
Advanced Protected Services

A Concept Paper on Survivable Service-Oriented Systems

Partha Pal, Michael Atighetchi, Joseph Loyall,

Andrew Gronosky

Information and Knowledge Technologies Unit

Raytheon BBN Technologies

Cambridge, USA

{ppal,matighet,jloyall,agronosk}@xyz.com

Charles Payne

Cyber Security Group

Adventium Laboratories

Minneapolis, USA

charles.payne@adventiumlabs.org

Robert Hillman

Information Directorate

Air Force Research Laboratory

Rome, USA

robert.hillman@rl.af.mil

Abstract— As newer software construction paradigms like

service-oriented architecture (SOA) are adopted into systems

of critical importance, it becomes imperative that technology

and design artifacts exist that can be utilized to raise the

resiliency and protection of such systems to a level where they

can withstand sustained attacks from well-motivated

adversaries. In this paper we describe a sampling of innovative

services and mechanisms that are designed for the protection

of systems that are based on service-oriented architectures.

Keywords-survivability, service-oriented architecture

I. INTRODUCTION

The technology landscape of engineering distributed and

networked software-based systems has evolved from socket-

based network programming to distributed objects and

components to web services and service-oriented

architectures (SOA). The increased demand on computer-

based systems to perform sophisticated tasks and to deploy

new functionality quickly, both in civilian, such as the

financial and manufacturing sectors, and military domains,

is forcing system developers to migrate existing systems and

new developments to SOA. At the same time, computer-

based systems have become attractive targets of adversaries

who aim to benefit by subverting or disrupting the operation

of such systems. As a result, there is a need for survivable

service-oriented systems—systems that not only tolerate

accidental failures, but also continue to deliver an

acceptable level of service despite being under attack. In

some cases, e.g., critical infrastructure or military systems,

systems need to be ―ultra-reliable‖ and it is possible to draw

upon additional resources as needed. In other cases,

however, resources such as CPU, bandwidth, or the ability

to add additional hardware may be limited. In most cases,

critical systems have specified timeliness requirements

covering various degrees of real time behavior.

Defense against malicious adversaries is an inherently

hard problem. An adversary needs to find only one flaw in a

system to exploit, whereas the defense needs to identify and

address as many as possible. Specific characteristics of SOA

approaches add to the challenge, including their dynamism,

loose-coupling, and novel messaging and interaction

patterns. Moreover, current SOA environments lack the

level of sophistication in protection, detection, and

adaptation capabilities needed to survive against motivated,

well-resourced, and determined adversaries. As a result,

current service-oriented systems are at significant risk of

corruption, loss of service, and maliciously initiated leakage

of information.

To live up to their promised potential, future service-

oriented systems will need to survive sustained attacks by

sophisticated and well-motivated adversaries, something

that is not achievable by the way available security solution

are currently applied to systems and networks. We argue

that advanced protection—a synergistic combination of

protection, detection, and adaptation capabilities,

complemented by the infusion of validated design principles

such as defense-in-depth, single point of failure avoidance,

containment and isolation—needs to be incorporated into

the service-oriented architecture. Furthermore, novel

techniques such as automatic generation of configurations

and policies from high-level specifications are needed to

address the additional risks and vulnerabilities introduced by

service-oriented method of system construction.

Toward that end, we have started to develop the

necessary technical underpinnings required to make service-

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAY 2010 2. REPORT TYPE

3. DATES COVERED
 00-00-2010 to 00-00-2010

4. TITLE AND SUBTITLE
Advanced Protected Services: A Concept Paper on Survivable
Service-Oriented Systems

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Raytheon BBN Technologies,Information and Knowledge Technologies
Unit,Cambridge,MA,02138

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
1st IEEE International Workshop on Object/component/service-oriented Real-time Networked
Ultra-dependable Systems. May 7 2010, Carmona, Spain. U.S. Government or Federal Rights License

14. ABSTRACT
As newer software construction paradigms like service-oriented architecture (SOA) are adopted into
systems of critical importance, it becomes imperative that technology and design artifacts exist that can be
utilized to raise the resiliency and protection of such systems to a level where they can withstand sustained
attacks from well-motivated adversaries. In this paper we describe a sampling of innovative services and
mechanisms that are designed for the protection of systems that are based on service-oriented
architectures.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

25

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

oriented information systems more robust and resilient

against malicious attacks, and to demonstrate the utility of

the developed advanced protection techniques in settings

that exhibit various threat patterns, resource footprints, and

performance requirements (e.g., tactical and tactical edge

connected to an enterprise in the military context, or thin

and thick clients interacting over various public and private

networks in a civilian context). In this paper we describe a

selected subset of the key concepts underlying the

survivability of service-oriented systems.

The main contribution of the paper is the introduction of

advanced survivability concepts into the evolving SOA area.

In addition to fostering the dialog between SOA and

security researchers over the innovative concepts outlined in

this paper, we expect practitioners in the field to benefit by

incorporating some of these features into the design and

implementation of their systems.

 The rest of the paper is organized as follows. In Section
II we describe the innovative concepts that we introduce to
enable advanced protection in SOA systems. In Section III
we describe related work. Section IV concludes the paper.

II. CONCEPTS FOR ADVANCED PROTECTION IN SOA

We argue that in order to achieve the desired level of

survivability in the context of a given service-oriented

system and its operating environment, one needs a strategic

combination of the following:

 Architecture Enhancements: Modification of the

original organization and interaction pattern of the

given system to introduce isolation, containment,

redundancy and to enable adaptive behavior.

