary or 

secondary users [1].  The decision maker, at the origin, collects the spectrum sensing 

results of the sensor network and estimates the position of all secondary users in the 
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environment using the ESRB localization scheme.  The positions of the primary users and 

secondary users are assumed stationary during each localization process [5]; however, 

limited mobility is added to the secondary user for evaluating the instantaneous 

performance of the ESRB localization scheme in Section D.  The positions of all sensor 

nodes are assumed to be known in advance by the decision maker [5], [17]. 

The random channel occupancy behavior of the primary user is driven by a 

discrete time two-state Markov model as shown in Figure 14.  The primary user moves 

between an ‘idle’ or ‘busy’ state for various discrete lengths of time as determined by the 

probabilities ip  and bp , respectively [5].  During the ‘busy’ state, the primary user 

continuously transmits a fixed amplitude signal.  During the ‘idle’ state, no traffic is 

broadcast, leaving white space in the frequency spectrum [5], [17]. 

 

Figure 14.   Two-state Markov model of primary user channel occupancy [5]. 

The basis for spectrum sensing behavior of all secondary users is the IEEE 802.22 

standard [1], [19].  As discussed in Chapter II.C, the IEEE 802.22 standard dictates the 

use of quiet periods for spectrum sensing across the cognitive radio network [1], [19].  As 

such, QP are introduced into the data traffic of all secondary users in the simulation 

scenario.  Specifically, fast and fine spectrum sensing periods are assigned with random 

uniform probabilities rp  and vp  within the superframes and MAC frames of the 

secondary user transmissions [1], [19].  The assumption is made that the secondary user 

will determine if a channel is occupied only after fast and fine spectrum sensing have 

taken place [1], [19].  Thus, the duration of one superframe is the most discrete unit of 

time a secondary user is assumed to be stationary in one channel of the frequency 

spectrum [19].  For purposes of the simulation scenario, it is also the most discrete unit of 
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time one primary user will occupy a channel.  When white space has been identified and 

chosen by the secondary user, transmission consists of a fixed amplitude signal.  No 

transmission occurs during designated quiet periods within superframes or MAC frames 

[1], [19]. 

The behavior of the wireless sensor network and the decision maker is in 

accordance with the ESRB localization scheme described in Chapter III.  The sensor 

nodes conduct spectrum sensing in each channel across the entire frequency band of 

interest and report their spectrum sensing results to the decision maker as a single spectral 

scan.  The assumption is made that no errors occur in transmission of decision data to the 

decision maker and that all decision data is transmitted instantaneously [5], [17].  In turn, 

the decision maker aggregates the spectral scanning results of the wireless sensor network 

and develops a global channel occupancy map.  From the channel occupancy map, the 

decision maker identifies which channels are occupied and which are not over the time 

duration of the spectral scans received.  For the purposes of the simulation scenario, this 

occurs after every superframe in the secondary user network.  Shadowing, as a form of 

medium scale fading, is assumed to be deterministic during each superframe but varies 

between superframes as a random variable [5].  The decision maker localizes the users 

within the occupied channels to discriminate, which users are primary users and which 

are potential secondary users.  Potential secondary users are labeled as users of interest, 

and their position estimates are stored in memory at the decision maker along with the 

sensor network’s spectral scanning results for that channel.  As additional spectral scans 

become available, the decision maker refines the position estimates for all users of 

interest stored in memory.  If the position estimate of a user of interest is confirmed more 

than once, it is considered to be a secondary user. 

B. SIMULATION MODEL 

The exact simulation model of the simulation scenario previously described is 

shown in Figure 15.  Five primary users and one secondary user are assigned stationary 

positions in accordance with the coordinates listed in Table 2.  The primary users’ busy 

and idle probabilities ip  and bp , respectively, are both set to 0.3 to ensure enough white 
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spaces exist for the secondary user to always have a channel available for transmission.  

The transmission powers of the primary and secondary users are set to 18 Watts and 16 

Watts, respectively.  These transmission powers are set close to one another to remove 

power as a distinguishing feature between primary and secondary users, although in 

practice the transmission power of the secondary user may be much less than the primary 

user [1], [19].   
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Figure 15.   Simulation model using a wireless RF sensor network to determine the 
frequency bands and location of a stationary cognitive radio. 
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Table 2.   Primary and secondary user coordinates used to study the effects of various 
parameters on the ESRB localization scheme. 

Users X-Coordinates (m) Y-Coordinates (m) 
Primary User 1 2800 2800 
Primary User 2 0 4000 
Primary User 3 0 -4000 
Primary User 4 -2800 -2800 
Primary User 5 -4000 0 

Secondary User 1 0 2000 

The secondary user’s fast and fine sense probabilities rp  and vp , respectively, 

are set to 0.65 and 0.45, respectively.  A probability greater than 0.5 was assumed for fast 

sensing to ensure on average spectrum sensing took place within the majority of MAC 

frames [1], [19].  Fine spectrum sensing is assumed to take place less often as the 

secondary user network desires to maintain a high quality of service (QOS) and, 

therefore, only engages in fine sensing when necessary.  Hence, the probability vp  is set 

much lower than rp [1], [19]. 

