
Advanced Protected Services 

A Concept Paper on Survivable Service-Oriented Systems 

 

Partha Pal, Michael Atighetchi, Joseph Loyall, 

Andrew Gronosky 

Information and Knowledge Technologies Unit 

Raytheon BBN Technologies 

Cambridge, USA 

{ppal,matighet,jloyall,agronosk}@xyz.com 

Charles Payne 

Cyber Security Group 

Adventium Laboratories 

Minneapolis, USA 

charles.payne@adventiumlabs.org

Robert Hillman 

Information Directorate 

Air Force Research Laboratory 

Rome, USA 

robert.hillman@rl.af.mil

 

 
Abstract— As newer software construction paradigms like 

service-oriented architecture (SOA) are adopted into systems 

of critical importance, it becomes imperative that technology 

and design artifacts exist that can be utilized to raise the 

resiliency and protection of such systems to a level where they 

can withstand sustained attacks from well-motivated 

adversaries. In this paper we describe a sampling of innovative 

services and mechanisms that are designed for the protection 

of systems that are based on service-oriented architectures.  

Keywords-survivability, service-oriented architecture 

I.  INTRODUCTION  

The technology landscape of engineering distributed and 

networked software-based systems has evolved from socket-

based network programming to distributed objects and 

components to web services and service-oriented 

architectures (SOA). The increased demand on computer-

based systems to perform sophisticated tasks and to deploy 

new functionality quickly, both in civilian, such as the 

financial and manufacturing sectors, and military domains, 

is forcing system developers to migrate existing systems and 

new developments to SOA. At the same time, computer-

based systems have become attractive targets of adversaries 

who aim to benefit by subverting or disrupting the operation 

of such systems. As a result, there is a need for survivable 

service-oriented systems—systems that not only tolerate 

accidental failures, but also continue to deliver an 

acceptable level of service despite being under attack. In 

some cases, e.g., critical infrastructure or military systems, 

systems need to be ―ultra-reliable‖ and it is possible to draw 

upon additional resources as needed. In other cases, 

however, resources such as CPU, bandwidth, or the ability 

to add additional hardware may be limited. In most cases, 

critical systems have specified timeliness requirements 

covering various degrees of real time behavior. 

Defense against malicious adversaries is an inherently 

hard problem. An adversary needs to find only one flaw in a 

system to exploit, whereas the defense needs to identify and 

address as many as possible. Specific characteristics of SOA 

approaches add to the challenge, including their dynamism, 

loose-coupling, and novel messaging and interaction 

patterns. Moreover, current SOA environments lack the 

level of sophistication in protection, detection, and 

adaptation capabilities needed to survive against motivated, 

well-resourced, and determined adversaries. As a result, 

current service-oriented systems are at significant risk of 

corruption, loss of service, and maliciously initiated leakage 

of information.  

To live up to their promised potential, future service-

oriented  systems will need to survive sustained attacks by 

sophisticated and well-motivated adversaries, something 

that is not achievable by the way available security solution 

are currently applied to systems and networks. We argue 

that advanced protection—a synergistic combination of 

protection, detection, and adaptation capabilities, 

complemented by the infusion of validated design principles 

such as defense-in-depth, single point of failure avoidance, 

containment and isolation—needs to be incorporated into 

the service-oriented architecture. Furthermore, novel 

techniques such as automatic generation of configurations 

and policies from high-level specifications are needed to 

address the additional risks and vulnerabilities introduced by 

service-oriented method of system construction.   

Toward that end, we have started to develop the 

necessary technical underpinnings required to make service-
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oriented information systems more robust and resilient 

against malicious attacks, and to demonstrate the utility of 

the developed advanced protection techniques in settings 

that exhibit various threat patterns, resource footprints, and 

performance requirements (e.g., tactical and tactical edge 

connected to an enterprise in the military context, or thin 

and thick clients interacting over various public and private 

networks in a civilian context). In this paper we describe a 

selected subset of the key concepts underlying the 

survivability of service-oriented systems.  

The main contribution of the paper is the introduction of 

advanced survivability concepts into the evolving SOA area. 

In addition to fostering the dialog between SOA and 

security researchers over the innovative concepts outlined in 

this paper, we expect practitioners in the field to benefit by 

incorporating some of these features into the design and 

implementation of their systems. 

 The rest of the paper is organized as follows. In Section 
II we describe the innovative concepts that we introduce to 
enable advanced protection in SOA systems. In Section III 
we describe related work. Section IV concludes the paper. 

II. CONCEPTS FOR ADVANCED PROTECTION IN  SOA 

We argue that in order to achieve the desired level of 

survivability in the context of a given service-oriented 

system and its operating environment, one needs a strategic 

combination of   the following:  

 Architecture Enhancements: Modification of the 

original organization and interaction pattern of the 

given system to introduce isolation, containment, 

redundancy and to enable adaptive behavior.  

