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1 INTRODUCTION

Packet classification is a key step in routers for various functions such as routing, creating firewalls, load
balancing and differentiated services. Internet packets are classified into different flows based on packet
header fields and using a table of rules in which each rule is of the form (F,A) , where F is a filter and
A 1is an action. When an incoming packet matches a rule in the classifier, its action determines how the
packet is handled. For example, the packet could be forwarded to an appropriate output link, or it may be
dropped. A d —dimensional filter F isa d—tuple (F[1], F[2], ..., F[d]) , where F[i] is a range
specified for an attribute in the packet header, such as destination address, source address, port number,
protocol type, TCP flag, etc. A packet matches filter F , if its attribute values fall in the ranges of F[1],
..., F[d] . Since it is possible for a packet to match more than one of the filters in a classifier thereby
resulting in a tie, each rule has an associated cost or priority. When a packet matches two or more filters,
the action of the matching rule with the lowest cost (highest priority) is applied on the packet. It is
assumed that filters that match the same packet have different priorities.

TCAMs are used widely for packet classification. The popularity of TCAMs is mainly due to their high-
speed table lookup mechanism in which all the TCAM entries are searched in parallel. Each bit of a
TCAM may be set to one of the three states 0, 1, and ‘?” (don’t care). A TCAM is used in conjunction
with an SRAM. Given a rule (F, A) , the filter F of a packet classifier rule is stored in a TCAM word
and action A is stored in an associated SRAM word. All TCAM entries are searched in parallel and the
first match is used to access the corresponding SRAM word to retrieve the action. So, when the packet
classifier rules are stored in a TCAM in decreasing order of priority (increasing order of cost), we can
determine the action corresponding to the matching rule of the highest priority, in one TCAM cycle. The
main limitation of TCAMs is that these memories are power hungry. The more the number of entries in
the TCAM, the higher the power needed to perform a search. This problem is worsened for packet
classifiers since typically a classifier rule includes port range fields that need multiple TCAM entries per
rule for representation in the TCAM. This is called range expansion. Given that the source and
destination port numbers are represented in 16 bits, the number of TCAM entries needed to represent a
port range in the worst case is 30 corresponding to the range [1, 2'°-2] . Thus, a filter having both source
and destination port ranges set to [1, 2'°2] undergoes a worst case expansion of 30 x 30 =900 TCAM
entries.

2 METHODS, ASSUMPTIONS, AND PROCEDURES

2.1 Background and Related Work

The starting point for our research on TCAM-based packet classifiers is the packet forwarding
architecture DUOS proposed earlier by us [7]. DUOS, as shown in Figure 1, has two TCAMs,
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Figure 1 Dual TCAM with simple SRAM

labeled as the ITCAM (Interior TCAM) and the LTCAM (Leaf TCAM). DUOS also employs a binary
trie in the control plane of the router to represent the prefixes in the forwarding table. The prefixes found
in the leaf nodes of the trie are stored in the LTCAM, and the remaining prefixes are stored in the
ITCAM. The prefixes stored in the LTCAM are independent and therefore at most one LTCAM prefix
can match a specified destination address. Hence the LTCAM doesn't need a priority encoder. Prefix
lookup works in parallel on both TCAMs. If a match is found in the LTCAM then that is guaranteed to
be the longest matching prefix and the corresponding next hop is returned. At the same time the ongoing
lookup process on the ITCAM (interior TCAM), which takes longer due to the priority resolution step, is
aborted. Thus, if a match is found on the LTCAM, the overall lookup time is shortened by about 50%
[2]. The final stage logic in Figure 1 that chooses between the two next hops could be moved ahead and
placed between the TCAM and SRAM stages. In that case, the logic receives one “matching index" input
from the LTCAM and another from the ITCAM. If a match is found in the LTCAM, the index from
LTCAM input is used to access the LSRAM; otherwise, the ITCAM index is used to access the ISRAM.
Further, if a match is found in the LTCAM, the ITCAM lookup is aborted.

The memory management schemes used in DUOS are highly efficient. The ITCAM needs to store the
prefixes in decreasing order of length, for example, so that the first matching prefix is also the longest
matching prefix. DUOS [7] uses a memory management scheme (Scheme 3, also known as

DLFS PLO), which initially distributes the free space available in a TCAM between blocks of prefixes
(of same length) in proportion to the number of prefixes in a block. A free slot needed to add a new
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prefix is moved from a location that requires the minimum number of moves. As a prefix is deleted, the
freed slot is added to a list of free spaces for that prefix block. Each prefix block has its own list of free
slots. With this scheme even with 99% prefix occupancy in the TCAM and 1% free space, the total
number of prefix moves using DLFS PLO is at most 0.7% of the total number of prefix inserts and
deletes.

To support lock-free updates, so the TCAMs can be updated without locking them from lookups, DUOS
implements consistent update operations that rule out incorrect matches or erroneous next hops during
lookup. For consistent updates, it is assumed that:

1. Each TCAM has two ports, which can be used to simultaneously access the TCAM from the
control plane and the data plane.

2. Each TCAM entry/slot is tagged with a valid bit that is set to 1 if the content for the entry is valid
and to 0 otherwise. A TCAM lookup engages only those slots whose valid bit is 1. The TCAM
slots engaged in a lookup are determined at the start of a lookup to be those slots whose valid bits
are 1 at that time. Changing a valid bit from 1 to 0 during a data plane lookup does not disengage
that slot from the ongoing lookup. Similarly, changing a valid bit from 0 to 1 during a data plane
lookup does not engage that slot until the next lookup.

Additionally, the availability of the function waitWriteValidate is assumed which writes to a TCAM slot
and sets the valid bit to 1. In case the TCAM slot being written to is the subject of an ongoing data plane
lookup, the write is delayed till this lookup completes. During the write, the TCAM slot being written to
is excluded from data plane lookups. Similarly, the availability of the function invalidateWaitWrite, is
assumed. This function sets the valid bit of a TCAM slot to 0 and then writes an address to the associated
SRAM word in such a way that the outcome of the ongoing lookup is unaffected. All these assumptions
for DUOS are also made by our PC-DUOS architecture.

The problem of incorporating updates to packet classifiers stored in TCAMs has been studied in [6] and
[5]. The authors in [6] present a method for consistent updates when the classifier updates arrive in a
batch. All deletes in an update batch are first performed to create empty slots in the TCAM. Then the
relative priority of the relevant rules (for example rules overlapping with a new rule being inserted) is
determined and the existing rules are moved accordingly to reflect any change in priority ordering as the
entire batch of updates is applied. Following the ordering of existing rules, new rules are inserted in
appropriate locations. A problem with the algorithm of [6] is that it performs the deletes in the update
batch first. This could lead to temporary inconsistencies in lookup [8].

Given a packet classifier, a naive approach is to store it in a TCAM by entering each rule sequentially as
it appears in the classifier and distribute all the empty slots between rules. As mentioned in [5], this
approach could lead to high power consumption for a lookup as the whole TCAM has to be searched
including the empty entries. On the other hand, if the empty entries are kept together at the higher
addresses of the TCAM, then those may be excluded from lookups. However, if the empty spaces are
kept at one end of the TCAM, then it would require a large number of rule moves to create an empty slot
at a given location. Specifically, all the rules in the TCAM below the slot to be emptied must be moved
below.

We use a simple TCAM (STCAM) architecture for comparing our PC-DUOS performance. The STCAM
is a modification over the naive TCAM in that the rules are grouped by block numbers, which reduces
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the number of required moves when a free slot is needed. The required number of moves is now bounded
by the total number of blocks. The block numbers are assigned to the rules using the algorithm
presented in [5], based on a priority graph. In this method a subset of the rules is identified such that
within the subset, each rule overlaps with every other rule. Each rule in the subset is assigned a different
block number based on its priority. Block numbers can be reused for different non-overlapping rule
subsets. Thus, rules with the same block number are all non-overlapping or independent. Two rules are
independent iff there is no packet that matches both the rules. Filters are grouped based on their
assigned block numbers. The group with the lowest block number is of highest priority and these rules
are stored in the lowest memory addresses of the TCAM.

The authors in [5] describe a fast TCAM update scheme on packet classifiers. In their method, the
classifier rules are entered arbitrarily in the TCAM and are not arranged according to decreasing order of
priority. They ensure that the action corresponding to the highest priority matching rule is returned by
performing multiple searches on the TCAM. Specifically, they assign a priority (which we call block
number here) to each rule and encode the block number as a TCAM field and allow the highest priority
TCAM match to be found using log (2n) searches, where n is the total number of block values assigned
in the classifier. The highest priority match corresponds to the rule with the minimum block number.
The rule and its assigned block number are entered in the TCAM. Even though this method does not
incur TCAM writes due to rule moves for maintaining consistent block numbers for overlapping rules or
to create an empty slot at the right place for inserting a new rule, this method involves a number of
TCAM writes as the assigned block numbers of rules change due to inserts or deletes. Moreover, lookup
speed is slowed down since multiple TCAM searches are required and these searches cannot be
pipelined as they take place on the same TCAM. Our PC-DUOS architecture performs lookup using a
single TCAM search.