 Innovative Defense Mechanisms: Insertion of security

and adaptive technologies that did not originally exist in

the system.

 Support for Safe and Secure Composition: Ensuring

that systems created by composing architectural

elements and supporting defense mechanisms are safe,

properly configured and do not introduce residual

vulnerabilities.

In this section, we describe representative examples of

concepts being developed in each of the above categories

that are general enough to have wider applicability in

service-oriented settings, irrespective of the specific

application or service-oriented platform.

A. Architecture Enhancements

Current SOA-based systems strongly emphasize

architectural features that promote reuse through

encapsulation and flexibility through composition. The

service-oriented community has also adopted a number of

security principles, e.g., separation of concerns between

policy decision and enforcement [1] through policy decision

points (PDPs) and policy enforcement points (PEPs), multi-

layer security through WS-Security and traditional

demilitarized zones (DMZs), and clustering of application

servers. If realized correctly and backed up by reliable

implementations of underlying security mechanisms, these

principles add to the protection of systems, but each one

provides only a point capability and rests on a set of strong

environmental assumptions about available resources and

attacker sophistication. A survivable service must not make

strong assumptions about the environment in which it will

operate. Otherwise, an adversary will be able to easily

manipulate the environment to violate key assumptions and

cause unintended service behavior. For example, a system

orchestrated as a workflow of sequential synchronous

service invocations might have an implicit assumption about

request-response delays. A denial of service attack or a

partial failure at some point in the service invocation path

can easily violate this timeliness assumption, causing the

workflow to complete too late and therefore making results

unavailable.

The following paragraphs describe several ways SOAs

can be enhanced to significantly increase protection and

tolerance over current state of the art.

A single instantiation of a service (and its service

container) is a single point of failure (SPOF). Redundancy is

traditionally used to mitigate SPOFs and provide load

balancing. In addition, advanced redundancy-based

protocols such as Byzantine Fault Tolerance [2] have been

used to detect and tolerate process corruption. However,

simple redundancy is susceptible to common mode failures

and easily subverted by malicious adversaries. Dynamic

replenishment of redundancy and use of diversity along with

redundancy (see Fig. 1a and Fig. 1b) are ways to mitigate

that threat.

Dynamic redundancy and diversity are necessary but not

sufficient to achieve a high level of survivability. Unlike

traditional client-server systems, service consumers across

the network do not directly connect to the service instances

or replicas but rather to a service broker via an access point

or a portal. Although it is common practice for SOA

platform components to intercept the service requests for

routing and access control purposes in a DMZ, they

generally do not inspect and validate request or response

payloads, thus leaving the system vulnerable to injection

attacks. Furthermore, portals and service brokers do not

provide application-level policies for expressing rate and

size limits, thereby leaving the system open to denial of

service attacks. Furthermore, SOA features like service

orchestration introduce dependencies on critical services

such as the discovery service, persistence service or the

BPEL execution service, which become SPOFs that the

designers and developers of services may not realize.

Addressing these threats will require the insertion of

specific resources and capabilities to absorb the initial blow

of a sophisticated attack (see the diverse and redundant

―crumple zone‖ between the network and the services in

Fig. 1c).

Simplistic replenishment of redundancy in the context of

service replicas or in the crumple zone is easily overcome

by an intelligent and motivated adversary by observing and

predicting where the next service replica will be started. To

counter that threat, support for adaptive behavior that is

unpredictable to the attacker needs to be added to the

service-oriented architecture.

Finally, access rights of authenticated users need to be

constrained at multiple levels to provide effective defense in

depth. Otherwise, an adversary can escalate his privilege

and spread attacks throughout the system after gaining an

initial entry. SOA provides a level of modularity and plug

and play, but in most cases service instantiation and

platform implementations are not designed with

containment in mind. An entire SOA platform or a key

platform component like the JBoss Enterprise Service Bus

(ESB) can run as a single Java virtual machine (JVM)

process or with similar privileges in a single network

partition, making it easy for an adversary to spread attacks

between components. Similarly data and control channels

can be indiscriminately mapped to the same network,

leading to situations where attacks on the data channel affect

the control channel as well. For these reasons, it is important

that a survivable service-oriented system incorporates

containment mechanisms by design. Containment regions

create artificial barriers within a system to limit privilege

escalation and as shown conceptually in Fig. 1d, limit the

spread of attack effects between processes, hosts, and

network segments.

On the basis of the previous discussion, let us turn our

focus toward three specific new survivability constructs:

 Service conglomerates that eliminate single points of

failure,

 Containment regions that limit the spread of attacks,

and

 Crumple zones that strategically combine redundancy

with diversity, and interject a defensive layer

between two interacting parties.

All three architectural enhancements are based on proven

design principles and described in an abstract and vendor

neutral manner, and hence generally applicable. Of these

three, we describe the crumple zone in more detail because

it serves as the integration point of the other concepts.

A service conglomerate creates and maintains a set of

service instances, some of which may be redundant and

possibly diverse variants of one individual service that

cooperate closely to defend against a specific threat such as

a SPOF or corruption of a high-value service.

A containment region creates artificial boundaries that

are difficult for an adversary to cross both in terms of time,

i.e., expiring unauthorized access after a period of time, and

space, i.e., access/compromise in one part or layer of the

system will not mean ready access/compromise of other

parts and layers of the system.

A crumple zone sets up multi-layer intermediaries in the

service request-response path that bridges different trust and

threat levels, and either stops a class of attacks or provides

early warnings of trouble before protected services are

affected. The crumple zone uses containment regions and

service conglomerates to strengthen the survivability of the

outermost interaction surface between clients and services.