 Innovative Defense Mechanisms: Insertion of security 

and adaptive technologies that did not originally exist in 

the system. 

 Support for Safe and Secure Composition: Ensuring 

that systems created by composing architectural 

elements and supporting defense mechanisms are safe, 

properly configured and do not introduce residual 

vulnerabilities.  

In this section, we describe representative examples of 

concepts being developed in each of the above categories 

that are general enough to have wider applicability in 

service-oriented settings, irrespective of the specific 

application or service-oriented platform.  

A. Architecture Enhancements 

Current SOA-based systems strongly emphasize 

architectural features that promote reuse through 

encapsulation and flexibility through composition. The 

service-oriented community has also adopted a number of 

security principles, e.g., separation of concerns between 

policy decision and enforcement [1] through policy decision 

points (PDPs) and policy enforcement points (PEPs), multi-

layer security through WS-Security and traditional 

demilitarized zones (DMZs), and clustering of application 

servers. If realized correctly and backed up by reliable 

implementations of underlying security mechanisms, these 

principles add to the protection of systems, but each one 

provides only a point capability and rests on a set of strong 

environmental assumptions about available resources and 

attacker sophistication. A survivable service must not make 

strong assumptions about the environment in which it will 

operate. Otherwise, an adversary will be able to easily 

manipulate the environment to violate key assumptions and 

cause unintended service behavior. For example, a system 

orchestrated as a workflow of sequential synchronous 

service invocations might have an implicit assumption about 

request-response delays. A denial of service attack or a 

partial failure at some point in the service invocation path 

can easily violate this timeliness assumption, causing the 

workflow to complete too late and therefore making results 

unavailable. 

The following paragraphs describe several ways SOAs 

can be enhanced to significantly increase protection and 

tolerance over current state of the art.  

A single instantiation of a service (and its service 

container) is a single point of failure (SPOF). Redundancy is 

traditionally used to mitigate SPOFs and provide load 

balancing. In addition, advanced redundancy-based 

protocols such as Byzantine Fault Tolerance [2] have been 

used to detect and tolerate process corruption. However, 

simple redundancy is susceptible to common mode failures 

and easily subverted by malicious adversaries. Dynamic 

replenishment of redundancy and use of diversity along with 

redundancy (see Fig. 1a and Fig. 1b) are ways to mitigate 

that threat. 

Dynamic redundancy and diversity are necessary but not 

sufficient to achieve a high level of survivability. Unlike 

traditional client-server systems, service consumers across 

the network do not directly connect to the service instances 

or replicas but rather to a service broker via an access point 

or a portal. Although it is common practice for SOA 

platform components to intercept the service requests for 

routing and access control purposes in a DMZ, they 

generally do not inspect and validate request or response 

payloads, thus leaving the system vulnerable to injection 

attacks. Furthermore, portals and service brokers do not 

provide application-level policies for expressing rate and 

size limits, thereby leaving the system open to denial of 

service attacks. Furthermore, SOA features like service 

orchestration introduce dependencies on critical services 

such as the discovery service, persistence service or the 

BPEL execution service, which become SPOFs that the 

designers and developers of services may not realize.  

Addressing these threats will require the insertion of 

specific resources and capabilities to absorb the initial blow 

of a sophisticated attack (see the diverse and redundant 



―crumple zone‖ between the network and the services in 

Fig. 1c).  

Simplistic replenishment of redundancy in the context of 

service replicas or in the crumple zone is easily overcome 

by an intelligent and motivated adversary by observing and 

predicting where the next service replica will be started. To 

counter that threat, support for adaptive behavior that is 

unpredictable to the attacker needs to be added to the 

service-oriented architecture.  

Finally, access rights of authenticated users need to be 

constrained at multiple levels to provide effective defense in 

depth. Otherwise, an adversary can escalate his privilege 

and spread attacks throughout the system after gaining an 

initial entry. SOA provides a level of modularity and plug 

and play, but in most cases service instantiation and 

platform implementations are not designed with 

containment in mind. An entire SOA platform or a key 

platform component like the JBoss Enterprise Service Bus 

(ESB) can run as a single Java virtual machine (JVM) 

process or with similar privileges in a single network 

partition, making it easy for an adversary to spread attacks 

between components. Similarly data and control channels 

can be indiscriminately mapped to the same network, 

leading to situations where attacks on the data channel affect 

the control channel as well. For these reasons, it is important 

that a survivable service-oriented system incorporates 

containment mechanisms by design. Containment regions 

create artificial barriers within a system to limit privilege 

escalation and as shown conceptually in Fig. 1d, limit the 

spread of attack effects between processes, hosts, and 

network segments. 