Fifty sensors nodes are uniformly distributed at random within a 900 meter 

perimeter from the decision maker at the origin.  No sensor node is allowed within 50 

meters of the decision maker’s position to ensure adequate spatial separation during 

spectrum sensing.  The positions of all sensor nodes are randomly assigned each 

simulation run.  The fP  is set to 0.01 for all sensor nodes.  Using (10) and defining a 

time-bandwidth product u of 5.0, we derived an energy detection threshold λ  of 13.96 

for all sensor nodes. 

The following channel conditions are defined to facilitate path loss, shadowing, 

multipath fading, and noise in the simulation model.  Path loss and noise are modeled 

using (8) where the constant c is set to 0.01, the path loss exponent α is set to 3, and 

noise variance 2
0σ  is set to –90 dBm [17].  Shadowing is modeled as a log-normal 

distribution and is defined as [5], [18] 

 1010
s

S
ϑ

=  (46) 
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where Sϑ  is a Gaussian random variable with a mean of zero and standard deviation sσ  

of one.  To implement the effects of shadowing in the simulation model, (8) is modified 

as 

 ( )
( ) ( )( )

2
0 .

k k
tx ik

i

cP d S
α

γ
σ

−

=  (47) 

As discussed previously in the simulation scenario, the random variable sϑ  is constant 

throughout each superframe but is randomly changed between superframes in accordance 

with (46).  Multipath fading is modeled using (9) where ( )k
iγ  is modeled using (47). 

The initial power estimate ( )� ,0k
txP at the decision maker is set to 17 Watts, the 

median transmission power of the primary and secondary users.  The radius of tolerance 

for accepting an unrefined position estimate as a primary user or secondary user is set to 

750 meters.  During the localization process, ε  (i.e., the level of tolerance in the 

difference between position estimates after each iteration of the iterative NLSM) is set to 

one.  If the position estimate falls within the perimeter of the wireless sensor network, the 

decision maker assumes the localization attempt has diverged and ignores the position 

estimate. 

To study the effects of various parameters on the performance of the ESRB 

localization scheme, the simulation model is run approximately 1000 times.  Unless 

otherwise indicated, each simulation execution is run for 10 superframes with the 

wireless sensor network performing 600 spectral scans per superframe.  The root-mean-

square error (RMSE) RMSEξ  over all simulation executions is used as the performance 

metric to determine the effectiveness of the ESRB localization scheme.  The RMSE 

RMSEξ  is determined in accordance with 

 �( ) � 2

RMSE error errord E dξ ⎡ ⎤= ⎢ ⎥⎣ ⎦
 (48) 

where �errord is the distance error of the position estimate of the secondary user after each 

simulation execution.  The simulation is implemented in the MATLAB programming 
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language.  The effects of varying multiple parameters on the ESRB localization scheme 

can be seen in the following sections. 

C. ESRB LOCALIZATION RESULTS 

1. Effects of n-bit Spectrum Sensing 

The benefits of using n-bit spectrum sensing and (45) to obtain ( )
,
k

d iP  are shown in 

Figure 16 and Figure 17.  The divergence percentage of the iterative NLSM and RMSEξ  of 

the secondary user position estimate are used as performance metrics to evaluate the 

efficacy of the proposed ESRB localization scheme.  The divergence percentage is 

determined by 

 %
Number of Localization Attempts where Divergence Occurs 100 . Total Number of Localization Attempts

D = ×  (49) 

The effects of the number of spectral scans on divergence percentage as a 

function of the number of bits in the n-bit spectrum sensing process are shown in Figure 

16.  The divergence percentage for binary (i.e., 1-bit) spectrum sensing declines 

exponentially as the number of spectral scans increases linearly.  However, using two-bit 

and three-bit spectrum sensing, the divergence percentage declines at an accelerated rate 

relative to binary spectrum sensing.  Such acceleration indicates with higher bit-order 

spectrum sensing the number of localization attempts with divergence decreases as the 

bit-order increases.  As an example,  for two-bit or three-bit spectrum sensing, the 

divergence percentage is near zero for 500 spectral scans compared to almost 40% for 

binary spectrum sensing.   For more than three-bits, however, the percentage divergence 

does not outperform binary spectrum sensing when more than 400 spectral scans are 

available.  Further work is needed to examine the effects of using more than 3-bits in the 

spectrum sensing process. 
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Figure 16.   Divergence percentage versus the number of spectral scans for three 
different bits values in n-bit spectrum sensing. 

The effects of the number of spectral scans on the RMSE of the position estimate 

as a function of the number of bits in the n-bit spectrum sensing process are shown in 

Figure 17.  Under binary spectrum sensing, RMSEξ  exponentially declines as the number 

of spectral scans increases linearly.  However, in similar fashion to divergence 

percentage, both two-bit and three-bit spectrum sensing outperforms the use of a single 

bit in terms of position estimation.  With the reduction in failed localization attempts 

from higher bit-order spectrum sensing, the ESRB localization scheme is able to develop 

a more accurate estimate of the secondary user’s position using a reduced number of 

spectral scans.  Furthermore, two-bit spectrum sensing outperforms three-bit spectrum 

sensing in terms of position estimation.  Beyond 300 spectral scans, RMSEξ  for two-bit 

spectrum sensing remains below three-bit spectrum sensing.  Two-bit spectrum sensing is 
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capable of achieving significantly lower error performance while acheiving 

approximately the same decline in divergence percentage as three-bit spectrum sensing. 
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Figure 17.   Position estimation RMSE versus the number of spectral scans for three 
different bit-level values in n-bit spectrum sensing. 

