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Abstract

We present a background model that differentiates be-
tween background motion and foreground objects. Unlike
most models that represent the variability of pixel intensity
at a particular location in the image, we model the under-
lying warping of pixel locations arising from background
motion. The background is modeled as a set of warping
layers, where at any given time, different layers may be vis-
ible due to the motion of an occluding layer. Foreground
regions are thus defined as those that cannot be modeled
by some composition of some warping of these background
layers. We illustrate this concept by first reducing the pos-
sible warps to those where the pixels are restricted to dis-
placements within a spatial neighborhood, and then learn-
ing the appropriate size of that spatial neighborhood. Then,
we show how changes in intensity/color histograms of pixel
neighborhoods can be used to discriminate foreground and
background regions. We find that this approach compares
favorably with the state of the art, while requiring less com-
putation.

1. Introduction
Background subtraction is a common pre-processing

step to many vision tasks such as object detection, local-
ization, recognition, categorization, etc. In this context,
a (foreground) “object” is defined as a compact region of
space that is “different” from the background, and since
the background is often modeled as a static map or distri-
bution, any background motion triggers the detection of a
novel object. However, in environmental monitoring sce-
narios, the background undergoes complex motions with
self-occlusions that challenge these models even when the
camera is not moving. Natural environments, such as the
forest canopy, present a significant challenge because of the
complex occlusion structure and motion of foliage, and the
rapid illumination changes due to transitions between light
and shadow (also an occlusion phenomenon). Clearly, rep-
resenting or learning an accurate model of the background is
not a viable proposition. Instead, we present a simple model

that captures the phenomenology of background variations
due to motion and occlusions for the purpose of detecting
foreground objects within.

We define as “background” the portions of the scene that,
over relatively long observation times, remain within the
field of view, even though they may move and even dis-
appear temporarily due to partial occlusions. Therefore, we
model the background as a collection of layers (or “canoni-
cal images”) that can move (undergo domain deformations,
or “warpings”), and occlude each other to yield a generic
background image. A foreground region, or “object,” is
thus another layer that cannot be obtained as a warping of
a canonical image. Allowing permutations of layers effec-
tively tightens the background distributions when there is
significant background movement and intensity variation.

Unfortunately, finding the optimal unconstrained warp-
ing and layer combination that yield a sample image would
be computationally infeasible. We therefore evaluate a
number of possible techniques, each constraining the pos-
sible warping functions differently. Because background
motion tends to be small (consider foliage moving in the
wind), we limit the warping of image domains to a small
spatial neighborhood, first heuristically, then by learning
the distribution from the data. We implement two differ-
ent functions to constrain this motion – a step function and
a Gaussian window. When determination of the particular
pixel warping is irrelevant, we propose a different approach
using blocks of pixels. This “implicit” approach determines
whether a patch in a sample image can be generated by
warping a similar patch in the prototype background im-
ages, without representing such a warping explicitly. Using
this latter technique, we obtain greater accuracy in back-
ground/foreground labeling with faster computation time.

We use bird monitoring in natural habitats as a motivat-
ing application to bring attention to a larger class of prob-
lems not previously addressed in the literature. A number
of pertinent questions about the impact of climate change
on our ecosystem are most readily answered by monitor-
ing fine-scale interactions between animals and plants in
their environment. Such fine scale measurements of species
distribution, feeding habits, and timing of plant blooming
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events require continuous monitoring, a task plagued by the
very challenges described in this paper.

2. Prior Work
To detect novel objects in an image, many approaches

model each pixel independently, p(It(x)) ∼ rx ∀t. W 4 [5]
model rx using the variance found in a set of background
images with the maximum and minimum intensity value
and the maximum difference between consecutive frames.
Pfinder [24] learns the mean and the variance of pixel val-
ues at each location in the training set. If the mean and
variance are all that is known about a distribution, the most
reasonable choice of distribution based on maximal entropy
is the Gaussian. The assumption then is rx = N (µ, σ2),
and a likelihood model is used to classify background and
foreground at each pixel.