On the basis of the previous discussion, let us turn our 

focus toward three specific new survivability constructs:  

 Service conglomerates that  eliminate single points of 

failure,  

 Containment regions that limit the spread of attacks, 

and   

 Crumple zones that strategically combine redundancy 

with diversity, and interject a defensive layer 

between two interacting parties. 

All three architectural enhancements are based on proven 

design principles and described in an abstract and vendor 

neutral manner, and hence generally applicable. Of these 

three, we describe the crumple zone in more detail because 

it serves as the integration point of the other concepts.  

A service conglomerate creates and maintains a set of 

service instances, some of which may be redundant and  

possibly diverse variants of one individual service that 

cooperate closely to defend against a specific threat such as 

a SPOF or corruption of a high-value service. 

A containment region creates artificial boundaries that 

are difficult for an adversary to cross both in terms of time, 

i.e., expiring unauthorized access after a period of time, and 

space, i.e., access/compromise in one part or layer of the 

system will not mean ready access/compromise of other 

parts and layers of the system. 

A crumple zone sets up multi-layer intermediaries in the 

service request-response path that bridges different trust and 

threat levels, and either stops a class of attacks or provides 

early warnings of trouble before protected services are 

affected. The crumple zone uses containment regions and 

service conglomerates to strengthen the survivability of the 

outermost interaction surface between clients and services. 

Fig. 2 displays a more detailed view of the crumple zone 

previously shown in Fig. 1c. It shows how the crumple zone 

is inserted into the interaction pattern between clients at the 

bottom and services at the top. Proxies contain logic for 

validating user input, checking attack signatures, and 

triggering attack effects. To tolerate those effects, the 

 

Fig. 1. Organizing Defenses in a Survivability Architecture 

 

Fig. 2. Design of the Crumple Zone 



proxies need to be lightweight and easy to restart. To 

contain attack effects, proxies are designed to maintain as 

little state as possible and placed into containment regions, 

shown as parallelograms. 

The crumple zone supports layering of proxies along two 

axes: horizontal layering, as shown by XML Proxy 1 and 

XML Proxy 2, provides SPOF elimination through strategic 

use of redundancy and diversity by having certain proxy 

functionality, such as XML schema validation, implemented 

on different implementation substrates, e.g., programming 

languages and parsers. Vertical layering provides defense in 

depth by defining proxy chains as a set of functionally 

different proxy components. For instance, the two proxy 

service conglomerates shown in Fig. 2 combine XML 

checking with application-level constraint checking on 

publication messages sent to a Pub service through the Pub 

Proxy component. 

Proper functioning of the crumple zone requires a 

management and control framework as shown by the 

backend management service communicating with the 

crumple zone components to monitor and control proxies 

through a reverse proxy called the Admin Proxy. The 

management service contains logic for detecting crashes and 

corruption of crumple zone components and adaptive 

response to restart components and initiate dynamic policy 

reconfigurations, thereby managing the adaptive behavior of 

the crumple zone.  

Various design tradeoffs exist when implementing a 

crumple zone for a given SOA-based system. We need to 

relate the amount of redundancy, and diversity, together 

with the layering depth, to the cost of computing resources 

and performance overhead. We have started documenting 

the assumptions, capabilities, and tradeoffs in terms of cost-

benefit-risk as part of our methodology for creating 

survivable designs, which can be used by practitioners to 

strengthen the survivability of their systems.  

We expect to use a combination of logical argument 

construction, formal methods, and experimentation to 

validate the claims and benefits of these architectural 

enhancements. We are investigating the use of domain-

specific languages, e.g., Lobster [3], and micro process 

languages, e.g., Little JIL [4]. 

B. Novel Defense Mechanisms 

The state of the art in SOA security includes mechanisms 

and services for establishing trusted communication over 

untrusted networks, e.g., using TLS and WS-Security, 

policy-based authentication and authorization of services 

and clients, e.g., using X.509 certificates [5] and 

XACML[1], and hardened appliances for message checking, 

e.g., Layer 7 XML gateways [6]. While useful as building 

blocks, these capabilities are not sufficient to support the 

architectural survivability concepts described in the 

previous section. New multi-function defensive mechanisms 

needed to support the crumple zone concept include proxies 

that provide protection against Java serialization attacks [7] 

and can perform anomaly detection capabilities to detect an 

unexpected increase in rate or size of application-level 

messages. Furthermore, management of point-to-point SSL 

[8] connections becomes an issue when dealing with 

complex interaction patterns spanning many services in a 

service conglomerate while trying to support end-to-end 

message integrity across multiple service to service 

interactions. This section describes two novel defense 

mechanisms we are investigating in more detail, namely 

advanced proxy services and service-layer Virtual Private 

Groups. 