In summary, the divergence percentage directly influences position estimation as 

each failed localization attempt reduces the ability of the ESRB localization scheme to 

accurately estimate the secondary user’s position.  This can be attributed to the weighting 

scheme of (45) on the estimates of ( )
,
k

d iP .  The measurement results of sensor nodes with 

extremely low probabilities of detection are suppressed as the number of bits in n-bit 

spectrum sensing increases.  Measurement results of the sensor nodes with higher 

probabilities of detection are weighted more heavily.  As a result, two-bit spectrum 
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sensing was used in all remaining simulations of the ESRB localization scheme due to 

improved performance in position estimation over three-bit spectrum sensing. 

2. Effects of the Number of Spectral Scans per Superframe 

The effects of the number of spectral scans per superframe on the RMSE of the 

position estimate of the secondary user as a function of the number of sensor nodes are 

shown in Figure 18.  Two significant conclusions can be drawn from results shown in this 

figure.  First, in general, regardless of the number of sensor nodes, as the number of 

spectral scans increases, the RMSE of the position estimate of the secondary user 

decreases.  The reason for this behavior is that as the number of spectral scans increases a 

more accurate estimate of ( )
,
k

d iP  is obtained.  With a more accurate estimate of ( )
,
k

d iP , a 

more accurate estimate of ( )k
iγ can also be obtained.  Thus, the iterative NLSM is able to 

derive a more accurate position estimate of the secondary user overall. 
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Figure 18.   Position estimation RMSE versus the number of spectral scans per 
superframe for three different numbers of sensor nodes. 
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Second, as the number of sensor nodes increases, the RMSE of the position 

estimate of the secondary user decreases.  This can be attributed to the collaborative 

spectrum sensing process and the iterative NLSM.  Through collaborative spectrum 

sensing, as the number of sensor nodes increases a more accurate estimate of the global 

channel occupancy can be obtained by the decision maker.  This in turn contributes to a 

more accurate estimate of ( )
,
k

d iP , which, as stated previously, leads to a more accurate 

position estimate overall.  Under the iterative NLSM as the number of nodes increases, 

more relevant decision data is available to derive the final position estimate.  Thus, an 

initial estimate can be obtained closer to the true value.  However, simply adding more 

nodes to the network is not sufficient.  For additional decision data to be useful, adequate 

spatial separation must be maintained as will be shown in Section C.5. 

3. Effects of the Number of Superframes 

The effects of the number of superframes on the RMSE of the position estimate of 

the secondary user as a function of the number of spectral scans per superframe are 

shown in Figure 19.  As illustrated by the figure, a more accurate estimate of the 

secondary user’s position can be obtained as the number of superframes increases 

regardless of the number of spectral scans per superframe.  This can be observed by 

comparing the rate of decline in RMSEξ  when using 200, 400, or 600 spectral scans per 

superframe.  When only 200 spectral scans per superframe are used, a significant drop 

occurs in  RMSEξ .  For 400 and 600 spectral scans, only a minor improvement in RMSEξ  is 

observed relative to 200 spectral scans.  Such benefit in RMSEξ with only 200 spectral 

scans can be attributed to the value of the position refinement process at the decision 

maker.   

As previously shown in Section C.2, an increase in the number of spectral scans 

per superframe generates a more accurate estimate of the individual ( )
,
k

d iP  leading to a 

more accurate overall position estimate.  The same effect can be achieved by increasing 

the number of superframes over which the decision maker attempts to localize the 

secondary user.  The spectrum sensing isolation sub-function takes each additional 
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superframe’s relevant decision data and appends it to the appropriate user of interest in 

the decision maker’s history.  The position refinement sub-function then recalculates the 

position of all users of interest in memory with the new decision data.  Thus, over time 

the decision maker can build up the necessary number of spectral scans to obtain an 

accurate position estimate rather than require the sensor network to achieve a large 

number of spectral scans each superframe.  This benefit is substantial when considering 

the communication burden that must occur between the decision maker and the sensor 

network. 
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Figure 19.   Position estimation RMSE versus the number of superframes for three 
different numbers of spectral scans per superframe. 

4. Effects of the Number and Position Range of Wireless Sensor Nodes 

The effects of the number of sensor nodes on the RMSE of the position estimate 

of the secondary user as a function of the number of spectral scans per superframe are 
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shown in Figure 20.  The effects of the position range of the wireless sensor network on 

the RMSE of the position estimate of the secondary user as a function of the number of 

sensor nodes are shown in Figure 21.  Of primary importance, the results depicted in both 

these figures indicates that the number of sensor nodes is not a significant factor, but 

rather spatial-sensing separation is the key characteristic which must be preserved for 

accurate position estimation [2].  The need for spatial-sensing separation is further 

confirmed in the relatively constant error in position estimation shown in Figure 20 

regardless of the number of wireless sensor nodes.  This constant error contrasts heavily 

with the significant decrease in accuracy shown in Figure 21 when the sensor network is 

restricted to a small perimeter.   Such decline in accuracy occurs regardless of the number 

of sensor nodes used, again illustrating the significance of spatial-sensing separation in 

the ESRB localization scheme.  
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Figure 20.   Position estimation RMSE versus the number of wireless sensor nodes for 
three different numbers of spectral scans per superframe.  
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Figure 21.   Position estimation RMSE versus the position range of wireless sensor 
network (WSN) in meters for three different numbers of sensor nodes. 