When this assumption does not adequately capture the
distribution, a Mixture of Gaussians (MoG) can be used
[20, 4] to further improve the accuracy of the estimate.
A MoG model, where rx =

∑
wi N (µi, σ2

i ), is capa-
ble of handling a range of realistic scenarios, and thus
is widely used [6, 21] to tackle the background subtrac-
tion problem. Elgammal et al. [3] show it is possible
to achieve greater accuracy using a non-parametric model
rx(i) = |I|−1∑

t∈T K(It(x)− i), where K is kernel func-
tion and i span the range of possible pixels value at the pixel
x. Another contribution of this work is the incorporation of
spatial constraints into the formulation of foreground clas-
sification. In the second phase of this approach, pixel val-
ues that can be explained by distributions of neighboring
pixels are reclassified as background, allowing for greater
resilience against dynamic backgrounds. Sheikh and Shah
unify the temporal and spatial consistencies into a single
model [18]. Similar models include [13, 16, 17]. Look-
ing at the statistics at a single pixel shown in the central
figure in Fig. 1, we see that the distribution of background
pixels spans almost all grayscale intensities, and that the
foreground distribution mostly overlaps. This indicates that
there is a large overlap between background and foreground
distributions, resulting in many false positives or misses.

A different approach, taken by Oliver et al. [15], looks
at global statistics rather than local constraints. Similar to
eigenfaces, a small number of “eigen-backgrounds” are cre-
ated to capture the dominant variability of the background.
The assumption is that the remaining variability in an im-
age is due to foreground objects. The “eigen-background”
approach works well for global changes in the background,
such as variable illumination, but does not work well when
the variability is local. If there are small changing regions
in the background, as is the case in natural environments,
the intensities of pixels A and B in Fig. 1 do not correlate,
making “eigen-backgrounds” a poor model.

Yet another approach assumes that a background pixel

is generated with a distribution that is based on its his-
tory, It(x) ∼ r1,...,t−1(x). The simplest of these models,
frame differencing [7], thresholds the difference between
two frames of a sequence, and large changes are consid-
ered foreground. To resolve ambiguity due to slowly mov-
ing objects, Kameda and Minoh [8] use a “double differ-
ence” that classifies foreground as a logical “add” of the
pair-wise difference between three consecutive frames. A
compromise between differencing neighboring frames and
differencing against a known background image is to adapt
the background over time by incrementally incorporating
the current image into the background. Migliore et al. [12]
integrate frame differencing and background modeling to
improve overall performance.

Rather than implicitly modeling the background dynam-
ics, many approaches have explicitly modeled the back-
ground as composed of dynamic textures [2]. Wallflower
[22] uses a Wiener filter to predict the expected pixel value
based on the set of past samples whose α’s are learned.
Monnett et al. [14] model the background as a dynamic
texture [19], where the first few principal components of
the variance of a set of background images (similar to
[15]) comprise an autoregressive model in the same vein as
[22, 9]. As shown in Fig. 1, pixels do not change in a pre-
dictable way over time, making dynamical models a poor fit
for representing the background.

3. Approach

Our goal is to model the “usual” pixel values for back-
ground and detect the “unusual” pixels in image sequences
captured from a fixed camera. We assume we start with
a small number of training images, T = {It(x) : t =
1, . . . , T ;x ∈ Ω}, where I : Ω ⊂ R2 → R+;x 7→ It(x),
and the goal is to label all pixels in any image in the se-
quence, It(x),∀t > T .

We assume that these images can be constructed from a
canonical image Î0 through some warping of the domain in
Î0. That is,

It(x) = Î0(wt(x)), (1)

where wt ∼ q. The warping, wt, is drawn from some dis-
placement distribution q independently, so at any time t, any
warping can be selected.