2.2 PC-DUOS

PC-DUOS uses the same two TCAM architecture as used in DUOS [7] (Figure 1). Lookup also works in
the same way as for DUOS. That is, the LTCAM and ITCAM (interior TCAM) are searched in parallel
using the packet header information. In case a match is found in the LTCAM, the ongoing search in the
ITCAM is aborted. When the ITCAM search is aborted, lookup time is reduced by about 50%, because
the LTCAM has no priority encoder. For this lookup strategy to yield correct results, the following
requirements must hold:

1. No packet is matched by more than one rule in the LTCAM.
2. When a packet is matched by a rule in the LTCAM, the matched rule must be the highest priority
matching rule.

Figure 2 shows the overall flow of our methodology of storing rules in the ITCAM and LTCAM. The
first phase involves storing all the rules in a multi-dimensional trie maintained on the control plane of the
classifier. The second phase in our methodology consists of traversing the multi-dimensional trie and
identifying independent rules for inclusion in the LTCAM. In the third phase, rules not stored in the
LTCAM are stored in the ITCAM in priority order. Further details including lookup and update
algorithms are given in [1].

Approved for Public Release; Distribution Unlimited.
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Figure 2 Flow diagram for storing packet classifiers in TCAMs

2.3 PC-DUOS+

PC-DUOS+ uses the two TCAM architecture used in PC-DUOS and DUOS (Figure 1). During lookup,
the LTCAM and ITCAM are searched in parallel using the packet header information. If a match is
found in the LTCAM, the ongoing search in the ITCAM is aborted.

PC-DUOS+ differs from PC-DUOS in the way the selection of rules for the LTCAM is made. PC-DUOS
filters the leaves of leaves set in a multi-dimensional trie to keep only the highest priority rules among all
overlapping rules. The rules in the filtered leaves of leaves set is then entered in the LTCAM. PC-
DUOS+, on the other hand, uses a priority graph to select rules for the LTCAM. PC-DUOS+ also uses
enhanced algorithms for ITCAM rule insertion which require fewer moves to rearrange rules for priority
based adjustments. Further details including lookup and update algorithms are given in [2].

24 PC-TRIO

Figure 3 illustrates the PC-TRIO architecture. It primarily consists of three TCAMs, the ITCAM (interior
TCAM), the LTCAMI1 (leaf TCAM) and the LTCAM2. The corresponding associated SRAMs are:
ISRAM, LSRAMI1 and LSRAM?2, respectively. The LTCAMs store independent rules; hence both the
TCAMs are augmented with wide SRAMs and index TCAMs. ILTCAM1 and ILTCAM? are the index
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TCAMs for LTCAM1 and LTCAM2, respectively. The index TCAMSs also have wide associated
SRAMs, namely, ILSRAM1 and ILSRAM?2. Since the rules stored in the two LTCAMSs and the two
ILTCAMs are independent, at most one rule (in each LTCAM and ILTCAM) will match during a search.
So these TCAMs do not need a priority encoder. A priority encoder assists in resolving multiple TCAM
matches and is used with the ITCAM to access the ISRAM word corresponding to the highest priority
matching rule in the ITCAM.

1 E E
E Z
i ITCAM ! ISRAM
E E ) i E [=] -
i E H 32| Le Logicto .
1l B h 553 compare | Aclion
B : g’g; block [
i : E‘g ! ' Z=Z| et numbers
ILTCAM]1 ! ILSRAMI y 2= '
! : . LTCAMI | LSRAMI
3 ! 2
E 52
E ] 1 5 = a-_
- 1 = E—g =
: S i 253
ILTCAM?2 . ILSRAM?2 P i i
' LTCAM?2 i LSRAM2
Index TCAMs Triple TCAMs (ITCAM, LTCAMI, LTCAM2)

Figure 3 PC-TRIO architecture

A lookup in PC-TRIO is pipelined with 6 stages marked A-F in Figure 3. In the first stage A, the
ILTCAMs (index TCAM for an LTCAM) are searched. The ILSRAMs (index SRAM for an ILTCAM)
are accessed, using the address of the matching ILTCAM1 andILTCAM?2 entries in stage B. The
matching wide ILSRAM words are processed in stage C to obtain the corresponding bucket index for
LTCAMI1 and LTCAM2. In stage D, the bucket indexes so obtained are used to search the
corresponding buckets in the LTCAMs. The ITCAM is also searched in this stage. In the next stage E,
the ISRAM, and the LSRAMs are accessed using the addresses of the matching TCAM entries. In the
final stage F, the contents of the wide LSRAM words are processed and the best action is chosen from
the at most three actions returned by the ISRAM, LSRAMI1 and LSRAM2 by comparing the priorities of
the corresponding rules. Further details including lookup and update algorithms are given in [3].
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2.5 Differences among PC-DUOS, PC-DUOS+ and PC-TRIO

Figure 4 highlights the differences among PC-DUOS, PC-DUOS+ and PC-TRIO.

PC-DUOS PC-DUOS+ PC-TRIO
1. | Uses single LTCAM | Uses single LTCAM [ Uses two LTCAMs

2. | No wide SRAMs or |No wide SRAMs or | Uses wide SRAMs and
index TCAMs index TCAMs index TCAMs

3. | LTCAM stores highest| LTCAM stores highest| LTCAMs store
priority independent | priority independent | independent rules
rules rules

4. | Aborts ITCAM search | Aborts ITCAM search | Waits for ITCAM
when LTCAM search | when LTCAM search | search to finish

succeeds succeeds

5. | Independent rules are | Independent rules are | Independent rules are
filtered leaves of vertices 1n priority leaves of leaves set
Icaves set in tric graph with indegree=0 | in tric

Figure 4 Classifier rules stored in an indexed TCAM

We note that the methodology used for PC-TRIO may be used to add index TCAMs and wide SRAMs to
PC-DUQOSH to arrive at a new architecture PC-DUOS+W. Similarly, PC-DUOS may be extended to
obtain PC-DUOS+W.

Unlike the other architectures, PC-TRIO does not guarantee that the rules in the LTCAMSs are of the
highest priority among all overlapping rules. Thus, PC-TRIO must wait for an ITCAM lookup to
complete even if there are matching rules in the LTCAMs. Although the rule assignment algorithms for
PC-TRIO may be modified so that the LTCAM rules are the highest priority among all overlapping rules
(and thus avoid having to wait for an ITCAM lookup to complete in cases when a match is found in an
LTCAM), doing so retards the performance of PC-TRIO to the point where it offers little or no power
and lookup time benefit over PC-DUOS+W.

3 RESULTS AND DISCUSSION

We compare PC-TRIO, with PC-DUOS+W and PC-DUOS+. (A detailed comparison of PC-DUOS and
PC-DUOS+ appears in [2] where the superiority of PC-DUOS+ over PC-DUOS is established.) We first
give the setup used by us for the experiments in Section 3.1 and then describe our datasets in Section 3.2.
Finally we present our results in Section 3.3.

3.1 Setup

We programmed the rule assignment, trie carving and update processing algorithms of our packet
classification architectures using C++. We designed a circuit for processing wide SRAM words using
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Verilog and synthesized it using Synopsys Design Compiler to obtain power, area and gate count
estimates. We used CACTI [13] and a TCAM power and timing model [14] to estimate the power
consumption and search time for the SRAMs and the TCAMs respectively. The process technology used
in the experiments is 70 nm and the voltage is 1.12 V. It is assumed that the TCAMs are being operated
at 360 MHz [14].

The TCAM and SRAM word sizes used are consistent for all the architectures used in the comparison.
The word size is 144 bits for the TCAMs. For SRAMs we have different word sizes depending upon the
TCAMs they are used with. The ISRAM words of all the architectures, as well as the LSRAM words of
PC-DUOSH, are 32 bits wide. The LSRAM1 and LSRAM2 words of PC-TRIO and the LSRAM words
of PC-DUOS+W are 512 bits, while the ILSRAMs are 144 bits wide. The bucket size for LTCAMs in
PC-TRIO and PC-DUOS+W is set to 65 TCAM entries.

PC-DUOS+ uses DIRPE [9] to encode port ranges. The classifier rules stored in the ITCAMs of PC-
TRIO and PC-DUOS+W also use DIRPE to encode port ranges. Since the TCAM word size is set to
144 bits, we assume that 36 bits are available for encoding each port range in a rule. With this
assumption, we use the strides 223333 as these give us minimum expansion of the rules [9].

3.2 Datasets

We used two sets of benchmarks derived from ClassBench [10]. The first set of benchmarks consists of
12 datasets each containing about 100,000 classifier rules and is generated from seed files in
ClassBench. This dataset is used to compare the number of TCAM entries, power, lookup performance
and space requirements of PC-TRIO, PC-DUOS+W and PC-DUOS+.

The second set of benchmarks has 13 datasets, which are used to compare incremental update
performance of PC-TRIO, with PC-DUOS+ and PC-DUOS+W.