Fig. 2 displays a more detailed view of the crumple zone

previously shown in Fig. 1c. It shows how the crumple zone

is inserted into the interaction pattern between clients at the

bottom and services at the top. Proxies contain logic for

validating user input, checking attack signatures, and

triggering attack effects. To tolerate those effects, the

Fig. 1. Organizing Defenses in a Survivability Architecture

Fig. 2. Design of the Crumple Zone

proxies need to be lightweight and easy to restart. To

contain attack effects, proxies are designed to maintain as

little state as possible and placed into containment regions,

shown as parallelograms.

The crumple zone supports layering of proxies along two

axes: horizontal layering, as shown by XML Proxy 1 and

XML Proxy 2, provides SPOF elimination through strategic

use of redundancy and diversity by having certain proxy

functionality, such as XML schema validation, implemented

on different implementation substrates, e.g., programming

languages and parsers. Vertical layering provides defense in

depth by defining proxy chains as a set of functionally

different proxy components. For instance, the two proxy

service conglomerates shown in Fig. 2 combine XML

checking with application-level constraint checking on

publication messages sent to a Pub service through the Pub

Proxy component.

Proper functioning of the crumple zone requires a

management and control framework as shown by the

backend management service communicating with the

crumple zone components to monitor and control proxies

through a reverse proxy called the Admin Proxy. The

management service contains logic for detecting crashes and

corruption of crumple zone components and adaptive

response to restart components and initiate dynamic policy

reconfigurations, thereby managing the adaptive behavior of

the crumple zone.

Various design tradeoffs exist when implementing a

crumple zone for a given SOA-based system. We need to

relate the amount of redundancy, and diversity, together

with the layering depth, to the cost of computing resources

and performance overhead. We have started documenting

the assumptions, capabilities, and tradeoffs in terms of cost-

benefit-risk as part of our methodology for creating

survivable designs, which can be used by practitioners to

strengthen the survivability of their systems.

We expect to use a combination of logical argument

construction, formal methods, and experimentation to

validate the claims and benefits of these architectural

enhancements. We are investigating the use of domain-

specific languages, e.g., Lobster [3], and micro process

languages, e.g., Little JIL [4].

B. Novel Defense Mechanisms

The state of the art in SOA security includes mechanisms

and services for establishing trusted communication over

untrusted networks, e.g., using TLS and WS-Security,

policy-based authentication and authorization of services

and clients, e.g., using X.509 certificates [5] and

XACML[1], and hardened appliances for message checking,

e.g., Layer 7 XML gateways [6]. While useful as building

blocks, these capabilities are not sufficient to support the

architectural survivability concepts described in the

previous section. New multi-function defensive mechanisms

needed to support the crumple zone concept include proxies

that provide protection against Java serialization attacks [7]

and can perform anomaly detection capabilities to detect an

unexpected increase in rate or size of application-level

messages. Furthermore, management of point-to-point SSL

[8] connections becomes an issue when dealing with

complex interaction patterns spanning many services in a

service conglomerate while trying to support end-to-end

message integrity across multiple service to service

interactions. This section describes two novel defense

mechanisms we are investigating in more detail, namely

advanced proxy services and service-layer Virtual Private

Groups.

Advanced Proxies: Proxy services are becoming more

available as part of SOA platforms, for example, AquaLogic

[9] includes proxies for services that connect to its ESB. Our

envisioned proxies go beyond those of other SOA platforms

in that they also contain capabilities to detect and protect

against service flood and other injection based attacks. Fig.

3 illustrates the envisioned proxy services. Fig. 3 (a) shows

an XML proxy, which interprets the service requests and

responses at the level of XML messages and applies

signature-based checks as well as size- and rate-based

checks. Fig. 3 (b) shows the proxy interpreting the service

requests and responses up to the application level and then

applying signature and anomaly based checking.

Service Layer Virtual Private Groups (slVPGs): The

infusion of architecture enhancements and innovative

defense mechanisms described here challenges system self-

protection. Service conglomerates and the crumple zone, for

example, inject new defenses into the communication path

that must integrate seamlessly with existing defenses

providing authentication, confidentiality, and integrity

guarantees along that path. Not surprisingly, the existing

defenses, which include SSL and WS-Security [10], were

not designed to facilitate in-transit packet inspection and

Fig. 3. Two examples of envisioned APS proxy services: (a) interprets and

checks XML messages; (b) interprets requests and responses based on

knowledge of the application making the request or response

directly modifying their use to do so would have many

drawbacks, including a higher attack exposure for the new

defenses and more complex key management overall. For

this reason, we explore the use of slVPGs to guarantee

authentication, confidentiality, and integrity between the

client and the protected service. The slVPG resembles

existing defenses in operation but shares its cryptographic

credentials transparently with authorized intermediaries like

the crumple zone proxies. The slVPG allows those proxies

to peer into protected data streams without affecting the

end-to-end guarantees on those streams. The slVPG can also

make the use of service conglomerates transparent to the

client since all service instances share the same slVPG

credentials. The slVPG relies on a protected and robust key

distribution scheme, which we will integrate into our larger

defense management strategy. System and component tests

will include efforts to observe and circumvent slVPG key

sharing.

We previously invoked VPGs at the network layer [11]

and we observed many benefits from their use (see [12]).

However, unlike that earlier incarnation, which relied on a

closed, proprietary implementation and protocol [13], our

implementation of slVPGs will follow the practice described

in [14], where we leveraged the features of robust, open

source standards and technologies. The slVPG will provide

similar guarantees to existing defenses while facilitating the

use of robust defenses for survivability.