This model is valid only away from occlusions Θ ⊂ Ω
[1]. At occluded regions, a different scene is visible Î1 that,
in general, has no relation with Î0. More generally, there
can be an arbitrary number of occlusion layers, any of which
can become visible at a given instant in time. Thus, rather
than using a generative model derived from a single warped
image, we can model the composition of several layers [23]
each warped independently. A sample image is constructed
by selecting the best warping from each canonical image, or
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Figure 1. (Left) An image from a sample sequence. (Center) The distribution of pixel values at location A, separated into background
(above) and foreground (below) pixels. Because of the range of background pixel intensities and the overlap of foreground and background
distributions, modeling pixels individually would result in poor classification performance. (Right) The intensity variation of pixels A and
B are not correlated over time, indicating that “eigen-background”-based methods do not capture these background changes.

layer, Îb, such that,

Ĩt(x) =
B∑
b=1

Îb(wt,b(x))χb,t(x), (2)

where

χb,t(x) =
{

1 if x ∈ Ω \Θb,t,
0 otherwise.

But for an observed image It, we do not know if it con-
tains foreground objects, how the background is warped
(unknownwt,b(x)) or where the occlusions occur (unknown
χb,t(x)). The pixel-wise discrepancy is thus:

Dt(x) .= ‖It(x)−
B∑
b=1

Îb(w̃t,b(x))χ̃b,t(x)‖2, (3)

where w̃t,b(x) is the estimated warp and χ̃bt
(x) is the esti-

mated occlusion map. Depending on the application’s toler-
ance for false positives versus missed detections, a thresh-
old can be applied to the difference image for segmentation.
The focus for the rest of this section is to model q adequately
and in a computationally feasible way.

3.1. Modeling warp

In practice, not all warpings are plausible. Rather than
allowing arbitrary warpings, we limit a pixel’s possible
warpings, Q, to its spatial neighborhood, where q is in the
set Q, and

q(x) ∼ Unif [x−∆x, x+ ∆x]. (4)

We select a warping, wt for It in a greedy fashion. For
each pixel x, we find the best warping wt,b(x), restricted
to pixels not previously warped from the canonical image
Îb and to the square neighborhood specified by ∆x. The
“best” warping for each Îb is defined by the similarity of its
appearance,

w̃t,b(x) = arg min
wt,b(x)∈Q\Q̂

‖It(x)− Îb(wt,b(x))‖2 (5)

where Q̂ is the set of q’s that refer to previously matched
x’s. We then use the best warping from the set of canonical
images as the unoccluded region,

χ̃b,t(x) =

{
1 arg min

b=1,..,B
‖It(x)− Îb(w̃t,b(x))‖2 = b,

0 otherwise.
(6)

This formulation can result in having no possible warp for
a particular It(x). That is, Q = Q̂. In this case, since there
are no pixels that can be matched, we assume the pixel is
foreground, or an occlusion not modeled by the selected Îb.

Using a uniform distribution around the pixel can result
in poor matches when performing greedy matching. Since
it is more likely that pixels are only warped slightly, we
would like to bias our selected warps to those with minimal
distance from the original location. To do this, we augment
our minimization to:

w̃t,b(x) = arg min
wt,b(x)∈Q\Q̂

Gσ(x−wt(x))‖It(x)−Îb(wt,b(x))‖2

(7)
where Gσ2(x) = 1√

2πσ2 e
−x2/(2σ2).

Both approaches – using the uniform distribution and the
Gaussian distribution – have parameters that can be learned
from the data. In the uniform case, we can learn the appro-
priate ∆x for each pixel x. For the Gaussian distribution,
we can learn the appropriate σ2.

3.2. Implicit warping

In reality, we are not interested in the precise warping of
canonical images to sample image. Often, it is enough to
know where the warping model fails, indicating foreground
objects are present. Given the assumption that background
motion is local, we can estimate how closely a patch of pix-
els in Îb matches those of It by measuring the distance of
the distribution of pixels of each patch, instead of simply
pixels.



Figure 2. The top row shows the resulting difference per pixel using intensity as the feature, and the bottom row, using YUV as the feature.
Left to right: 1) Raw image, It. 2-5) Difference image when ∆x = 1, 5, 9, 15 respectively. Black pixels indicate a perfect match, white
indicates no match, and the grays in between represent the “goodness” of the warp assigned.