3.3 Results

Number of TCAM entries

Using wide SRAM words to store portions of classifier rules reduces the number of TCAM entries.
Figures 5-7 give the results of storing our datasets in the three architectures. The first, second and third
columns show the index, name, and the number of classifier rules, respectively, of a dataset. The fourth,
fifth and sixth and seventh columns give for PC-DUOS+, the total number of TCAM entries, the number
of ITCAM entries, the TCAM power and lookup time, respectively. Similarly, Figure 6 gives the
corresponding numbers for PC-DUOS+W and Figure 7 gives those statistics for PC-TRIO.
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Index Dataset #Rules Entries | #1ITCAM Watts Time(ns)

1 acll 99309 117033 379 36 2624.39

2 acl2 74298 101857 19421 31 1122.39

3 acl3 99468 131243 30859 40 1640.47

4 acl4 99334 127320 25189 39 1730.46

5 acl5 98117 105375 1535 32 2072.16

6 fwl 89356 142085 91473 43 2466.72

7 fw2 96055 129249 27084 39 1543.76

8 fw3 80885 117731 39199 36 1007.04

9 fw4 84056 211403 116149 64 3182.03

10 fw5 84013 111989 55650 34 930.94

11 ipcl 99198 112154 22165 34 1288.02

12 ipc2 100000 100000 30133 30 784.69

Figure 5 Statistics for PC-DUOS+

Index Dataset #Rules Entries | #1ITCAM Watts Time(ns)

1 acll 99309 21146 379 0.23 0.50

2 acl2 74298 37491 19421 6.35 30.36

3 acl3 99468 52632 30859 9.47 80.49

4 acl4 99334 49912 25189 7.98 45.95

5 acl5 98117 32932 1535 0.53 0.41

6 fwl 89356 98425 91473 27.92 2318.82

7 fw2 96055 43146 27084 8.30 86.77

8 fw3 80885 51228 39199 11.99 215.21

9 fw4 84056 131505 116149 35.46 2139.21

10 fw5 84013 65598 55650 17.00 615.49

11 ipcl 99198 41920 22165 6.82 45.11

12 ipc2 100000 47247 30133 9.23 113.77
Figure 6 Statistics for PC-DUOS+W

Index Dataset #Rules Entries | #ITCAM Watts Time(ns)

1 acll 99309 21085 182 0.19 1.00

2 acl2 74298 36593 18439 6.04 149.43

3 acl3 99468 26823 1017 0.40 2.19

4 acl4 99334 34034 6547 2.32 24.12

5 acl5 98117 34993 2209 0.77 4.98

6 fwl 89356 26610 4864 1.60 15.01

7 fw2 96055 22196 1494 0.53 3.18

8 fw3 80885 26269 7479 2.38 30.09

9 fw4 84056 27617 4894 1.60 15.16

10 fw5 84013 22361 3454 1.15 9.02

11 ipcl 99198 23894 567 0.26 1.40

12 ipc2 100000 20195 0 0.09 0.75

Figure 7 Statistics for PC-TRIO
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Figure 8(a) gives the TCAM compaction ratio of the three architectures, obtained by dividing the number
of TCAM entries for each dataset by the number of rules in the classifier. PC-DUOS+ does not use wide
SRAMs, hence there is no compaction. Instead, there is expansion to handle port ranges. Thus, the
compaction ratio for PC-DUOS+ is at least 1 for every dataset. The compaction achieved by PC-TRIO
is more than that of PC-DUOS+W for almost all the datasets. This is because PC-TRIO has fewer
ITCAM entries and therefore stores more rules in wide SRAM words. For acl5, PC-DUOS+W
identified more independent rules compared to PC-TRIO. The algorithm to identify independent rules is
the same for PC-DUOS+W and PC-DUOS+ which results in identical ITCAM entries for these two
architectures. No classifier rules in the LTCAMs of PC-DUOS+W and PC-TRIO needed partial port
range expansion. So, all LTCAM entries in PC-DUOS+W and PC-TRIO were at most 72 bits.

Power

Figures 5-7 give the TCAM power consumption during a lookup, while Figure 8 (b) gives the
normalized total power obtained for each dataset by dividing the total TCAM and SRAM power in an
architecture by that of PC-TRIO during a lookup. The vertical axis is scaled logarithmically and based at
1. PC-TRIO uses less power for all datasets except acl5. The average improvement in power with PC-
TRIO 1s 96% relative to PC-DUOSH, and 65% relative to PC-DUOS+W. The average improvement in
power with PC-DUOS+W is 71%, relative to PC-DUOS+. The maximum improvement with PC-TRIO
is observed for ipc2 (99%) and the minimum for acl2 (80%), compared to PC-DUOS+. The maximum
improvement with PC-DUOS+W is observed for acll (99%) and the minimum for fw1 (35%), compared
to PC-DUOS+. The maximum improvement with PC-TRIO is observed for ipc2 (98%) and the
minimum for acll (2%), compared to PC-DUOS+W.

(a) Compaction {b) Power
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Figure 8 Comparison of compaction ratio, total power, lookup time and area
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Lookup Performance

Figure 8 (c) gives the average lookup time, normalized with respect to that of PC-TRIO. The average
lookup time was computed from TCAM search times obtained using the timing models of [11]. TCAM
search time is proportional to the number of TCAM entries. Hence, PC-DUOS+ requires the maximum
time.

PC-DUOS+W is faster than PC-TRIO for the ACL tests acll, acl2 and acl5. For these datasets, the
number of ITCAM entries in PC-DUOS+W and PC-TRIO are comparable. Thus, the ITCAM search
times are comparable, as are the number of lookups served by the ITCAMs. This, coupled with the fact
that ITCAM searches are slower, give PC-DUOS+W an immediate advantage since it, unlike PC-TRIO,
aborts an ITCAM search after finding a match in the LTCAM. However, for these three tests, the
lookup times using PC-TRIO are quite reasonable. For the other datasets PC-TRIO has fewer rules in
the ITCAM, which makes PC-TRIO lookups faster even though it has to wait for ITCAM search to
finish. The average improvement in lookup time with PC-TRIO and PC-DUOS+W (relative to PC-
DUOS+) are 98% and 76%, respectively. The average improvement in lookup time with PC-TRIO
(relative to PC-DUOS+W) is 68%. The maximum improvement using PC-TRIO rather than PC-DUOS+
is observed for acll (99.96%) and the minimum for acl2 (86.6%). The maximum improvement using PC-
DUOS+W rather than PC-DUOS+ is observed for acll (99.98%) and the minimum for fwl (5%). The
maximum improvement with PC-TRIO rather than PC-DUOS+W is observed for tests fwl, fw4 and ipc2
(99%) and the minimum for acl4 (47%). For PC-TRIO, the average look up time was the maximum time
a TCAM took. For PC-DUOS+ and PC-DUOS+W, the average lookup time is an weighted average of
the ITCAM and LTCAM search times where the weight for the ITCAM is the number of classifier rules
in the ITCAM divided by the total number of rules and the weight for the LTCAM is similarly
determined. Recall that during lookup in PC-DUOS+ (and also for PC-DUOS+W) ITCAM lookup is
aborted upon finding an LTCAM match. It was found that the ratio of the number of hits in the ITCAM
to that in the LTCAM depends on the ratio of the number of entries in these TCAM. Thus, the weighted
average closely models the actual time.

Space requirements

We obtained SRAM area from CACTI results and estimated TCAM area using the same technique as
used in PETCAM [12], where area of a single cell is multiplied by the number of cells and then adjusted
for wiring overhead. Figure 8(d) gives the total area needed for the TCAMs and associated SRAMs. The
total area is comparable for the three architectures. PC-TRIO and PC-DUOS+W have lower TCAM area
(due to fewer TCAM entries) and higher SRAM area (due to wider SRAM words) than PC-DUOS+.

Update Performance
Figure 9 shows the average number of TCAM writes used per update.
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Figure 9 TCAM writes
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PC-TRIO needs comparable number of writes as PC-DUOS+ and hence supports efficient and consistent
incremental updates. PC-DUOS+W needs more writes than PC-TRIO to preserve the property that all
rules stored in the LTCAM have the highest priority compared to overlapping rules.

Characteristics of the logic that processes wide SRAM words

A circuit designed to process the contents of a wide LSRAM word was synthesized using a 0.18 pm
library [15, 16] and it was found that the design successfully met the timing constraints with a 500 MHz
clock. The results are presented in the Figure 10. The throughput is represented in terms of million
searches per second (Msps). An example of a TCAM with a speed of 143 MHz (effectively, 143 Msps)
is found in [17], using 0.13 pum technology. It is expected that the delay overhead and throughput of our
design will improve on using a 0.13 pum library. Thus, our design can operate at the same speed as that of
a TCAM.