5. Power Estimation 

For all of the simulations conducted in the previous sections, the power of the 

primary users and the secondary user were assumed to be nearly the same to remove 

power as a distinguishing feature between the two different types of users.  However, in 

practice, the secondary user is assumed to be using significantly less power than the 

primary user [1], [19].  For this reason, and to demonstrate the efficacy of the ESRB 

localization scheme in power estimation, the transmission power of the PU is set to 18 

Watts and the transmission power of the SU is set to 4 Watts in this section.  The initial 

power estimate ( )� ,0k
txP  at the decision maker is set to 11 Watts, the median transmission 

power of the primary and secondary users.  The error in power estimation of the 

secondary user is shown in Figure 22.  Similar to the results obtained in Section C.3, the 
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accuracy of the power estimation improves as the number of superframes increases.  The 

reasons for the accuracy of the power estimate are the same reasons as position accuracy 

improvement as mentioned previously in Section C.3.  The selective aggregation of 

relevant decision data over time allows the decision maker to improve the overall 

position and power estimate regardless of the fidelity in decision data obtained from each 

superframe. 
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Figure 22.   Power estimation RMSE versus the number of superframes for three 
different numbers of spectral scans per superframe.  

D. INSTANTANEOUS ESRB LOCALIZATION RESULTS 

The preceding simulation results were averaged outcomes of a large number of 

simulation executions.  The following section presents instantaneous results of the ESRB 

localization scheme where the simulation model is run one to ten times under various 

conditions to determine its performance.  The goal of this section is to illustrate the 
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impact of both frequency and spatial mobility of the secondary user on the ESRB 

localization scheme.  The scalability of the ESRB localization scheme is also addressed. 

1. Frequency and Spatial Mobility 

The simulation scenario and simulation model are modified slightly to implement 

frequency and spatial mobility for the secondary user.  These modifications are shown in 

Figure 23 and Figure 24, respectively.  The single stationary secondary user shown in 

Figure 13 is replaced with a mobile secondary user in Figure 23 as indicated by the icon 

and its position change.  The mobile user is assigned a single trajectory beginning at the 

same position as the stationary secondary user shown in Figure 13 and ending adjacent to 

the sensor network.  All variables within the simulation environment are held the same as 

previously outlined in Section B except for the following assumptions.  First, due to the 

mobile nature of the secondary user, the transmission power of the mobile cognitive radio 

device is assumed to be much less than the primary user network.  As such, the secondary 

user’s transmission power is set to 4 Watts, while the primary user transmission power 

remains at 18 Watts.  The initial power estimate ( )� ,0k
txP  at the decision maker is set to 11 

Watts, the median of the primary and secondary user’s power.   

Second, to facilitate motion, the mobile secondary user’s speed is assumed 

constant throughout its movement along the predetermined trajectory.  However, the 

position of the mobile secondary user is assumed constant during each localization 

attempt under the ESRB localization scheme.  Specifically, the mobile secondary user is 

assumed to be in the same relative position throughout the duration of one superframe.  

As such, the decision maker is allowed only one superframe’s worth of decision data 

from the sensor network to find the position of the mobile user.  The ESRB localization 

scheme is attempted ten times during the movement of the mobile secondary user along 

its trajectory.  The positions of the users in the environment are given in Table 3. 
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Figure 23.   Simulation scenario using a wireless RF sensor network to determine the 
frequency bands and location of a mobile cognitive radio. 
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Figure 24.   Simulation model and simulation results using a wireless RF sensor 
network to determine the frequency bands and location of a mobile cognitive 

radio. 
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Table 3.   Primary and secondary user coordinates used to study the effects of a 
mobile secondary user on the ESRB localization scheme. 

Users X-Coordinates (m) Y-Coordinates (m) 
Primary User 1 2800 2800 
Primary User 2 0 4000 
Primary User 3 0 -4000 
Primary User 4 -2800 -2800 
Primary User 5 -4000 0 

Secondary User 1 (Start Point) 0 2000 
Secondary User 1 (End Point) 2000 0 

The effects of frequency and spatial mobility of the mobile secondary user on the 

distance error of the position estimate of the mobile secondary user are shown in Figure 

25 (a) and Figure 25 (b), respectively.  Two important items can be gleaned from the 

results depicted in these figures.  First, despite the position of the cognitive radio 

changing over time, the ESRB localization scheme is able to produce accurate position 

estimates evidenced by the low distance error during each ESRB localization attempt 

shown in Figure 25 (a).  These same results are also represented in the spatial domain in 

Figure 24 where each secondary user position estimate is plotted.  The reduced distance 

errors demonstrate the ability to perform limited tracking in the spatial domain using the 

proposed scheme.  Second, the ESRB localization scheme is able to track the frequency 

band of operation of the mobile secondary user as it changes over time.  This can be seen 

in the channel occupancy track of the decision maker displayed in the bottom of Figure 

25 (b).  During each localization attempt, the decision maker is able to find the channel of 

the secondary user as it moves to different portions of the frequency band of interest.  