We redefine the distance from the background, according
to this function:

Dt(x) .= min
i=1,...B

d(hx,It
, hx,Îb

), (8)

where d(x, y) .= 1 −
∑
i

√
xiyi, the inverse of the Bhat-

tacharyya distance, and the histogram,

hx,I(y) .=
1
w2

∑
j∈J
Gε(I(j)− y). (9)

J is limited to the spatial neighborhood of x, so that J =
{j : x − w/2 <= j < x + w/2}. The histogram, h is
defined over the range of the image, j ∈ [0 1]. A Gaussian
blur is used to smooth away the artificial edges induced by
restricting subimages to non-overlapping blocks of the im-
age.

4. Results
Detailed experiments are run on a 200 frame image se-

quence of birds at a feeder station from the data set re-
leased in [10]. We use 100 images for training and 100
images for testing. As this dataset has very few images of
clean backgrounds, we use a ground-truth labeling of fore-
ground/background pixels to exclude those foreground pix-
els from the training set of background images.

4.1. Basic Warp

We select five bird-less images from our training set as
our canonical backgrounds, for the following experiments.
We start by using a single canonical image, and vary the
neighborhood in which we search for a warping match.
Fig. 4 indicates that performance is hardly affected by dif-
ferent ∆x values, whether we use the grayscale intensity
as our feature, or color (in the YUV space). We compare
these results to Elgammal’s approach, and find that warping
performs significantly worse. A closer look at the results

Figure 3. The top row shows the resulting difference images when
using intensities as the feature, and the bottom row, using YUV as
the feature as we increase the number of canonical images used.
From left to right, we show B = 1, 3, 5, respectively. The ad-
dition of a single canonical image greatly reduces the number of
unmatched pixels. There is little visible difference betweenB = 3
or 5, indicating that most occlusions are handled in the first 2 or 3
canonical images.
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Figure 4. Restricting a pixel’s warp to its spatial neighborhood
results in rather poor performance, even as the radius of the
neighborhood, ∆x, is increased, regardless of the feature used
(grayscale on the left, YUV on the right). The performance is
significantly worse than Elgammal’s approach, shown in black.

shown in Fig. 2 indicates that the cause for such failure is
the inaccuracy of the estimated warping. The bright white
spots indicate pixels that could not be matched to the base
image. As we increase ∆x, shown consecutively from left
to right, we see that more and more pixels are matched, but
a significant number of pixels remain unmatched.



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

p
re

c
is

io
n

gray

 

 

Elgammal
B=1
B=2
B=3
B=4
B=5

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall
p

re
c
is

io
n

yuv

 

 

Elgammal
B=1
B=2
B=3
B=4
B=5

Figure 5. Occlusions are accounted for by using multiple base
canonical images (where B is the number of images used). We
see a significant performance improvement, as well as providing
cleaner results than Elgammal’s approach, for both gray (left) and
YUV (right).
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Figure 7. Learned step width, ∆x, for each pixel for intensity
(YUV yielded similar results). As expected, regions that are fairly
stable, such as the feeder platform, have smaller step sizes (indi-
cated by the darker color). Learning the appropriate ∆x for each
pixel maintains similar performance while reducing computation
by half, as shown in the bar graphs.
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Figure 8. Learning ∆x for each pixel results in very similar per-
formance as compared to a fixed ∆x = 15, regardless of the num-
ber of canonical images, B. B = 1 and B = 5 are shown here.

It is reasonable that many pixels are not matched, due to
the large amount of background movement occurring in the
sequence. Increasing the number of canonical images used,
shown on Fig. 5, overcomes the problem of unmatched pix-
els, indicating that occlusion was indeed the limiting factor.
As we increase the number of canonical images, B, we end
up outperforming Elgammal’s approach, in both the gray
scale and YUV feature space. As indicated from Fig. 3,
there are far fewer failed matches as we increase B.