Process Time (ns) Throughput Voltage (V) Power (mW) | Gate Count
(Msps)
0.18 um 2 500 1.8 61.13 59724

Figure 10 Timing and power results for additional hardware

4 CONCLUSIONS

Under this award, the PI Dr. Sartaj Sahni, AFRL research scientist Dr. Gunasekaran Seetharaman, and
University of Florida Ph.D. student Ms. Tania Banerjee-Mishra collaboratively researched TCAM
(Ternary Content Addressable Memory) architectures for Internet packet classifiers. The objective was
to develop low-energy high-performance TCAM architectures that supported both lookup and update. To
this end, the architectures PC-DUOS, PC-DUOS+, and PC-TRIO were developed and evaluated. The
first two of these use 2 TCAMs while the third uses 3 TCAMs. Three technical papers [1, 2, 3], one for
each of the three developed architectures, were written. The paper on PC-DUOS was published in the
2011 IEEE International Symposium on Computers and Communications and the other two are in the
review process (one at a journal and the other at a conference); all three can be referenced in Appendices
A, B, and C respectively. PC-DUOS+, which is an enhancement of PC-DUOS and an extension of
DUOS uses two TCAMs named LTCAM and ITCAM are used. PC-DUOS+ stores the highest priority
independent rules in the LTCAM. The remaining rules are stored in the ITCAM. During lookup for
highest priority rule matching, both the ITCAM and the LTCAM are searched in parallel. Since the
LTCAM stores independent rules, at most one rule may match during lookup in the LTCAM and a
priority encoder is not needed. If a match is found in the LTCAM during lookup, it is guaranteed to be
the highest priority match and the corresponding action can be returned immediately yielding up to 50%
improvement in TCAM search time relative to STCAM (simple TCAM). The average improvement in
lookup time is found to be between 19% and 49% for the tests in our dataset. The distribution of rules to
the two TCAMs makes updates faster by reducing the average number of TCAM writes by up to 3.72
times (for acl3) and reducing the control-plane processing time by up to 247 times (for acll). The
maximum reduction in control-plane processing time is observed for the ACL tests.

PC-TRIO and PC-DUOS+W (which as an extension of PC-DUOS+ to indexed TCAMs and wide
SRAMSs) may be updated incrementally. The average improvements in TCAM power and lookup time
using PC-TRIO were 96% and 98%, respectively, while that using PC-DUOS+W were 71% and 76%,
respectively, relative to PC-DUOS+.

Approved for Public Release; Distribution Unlimited.
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PC-DUOS+W performed better on the ACL datasets compared to the other types of classifiers. There
was 86% reduction in TCAM power, and 98% reduction in lookup time with PC-DUOS+W on the ACL
datasets on an average compared to PC-DUOS+. Even though PC-DUOS+W lookup performance was
better than that of PC-TRIO on three ACL tests, PC-TRIO lookup performance was quite reasonable and
in fact, using PC-TRIO, there was a reduction in TCAM power by 94% and lookup time by 97% on an
average for the ACL tests, compared to PC-DUOS+.

Therefore, we recommend PC-TRIO for packet classifiers.
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APPENDIX A:

PC-DUOS+: A TCAM Architecture for Packet
Classifiers
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Abstract—We propose algorithms for distributing the classifier the action. So, when the packet classifier rules are stored in

rules to two TCAMs (ternary content addressable memories) a TCAM in decreasing order of priority (increasing order of
and for incrementally updating the TCAMs. The performance of cost), we can determine the action in one TCAM cycle.

our scheme is compared against the prevalent scheme of storing . .
classifier rules in a single TCAM in priority order. Our scheme We present a TCAM architecture, update algorithms and a

results in an improvement in average lookup speed by up to 49% TCAM |90k}1p mechanism in this_ paper for packet classifiers.
and an improvement in update performance by up t03.72 times We begin in Section Il by reviewing the background and

in terms of the number of TCAM writes. related work. In Section Il we describe our scheme of storing
Index Terms—Packet classifiers, TCAM, updates. packet classifiers in TCAMs. An experimental evaluation
of our scheme is done in Section IV and we conclude in

Section V.

|. INTRODUCTION

Internet packets are classified into different flows based on Il. BACKGROUND AND RELATED WORK

the packet header fields. This classification of packets is dongs_pyos+ is an extension of PC-DUOS (Packet Classifier
using a ta}ble of rules in which each_rule is of the fo_(rﬁ) A)Z - DUOS) proposed by us in [14]. PC-DUOS+ and PC-DUOS
where £ is a filter andA is an action. When an incoming, e an ‘architecture as shown in Figure 1, which was first
packet matches a filter in the classifier, the CorrGSpond'Bﬁbposed for DUOS [9] for packet forwarding. There are two
action determines how the packet is handled. For examp{gsams labeled as the ITCAM (Interior TCAM) and the
the. packet could be forwarded to an appropr!ate output linkrcanm (Leaf TCAM). DUOS also employs a binary trie in

or it may be dropped. Ai—d|m§n§|onal filter " is a d-tuple the control plane of the router to represent the prefixes in
(F[1], F[2],-- -, F[d]), whereF[i] is a range specified for anye foryarding table. The prefixes found in the leaf nodes of
attribute in the packet header, such as destination addregs, yrie are stored in the LTCAM, and the remaining prefixes
source address, port number, protocol type, TCP flag, etC.ofy stored in the ITCAM. The prefixes stored in the LTCAM
packet matches filteF, if its attribute values fall in the ranges .o independent and therefore at most one LTCAM prefix
of F[1],---, Fld]. Since itis possmle fo.r.a packet to matc,h:an match a specified destination address. Hence the LTCAM
more than one of the filters in a classifier thereby resulting,ognt need a priority encoder. Prefix lookup works in parallel
in a tie, each rule has an associated cost or priority. Whernya poih the TCAMs. If a match is found in the LTCAM
packet matches two or more filters, the action correspondifh, that is guaranteed to be the longest matching prefix and

to the matching rule with the lowest cost (highest priority) igye corresponding next hop is returned. At the same time the

applied on the packet. It is assumed that filters that match t@ﬁgoing lookup process on the ITCAM (which takes longer
same packet have different costs.

) due to the priority resolution step) is aborted. Thus, if a match
[4], [5] survey the many solutions that have been proposgds, ng on the LTCAM, the overall lookup time is shortened
for packet classifiers. Among these, TCAMs have widelyy 1,4t 5095 [1]. The logic on the final stage in Figure 1 that

been used for packet classification as they support high spegd ses petween the two next hops could be moved ahead
lookups and are simple to use. Each bit of a TCAM may be sgf | placed between the TCAM and SRAM stages. In that

to one of the three states 0, 1, anddon't care). A TCAM is case, the logic receives one “matching index” input from the

used in conjunction with an SRAM. Given a rul&(4), the | tcapm and another from the ITCAM. If a match is found in
filter £ of a packet classifier rule is stored in a TCAM wordho | TcAM. the index from LTCAM input is used to access

whereas and actioA is stored in an associated SRAM Wordthe LSRAM. otherwise. the ITCAM index is used to access
All TCAM entries are searched in parallel and the first matgh . ISRAM.,Further if ’a match is found in the LTCAM. the

is used to access the corresponding SRAM word to retriepg- apm lookup is aborted.

This material is based upon work funded by AFRL, under AFRL Contract The m_er_nory management schemes used in Dl.JOS .are
No. FA8750-10-1-0236. highly efficient. The ITCAM needs to store the prefixes in
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decreasing order of length, for example, so that the firdte write is delayed till this lookup completes. During the
matching prefix $ also the longest matching prefix. DUOSwrite, the TCAM slot being written to is excluded from
[9] uses a memory management scheme (Scheme 3, alata plane lookups. Similarly, the availability of the function
known as DLFSPLO), which initially distributes the free invalidateW aitWrite, is assumed. This function sets the
valid bit of a TCAM slot to 0 and then writes an address to
the associated SRAM word in such a way that the outcome
of the ongoing lookup is unaffected. All these assumptions
for DUOS are also made by our PC-DUOS and PC-DUOS+
architectures.

The problem of incorporating updates to packet classifiers
stored in TCAMs has been studied in [6] and [2]. The authors
in [6] present a method for consistent updates when the

Input classifier updates arrive in a batch. All deletes in an update
destinatio TCAM ISRAM HNexthoP haich are first performed to create empty slots in the TCAM.
(100.24.1.7) e Then the relatllve pnorlty of the reI.eva_nt rules (_for exam.ple

T rules overlapping with a new rule being inserted) is determined

and the existing rules are moved accordingly to reflect any

change in priority ordering as the entire batch of updates is

applied. Following the ordering of existing rules, new rules are
inserted in appropriate locations. A problem with the algorithm
of [6] is that it performs the deletes in the update batch first.
This could lead to temporary inconsistencies in lookup [10].