Advanced Proxies: Proxy services are becoming more 

available as part of SOA platforms, for example, AquaLogic 

[9] includes proxies for services that connect to its ESB. Our 

envisioned proxies go beyond those of other SOA platforms 

in that they also contain capabilities to detect and protect 

against service flood and other injection based attacks. Fig. 

3 illustrates the envisioned proxy services. Fig. 3 (a) shows 

an XML proxy, which interprets the service requests and 

responses at the level of XML messages and applies 

signature-based checks as well as size- and rate-based 

checks. Fig. 3 (b) shows the proxy interpreting the service 

requests and responses up to the application level and then 

applying signature and anomaly based checking. 

Service Layer Virtual Private Groups (slVPGs): The 

infusion of architecture enhancements and innovative 

defense mechanisms described here challenges system self-

protection. Service conglomerates and the crumple zone, for 

example, inject new defenses into the communication path 

that must integrate seamlessly with existing defenses 

providing authentication, confidentiality, and integrity 

guarantees along that path. Not surprisingly, the existing 

defenses, which include SSL and WS-Security [10], were 

not designed to facilitate in-transit packet inspection and 

 

Fig. 3. Two examples of envisioned APS proxy services: (a) interprets and 

checks XML messages; (b) interprets requests and responses based on 

knowledge of the application making the request or response 



directly modifying their use to do so would have many 

drawbacks, including a higher attack exposure for the new 

defenses and more complex key management overall. For 

this reason, we explore the use of slVPGs to guarantee 

authentication, confidentiality, and integrity between the 

client and the protected service. The slVPG resembles 

existing defenses in operation but shares its cryptographic 

credentials transparently with authorized intermediaries like 

the crumple zone proxies. The slVPG allows those proxies 

to peer into protected data streams without affecting the 

end-to-end guarantees on those streams. The slVPG can also 

make the use of service conglomerates transparent to the 

client since all service instances share the same slVPG 

credentials. The slVPG relies on a protected and robust key 

distribution scheme, which we will integrate into our larger 

defense management strategy. System and component tests 

will include efforts to observe and circumvent slVPG key 

sharing. 

We previously invoked VPGs at the network layer [11] 

and we observed many benefits from their use (see [12]). 

However, unlike that earlier incarnation, which relied on a 

closed, proprietary implementation and protocol [13], our 

implementation of slVPGs will follow the practice described 

in [14], where we leveraged the features of robust, open 

source standards and technologies. The slVPG will provide 

similar guarantees to existing defenses while facilitating the 

use of robust defenses for survivability. 

C. Support for Composition-Oriented Software 

Construction  

Service-orientation encourages decoupled development of 

functionality as services which then need to be composed 

together to perform organization-level tasks. For example, 

an order fulfillment system might be composed of services 

for order entry and payment validation. This composition-

oriented method of software construction needs to integrate 

and interoperate with the advanced survivability features 

described earlier, many of which are implemented as 

services, and some (mostly the architectural enhancements) 

impose specific constraints on how services are allowed to 

interact with each other. 

The challenge is twofold: first, to integrate services, 

including defense services, in a way that does not 

inadvertently open new vulnerabilities; and second, to 

deploy services in way that the combined resource footprint 

and run-time cost of business services and survivability 

services falls well within system requirements. Examples of 

how improper composition may undermine the protection 

and continued functioning of the system include: 

 A service that was behind a firewall becomes 

connected to other hosts on the unprotected network, 

creating a bypass around the firewall that attackers 

can exploit.  

 Authentication is only present on particular entry 

points into the system but not on others, opening up 

backdoors. 

 Incorporating authentication without encryption of 

data causes sensitive application data to be sent ―in 

the clear‖. A special case of this is composition of a 

distributed password authentication service without 

encryption, where passwords are sent or stored in 

plain text. 

 Byzantine fault tolerance requires several replicas 

and complex agreement protocols, which might push 

the request-response time to an unacceptable level. 

 Use of diversity to avoid common mode failures 

requires multiple operating systems and platforms. 

The organization now needs system administration 

expertise for all of these platforms and the increase in 

complexity might lead to misconfiguration of parts of 

the system. 

SOA developers and system integrators currently do not 

have much support for validating and checking their 

deployment configurations for errors and unsafe patterns. 

To address this issue, we are exploring the following 

innovative concepts: 

 Safe and Unsafe Composition Patterns: Define tell-

tale characteristics of inherently unsafe 

compositions. 

 Characterization of Defense Mechanisms and 

Services Using Metadata: Empirically determine 

metadata capturing resource footprint and 

performance overhead and associate them with the 

defense mechanisms and services in a secure way. 

 Analysis and Automated Configuration Generation: 

Analyze the configuration of a collection of 

configurable elements in a SOA system to look for 

consistency or unsafe patterns and generate 

consistent configuration from high level 

specifications. 