Rather than defining a fixed ∆x, we attempt to learn the
appropriate ∆x for each pixel to reduce computation. We
start off by seeding the training algorithm with a manually
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Figure 9. Using a Gaussian filter improves the performance as
compared to Fig. 4. As expected, increasing the variance of the
Gaussian window improves performance in both intensity feature
space (left) and YUV (right).

selected canonical image. In this case, we use the first im-
age in the sequence. Then, for each canonical image, we
compute the best warp to each of the remaining training im-
ages. We discard warps to and from pixels that belong to
foreground objects. We then select the next canonical image
by choosing the training image that has the most unmatched
pixels. Implicit in this assumption is that pixels that cannot
be warped correspond to occluded pixels. Therefore, we se-
lect the image that reveals the most of the background that
was occluded in the previously selected canonical images.
We allow warping up to 15 pixels in any direction.

Fig. 7 shows the range estimated by this method. The left
image shows the range learned where white pixels indicate
the full ±15 pixels and black pixels indicate a warp range
of 0. This learned range results in half as many computa-
tions needed to estimate the warp than when ∆x is fixed to
15, while maintaining a similar performance, as shown in
Fig. 8. We show both precision recall curves with B = 1
and B = 5. The rate of improvement to the precision recall
curve decreases as we go past 3 canonical images, indicat-
ing that most occluded backgrounds are modeled in the first
3 canonical images. This confirms our intuition that a few
layers (leaves, feeder stations, sky) are sufficient to capture
the phenomenology of the data.

4.2. Using a Gaussian window

We weight possible warping to regularize our matching
scheme, making the resulting warp less sensitive to local
minima. We test with several σ2 and find that this greatly
improves the performance as compared to the uniform warp
shown in Fig. 4. Fig. 9 shows that, as we increase σ2, we see
a change in performance. With a large enough σ2, we ap-
proach the accuracy of Elgammal’s approach. Fig. 6 shows
a smoother difference image, with few unmatched pixels, in
both grayscale and YUV.

Adding base images (the same ones as used previously)
results in improved performance. Similar to when a uni-
form warping was used, we achieve better performance as
we increase B, as shown in Fig. 10.



Figure 6. Resulting difference images using a Gaussian filter when selecting the best warping function, where the top row uses intensity
as the feature, and the bottom row uses YUV. Left to right: 1) Raw image, It. 2-5) Difference image when σ2 = 2, 10, 15, 30 respectively.
As we increase σ2, we see the moving foliage fade quickly into the background.
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Figure 10. Occlusions are accounted for by using multiple base
canonical images (where B is the number of images used), using
the Gaussian window. This improves upon Elgammal’s approach
for both grayscale (left) and color (right) images.

2 10 15 18 30 learned
0

2

4

6

8

10

12

14
x 10

8 gray

Figure 11. The σ2 learned closely matches the underlying mo-
tion in the background. Darker pixels (small σ2) appear where the
background is fairly stationary, and lighter pixels (large σ2) corre-
spond to moving areas. The bar chart on the right shows the size
of the search space. Using the learned σ2 results in a search space
that is orders of magnitude smaller.

We follow the same procedure used to learn the step ra-
dius ∆x to learn the σ2 for each pixel, and find that the
results mirror Fig. 8. There is little performance loss but
much greater computational efficiency, as shown in Fig. 11.
The total search space (for all pixels), as illustrated in the
bar chart, is reduced by an order of magnitude when the
appropriate step size is learned.

Figure 12. Using the implicit warp model, the increasing patch
width w reduces false positives, by enforcing a spatial warping
across larger areas of the image.
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Figure 13. There is a tradeoff in selecting the appropriate block
size, where w is the width of the block. As we increase w, we bet-
ter handle background motion but we lose some precision because
our granularity is now at the block level. Also, the foreground
object contributes less to the distribution, resulting in less discrep-
ancy between the background block and the block that is part of
the foreground.

4.3. Implicit warp

We experiment with various patch widths, w =
{4, 8, 16, 32}, and find that increasing w does not neces-
sarily result in better performance as shown in Fig. 13. A
closer inspection of the resulting difference images, Fig. 12,
clarifies why this is so. When there is background move-
ment, a larger block accounts for larger motion from back-
ground objects, such as the foliage of the tree. Yet, if the
block is too large, foreground objects only contribute to
a small part of the overall distribution, resulting in little
change to Dt(x).