C. Support for Composition-Oriented Software

Construction

Service-orientation encourages decoupled development of

functionality as services which then need to be composed

together to perform organization-level tasks. For example,

an order fulfillment system might be composed of services

for order entry and payment validation. This composition-

oriented method of software construction needs to integrate

and interoperate with the advanced survivability features

described earlier, many of which are implemented as

services, and some (mostly the architectural enhancements)

impose specific constraints on how services are allowed to

interact with each other.

The challenge is twofold: first, to integrate services,

including defense services, in a way that does not

inadvertently open new vulnerabilities; and second, to

deploy services in way that the combined resource footprint

and run-time cost of business services and survivability

services falls well within system requirements. Examples of

how improper composition may undermine the protection

and continued functioning of the system include:

 A service that was behind a firewall becomes

connected to other hosts on the unprotected network,

creating a bypass around the firewall that attackers

can exploit.

 Authentication is only present on particular entry

points into the system but not on others, opening up

backdoors.

 Incorporating authentication without encryption of

data causes sensitive application data to be sent ―in

the clear‖. A special case of this is composition of a

distributed password authentication service without

encryption, where passwords are sent or stored in

plain text.

 Byzantine fault tolerance requires several replicas

and complex agreement protocols, which might push

the request-response time to an unacceptable level.

 Use of diversity to avoid common mode failures

requires multiple operating systems and platforms.

The organization now needs system administration

expertise for all of these platforms and the increase in

complexity might lead to misconfiguration of parts of

the system.

SOA developers and system integrators currently do not

have much support for validating and checking their

deployment configurations for errors and unsafe patterns.

To address this issue, we are exploring the following

innovative concepts:

 Safe and Unsafe Composition Patterns: Define tell-

tale characteristics of inherently unsafe

compositions.

 Characterization of Defense Mechanisms and

Services Using Metadata: Empirically determine

metadata capturing resource footprint and

performance overhead and associate them with the

defense mechanisms and services in a secure way.

 Analysis and Automated Configuration Generation:

Analyze the configuration of a collection of

configurable elements in a SOA system to look for

consistency or unsafe patterns and generate

consistent configuration from high level

specifications.

In the following paragraphs we briefly summarize the

basic ideas and resulting benefits for each of these concepts.

In the safe and unsafe composition patterns thrust, the

idea is to construct and study a number of composition use

cases and identify patterns that are inherently unsafe and

should be avoided. With a catalog of ―unsafe‖ composition

patterns, SOA designers and integrators should at least be

able to identify and eliminate them from their designs and

systems, thereby achieving a basic level of protection.

By characterizing of defense mechanisms and services

using metadata, we are making the ―contract‖ between the

defense provider, i.e., the defense mechanisms and services,

and the consumer, i.e., the system which integrates the

defense, more explicitly aware of the resource requirement

and performance overhead. With such metadata attached to

the defense mechanisms and security services, it is

conceivable that a pre-deployment time tool will analyze the

intended service descriptor and configuration settings of the

relevant elements in the target SOA container, and present

an estimate of whether any resource or performance

requirements are at risk.

In analysis and automated configuration generation,

we are leveraging prior work [12] [14] to generate a

consistent set of configurations based on a high-level

specification such as conversations. A conversation

describes authorizations for a set of consumers to engage in

specific service interactions. In this context we use the term

―authorizing‖ in a general sense to include authentication as

the basis to authorize entities, and additional protection

requirements such as confidentiality on the authorized

interactions. Each conversation clarifies the desired

permissible relationships between the named consumers and

providers with regard to named services. A survivable SOA

system will need to integrate multiple defense mechanisms

and security services, each of which will have their own set

of configurable parameters. It has been argued that incorrect

configurations account for a large proportion of security

vulnerabilities today. Automated configuration generation

and checking for predefined safety and consistency

properties is a decisive step in addressing this problem.

III. RELATED WORK

Research in survivability and intrusion tolerance, ongoing

work in standardizing SOA security, and best-of-breed

security available in the SOA market place are all relevant

for the work described in this paper. In the commercial

space of SOA security products, related work includes

hardened security appliances, like the Layer7 XML

appliance [6] and F5 BIG-IP ASM [15] as well as endpoint

security monitoring systems, e.g., Cisco CSA [16].

Commercial products started supporting a number of

OASIS security standards, in particular WS-Security [10]

and related subparts such as SAML [17] , XML Signature

[18], and XML Encryption [19].

Many researchers exploring adaptive cyber defense,

including the authors, have also developed special purpose

architectures and supporting mechanisms for intrusion

detection and response, intrusion tolerance, and graceful

degradation. Many of the design principles and defense

mechanisms underlying the advanced survivability concepts

described in this paper have been validated through multiple

rounds of R&D and evaluation. We summarize a few of

these precursor efforts.

The ITUA [20] project developed technology and system

design techniques for building information systems that will

tolerate, i.e., continue to function without violating program

and data integrity, a specific class of attacks, namely, the

attacks that introduce corruption in communication and

application level interaction in distributed object

applications. In addition to corruption tolerant algorithms,

ITUA developed architecture for managing distributed

object replicas and the hosts on which they run.

The Willow architecture [21] achieves intrusion tolerance

using a combination of disabling of vulnerable network

elements when a threat is detected or predicted, replacing

failed system elements, and reconfiguring the system if non-

maskable damage occurs. Willow uses its own event-

notification service as the control mechanism of its scalable

architecture.