Together, these results indicate source localization of a mobile cognitive radio is possible 

despite the shifting spatial, frequency, and temporal parameters.  However, many of the 

assumptions made in the simulation scenario and simulation model may not always be 

valid.  Further work is needed to improve the effectiveness of the ESRB localization 

scheme in tracking a mobile cognitive radio.   
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Figure 25.   Secondary user frequency mobility and spatial mobility: (a) distance error 
versus the number of ESRB localization attempts to determine the location of a 

mobile cognitive radio, (b) channel occupancy versus the number of ESRB 
localization attempts to determine the frequency bands of a mobile cognitive 

radio. 

2. Scalability of the ESRB Localization Scheme 

The simulation scenario and simulation model are modified once again to address 

the scalability of the ESRB localization scheme.  Multiple secondary users are placed in 

the environment to show whether or not the proposed scheme is capable of estimating the 

position of more than one secondary user.  To implement this modification, the 

simulation scenario and simulation model is adapted to the environment depicted in 
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Figure 26 and Figure 27, respectively.  Three stationary secondary users are placed at 

various positions in accordance with the user coordinates listed in Table 4.  All variables 

within the environment are set to the values previously described in Section B except all 

three secondary user’s transmission powers are set to 16 Watts.  The simulation is run 

once over 15 superframes with 600 spectral scans per superframe by the sensor network.   

The ability of the ESRB localization scheme to determine the positions of multiple 

stationary cognitive radios is shown in Figure 28.  The distance error for all three 

secondary users versus the number of superframes is shown in Figure 28 (a), and the 

channel occupancy versus the number of superframes is shown in Figure 28 (b).   
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Figure 26.   Simulation scenario using a wireless RF sensor network to determine the 
frequency bands and location of multiple stationary cognitive radios. 

As previously shown in Section C.3, when the number of superframes increases 

the proposed scheme is capable of developing a more accurate estimate of the secondary 
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user’s position.  This same result is replicated for all three secondary users as evidenced 

by the decrease in distance error as the number of superframes increases.  The increase in 

accuracy is directly tied to the ability of the decision maker to track each secondary user 

in the frequency domain.   If the decision maker is not able to establish a correlation 

between the secondary user and the decision data received from the sensor network, then 

no position estimate can be achieved as illustrated by Secondary User 3.  During the first 

superframe where no sensor network track is established, a position estimate is not 

achieved because not enough history is available for that particular secondary user.  

However, once Secondary User 3 is discovered in the second superframe, an accurate 

position estimate is achieved. 
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Figure 27.   Simulation model using a wireless RF sensor network to determine the 
frequency bands and locations of multiple stationary cognitive radios. 
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Table 4.   Primary and secondary user coordinates used to study the effects of multiple 
stationary secondary users on the ESRB localization scheme. 

Users X-Coordinates (m) Y-Coordinates (m) 
Primary User 1 2800 2800 
Primary User 2 0 4000 
Primary User 3 0 -4000 
Primary User 4 -2800 -2800 
Primary User 5 -4000 0 

Secondary User 1 0 2000 
Secondary User 2 2000 0 
Secondary User 3 -2700 -2700 
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Figure 28.   Multiple stationary secondary user localization: (a) distance error versus 
the number of superframes to determine the locations of multiple stationary 

cognitive radios, (b) channel occupancy versus the number of superframes to 
determine the frequency bands of multiple stationary cognitive radios. 
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The preceding simulation results indicate the ESRB localization scheme can be 

scaled to estimate the position of multiple stationary secondary users.  However, the 

complexities involved with frequency and spatial mobility may hinder the scalability of 

the ESRB localization scheme in the context of mobile secondary users.  Therefore, to 

completely address the scalability of the proposed scheme, the simulation scenario and 

simulation model are modified one final time to include multiple mobile and stationary 

secondary users.  These modifications are shown in Figures 29 and 30, respectively.   
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Figure 29.   Simulation scenario using a wireless RF sensor network to determine the 
frequency bands and location of multiple mobile and stationary cognitive 

radios. 

In the modified simulation scenario shown in Figure 29, three secondary users are 

present in the environment.  Secondary User 1 and 2 are mobile and move along separate 

non-overlapping trajectories as indicated by the dashed lines in Figure 29 and the solid 

lines in Figure 30.  Secondary User 3 is stationary in accordance with the user 

coordinates listed in Table 5.  All variables within the environment are set to the values 
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previously outlined in Section B, except the transmission power for all three secondary 

users is set to 4 Watts.  The same assumptions are made for each of the mobile secondary 

users as previously stated in Section D.1.  The ESRB localization scheme is attempted ten 

times during the movement of all secondary users along their trajectories or fixed 

positions. 
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Figure 30.   Simulation model and simulation results using a wireless RF sensor 
network to determine the frequency bands and location of multiple mobile and 

stationary cognitive radios. 
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Table 5.   Primary and secondary user coordinates used to study the effects of multiple 
mobile and stationary secondary users on the ESRB localization scheme. 