LTCAM LSRAM Given a packet classifier, a naive approach is to store it in

a TCAM by entering each rule sequentially as they appear

Fig. 1. Dual TCAM Architecture in the classifier and distribute all the empty slots between
) . , rules. As mentioned in [2], this approach could lead to high

space availablen a TCAM between blocks of prefixes (of ho\yer consumption during look as the whole TCAM has to be

same length) in proportion to the number of prefixes in &arched including the empty entries. On the other hand, if the

block. A free slot needed to add a new prefix is moved frogi,nry entries are kept together at the higher addresses of the

a location that requires the minimum number of moves. AS'I"CAM, then those may be excluded from lookups. However,

prefix is deleted, the freed slot is added to a list of free spagegye empty spaces are kept at one end of the TCAM, then

for that prefix block. Each prefix block has its own list of; \youid require a large number of rule moves to create an
free slots. With this scheme even with 99% prefix occupangynnty siot at a given location. Specifically, all the rules in the
in the TCAM and 1% free space, the total number of prefikcam, below the slot to be emptied must be moved below.
moves_u§ing DLFSPLO is at most 0.7% of the total number \we yse a simple TCAM (STCAM) architecture for perfor-

of prefix insertsand deletes. mance comparison. The STCAM is a modification over the

To support lock-free updates, so the TCAMs can be URajye TCAM in that the rules are grouped by block numbers,
dated without locking them from lookups, DUOS implementghich reduces the number of required moves when a free slot
consistent update operations that rule out incorrect matche§Ofeeded. The required number of moves is now bounded by
erroneous next hops during lookup. For consistent updatesyt total number of blocks. The block numbers are assigned
is assumed that: to the rules using the algorithm presented in [2], based on a

1) Each TCAM has two ports, which can be used tgriority graph. In this method a subset of the rules is identified

simultaneously access the TCAM from the control plangch that within the subset, each rule overlaps with every other
and the data plane. rule. Each rule in the subset is assigned a different block

2) Each TCAM entry/slot is tagged with a valid bit, thahumber based on its priority. Block numbers can be reused

is set to 1 if the content for the entry is valid, and tqor different non-overlapping rule subsets. Thus, rules with the
0 otherwise. A TCAM lookup engages only those slotsame block number are all non-overlapping or independent.
whose valid bit is 1. The TCAM slots engaged in &wo rules are independent iff there is no packet that matches
lookup are determined at the start of a lookup to bigoth the rules. Filters are grouped based on their assigned
those slots whose valid bits are 1 at that time. Changinggck numbers. The group with the lowest block number is
valid bit from 1 to 0 during a data plane lookup does naif highest priority and these rules are stored in the lowest
disengage that slot from the ongoing lookup. Similarlymemory addresses of the TCAM.
changing a valid bit from O to 1 during a data plane Song and Turner [2] describe a fast TCAM update scheme
lookup does not engage that slot until the next lookupn packet classifiers. In their method, the classifier rules are
Additionally, the  availability @ of the  function entered arbitrarily in the TCAM and are not arranged accord-
waitWriteValidate is assumed which writes to a TCAMing to decreasing order of priority. They ensure that the action
slot and sets the valid bit to 1. In case the TCAM slot beingprresponding to the highest priority matching rule is returned
written to is the subject of an ongoing data plane lookupy performing multiple searches on the TCAM. Specifically,
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they assign a priority (which we call block number here) to Packet Classifier, Empty TCAMs

each rule and emde the block number as a TCAM field
and allow the highest priority TCAM match to be found
using log, n searches, where is the total number of block

values assigned in the classifier. The highest priority match L
corresponds to the rule with the minimum block number. The
rule and its assigned block number are entered in the TCAM. -
Even though this method does not incur TCAM writes due Store some rules in LTCAM}
to rule moves for maintaining consistent block numbers for N

overlapping rules or to create an empty slot at the right place Y
for inserting a new rule, this method involves a number of e

TCAM writes as the assigned block numbers of rules change Store remaining rules in ITCA%t
due to inserts or deletes. Moreover, lookup speed is slowed N

down since multiple TCAM searches are required and these

searches cannot be pipelined as they take place on the same Filled TCAMs

TCAM.

PC-DUQOS+ differs from PC-DUOS in the way the seIectiorEnlg'
of rules for the LTCAM is made. PC-DUOS filters theaves
of leavesset in a multi-dimensional trie to keep only the . . ) .
highest priority rules among all overlapping rules. The rules 1 Represe.ntlngiila§5|f|er Rules:The classn°|er.rules are.
in the filtered leaves of leaves set is then entered in t%prese_nted n-a pT'OT'W graph as.well as in a mult-
LTCAM. PC-DUOSH+, on the other hand, uses a priority grag imensional trie. A priority graph contains one vertex for each

to select rules for the LTCAM. PC-DUOS+ also uses enhanc{alae in the classifier. There is a directed edge between two

algorithms for ITCAM rule insertion which require feWeryertlces iff the two rules overlap and the direction of the edge

moves to rearrange rules for priority based adjustments. is from the_h|gher to the lower priority rule. Two rules overlap
iff there exists at least one packet that matches both the rules.

Each dimension in a multi-dimensional trie represents one
Il. PC-DUOS+: METHODOLOGY field of the rule. The fields in a filter rule appear in the
following order in the trie:<destination, source, protocol,
PC-DUOS+ uses the two TCAM architecture used in PGource port range, destination port range We assume that
DUOS[14] and DUOS[9] (Figure 1). During lookup, thethe destination and source fields of the filters are specified
LTCAM and ITCAM are searched in parallel using the packets prefixes. So, these are represented in a trie in the standard
header information. If a match is found in the LTCAM, thewvay with the left child of a node representing a 0 and the right
ongoing search in the ITCAM is aborted. When the ITCAMhild a 1. Ranges may be handled in one of many ways. In
search is aborted, lookup time is reduced by about 50%][1fjs paper, we use the DIRPE scheme of [3] that requires the
because the LTCAM has no priority encoder. For this lookwgse of a multi-bit trie. Our methodology may also be applied
strategy to yield correct results, the following requirements other range encoding schemes, such as those in [12] and

Create priority graph and
multi-dimensional trie

2. Flow diagram for storing packet classifiers in TCAMs

must hold: [13].
Rl) No packet is matched by more than one rule in the 2) Storing rules in the LTCAMRecall that two rules are
LTCAM. independent iff no packet is matched by both rules. For the

R2) When a packet is matched by a rule in the LTCAM:TCAM we are interested in identifying the largest set of rules

the matched rule must be the highest priority matcfibat are pairwise independent. Note that every independent
ing rule. rule set satisfies the first requirement (R1) for a lookup to

. . . . work correctly. To find an independent rule set in acceptable
The algorithms used for storing and updating rules in the . X i . .
) . . computing time, we relax the “largest set” requirement and
TCAMs are discussed in detail below. . : :
instead look for a large set of independent rules. It is easy
to see that the rules in the vertices of the priority graph with
. . in-degree 0 are independent rules. Further, these rules are also
A. Storing Rules in TCAMs the highest priority rules among all rules that overlap with
Figure 2 shows the overall flow of storing rules in théhem. This satisfies the second requirement (R2) for a lookup
ITCAM and the LTCAM. The first phase involves creatingo work correctly. Hence, we choose to enter these rules into
a priority graph and a multi-dimensional trie for the rules ithe LTCAM. All remaining rules are entered in the ITCAM.
the classifier. This is further discussed in Section 1lI-Al. The 3) Storing rules in the ITCAM:The rules to be stored in
second phase in our methodology consists of identifyingthe ITCAM, are assigned block numbers. The priority graph
set of highest priority independent rules and storing theseiused to assign block numbers as follows [2]. All vertices,
the LTCAM, which is discussed in Section IlI-A2. In the thirdto which there are no incoming edges, are assigned a block
phase, the remaining rules are stored in the ITCAM in priorityumber of 1. All children of the vertices with block number
order. This is discussed in Section I1I-A3. 1 are assigned a block number of 2 and so omafent of a
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Algorithm: findOverlappingRules(ruleInstance)
Inp uts:
ruleInstance: a trie node representing a rule and storing
action.
Sutput:
list: a list of rules overlapping with the input rule
he get destination prefix Dest, source prefix Src from
{ulelnstance
nodeD = root of destination trie;
for (i=0; i<length of destination prefix; ++i)
if (root of a source trie is stored at nodeD)
nodeS = root of source trie
for (j=0; j<length of source prefix and nodesS; ++j)
if nodeS stores a rul®
appendR to list.

vertexw in the priority graph, is a vertex from which there is
an incoming edg to v. Similarly, achild of v is a vertex to
which there is an out-going edge from Thus a child of any
vertex is assigned a block number that is at least one mqg
than that of this vertex. Avath in a graph is a sequence of
vertices such that from each vertex there is an edge to t
next vertex in the sequence. A non-trivial path is a path wit
at least two vertices. Aancestor of a vertexv is a node that
has a non-trivial path t@. A descendant of v is a vertex
to which there is a non-trivial path from. In other words, a
descendant of hasv as one of its ancestors.

In the block assignment scheme, rules that are assign

its

ed

the same block number are independent and hence grouped branchBitS =5rc{j];

together in a single block. These blocks are entered in the nodeS = nodeS-child[branchBitS];
TCAM in increasing order of the assigned block numbers. endfor

In our implementation, each vertex in the priority graph if (nodeS != NULL)then

has a fieldv—hpri which stores a pseudo priority associ- ;?S(grill r?gggsst'grsgl;”'rilg"ted at nodeS
ated with the block number of the vertex. While—hpri appendR to list.

equals the block number af in PC-DUOS, in PC-DUQOS+, endif

priority M ap(v—hpri) is the block number for rule. When endif

the priority graph is constructed for the initial classifier, endif

branchBitD =Dest]i];

nodeD = nodeB-child[branchBitD];
endfor
visit all nodes in subtrie rooted at nodeD
if (any node stores a rulR)

appendR to list.
endif

v—hpri equals the block number af and priorityMap is
an identity mapping. However, as we insert and delete rule
v—hpri may no longer equal the block numberwofin fact,
v—hpri may not be an integer) andiority M ap is no longer
an identity mapping.