Dependable Intrusion Tolerance (DIT) [22] comprises

functionally redundant HTTP commercial off the shelf

servers. These servers run on diverse operating systems and

platforms, use hardened intrusion-tolerant proxies that

mediate client re-quests and verify the behavior of server

and other proxies, and include monitoring and alert-

management components based on the EMERALD

Intrusion Detection System. The system adapts its

configuration dynamically in response to intrusions and

other faults.

Malicious and Accidental Fault Tolerance for Internet

Applications (MAFTIA) [23] is a European project

developing an open architecture for transactional operations

on the Internet. MAFTIA models a successful attack on a

security domain, leading to corruption of processes in that

domain, as a fault; the architecture then exploits approaches

to fault tolerance that apply regardless of whether the faults

are due to accidents or malicious acts. MAFTIA is explicitly

middleware-based and provides both protection from and

tolerance of intrusions

The Saber [24] system uses several mechanisms

including intrusion detection, automatic code patching,

process migration, and filtering of distributed denial-of-

service floods for defense, but focuses primarily on server

avail-ability.

As part of the DARPA OASIS Dem/Val program and

BBN’s DPASA project [11], we designed and evaluated a

high watermark survivability architecture that provides

strong guarantees for attack tolerance and survival, intrusion

detection, and situational awareness.

The goal of the CSISM project [25] was to develop
automated reasoning mechanisms that when incorporated in
the survivability architecture will minimize the role of
human experts and pave the way for truly self-regenerative
survivable systems. CSISM implemented multi-layer
reasoning, with fast reaction rules designed to take effective
defensive actions within 250 ms of attack initiation, and a
more deliberate cognitive reasoning process based on
interpretation and hypothesis generation, response selection,
and learning to take system wide defense actions.

IV. CONCLUSION

Securing critical service-oriented systems is an elusive

goal as it requires eliminating every vulnerability, known

and unknown, past, present, and future. Determined

adversaries only need to find a single vulnerability to

successfully exploit, meaning that the odds are stacked in

their favor. We suggest a focus on building systems that are

survivable instead, using technologies that combine

protection, detection, and adaptation capabilities. The wide

range of application and network contexts in which service-

oriented systems are expected to be deployed implies that

there is no one single architecture or configuration to

achieve survivability. Designing a survivable system is

necessarily a careful balance between requirements, capital

and operating expense of the added security measures and

the perceived benefits determined based on imperfect and

often subjective evaluation of security, and its effect on

other requirements such as performance and system size.

 The advanced protection concepts we described in this

paper work with, utilize, and augment existing security

standards and protection mechanisms, and are designed to

be tailored for specific contexts. In addition to providing

key architectural and protection concepts, it is important to

characterize the cost and benefit of the architectural

constructs, security services and defense mechanisms so that

designers can make informed choices about including them

in their systems.

The major contribution of the work described here is the

formulation of advanced protection concepts and a

methodology to apply them to service-oriented systems. We

expect that the concepts, the methodology, and instantiation

and validated use cases of a representative sample of the

technologies described in this paper in the form of a

survivable service-oriented system will provide a

foundational basis for engineering dependable service-

oriented systems.

ACKNOWLEDGMENT

This material is based upon work supported by the Air

Force Research Laboratory under Contract No. FA8750-09-

C-0216. Any opinions, findings and conclusions or

recommendations expressed in this material are those of the

author(s) and do not necessarily reflect the views of AFRL.

The authors wish to thank the other APS team members

including Jon Webb and Matt Gillen at BBN, and Dick

O’Brien and John Ghode at Adventium.

REFERENCES

[1] Tim Moses. (1 Feb 2005) eXtensible Access Control

Markup Language (XACML) Version 2.0.

[2] R Shostak, M Pease, and L Lamport, "The Byzantine

Generals Problems," ACM Transactions on

Programming Languages and Systems, vol. 4, no. 3,

pp. 382-401, July 1982.

[3] P White. (2008) SELinux Developers Summit -

Security Configuration Domain Specific Language.

[Online].

http://selinuxproject.org/files/2008_selinux_develope

rs_summit/2008_summit_white.pdf

[4] Leon Osterweil et al., "Experience in Using a

Process Language to Define Scientific Workflow and

Generate Dataset Provenance," in ACM SIGSOFT

16th International Symposium on Foundations of

Software Engineering, 2008, pp. 319-329.

[5] (2005) ITU-T Recommendation X.509 Information

Technology - Open Systems Interconnection - The

Directory: Authentication Framework, 08/05.

[Online]. http://www.itu.int/rec/T-REC-X.509-

200508-I

[6] Layer7. (2010, January) XML Firewall. [Online].

http://www.layer7tech.com/main/products/xml-

firewall.html

[7] Mark Schoenefeld, "Presentation on J2EE

Penetration Testing," , 2006.

[8] T Dierks and E Rescorla. (2008, August) RFC 5246 -

The Transport Layer Security (TLS) Protocol

Version 1.2. http://tools.ietf.org/html/rfc5246.

[9] BEA. (2010, Jan) BEA AquaLogic. [Online].

http://www.oracle.com/bea/index.html?CNT=index.h

tm&FP=/content/products/aqualogic/

[10] OASIS. (2006, February) WS-Security 2004.

[Online]. http://www.oasis-

open.org/committees/download.php/16790/wss-v1.1-

spec-os-SOAPMessageSecurity.pdf

[11] J. Chong, P. Pal, M. Atighetchi, P. Rubel, and F.

Webber, "Survivability Architecture of a Mission

Critical System: The DPASA Example," in

Proceedings of the 21st Annual Computer Security

Applications Conference, 2005, pp. 495-504.