In the following paragraphs we briefly summarize the 

basic ideas and resulting benefits for each of these concepts. 

In the safe and unsafe composition patterns thrust, the 

idea is to construct and study a number of composition use 

cases and identify patterns that are inherently unsafe and 

should be avoided. With a catalog of ―unsafe‖ composition 

patterns, SOA designers and integrators should at least be 

able to identify and eliminate them from their designs and 

systems, thereby achieving a basic level of protection. 

By characterizing of defense mechanisms and services 

using metadata, we are making the ―contract‖ between the 

defense provider, i.e., the defense mechanisms and services, 

and the consumer, i.e., the system which integrates the 

defense, more explicitly aware of the resource requirement 

and performance overhead. With such metadata attached to 

the defense mechanisms and security services, it is 



conceivable that a pre-deployment time tool will analyze the 

intended service descriptor and configuration settings of the 

relevant elements in the target SOA container, and present 

an estimate of whether any resource or performance 

requirements are at risk. 

In analysis and automated configuration generation, 

we are leveraging prior work [12] [14] to generate a 

consistent set of configurations based on a high-level 

specification such as conversations. A conversation 

describes authorizations for a set of consumers to engage in 

specific service interactions. In this context we use the term 

―authorizing‖ in a general sense to include authentication as 

the basis to authorize entities, and additional protection 

requirements such as confidentiality on the authorized 

interactions. Each conversation clarifies the desired 

permissible relationships between the named consumers and 

providers with regard to named services. A survivable SOA 

system will need to integrate multiple defense mechanisms 

and security services, each of which will have their own set 

of configurable parameters. It has been argued that incorrect 

configurations account for a large proportion of security 

vulnerabilities today. Automated configuration generation 

and checking for predefined safety and consistency 

properties is a decisive step in addressing this problem. 

III. RELATED WORK 

Research in survivability and intrusion tolerance, ongoing 

work in standardizing SOA security, and best-of-breed 

security available in the SOA market place are all relevant 

for the work described in this paper. In the commercial 

space of SOA security products, related work includes 

hardened security appliances, like the Layer7 XML 

appliance [6] and F5 BIG-IP ASM [15] as well as endpoint 

security monitoring systems, e.g., Cisco CSA [16]. 

Commercial products started supporting a number of 

OASIS security standards, in particular WS-Security [10] 

and related subparts such as SAML [17] , XML Signature 

[18], and XML Encryption [19]. 

Many researchers exploring adaptive cyber defense, 

including the authors, have also developed special purpose 

architectures and supporting mechanisms for intrusion 

detection and response, intrusion tolerance, and graceful 

degradation. Many of the design principles and defense 

mechanisms underlying the advanced survivability concepts 

described in this paper have been validated through multiple 

rounds of R&D and evaluation. We summarize a few of 

these precursor efforts. 

The ITUA [20] project developed technology and system 

design techniques for building information systems that will 

tolerate, i.e., continue to function without violating program 

and data integrity, a specific class of attacks, namely, the 

attacks that introduce corruption in communication and 

application level interaction in distributed object 

applications. In addition to corruption tolerant algorithms, 

ITUA developed architecture for managing distributed 

object replicas and the hosts on which they run. 

The Willow architecture [21] achieves intrusion tolerance 

using a combination of disabling of vulnerable network 

elements when a threat is detected or predicted, replacing 

failed system elements, and reconfiguring the system if non-

maskable damage occurs. Willow uses its own event-

notification service as the control mechanism of its scalable 

architecture.  

Dependable Intrusion Tolerance (DIT) [22] comprises 

functionally redundant HTTP commercial off the shelf 

servers. These servers run on diverse operating systems and 

platforms, use hardened intrusion-tolerant proxies that 

mediate client re-quests and verify the behavior of server 

and other proxies, and include monitoring and alert-

management components based on the EMERALD 

Intrusion Detection System. The system adapts its 

configuration dynamically in response to intrusions and 

other faults.  

Malicious and Accidental Fault Tolerance for Internet 

Applications (MAFTIA) [23] is a European project 

developing an open architecture for transactional operations 

on the Internet. MAFTIA models a successful attack on a 

security domain, leading to corruption of processes in that 

domain, as a fault; the architecture then exploits approaches 

to fault tolerance that apply regardless of whether the faults 

are due to accidents or malicious acts. MAFTIA is explicitly 

middleware-based and provides both protection from and 

tolerance of intrusions  

The Saber [24] system uses several mechanisms 

including intrusion detection, automatic code patching, 

process migration, and filtering of distributed denial-of-

service floods for defense, but focuses primarily on server 

avail-ability. 