To build the priority graph, we first iterate over the classifie
rules and for each rule, identify all rules that overlap with it. A
trie-based algorithm to determine the rules that overlap a give. 3. Find overlapping rules by trie traversal
rule is presented in Figure 3. For simplicity, the algorithm
is specified for the case when rules have only two fields -
destination and source prefix. Its extension to rules withthe update is coplete. Rules may also be moved from the
larger number of fields is straight forward. Given a rule, th&@ CAM to the LTCAM or vice versa as a result of the updates.
algorithm first extracts the values for the different fields forhis step is discussed in Section I11-B2.
the rule, and traverses the trie along these prefix paths until alll) Update the priority graph and the trieThis is the
overlapping rules are found. For each overlapping rule foundiest step in the update process. The multi-dimensional trie
directed edge is added to the priority graph. The priority grajdi updated with the help of functions as described in Figure 4.
is a directed acyclic graph and block numbers are assigned
using an iterative process.

Even though in the worst case all the trie nodes hay
to be explored for finding overlapping rules (this happens
for example, whenruleInstance is the root of the multi-
dimensional trie and thus represents a classifier rule with wil
carded fields) this approach works well on average and,
fact, it makes the computation in PC-DUOS+ scalable durin
the initial setup as well as while processing the updates.
contrast, the simple approach of iterating over all the ruld
of the classifier to compare overlaps and priorities, quickl
becomes a performance bottleneck as the number of rules
the classifier increases.

eunction: Trie.insert

sTrie.insert(rde, action);

This function inserts a rule and its action into the con
plane multi-dimensional trie.

iRunction: Trie.delete

drie.delete(rule);

'hhis function deletes a rule from the control plane trie.
Bunction: Trie.change

M rie.change(rule, action);

Tiis function changes the action associated with a pre

trol-

X.

Fig. 4. Table of control-plane trie functions

B. Update algorithms

When an update request is received, the priority graphThe priority grgh is updated next. If the update is a delete

and the multi-dimensional trie are updated. Section llI-Bfequest, then the vertex for the rule to be deleted (together
describes how this is done. Next the existing ITCAM rules thatith incident edges) is removed from the priority graph and
overlap with the rule involved in the update arexrranged rules corresponding to vertices whose in-degree becomes 0 are
to ensure that the highest priority rules are still matched afteroved from the ITCAM to the LTCAM. Each rule that is to
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Fig. 5. Settinghpri on a new verte in a priority graph

be so moved is first inserted into the LTCAM and then deleteébde new block are moved.
from the ITCAM using insert/delete procedures described inFigure 6 shows the algorithm to sethpri. Figure 7

Sections Il1I-B2b and 11I-B2d. If the update is an insert, then ghows how the descendants are moved downwards. In F|g-
new vertex is added to the priority graph. All rules overlappingre 6, we first calculate the number of moves towsethpri
with the new rule are found, and a new edge is added for eaghen descendants are moved downwards (childMoves) and
overlapping rule. Overlapping rules are identified by traversiighen the ancestors are moved upwards (parentMoves). These
the trie using the algorithm of Figure 3. After adding a newalculations are based on the flow diagram in Figure 8(b).
vertexv to the priority graphp—hpri is calculated. Ifv has  Supposev—hpri is set by moving descendants downwards,
no incoming edges—hpri is set to 1 and the new rule inis  and the block number corresponding to the maximiymi of
placed in the LTCAM. Otherwise; is placed in the ITCAM. the parent vertices i®. Thenv is assigned to a block + 1

If v is placed in the ITCAM therv—hpri is set either and no child vertex ofy can be in a block lower thai + 2.

by movingv’s ancestors upward or its descendants downanda child vertex is found to be in a block lower tha + 2

or by moving neither descendants nor ancestors. These tmgé‘napping the child'sipri, then that child must be moved

possibilities are shown in Figures 5(c), (d) and (e). Figure 5(§]an appropriate block, which could be either bldgk- 2 or

depicts a portion of the original graph. The number next me higher b'QCk such & +3, B + 4, efc. Such u_pda_ting
each vertex shows thepri value on that vertex. The newly 12PPENS recursively for all descendants as shown in Figure 7.

added vertex is colored black in Figure 5(b). In Figure 5(c),The algorithm to sev—hpri by moving ancestors upwards

v—hpri is set based on’s parenthpri so thatv will be placed is similar.

in the ITCAM block below that of its parent. Note that the Moving either the descendants or the ancestors to adjust
hpri of v's child must be updated too and the child is movehgriorities is computationally intensive, with a worst case
one block downward, thus avoiding and its child being complexity of O(NL), where N is the number of vertices
placed in the same ITCAM block. Such updates propagdfe the priority graph andL is number of vertices on the

to all descendants. In Figure 5(d)>hpri is set based on the longest path.L is also referred to as thenaximum chain
hpri of v's child so thatv will be placed in the block above length of the priority graph. The worst case happens when
that of its child. Thehpri of v’s parent is updated so that theeach vertex is connected to every other vertex. In that case, to
parent is moved one block upward and these updates propadiité the minimum and the maximum hpri (the first two lines
to all ancestors. Figure 5(e) shows a case where a new bl&éifigures 6 and 7') the algorithms must touch all the vertices.
is inserted between the parent block and the child block, andCalculating the number of moves is a compute intensive
the hpri associated with the new block is 3.5. Thushpri task too, with the same complexity aD(NL) since the

is set to 3.5, and neither the descendants nor the ancestorsaoifie algorithms are used, without actually moving the rules.
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Algorithm: insertRule(v )
Input: Rule storé in vertexwv in the priority graph.

maxP = max(parerthpri) from ITCAM parents ofv;
minC = min(child-hpri) from children ofv;
/| Default values are maxP:1 and minC: infinity
childMoves = parentMoves = 0;
if ({(maxP < minC)) then
compute childMoves to push descendants down and
parentMoves to push ancestors up according to Figure §
endif
/I Get block BC' corresponding to minC. Ib has no outgoing
10// edges, theBC' — 1 is the last block in the ITCAM.
11 BC = priorityMap(minC);
12 BP = priorityMap(maxP);
13if (v has a parent vertex in the ITCAlnd

OCoO~NOUTDWN PR

14 parentMoves< childMovesand
15 childMoves> 50) then // Move ancestors upwards
16 targetBlock =BC — 1;

if (BC — 1== BP and parentMoves> 50) then
targetBlock = create a new block betweBi#® and BC'.

endif

/I Function reversePriorityMap returpseudo-priority

/I corresponding to targetBlock.

v—hpri = reversePriorityMap(targetBlock);

assign slot in targetBlock far;

24 if ({(v—hpri > maxP))begin

25 sort the parent vertices in a decreasing order of hpri;
26 for each parent ob

27 if ({(v—hpri > parent>hpri))

28 if (parent is in ITCAM) moveParentUp(parent);
29 endif

30else// Move descendants downwards

31 // Initially, the highest priority rules in ITCAM havépri

32 /] set to2. So, targetBlock is initialized to that block.

33 targetBlock = priorityMa);

34 if (v has no parent in the ITCAMjhen

35 if (there exists a bloclBC — 1) then

36 targetBlock =BC' — 1;

37 else if (childMoves > 50) then

38 targetBlock = create a new block on top BE.

39 endif

40 else

41 targetBlock =BP + 1;

42 if (BP 4+ 1 == BC and childMoves > 50) then

43 targetBlock = create a new block betweBi® and BC'|
44 endif

45  endif

46 v—hpri = reversePriorityMap(targetBlock);

47  assign slot in targetBlock far;

48 if (I(v—hpri < minC)) begin

49 sort the descendant vertices in an increasing order of
50 for each child ofv

51 if ({(v—hpri < child— hpri)) moveChildDown(child);
52 endif

53endif

54 // Process nodeList from moveParentUp/moveChildDown
55for eachw in nodelList starting from the last one

56 slotW = current TCAM slot occupied by the rule of
57 write the rule ofw in the assigned slot;

58 free slotW;

59endfor

60 write the rule ofv in the assigned slot.

Fig. 6. Insert a rule in the ITCAM

Algorithm: moveChildDown(child)
Input: Rule storé in vertex ‘child’ in the priority graph.

mP = find max(parerthpri) from all parents of child
mC = find min(child—hpri) from all children of child
if (mP < child—hpri and child=hpri < mC) return;;
block = priorityMap(maxP) + 1;
child—hpri = reversePriorityMap(block);
assign a slot in block for child; append child to nodeList;
if (!(child—hpri < mC)) begin
sort the descendant vertices in an increasing order of hpri
for each childi of child
if ({(child—hpri < childi—hpri)) moveChildDown(childi)
endif

Fig. 7. Moving descendants downward in the ITCAM

So, to avoid a pdormance bottleneck, we perform these
calculations selectively. Further, a maxLimit is set so that
as soon as the number of moves exceeds maxLimit we stop
further calculations. The flowchart in Figure 8(a) shows an
unoptimized decision diagram that causes significant perfor-
mance degradation. In this case, the actual number of moves
is computed for both the cases when the descendants and the
ancestors are moved. Whichever direction results in a lower
number of moves, the priorities are adjusted for that direction.