[12] Paul Rubel, Michael Ihde, Steven Harp, and Charles

Payne, "Generating Policies for Defense in Depth,"

in 21st Annual Computer Security Applications

Conference, Tucson, Arizona, December 5-9 2005.

[13] M Carney, R Hanzlik, and T Markham, "Virtual

Private Groups," in 3rd Annual IEEE Information

Assurance Workshop, 2002.

[14] Richard O'Brien and Charles Payne, "Virtual Private

Groups for Protecting Critical Infrastructure

Networks," in Cybersecurity Applications and

Technology Conference for Homeland Security,

Washington DC, 2009, pp. 118-123.

[15] F5. (2010, January) BIG-IP ASM. [Online].

http://www.f5.com/products/big-ip/product-

modules/application-security-manager.html

[16] Cisco. (2010, January) Cisco Security Agent.

[Online].

http://www.cisco.com/en/US/products/sw/secursw/ps

5057/index.html

[17] N. Ragouzis et al. (2008, March) Security Assertion

Markup Language (SAML) V2.0 Technical

Overview. [Online]. http://www.oasis-

open.org/committees/download.php/27819/sstc-

saml-tech-overview-2.0-cd-02.pdf

[18] W3C. (2008, June) XML Signature. [Online].

http://www.w3.org/TR/2008/REC-xmldsig-core-

20080610/

[19] W3C. (2002, December) XML Encryption. [Online].

http://www.w3.org/TR/2002/REC-xmlenc-core-

20021210/

[20] P. Pal et al., "An architecture for adaptive intrusion-

tolerant applications," Software: Practice and

Experience, vol. Volume 36, no. Issue 11-12

(September - October 2006), pp. 1331-1354, 2006.

[21] Dennis Heimbigner, Alexander Wolf, Antonio

Carzaniga, Jonathan Hill, Premkumar Devanbu, and

Michael Gertz John Knight, "The Willow

Architecture: Comprehensive Survivability for

Large-Scale Distributed Applications," in Proc. Int’l

Conf. Dependable Systems and Networks (DSN 02),

2002, p. C.7.1–C.7.8.

[22] Magnus Almgren, Steven Cheung, Yves Deswarte,

Bruno Dutertre, Joshua Levy, Hassen Saidi, Victoria

Stavridou, and Tomas E. Uribe. Alfonso Valdes, "An

Architecture for an Adaptive Intrusion Tolerant

Server," in Proc. Security Protocols Workshop,

LNCS, 2002.

[23] N. F. Neves, and M. Correia. P. Verissimo, "The

Middleware Architecture of MAFTIA: A Blueprint,"

in Proc. 3rd IEEE Info. Survivability Workshop,

2000.

[24] Janak Parekh, Philip N. Gross, Gail Kaiser, Vishal

Misra, Jason Nieh, Dan Rubenstein, and Sal Stolfo.

Angelos D. Keromytis, "A Holistic Approach to

Service Survivability," in Proc. ACM Workshop on

Survivable and Self-Regenerative Systems, ACM

Press, 2003, pp. 11-20.

[25] Partha Pal, Franklin Webber, Paul Rubel, and

Michael Atighetchi D. Paul Benjamin, "Using A

Cognitive Architecture to Automate Cyberdefense

Reasoning," in Proceedings of the 2008 ECSIS

Symposium on Bio-inspired, Learning, and

Intelligent Systems for Security (BLISS 2008), 2008.

1

Advanced Protected Services
A Concept Paper on Survivable Service Oriented Systems

Presented by Aaron Adler
Partha Pal, Michael Atighetchi, Joseph Loyall, Andrew Gronosky,

Charles Payne, Robert Hillman

This work is supported by the US Air Force Research Laboratory

2

Outline

• Distributed System Technology Landscape

• Survivable Systems

• APS Concepts

• Achievements So Far

• Next Steps and Conclusion

3

CEP

Evolving Technology Landscape
• More functionality pushed down to the

“platform” making it more complex to

configure and manage

• Various interaction paradigms

Sockets– transporting bytes

Location and implementation transparent
distributed objects

SOA Loosely coupled interaction with container
deployed services

Event
Pub/Sub
Manager

Request-Response

Message/Queues

publish
event

register
interest

content
delivery

Eventing/Pub-Sub

Streaming/Complex Event Processing

4

Increasing Role of Information Systems

Distributed and Networked Information
Systems are increasingly intertwined with
military operation as well as civilian life

Unfortunately attacks are on the rise as well

ASTOR Air Support

Battlefield
Radar

TRACER

Attack
Helicopters

MLRS

Air Defence

Tactical HQ

JFHQ

Surface Fleet

Military ComsatCivil Comsat
/GBS

Surveillance
Satellite

Submarines - Trident, TLAM AJW

JFHQ
AFLOAT

JHQ

VLF
LF
HF

UAVAWACS

Network Centric Warfare

Determined and motivated actors– the Estonia incident, attacks on Israeli systems
Other publicly known instances such as the attacks on DoD systems and defense
contractor sites, attacks on Google, recent auction of facebook account information
(Kirllos, $45 per 1000 accounts)

5

SOA Background
Service Oriented Architecture (SOA) facilitates loosely coupled interaction and
composition oriented system construction

Host

VM VM

JVM

Host

VM VM

JVM JVM

Host

Infrastructure

Services

Service container

Deployed

Services

Service

Consumers

Other

back-end

systems

Service Provider Enclave

Infrastructure

Svcs

Infrastructure

Svcs

Deployed

Services

Deployed

Services

Service container

Service container

In a typical SOA offering
 Service Containers – possibly different kinds

 Containers running on virtual machines

 The term “Service Consumers” indicates that they do not offer services to others –
deployed services can consume services provided by other deployed or
infrastructure services

 Different means of packaging functionality/computation as services such as EJB,
Servlets, POJO under WS stack…

 Different ways to access the services e.g., RMI, HTTP/S...