Users X-Coordinates (m) Y-Coordinates (m) 
Primary User 1 2800 2800 
Primary User 2 0 4000 
Primary User 3 0 -4000 
Primary User 4 -2800 -2800 
Primary User 5 -4000 0 

Secondary User 1 (Start Point) 0 2000 
Secondary User 1 (End Point) 2000 0 
Secondary User 2 (Start Point) 0 -2000 
Secondary User 2 (End Point) 2800 -1000 

Secondary User 3 -2000 0 

The ability of the ESRB localization scheme to determine the positions of 

multiple mobile and stationary secondary users is shown in Figure 31.  The distance error 

for all three secondary users versus the number of ESRB localization attempts is shown 

in Figure 31 (a) and the channel occupancy versus the number of ESRB localization 

attempts is shown in Figure 31 (b).  Similar to the results obtained in Section D.1, the 

proposed scheme is able to perform limited tracking in the spatial domain for all mobile 

secondary users while also accurately positioning the stationary secondary user.  This is 

exhibited in the spatial domain by the SU position estimates shown in Figure 30.  

However, if the decision maker loses track of the channel occupancy of one of the mobile 

secondary users, the accuracy of the spatial track diminishes until the mobile user is 

acquired in the frequency domain again.  This can be seen in the large spike in distance 

error of Secondary User 1 during the fifth ESRB localization attempt and the subsequent 

decrease in distance error in the sixth ESRB localization attempt.  It is important to note 

the loss of track in the frequency domain may not be caused by a direct failure of the 

ESRB localization scheme.  In some cases, whitespace may not be available for the 

secondary user to occupy.  Such a shortfall occurred for Secondary User 2 during the 

second localization attempt which caused the decision maker to lose track of the user’s 

channel occupancy.  Further work is needed to expand the ability of the ESRB 

localization scheme to perform robust tracking in the spatial domain.  Mobility models 

could be incorporated at the decision maker to make predictions in secondary user 

behavior [13]. 
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Figure 31.   Multiple mobile and stationary secondary user localization: (a) distance 
error versus the number of ESRB localization attempts to determine the 
location of multiple mobile and stationary cognitive radios, (b) channel 
occupancy versus the number of localization attempts to determine the 

frequency bands of multiple mobile and stationary cognitive radios. 

An overview of the simulation scenario and simulation model used to determine 

the performance of the ESRB localization scheme under a variety of conditions were 

provided in this chapter.  Specifically, power estimation and the effects of n-bit spectrum 

sensing, the number of spectral scans per superframe, the number of superframes, and the 

number and position of sensor nodes were examined.  The results were the averaged 

outcomes of a large number of simulation executions.  Instantaneous results were also 
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presented to discuss the effects of frequency and spatial mobility of the secondary user 

and to demonstrate scalability of the proposed scheme through position estimation of 

multiple secondary users. 
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V. CONCLUSIONS 

The focus of this thesis was on source localization in a cognitive radio 

environment.  Specifically, how to estimate the position of a cognitive radio using the 

collaborative spectrum sensing results of a wireless RF sensor network.  Three important 

subtasks identified as crucial components to completing this task were: 1) tracking the 

frequency bands occupied by the cognitive radio over time, 2) discriminating between 

primary and secondary users in the environment, and 3) converging onto the true position 

of the cognitive radio given additional decision data from the sensor network.   

An extension of the semi range-based localization algorithm for cognitive radio 

networks [5], [17] was proposed to accomplish these objectives.  Specifically, the 

practical semi-range based localization algorithm [17], originally proposed for primary 

user source localization in cognitive radio networks, was extended for cognitive radio 

source localization.  In addition, n-bit spectrum sensing, originally proposed for two-bit 

[22] and three-bit [18] hard combination, was incorporated to improve performance of 

the proposed ESRB localization scheme.  A simulation scenario was introduced to 

implement the proposed scheme and determine its efficacy under a variety of conditions.  

The simulation scenario was implemented in the MATLAB programming language 

through a specific simulation model.  Power estimation and the effects of n-bit spectrum 

sensing, the number of spectral scans per superframe, the number of superframes, and the 

number and position of sensor nodes were examined to determine the effect on the 

secondary user position estimate.  Frequency and spatial mobility of the secondary user 

were also examined to account for all possible variations in the secondary user’s activity.  

Scalability of the ESRB localization scheme was also addressed with multiple secondary 

users present in the environment. 

A. SIGNIFICANT RESULTS 

Over time the proposed ESRB scheme is capable of estimating the frequency 

band of operation and the location of a cognitive radio.  The number of sensor nodes did 

not directly influence position estimation accuracy; however, adequate separation among 
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the sensor nodes proved to be a significant factor in the performance of the localization 

process.  Similar to position estimation, power estimation also improved as the number of 

samples from the sensor network increased.  As the number of superframes increased and 

more decision data became available, the proposed scheme was capable of refining the 

position estimate using relevant decision data to deliver accurate results.   