As part of the DARPA OASIS Dem/Val program and 

BBN’s DPASA project [11], we designed and evaluated a 

high watermark survivability architecture that provides 

strong guarantees for attack tolerance and survival, intrusion 

detection, and situational awareness.  

The goal of the CSISM project [25] was to develop 
automated reasoning mechanisms that when incorporated in 
the survivability architecture will minimize the role of 
human experts and pave the way for truly self-regenerative 
survivable systems. CSISM implemented multi-layer 
reasoning, with fast reaction rules designed to take effective 
defensive actions within 250 ms of attack initiation, and a 
more deliberate cognitive reasoning process based on 
interpretation and hypothesis generation, response selection, 
and learning to take system wide defense actions. 

IV. CONCLUSION 

Securing critical service-oriented systems is an elusive 

goal as it requires eliminating every vulnerability, known 



and unknown, past, present, and future. Determined 

adversaries only need to find a single vulnerability to 

successfully exploit, meaning that the odds are stacked in 

their favor. We suggest a focus on building systems that are 

survivable instead, using technologies that combine 

protection, detection, and adaptation capabilities. The wide 

range of application and network contexts in which service-

oriented systems are expected to be deployed implies that 

there is no one single architecture or configuration to 

achieve survivability. Designing a survivable system is 

necessarily a careful balance between requirements, capital 

and operating expense of the added security measures and 

the perceived benefits determined based on imperfect and 

often subjective evaluation of security, and its effect on 

other requirements such as performance and system size.  

 The advanced protection concepts we described in this 

paper work with, utilize, and augment existing security 

standards and protection mechanisms, and  are designed to 

be tailored for specific contexts. In addition to providing 

key architectural and protection concepts, it is important  to 

characterize the cost and benefit of the architectural 

constructs, security services and defense mechanisms so that 

designers can make informed choices about including them 

in their systems.  

The major contribution of the work described here is the 

formulation of advanced protection concepts and a 

methodology to apply them to service-oriented systems.  We 

expect that the concepts, the methodology, and instantiation 

and validated use cases of a representative sample of the 

technologies described in this paper in the form of a 

survivable service-oriented system will provide a 

foundational basis for engineering dependable service-

oriented systems. 
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CEP

Evolving Technology Landscape
• More functionality pushed down to the 

“platform” making it more complex to 

configure and manage

• Various interaction paradigms

Sockets– transporting bytes

Location and implementation transparent 
distributed objects

SOA Loosely coupled interaction with container 
deployed services

Event
Pub/Sub 
Manager

Request-Response

Message/Queues

publish 
event

register 
interest

content 
delivery

Eventing/Pub-Sub

Streaming/Complex Event Processing
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Increasing Role of Information Systems

Distributed and Networked Information 
Systems are increasingly intertwined with 
military operation as well as civilian life

Unfortunately attacks are on the rise as well

ASTOR Air Support

Battlefield
Radar

TRACER

Attack
Helicopters

MLRS

Air Defence

Tactical HQ

JFHQ

Surface Fleet

Military ComsatCivil Comsat
/GBS

Surveillance
Satellite

Submarines - Trident, TLAM AJW

JFHQ
AFLOAT

JHQ

VLF
LF
HF

UAVAWACS

Network Centric Warfare

Determined and motivated actors– the Estonia incident, attacks on Israeli systems
Other publicly known instances such as the attacks on DoD systems and defense 
contractor sites, attacks on Google, recent auction of facebook account information 
(Kirllos, $45 per 1000 accounts)
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SOA Background
Service Oriented Architecture (SOA) facilitates loosely coupled interaction and 
composition oriented system construction 

Host

VM VM

JVM

Host

VM VM

JVM JVM

Host

Infrastructure 

Services

Service container

Deployed 

Services

Service  

Consumers

Other 

back-end 

systems

Service Provider Enclave

Infrastructure 

Svcs

Infrastructure 

Svcs

Deployed 

Services

Deployed 

Services

Service container

Service container

In a typical SOA offering
 Service Containers – possibly different kinds

 Containers running on virtual machines

 The term “Service Consumers” indicates that they do not offer services to others –
deployed services can consume services provided by other deployed or 
infrastructure services

 Different means of packaging functionality/computation as services such as EJB, 
Servlets, POJO under WS stack…

 Different ways to access the services e.g., RMI, HTTP/S...