 SOA services may depend on non-SOA back end systems

Many modern information systems, including military systems are migrating to
SOA to take advantage of easier enabling of new capabilities and interoperation

6

Current SOA Services Are Vulnerable

State of the Practice Limitations
Network &Transport Layer Security (e.g.,
IPSec, TLS)

Protects network only, ineffective against
compromised process or host

Application Layer Security (e.g., DMZs,
App Firewalls)

Signature based, static configuration and lack of
diversity

Service Infrastructure and Platform
Security (e.g., WSS)

Too many standards; a protocol construction kit
rather than a solution

Key Security Concerns
 Usual measures such as Authentication, Access Control, Encryption and Message

Signing are not enough for “Fighting Through” attacks from a determined adversary

 Need to continue to provide service to legitimate consumers

 Need to contain the attack effects

 Need to recover (from failures), reconnect (lost connections), regain (lost
defenses)

 Tall stacks, complex and large code base – hard to construct an overarching
assurance argument using the entire platform as a Trusted Computing Base (TCB)

 Need to focus on slices, and possibly a root of trust outside the stack

7

Advanced Protected Services
Need to improve the survivability and protection

of next generation service-oriented architectures

and systems and applications built using SOA

• Survived 75% of attacks, even when the attacker was given insider

access and privilege (red team would actually start the system, after

placing attack code)

• A number of survivability design principles that go beyond

“defense in depth”
• Single Point of Failure (SPOF) elimination, redundancy and
diversity, containment, hardware or cryptographic root of trust,
Crumple zones (many appear in the recent SANS/MITRE
Common Weakness Enumeration, CWE)

• Availability is still the easiest target, and flaws in COTS

components still the major risk (and a fact of life)

Redundancy/Diversity

VPN Firewall
Switches

JVM

ADF
CSA/SELinux

App.
Application

Process
Host

Network
System

Redundancy/Diversity

VPN Firewall
Switches

JVM

ADF
CSA/SELinux

App.
Application

Process
Host

Network
System Local (host),

network- and
system-wide

control loops for
managing

defense

Bird’s eye view of survivability architecture
organizing defense at various system layers

Current high-water mark in survivable system: OASIS Dem/Val

OASIS Dem/Val demonstration was not service-oriented.
APS aims to achieve similar levels of resiliency with SOA

8

APS Approach

Key Ideas
– Extend SOA concepts and design techniques to include

elements that facilitate survivable design

• Specifically focused on “tolerance” or “survival”

• Strategic concepts like containment and adaptive behavior

– Develop mechanisms, protocols, and supporting services to

realize the architecture enhancements

– Develop an environment, and techniques and composition

patterns enabling context-specific customization

• Survivability cost and benefit balanced against the threats and footprint

requirements of the deployment environment

Show incremental progress by periodic demonstrations and metrics evaluations,
culminating in a red team exercise at the end

9

Architecting for Survivability

b

Network

“key asset”

applications accessing the

key asset over the network

Introduce redundancy

a d cb

Network

Introduce diversity

a

Network

a

SPOF?

Introduce

physical

barriers

using DMZ

a

diversity?

a

access-

ibility of 4

replicas?

run same attack 4 times?

4 replicas are still accessible

Containment Regions limit the
spread of attacks

Crumple Zones absorb the
effects of attacks

Conglomerates for managed
redundancy and collaboration

Process
(JVMs, AS
Containers)

Host
(may be virtual)

network
segment

Key APS Architectural Concepts

a

Network

Includes Application
Proxies

a

Network

Redundant and
collaborating services

10

Focusing on Crumple Zone

Client Zone

Client

Service Zone

Service

Crumple Zone

Proxies

Provider DomainConsumer Domain

Protect Clients from Services Attack

Client Zone

Client

Service Zone

Service

Crumple Zone

Proxies

Provider DomainConsumer Domain

Client Zone

Client

Client Zone

Client

Crumple Zone

Proxies

Crumple Zone

Proxies

C
li
e

n
t
Z

o
n

e

C
li

e
n

t

Service Zone

Service

C
li
e

n
t
Z

o
n

e

C
li

e
n

t

C
li
e

n
t
Z

o
n

e

C
li

e
n

t

C
li
e

n
t
Z

o
n

e

C
li

e
n

t

S
e

rv
ic

e
 Z

o
n

e

S
er

vi
ce

C
li
e

n
t
Z

o
n

e

C
li

e
n

t

Protecting the Provider Domain
Client Zone

Client

Service Zone

Service

Crumple Zone

Proxies

Provider DomainConsumer Domain

Protect Service from ClientsAttack

Protecting the Consumer Domain

Protecting both Domains

Including inter-client interactions

Different Deployment Options

11

Crumple Zone: The Concept

Crumple Zone

NAT

IP Packet
Rate Limiting

SYN Cookies

IP Deep Packet
Filtering

System Layer

Network

Application

IPSec

RMI Proxies SOAP Proxies

XML Validator

SPA

NIDS

SSL Checks HIDS

Notional depiction of crumple zone

Various crumple zone functions with
respect to system layers

Filtering and checking at various layers
• Application level (mechanism specific)
• Network level
Maximizing end to end integrity,
confidentiality and access control while
allowing filtering and checking: slVPG
Self protection: authentication and
access control of control and data within
crumple zone
Self management: watchdogs, restarts