Alternatively, the use of n-bit spectrum sensing significantly improved the 

performance of the ESRB localization scheme in terms of divergence percentage.  The 

decrease in divergence percentage also directly influenced the overall position estimation 

error, which allowed the proposed scheme to perform well with a limited amount of 

decision data from the sensor network.   

Finally, through instantaneous results, it was shown the ESRB localization is 

scalable to localize multiple secondary users in the environment and is capable of 

accounting for both frequency and spatial mobility when the secondary user is mobile. 

Limited frequency and spatial tracking was demonstrated for a mobile secondary user on 

a fixed trajectory at constant speed.  Frequency and spatial estimation was accomplished 

through repeated application of the proposed ESRB localization scheme. 

B. FUTURE WORK 

Several areas of expansion for future work are offered in this thesis.  The 

incorporation of n-bit spectrum sensing into the proposed ESRB localization scheme was 

used to improve the performance of the iterative NLSM.  By weighting the decision data 

from the wireless sensor network, an accurate initial estimate of the secondary user’s 

position and transmit power can be obtained.  The use of n-bit hard combination can be 

examined further to accelerate the spectrum sensing process by reducing the volume of 

decision data required to form an initial estimate of the secondary user’s position and 

transmit power.  Alternative numerical optimization techniques other than the iterative 

NLSM could also be considered for more effective results. 

The simulation scenario and simulation model implemented in this thesis 

restricted the geography of the primary and secondary user networks to within several 

thousand meters of each other.  However, the range of cognitive radio networks may span 



 73

tens or hundreds of kilometers in the real world [19], [29], [31].  Given such potential, the 

simulation scenario and simulation model can be expanded such that the primary and 

secondary user’s spatial characteristics model real world three-dimensional geography of 

cognitive radio networks over legacy communication networks.  In such a case, the 

spectrum sensing process represented in the MATLAB programming language can be 

replaced with real decision data collected from a real world environment.   

Limited frequency and spatial tracking was demonstrated in this thesis with a 

mobile secondary moving along a fixed trajectory at constant speed.  However, user 

activity seldom demonstrates such deterministic behavior in the real world [3].  

Therefore, advanced secondary user mobility characteristics can also be implemented in 

the simulation model to account for random movement at various speeds over time.   

The proposed ESRB localization scheme is based on semi range-based 

localization which is fundamentally a positioning scheme used to localize an emitter of 

interest at a single point in time [5], [17].  This is a significant limitation when 

considering a mobile device whose position will change rapidly over time.  Ultimately, 

tracking a cognitive radio is the primary objective of expanding this thesis research.  

Such a shift would drive examination of alternative localization techniques which are 

designed to track position over time using a wireless RF sensor network, such as Kalman 

filtering [13]. 
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APPENDIX 

The selected MATLAB code used to determine the efficacy of the proposed 

ESRB localization scheme is given in the appendix. 

 MATLAB CODE TO IMPLEMENT THE EXTENDED SEMI RANGE-
BASED LOCALIZATION SCHEME 

%% Baseline Simulation Model for ESRB Localization Scheme  
%  Author: Capt Adams, Agur 
%  Purpose: NPS MSEE/EE Thesis 
clear all; clc; close all;  % Initialization  
  
%% Variable Workspace 
    % Simulation Control 
    Simulation = struct('NUMBER', {1}, ...                         

'DURATION', {9000}, ...  
                        'time', {1});     
    % Primary Users, PU     
    PU = struct('QUANTITY', {5}, ...  
                'TX_PWR', {18}, ...  
                'BUSY_PROB', {0.3}, ...  
                'IDLE_PROB', {0.3}, ... 
                'MAX_RADIUS', {134e3}, ... 
                'MIN_RADIUS', {134e3}, ... 
                'MAX_ANGLE', {2 * pi}, ... 
                'MIN_ANGLE', {0}, ...  
                'history', {0});  
    % Secondary Users, SU 
    SU = struct('QUANTITY', {3}, ...  
                'TX_PWR', {16}, ...  
                'CELL_RADIUS', {17e3}, ... 
                'MAX_ANGLE', {2 * pi}, ... 
                'MIN_ANGLE', {0}, ...  
                'history', {0});  
    % Wireless Sensor Network, WSN 
    WSN = struct('QUANTITY', {50}, ... 
                 'MAX_RADIUS', {900}, ... 
                 'MIN_RADIUS', {50}, ... 
                 'MAX_ANGLE', {2 * pi}, ... 
                 'MIN_ANGLE', {0}, ... 
                 'PROB_FALSE_ALARM', {0.01}, ... 
                 'nBit', {2}, ... 
                 'energyThreshold', {0});  
    % Decision Maker, DM 
    DM = struct('targetAcquired', {0}, ... 
                'errorDesired', {1}, ... 
                'errorActual', {inf}, ... 
                'suHistory', {[]}, ... 
                'suFound', {[]}, ...  
                'suFinal', {[]}, ...  