 SOA services may depend on non-SOA back end systems

Many modern information systems, including military systems are migrating to 
SOA to take advantage of easier enabling of new capabilities and interoperation
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Current SOA Services Are Vulnerable

State of the Practice Limitations
Network &Transport Layer Security (e.g., 
IPSec, TLS)

Protects network only, ineffective against  
compromised process or host

Application Layer Security (e.g., DMZs, 
App Firewalls)

Signature based, static configuration and lack of 
diversity 

Service Infrastructure and Platform 
Security (e.g., WSS ) 

Too  many standards; a protocol construction kit 
rather than a solution

Key Security Concerns
 Usual measures such as Authentication, Access Control, Encryption and Message 

Signing are not enough for “Fighting Through”  attacks from a determined adversary

 Need to continue to provide service to legitimate consumers

 Need to contain the attack effects

 Need to recover (from failures), reconnect (lost connections), regain (lost 
defenses)

 Tall stacks, complex and large code base – hard to construct an overarching 
assurance argument using the entire platform as a Trusted Computing Base (TCB)

 Need to focus on  slices,  and possibly a root of trust outside the stack
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Advanced Protected Services
Need to improve the survivability and protection 

of next generation service-oriented architectures 

and systems and applications built using SOA

• Survived 75% of attacks, even when the attacker was given insider 

access and privilege (red team would actually start the system, after 

placing attack code)

• A number of survivability design principles that go beyond 

“defense in depth”
• Single Point of Failure (SPOF) elimination, redundancy and 
diversity, containment, hardware or cryptographic root of trust, 
Crumple zones (many  appear in the recent SANS/MITRE 
Common Weakness Enumeration, CWE)

• Availability is still the easiest target, and  flaws in COTS 

components still the major risk (and a fact of life)

 

Redundancy/Diversity

VPN Firewall 
Switches

JVM

ADF
CSA/SELinux

App.
Application

Process
Host

Network
System

Redundancy/Diversity

VPN Firewall 
Switches

JVM

ADF
CSA/SELinux

App.
Application

Process
Host

Network
System Local (host), 

network- and 
system-wide 

control loops for 
managing 

defense 

Bird’s eye view of survivability architecture 
organizing defense at various system layers 

Current high-water mark in survivable system: OASIS Dem/Val

OASIS Dem/Val demonstration was not service-oriented.
APS aims to achieve similar levels of resiliency with SOA
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APS Approach

Key Ideas
– Extend SOA concepts and design techniques to include 

elements that facilitate survivable design

• Specifically focused on “tolerance” or “survival”

• Strategic concepts like containment and adaptive behavior

– Develop mechanisms, protocols, and supporting services to 

realize the architecture enhancements

– Develop an environment, and techniques and composition 

patterns enabling context-specific customization

• Survivability cost and benefit balanced against the  threats and footprint 

requirements of the deployment environment

Show incremental progress by periodic demonstrations and metrics evaluations, 
culminating in a red team exercise at the end
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Architecting for Survivability

b

Network

“key asset”

applications accessing the 

key asset over the network

Introduce  redundancy

a d cb

Network

Introduce diversity

a

Network

a

SPOF?

Introduce 

physical 

barriers 

using DMZ

a

diversity?

a

access-

ibility of 4 

replicas?

run same attack 4 times?

4 replicas are still accessible

Containment Regions limit the 
spread of attacks

Crumple Zones absorb the 
effects of attacks

Conglomerates for managed 
redundancy and collaboration 

Process
(JVMs, AS 
Containers)

Host 
(may be virtual)

network 
segment

Key APS Architectural Concepts

a

Network

Includes Application 
Proxies

a

Network

Redundant and 
collaborating services
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Focusing on Crumple Zone 

Client Zone

Client

Service Zone

Service

Crumple Zone

Proxies

Provider DomainConsumer Domain

Protect Clients from Services Attack

Client Zone

Client

Service Zone

Service

Crumple Zone

Proxies

Provider DomainConsumer Domain

Client Zone

Client

Client Zone

Client

Crumple Zone

Proxies

Crumple Zone

Proxies
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Protecting the Provider Domain  
Client Zone

Client

Service Zone

Service

Crumple Zone

Proxies

Provider DomainConsumer Domain

Protect Service from ClientsAttack

Protecting the Consumer  Domain  

Protecting both Domains  

Including inter-client interactions  

Different Deployment Options
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Crumple Zone: The Concept 

Crumple Zone

NAT

IP Packet
Rate Limiting

SYN Cookies

IP Deep Packet 
Filtering

System Layer

Network

Application

IPSec

RMI Proxies SOAP Proxies

XML Validator

SPA

NIDS

SSL Checks HIDS

Notional depiction of crumple zone

Various crumple zone functions with 
respect to system layers

Filtering and checking at various layers
• Application level (mechanism specific)
• Network level 
Maximizing end to end integrity, 
confidentiality and access control while 
allowing filtering and checking: slVPG
Self protection: authentication and 
access control of control and data within 
crumple zone
Self management: watchdogs, restarts
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Other APS Concepts at Play in CZ  
Containment in CZ