The flowchart in the Figure 8(b) shows an optimized de-
cision diagram, that breaks up the process into three stages
and focuses on relative instead of actual number of moves. In
the first stage of this flow, we calculate childMoves which
is the number of moves needed to shift the descendants
downward, with maxLimit set t&00. If childMoves is less
than 50, we go ahead and move the descendants downwards
without calculating parentMoves, which is the number of
moves required to shift the ancestors upward. However, if it
takes more thah0 childMoves, then we are at the second stage
where the parentMoves are calculated with maxLimit set to
(childMoves+100), which could potentially be a number up to
600. If parentMoves is less than childMoves at this stage, then
we move the ancestors upwards. If parentMoves is more than
500 then we are at the third stage where the exact number of
childMoves is first calculated (by setting maxLimit to infinity)
and then a relative number of parentMoves is calculated
(by setting maxLimit to (childMoves+100)). Descendants
are moved downwards if childMoves is smaller, otherwise

hpancestors are moved upwards. This flow gives an acceptable

update performance on our datasets, since very few updates
involve over500 moves in either or both the directions.

We use another optimization in the ITCAM rule placement
strategy, where a new block is inserted into the TCAM
between two existing blocks as shown in Figure 5(e) and on
lines 18 and 43 of Figure 6. If the maximum block number of
the parents ob is B and the minimum block number of its
children isB + 1, then instead of moving all children in block
B+1to B+2 or all parents in block3 to B—1, a new block
is created in the ITCAM between the blocksand B+ 1 and
v—hpri is set to the average of the hpri-s of the two blocks
(i.e. (hpriof(B) + hpri_of(B+1)) /2). The new ruéfor v is
then added to the new block. If the new rule is to be added on
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Fig. 8. Decisiondiagrams for priority adjustment of descendants vs. ancestors

top of the topmost ITCAM block as on line 38 of Figure 6appropriate location. This slot can be obtained efficiently using
then v—hpri is set to { + hpri_of(B) /2). Recall that the memory management algorithms. In particular, the memory
vertices with h-degree 0 are assigned an block number 1. Snanagement schemes from DUOS may be used here. For the
we addl in this expression to ensure that no hpri becoméSCAM of PC-DUOS+ as well as PC-DUQOS, we implemented
less than 1. Addition of a new block must be done judiciouslihe DLFS PLO scheme, as its the most efficient scheme
since it requires an extra move while bringing in a free slot tnown to us for muing free slots to a desired location in a
a particular blockB when the newly inserted block is betwee @ CAM. In the DLFS PLO initial rule placement scheme, free
the free space pool anfl. So, we add new blocks only if the slots are kept irthe region between two blocks. Additionally,
number of moves was calculated to be oGér Figure 5(e) there may be free slotaithin a block. So a list of free
shows thatv—hpri for the new vertex is set t03.5. A new slots is maintained for each block on the TCAM, with the list
block is added between the parent and the child blocks in thising empty initially. As rules are deleted from a block, the
case. freed slots are added to the list for that block. The memory
For consistent updates [10], [11], if the vertices are tmanagement scheme for LTCAM is relatively simple as all
be moved downwards, then the moves may be executedttie rules in the LTCAM are independent so a new rule
increasing order of priority starting from the lowest prioritycan be inserted anywhere in the TCAM. However, we still
rule and after all the descendants are moved, the new roked to locate a free slot. The LTCAM memory management
is added. If the vertices are moved upwards, then the mowdgorithm of DUOS creates a linked list of the free slots. When
may be executed in decreasing order of priority, starting froefree slot is needed, a slot is obtained from the head of the free
the highest priority rule. After all the ancestors are movedlot list. PC-DUOS+, as well as PC-DUOS, uses the memory
the new rule is added. Lines 55-59 of Figure 6 ensure thaanagement algorithm for DUOS for its LTCAM [9].
nodes are moved to their assigned slots in the reverse orde®ince the blocks grow both ways, up as well as down, PC-
of visiting them. Thus, the node last visited for updating: DUOS+ has a modified initial rule placement policy as shown
is the first to be moved to its assigned slot. This preserviesFigure 9 where 25% of the free slots (represented by white
update consistency for both the cases when the descendattsks) are placed on the top of the TCAM (that is, covering
are moved downwards and the parents upwards. The new rihle lowest addresses) and another 25% are kept at the bottom
is added at the end (Line 60). of the TCAM (covering the highest addresses). The remaining
2) Updating the TCAMs:TCAM updates are generated50% of the free slots are distributed to the region between the
after updating the priority graph. Rules may be moved frolslocks in proportion to the number of rules in a block.
the ITCAM to the LTCAM or vice versa or they may be moved  a) ITCAM.insert: :
within the ITCAM for rearrangement of overlapping rules. Tdo insert a new rule in the ITCAM, a free slot is first made
insert or move a rule in a TCAM we need a free slot at aavailable at the desired block. A free slot may be present in
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from the LTCAM, then the valid bit of the slot is set to 0 and
the freed up slot is prepended to the head of the free slot list.

For incorporating a changed rule, if the change is with
respect to the fields of a rule, then the changed rule is simply
inserted in the LTCAM and the old rule deleted. If the change
is in the priority of a rule in such a way that the corresponding
vertex now has an incoming edge, then the rule is moved to
the ITCAM. Otherwise, if the rule continues to be the highest
priority rule among all overlapping rules even after the change,
then nothing needs to be done.

IV. EXPERIMENTAL RESULTS

The experimental setup is first described in Section IV-A.
The results obtained for lookup and update performance are
N described in Sections IV-B and IV-C.

Fig. 9. Initial ITCAM layout
9 Y A. Setup

We programmed the lookup and update algorithms for
the same block irwhich case no moves are needed to get #1 ©AM, PC-DUOS and PC-DUOS+ in C++ and compared
from the free slot list of the block. If there is no free slot in th&h€ir performance on an x86 Linux box with a 64-bit, 1.2GHz
block, then a free slot may be obtained from the inter-blodkPU- We generated test data using ClassBench [7]. Each
region on the top or the bottom of the block. No moves aflataset was generated using one of the seeds provided in Class-
needed in this case too. If there is no free slot in the intdpe€nch. We randomly marked some of the rules in a dataset

block region adjacent to the block, then a free slot is movd@r insertion and some others for deletion. The rules marked
from the nearest neighboring block where its available. for insertion were removed from the dataset to arrive at the

To insert a new block between two blocks in the ITcAminitial configuration for the classifier. A random permutation of

it is first checked if there is a free slot between the top arﬁla,e removed rules (i.e., those marked for insertion) together
bottom blocks. If there are free slots in the region betwed§th those marked for deletion define the update sequence.

the top and the bottom blocks, then the rule in the new blofidure 10 describes the data sets generated in this way using

is inserted there in such a way that there are some free sigf@SsBench. The first and second columns in this figure give

above and below the new block. Otherwise, free slots for tifa€ indexes and names of the classifiers, the third column

new block are moved in from the nearest neighboring blogkows the seed files in ClassBench from which these tests
that has free slots. were derived, the fourth column shows the number of rules

b) ITCAM.delete:: in the initial configuration of a classifier, and columns five to

After deleting the vertex corresponding to the rule in tha=Ven give the number of insert anql delete operations in the
priority graph, the valid bit on the corresponding TCAM slo pdate sequence. We used 12 seed files based on access control

is set to 0. DLFSPLO frees up the block if the rule deleted isIStS (acl),_ firewalls (fw) and IP chains (ip_c) to generate the

the last rule intie block. Otherwise, the freed slot is prepende](j3 classifiers. Out .Of these 13 tests, -the first seven V\{ere used

to the head of the list of free slots in the block. in [14]. Each rule in a dataset consists of the fields: source
¢) ITCAM.change:: address, destination address, source port range, destination port

Suppose the specified change is with respect to the fields ({nge, and protocol

rule, then such a change is implemented as an insert followed [Tndef Dataséiseedfile | #Rules #Inserts #Deletes
by a delete. The insert adds the changed rule to the same acll | acll_seed| 30075 69300 | 29700
block as the old rule, while the delete removes the old rule fwl | fwl_seed| 7989 | 28800 | 7200
from this block. If the change is in the priority of the rule, ipcl | ipcl seed| 15338 34300 14700

1

2

3
h isit all the | . d . d fth 4 acl2 acl2 seed| 53970 45000 | 45000
then, we revisit all the incoming and outgoing edges of the 5 fwh fwb,seed | 5571 | 45900 | 5100