Using multiple canonical images results in even better
performance, as shown in Fig. 15. Though the effect is not



Figure 14. Adding canonical images accounts for the displace-
ment of background objects. Note how the right feeder fades into
the background noise as the number of bases increases.
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Figure 15. Adding canonical images, B, to the implicit warping
model improves performance for both grayscale and color images.

as dramatic as in the other cases, we see that large displace-
ments, such as the right feeder that swings back and forth,
fades into the background as we increase B, as shown in
Fig. 15.

4.4. Comparison to Prior Work

We compare our implicit warping model approach to
several other approaches described in Section 2, and find
that we mostly outperform the state of the art. Elgam-
mal’s approach [3] suffers because each background pixel
exhibits a wide range of values, effectively making all possi-
ble values background. Sheikh’s approach [18] is similar to
our approach because it captures the local spatial neighbor-
hood. But because it requires a locally consistent warping,
it suffers from the same problem as Elgammal’s approach,
that each background pixel exhibits a wide range of values.
Oliver’s approach [15] does not model individual local mo-
tion, resulting in confused labeling where multiple motions
occur.

This work builds on our previous work [10], but extends
it by allowing multiple background layers while reduc-
ing computational complexity. Computationally, the pro-
posed method isO(B|I|), whereas our previous approach is
O(∆x2|I|). Since patches are 30×30 pixels, computational
savings can be one to two orders of magnitude. More meth-
ods, including dynamic texture subtraction, were shown to
perform poorly for this data set in [10].

Looking at the average precision, our approach compares
favorably on the image sequences released in [11]. The first
100 frames of each sequence are used for training and 20
images, labeled by [11]’s authors, are used for testing. The
“Hall,” “Lobby,” and “Mall” image sequences contain peo-
ple moving around indoor scenes that are fairly static. We
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Figure 16. Our implicit warping model significantly outper-
forms approaches that model each pixel independently [3], spatial-
appearance models [18], and linear combination approaches [15].
For the most part, it achieves better performance than [10], while
requiring much less computation.

[3] [10] Explicit Implicit
Classic Image Sequences

Hall 54.24% 22.13% 67.11% 40.64%
Lobby 11.66% 5.24% 13.00% 7.15%
Mall 68.56% 11.29% 62.24% 24.96%

Moving Background Image Sequences
Trees 36.89% 64.92% 51.83% 75.35%
Curtain 86.89% 69.48% 87.94% 94.09%
Escalator 62.43% 19.04% 64.55% 62.49%
Fountain 47.33% 49.62% 57.83% 71.21%
Water 90.68% 53.07% 93.08% 93.88%

Table 1. While our approaches (both explicit and implicit) result
in higher average precision than [3] and [10] in classic image se-
quences (people moving in indoor environments), the greatest ef-
fect is seen in sequences with moving backgrounds.

see that Elgammal’s and the explicit approach perform bet-
ter than our previous approach and the implicit approach
that has inherent smoothing. The remaining sequences con-
sist of fairly large background motion from the object that is
the name of the sequence (e.g., the “Tree” image sequence
has moving trees in the background). Both our explicit and
implicit approaches outperform [3, 10] in these cases.

5. Conclusion
We propose a warping model to account for the displace-

ment of pixels in the background image. We model the
background as a set of canonical images to capture the dif-
ferent layers of background that appear or become occluded
as background objects move. We find that the proposed ap-
proach better models the background in the case where there
is significant motion, as demonstrated on image sequences
of birds at a feeder station and more general, [11]. Fur-
thermore, the implicit warping model performs better and
requires less computation than the previous state of the art
on this data set.
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Figure 17. Sample difference images for the different approaches, from left to right: 1) Raw image. 2) Elgammal [3]. 3) Oliver [15]. 4)
Sheikh [18] 5) Ko [10] 6) Our implicit warping model. We see that our approach better handles the background motion compared to (2-4)
and is less blurred than (5). The relative difference between birds and the swinging feeder station is larger as well for our approach vs.
[10].
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