CZ as a conglomerate

Adaptive response in CZ

fir
ew

al
l

JVM/Process

CZ Function
JVM/Process

CZ Function

JVM/Process

CZ Function

JVM/Process

CZ Function

JVM/Process

CZ FunctionSPA

Complex  
Interconnection

Need to protect corruption across  streams and functions 

Unavailability of key functions may render the 
protected services unavailable 

JVM/Process

CZ Function

JVM/Process

CZ Function

JVM/Process

CZ Function

JVM/Process

CZ Function

JVM/Process

CZ Functionx x
Need redundancy, watchdog, restart at various levels and diversity in key CZ functions 

Deployed  Sv1c1_1Deployed  Svc1_2

CZ MGMT

Svc1 Consumer1

Svc1 Consumer2

Svc1 Consumern

Visible 
SVC1  EP 

JVM/Process

CZ Function

JVM/Process

CZ Function

JVM/Process

CZ Function

JVM/Process

CZ Function

Multiple functions, some redundant, cooperate to provide the protected service.

Some are shared by conglomerates.
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One Realization (SSL, EJB)

Different configurations have different assurance guarantees – all using 
the same basic building block functions…

Service requester and provider

SSL end point function

Key sharing function

Escrow and decision function 

E2E  integrity envelope is not all the way, but minimal 
key sharing and control
• Split done within the message layer, i.e., RMI
Easier handling of escrow and decision for both 
request and response 
Multiple possibilities for situating the escrow

client

fir
ew

al
l

SSL VP

SS
LS

P

MP 
Cloud

SSL TP

AS

1 2

2a
3

3a 3b

3c

Rejected 
knocks

Invalid SSL  
Request  

Rejected by 
Mechanism 
Proxies

3d3f

3e

3g
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SSL/TLS

SSL/TLSSSL/TLS

Mechanism in Support of CZ: slVPG

Client Proxy Proxy Proxy Service
XML Signature

SSL/TLS SSL/TLS

• Multiple connections imply new Proxy certificates and less flexible Proxy 
configuration

JSSWG Control Case E: SSL/TLS + XML Signature

Client
SSL 
TP Proxy Proxy Service

XML Signature

SSL/TLS

Inspection and Filtering in the Crumple Zone Without slVPGs

With slVPGs*
(service level Virtual
Private Groups)

• In effect, the proxies are able to see the messages in clear text
• Proxies do not require their own certificates

Confidentiality Key

*  An abstract representation, does not 
show  CZ details like  message 
routing, escrow etc.

Instrument, and possibly 
relocate  the termination point of 
client’s SSL/TLS connection 
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Support for Safe Composition

– Define a set of operational use cases, identify the vulnerabilities and 
footprint, performance, and overhead constraints of the use case 

– Develop benefit/cost ratios for each protection technique and use case 

– Rank the techniques according to their benefit/cost ratio, taking into 
account the additional vulnerabilities and dependencies on other 
techniques

– Define and enforce policies/contracts on the composition, using 
automated checkers

– Define automated configuration generators from high level specifications 
of the composition patterns and characteristics of the use cases

Without help for composition:
• Expecting some defense to be a 

silver bullet, but leaving major 
vulnerabilities unprotected

• Inadvertently introducing 
vulnerabilities during composition

• Including defenses that provide 
little benefit at too great a cost

Introducing some 
protection leaves major 
vulnerabilities exposed 

Incorrect
Composition

Safe and Secure
Orchestration

Prot.

Protection
Tactical

Enterprise

Protection
Prot.

Orchestrations that provide significant protection, affordable 
overhead, and no introduced vulnerabilities for the patterns of use

host2

Broker

host1

Client

. 
Clear Text

Authentication is not mutual

Hosts are not authenticated

Improper 
composition adds 
new vulnerabilities

Additional layers of 
protection for the 
high value DB kills 
its  performance, 
but do not add 
much value

High Value DB

Enterprise App

Crumple Zone

Encrypt
SSL

Crumple 
ZoneRedundancy

Authentication

…

Defense 
Mechanisms/ 
Services

Comp 
1

Comp 
2

Network
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Achievements So Far 

• Assessment of ONR RI VMs

• Reviewed a set of security community 

guidance documents

• APS requirements 

• APS platform (baseline)

• Survivability enhancements

• Design, Implementation, Testing and 

Evaluation O
ng

oi
ng

 T
as

ks
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Conclusion  
• Goal: engineering of survivable service-based systems

– Robust and repeatable methodology

– Catalog of building blocks with cost-benefit annotation

– Best practices

• Defending against a sophisticated adversary is difficult, 

critical information systems need to be more resilient 

under a wider range of hostile environments and 

contested situations

• No protection is absolute, but with the right combination of 

sound engineering and innovative techniques, we can 

raise the bar pretty high

– As demonstrated in OASIS Dem/Val

• Work in progress, with good initial results

– We just successfully demonstrated a version of the crumple zone
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