12

Other APS Concepts at Play in CZ
Containment in CZ

CZ as a conglomerate

Adaptive response in CZ

fir
ew

al
l

JVM/Process

CZ Function
JVM/Process

CZ Function

JVM/Process

CZ Function

JVM/Process

CZ Function

JVM/Process

CZ FunctionSPA

Complex
Interconnection

Need to protect corruption across streams and functions

Unavailability of key functions may render the
protected services unavailable

JVM/Process

CZ Function

JVM/Process

CZ Function

JVM/Process

CZ Function

JVM/Process

CZ Function

JVM/Process

CZ Functionx x
Need redundancy, watchdog, restart at various levels and diversity in key CZ functions

Deployed Sv1c1_1Deployed Svc1_2

CZ MGMT

Svc1 Consumer1

Svc1 Consumer2

Svc1 Consumern

Visible
SVC1 EP

JVM/Process

CZ Function

JVM/Process

CZ Function

JVM/Process

CZ Function

JVM/Process

CZ Function

Multiple functions, some redundant, cooperate to provide the protected service.

Some are shared by conglomerates.

13

One Realization (SSL, EJB)

Different configurations have different assurance guarantees – all using
the same basic building block functions…

Service requester and provider

SSL end point function

Key sharing function

Escrow and decision function

E2E integrity envelope is not all the way, but minimal
key sharing and control
• Split done within the message layer, i.e., RMI
Easier handling of escrow and decision for both
request and response
Multiple possibilities for situating the escrow

client

fir
ew

al
l

SSL VP

SS
LS

P

MP
Cloud

SSL TP

AS

1 2

2a
3

3a 3b

3c

Rejected
knocks

Invalid SSL
Request

Rejected by
Mechanism
Proxies

3d3f

3e

3g

14

SSL/TLS

SSL/TLSSSL/TLS

Mechanism in Support of CZ: slVPG

Client Proxy Proxy Proxy Service
XML Signature

SSL/TLS SSL/TLS

• Multiple connections imply new Proxy certificates and less flexible Proxy
configuration

JSSWG Control Case E: SSL/TLS + XML Signature

Client
SSL
TP Proxy Proxy Service

XML Signature

SSL/TLS

Inspection and Filtering in the Crumple Zone Without slVPGs

With slVPGs*
(service level Virtual
Private Groups)

• In effect, the proxies are able to see the messages in clear text
• Proxies do not require their own certificates

Confidentiality Key

* An abstract representation, does not
show CZ details like message
routing, escrow etc.

Instrument, and possibly
relocate the termination point of
client’s SSL/TLS connection

15

Support for Safe Composition

– Define a set of operational use cases, identify the vulnerabilities and
footprint, performance, and overhead constraints of the use case

– Develop benefit/cost ratios for each protection technique and use case

– Rank the techniques according to their benefit/cost ratio, taking into
account the additional vulnerabilities and dependencies on other
techniques

– Define and enforce policies/contracts on the composition, using
automated checkers

– Define automated configuration generators from high level specifications
of the composition patterns and characteristics of the use cases

Without help for composition:
• Expecting some defense to be a

silver bullet, but leaving major
vulnerabilities unprotected

• Inadvertently introducing
vulnerabilities during composition

• Including defenses that provide
little benefit at too great a cost

Introducing some
protection leaves major
vulnerabilities exposed

Incorrect
Composition

Safe and Secure
Orchestration

Prot.

Protection
Tactical

Enterprise

Protection
Prot.

Orchestrations that provide significant protection, affordable
overhead, and no introduced vulnerabilities for the patterns of use

host2

Broker

host1

Client

.
Clear Text

Authentication is not mutual

Hosts are not authenticated

Improper
composition adds
new vulnerabilities

Additional layers of
protection for the
high value DB kills
its performance,
but do not add
much value

High Value DB

Enterprise App

Crumple Zone

Encrypt
SSL

Crumple
ZoneRedundancy

Authentication

…

Defense
Mechanisms/
Services

Comp
1

Comp
2

Network

16

Achievements So Far

• Assessment of ONR RI VMs

• Reviewed a set of security community

guidance documents

• APS requirements

• APS platform (baseline)

• Survivability enhancements

• Design, Implementation, Testing and

Evaluation O
ng

oi
ng

 T
as

ks

17

Conclusion
• Goal: engineering of survivable service-based systems

– Robust and repeatable methodology

– Catalog of building blocks with cost-benefit annotation

– Best practices

• Defending against a sophisticated adversary is difficult,

critical information systems need to be more resilient

under a wider range of hostile environments and

contested situations

• No protection is absolute, but with the right combination of

sound engineering and innovative techniques, we can

raise the bar pretty high

– As demonstrated in OASIS Dem/Val

• Work in progress, with good initial results

– We just successfully demonstrated a version of the crumple zone

	Advanced Protected Services�A Concept Paper on Survivable Service Oriented Systems
	Outline
	Evolving Technology Landscape
	Increasing Role of Information Systems
	SOA Background
	Current SOA Services Are Vulnerable
	Advanced Protected Services
	APS Approach
	Architecting for Survivability
	Focusing on Crumple Zone
	Crumple Zone: The Concept
	Other APS Concepts at Play in CZ
	One Realization (SSL, EJB)
	Mechanism in Support of CZ: slVPG
	Support for Safe Composition
	Achievements So Far
	Conclusion