 76

                'puPositionError', {1000}, ... 
                'suPositionError', {750}, ... 
                'divergenceError', {900}, ... 
                'aliveError', {1}, ...  
                'superframe', {0}, ...  
                'SU_TX_AVG_PWR', {17});  
    scanningHistory = []; 
    % IEEE 802.22 Parameters 
    IEEE_802_22 = struct('CHANNEL_NUMBER', {5}, ... 
                         'FAST_SENSE_TIME', {1}, ... 
                         'FAST_SENSE_PROB', {0.650}, ... 
                         'FINE_SENSE_TIME', {25}, ... 
                         'FINE_SENSE_PROB', {0.450}, ... 
                         'MAC_FRAME_TIME', {100}, ... 
                         'SUPERFRAME_TIME', {600});  
    % Channel Characteristics and Communications Profile 
    Channel = struct('PATH_LOSS_COEF', {0.01}, ... 
                     'PATH_LOSS_EXPONENT', {3}, ... 
                     'NOISE_VARIANCE', {1e-12}, ...  
                     'TIME_BANDWIDTH_PRODUCT', {5}, ... 
                     'SHADOW_STD_DEV', {1}, ... 
                     'SHADOW_MEAN', {0}, ... 
                     'shadow', {0});  
  
%% Simulation Setup 
% Place the PU, SU, and sensor nodes in the environment 
    % Generate positions for all WSN 
    wsnPositions = placeallwsn(WSN);  
    % Generate positions for all SU 
    suPositions = placeallsu(SU, WSN);  
    % Generate positions for all PU  
    puPositions = placeallpu(PU, suPositions);  
    % Plot the simulation environment 
    plotenvironment(wsnPositions, suPositions, puPositions, WSN);  
    % Determine the distances from all WSN to all PUs and SUs 
    [distanceWSNtoPU, distanceWSNtoSU] = 
determinedistanceWSNtoPUandSU(wsnPositions, suPositions, puPositions); 
  
% Allow the PU and SU to occupy the environment 
    % Randomly generate the PU spectral occupancy  
    [superframeOccupancy, PU.history] = puoccupy(Simulation, 
IEEE_802_22, PU); 
    % Randomly generate the SU spectral occupancy  
    [superframeOccupancy, SU.history] = suoccupy(SU, 
superframeOccupancy);  
    % Determine energy detection thresholds for all WSN 
    WSN.energyThreshold = determineenergythresholds(WSN, Channel); 
  
%% Simulation Execution 
while (Simulation.time < Simulation.DURATION)  
    % Expand the spectral occupancy to match the number of superframes 
    % required to reach the desired sensing periods 
    sensingOccupancy = expandoccupancy(IEEE_802_22, DM, PU, SU, 
superframeOccupancy);   
    % Determine medium scale fading (varies over each localization  
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    % iteration) 
    Channel.shadow = Channel.SHADOW_MEAN + ... 
                     Channel.SHADOW_STD_DEV*randn(1); 
    % Perform Spectral Scanning 
    [Simulation.time, superframeScanResults] = spectralscanning( ... 
                                                     Simulation, ...  
                                                            WSN, ...  
                                                    IEEE_802_22, ... 
                                                        Channel, ... 
                                                             DM, ... 
                                                             PU, ... 
                                                             SU, ...  
                                            superframeOccupancy, ... 
                                               sensingOccupancy, ... 
                                                distanceWSNtoPU, ... 
                                                distanceWSNtoSU); 
    % Build environment map at DM based on all the WSN results 
    [DM.suFound, DM.superframe] = buildenvironmentmap(DM, ... 
                                   superframeScanResults, ... 
                                                     WSN, ... 
                                                 Channel, ... 
                                             IEEE_802_22, ... 
                                            wsnPositions, ... 
                                             puPositions); 
    % Isolate the spectral scanning results which pertained the SU  
    % discovered 
    [DM.suHistory, DM.suFound, scanningHistory] =   
                                        isolatespectralscanning( ... 
                                                scanningHistory, ... 
                                          superframeScanResults, ... 
                                                             DM); 
    % Refine the position estimate based on the aggregated scanning  
    % results 
    DM.suHistory = positionrefinement(scanningHistory, DM, WSN, ... 
                            wsnPositions, Channel, IEEE_802_22); 
end  
    % Make final decision on number and position of SU 
    DM.suFinal = finaldecision(DM, puPositions); 
  
%% Single Simulation Results 
    % (Single Simulation Testing) Output final decision on number and  
    % position of SU 
    outputfinaldecision(DM); 
    % (Single Simulation Testing) Calculate distance error 
    [suPosError, suPwrError] = calculateerror(suPositions, DM, SU); 
    % (Single Simulation Testing) Plot simulation results  
    plotresults(PU, SU, DM, suPosError, IEEE_802_22); 
  
%% Multiple Simulation Runs     
    % Proceed with additional simulation runs  
    finalSimError = [suPosError(DM.superframe), ... 
                     suPwrError(DM.superframe)]; 
    set(0, 'RecursionLimit', Simulation.NUMBER * 50); 
    save('ESRB_2A_4SupFrm_10WSN.txt', 'finalSimError', '-append', ... 
         '-ascii', '-double', '-tabs'); 
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    load('iTrial'); 
    if (iTrial < (Simulation.NUMBER-1)) 
        iTrial = iTrial + 1; 
        save('iTrial', 'iTrial'); 
        Base_Model_ESRB 
    else 
        display('Done With Simulation Runs...'); 
        iTrial = 0; 
        save('iTrial', 'iTrial'); 
        display('Simulation RESET complete...'); 
    end 
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