6

7

8

9

corresponding vertex in the priority graph and reverse the acl4 | acl4 seed| 34254| 5000 | 5000
edges appropriately to maintain the edge direction from the ipc2 | ipcl seed| 5165 | 94050 | 4950
higher to the lower priority rule. Then the block number is acl3 | acl3 seed| 19745 2976 | 3124
freshly calculated fow, and the rule is moved to a block at acls | acls seed| 19492 12500 | 12500
. . L 10 fw2 fw2_seed | 16668 15000 | 15000
a higher address (lf the pr_lor_|ty was lowered) or_to a block gt 11 | w3 | fw3 seed | 16841| 33400 | 16600
a lower address (if the priority of the rule was increased) in 12 | fw4 | fw4_seed | 12882 10000 | 10000
the ITCAM. If the vertexv does not have any incoming edge 13 | ipc3 | ipc2_seed| 20000| 15000 | 15000
following the update, it is moved to the LTCAM. Fig. 10. Synthetic classifiers and update traces used in the experiments
d) LTCAM.insert, LTCAM.delete and LTCAM.change:
To insert a new rule in the LTCAM, a free slot is obtained We us DIRPE [3] to store the port ranges in the TCAM.
from the head of the LTCAM free slot list. If a rule is deletedIRPE was implemented by using multi-bit tries for source
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and destination port ranges. We assume that 36 bits areto manage a freed up slot following rule deletion. We do
available for enoding each port range in a rule. With thimnot compare PC-DUOS+’ update performance with that of
assumption, we use strides 223333 for our experiments, whitle work in [2], since PC-DUOS+’ lookup performance is far
give us minimum expansion of the rules. The stride valumiperior to the worst case of [2], which is at least 4 times
223333 indicates that for a given port number (16 bits), trsbower in the worst case, on our datasets (obtained as logarithm
root of the port range trie will use the first two bits to branchf the number of blocks).

to one of its four possible child nodes at level 1. Each nodeWe analyze the results based on two perspectives — im-
at level 1 uses the next two bits to branch to one among fisovement in lookup performance and improvement in update
four possible child nodes at level 2. A node at the level 2, grerformance.

the other hand, uses the next 3 bits to branch to one among

its eight possible child nodes at the level 3, and so on. Thug, Lookup Performance

all the 16 bits (2 + 2 + 3 + 3 + 3 + 3 = 16) are used 10 Recql that during a lookup, if a match is found in LTCAM
traverse the trie and arrive at the last node (at the 6th levgPpc_puos+ then the corresponding action is returned faster.
representing the port number. Figure 11(a) shows the percentage of rules that are entered in
the LTCAM of PC-DUOS+. The graph shows that for two tests

1 (acll) and 9 (acl5), over 99% of the rules are in the LTCAM.
On the other hand, for test 2 (fwl), about 39% of the rules are
in LTCAM. Having a large number of rules in the LTCAM
makes the probability of finding a match in the LTCAM,
higher. We computed the overall improvement in lookup time
using the lookup traces generated using ClassBench. Each
lookup trace had about 100,000 packet headers. Figure 11(b)
shows the improvement in lookup time. Since the tests 1 (acll)
and 9 (acl5) had 99% of their rules in the LTCAM, almost all
the lookups found a hit in the LTCAM, and consequently,
the improvement in average lookup time on these tests was
almost 50%. On the other hand, the test fwl had least hits

Percentage of LTCAM rules

S in the LTCAM, and showed an improvement of about 19%

in the average lookup time. Figure 12 presents the details

P f rules in the LTCAM .
(8) Pecentage of rules in the on the number of rules in the ITCAM and LTCAM and

the percentage improvement in lookup performance. The first
three columns give the dataset index, its name and the number
of rules respectively. The fourth and fifth columns give the
number of rules entered in the ITCAM and LTCAM, respec-
tively. The sixth and seventh columns give, respectively, the
number of lookups performed and the percentage improvement
in average lookup time.

N w w
a o a
T T T

N
o
T

Lookup time improvement (%)

151 Index| Dataset | #Rules | #ITCAM| #LTCAM| #Lookupbk %Improve
1 acll 30075 | 305 29731 | 120301 | 49.6
1o0r 2 fwl 7989 4885 3068 103857 | 19.2
5| 3 ipcl 15338 | 3504 11834 | 107618 | 40.6
4 acl2 53970 | 8875 45095 | 107940 | 42.6
0= 5> 3 4 5 6 7 8 9 10 11 12 13 5 fwb 5571 2689 2796 105430 | 30.8
tests 6 acld 34254 | 5882 28372 | 103104 | 41.1
, ) ) 7 ipc2 5165 1476 3689 98136 | 38.7
(b) Pecentage of improvement in lookup time 8 acl3 19745 | 6737 13007 | 102851 | 31.4
9 acls 19492 | 260 19209 | 97460 | 49.4
Fig. 11. Number brules in the LTCAM and improvement in lookup time | 10 fw2 16668 4739 11929 100008 | 40.6
relative to STCAM 11 | fw3 16841 | 5688 10986 | 103794 | 33
12 fwa 12882 | 5004 7878 103266 | 20.2
We compare our results with those from a single TCAM13 | ipc3 20000 | 8027 | 11973 | 100163 | 34.9

setup (STCAM) as is commonly used today for packet clasig. 12.  Number of rules in ITCAM and LTCAM of PC-DUOS+ and
sification. In this setup, all rules are entered into the TCANPProvement inéokup time relative to STCAM

in priority order. The ordering is needed only for rules that

overlap. If two rules do not overlap, their relative ordering

does not matter. We use a priority graph for the whole sét Update Performance

of rules to track the block numbers of the rules as well asFigure 13 shows the number of TCAM writes needed to
to compute adjustments to block numbers as new rules am®cess the test update sequence by PC-DUOS+, PC-DUOS
inserted. The memory management scheme DEE® is [14] and STCAM, normalized with respect to that of PC-
used for the STBM to allot a free slot for rule insertion DUOS+. A noticeable improvement in the number of writes
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is observed withrespect to STCAM for almost all the testsFigures 14 and 11(a), we see that the improvement in runtime
except for tests 9 (acl5) and 13 (ipc3). Test 8 (acl3) requiresclosely related to the number of rules that are in the LTCAM.

up to 3.72 times more writes using an STCAM compared teigure 14 shows that compared to PC-DUQOS, there is an
PC-DUOS+, while test6 (acl4) requires up to 1.5 times thimmprovement in the runtime too, for all tests except test 1

number of writes using PC-DUOS versus PC-DUOS+. (acll).

Figure 14 shows the time taken to process the updates-rom Figure 13 we observe that tests 9 (acl5) and 13 (ipc3)
by PC-DUOS+, PC-DUOS and STCAM. These times haweeed almost similar number of writes in all the three setups,
been normalized with respect to PC-DUOS+. Tests 1 (aciiamely, PC-DUOS+, PC-DUOS and STCAM. The priority
and 9 (acl5) show the maximum improvement in runtimgraph for test 9 (acl5) has a very small number of edges.
compared to STCAM, the improvement being 247 and 188 fact, the ratio of the edges to the vertices for this graph is
times respectively. This is related to the fact that over 99%mly 0.018 (Figure 15), and the length of the maximum chain
of the rules in these tests are entered in the LTCAM of PG just 3 (Figure 16). Thus, STCAM needs a single write for
DUOS+. The LTCAM offers a fast and light-weight updatenost of the inserts. The priority graph for test 13 (ipc3), on
mechanism compared to the ITCAM. Note that the ITCAMhe other hand, is a well-structured graph with three distinct
has a similar update mechanism as STCAM. In fact, frotgpes of vertices. The first type is for rules with very specific
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source and dsination prefix, which are specified up to 32 bits otz Gte;tss sl

for most cases. The second type is for rules with very specific

source address prefix, but generic destination prefix (O orFiy. 18. Percentage of updates that require 1 write3 and < 10 writes

bit long), and the third type is for rules with very specific

destination and generic source address prefix. As a result, the

vertices of a particular type are sparsely connected to eaghich shows the percentage of rules requiring 1 TCAM write
other as they fail to match on the source or destination prefird the percentage of rules requiring at most 3 and 10 TCAM
field that is specified up to 32 bits. Figure 17(a) represesites. Thus, ipc3 produces similar results for PC-DUOSH+,
a small example of such a graph. Here the rules at the t8-DUOS as well as the STCAM. It may be noticed that a
level are placed in block number 1, the rules at the next lexedmmon feature of tests acl5 and ipc3 is that both of them
are placed in block number 2 and the rules on the last leJ&ve a small maximum chain length.

are placed in block number 3 in the TCAM. Now suppose an Figure 19 gives the average and the worst case TCAM
insert request for a new rule is received. Figure 17(b) showsvaites for PC-DUOS+ and STCAM. The average writes for
new vertex corresponding to the rule, and an updated prior{C-DUOS+ are lower than the corresponding numbers for
graph. As can be seen, the highest block number for a par&MCAM. The worst case writes for PC-DUOS+ is lower than
is 1, and the lowest block number for a child of the newhose for STCAM for all tests except test 10 (fw2). The
vertex is 3, which makes the new vertex a perfect fit in blogkumber of TCAM writes in the worst case for PC-DUOS+
number 2. The graph for ipc3 is close to this example, wils quite high, even though we observed that more than 99%
only 6 blocks and 100% of the rules are placed in the righf the rules require at most 10 writes.

block with just one TCAM write. The fact that 100% of the Figure 20 shows the actual number of TCAM writes for
rules need just 1 TCAM write can be seen from Figure 18)serting or deleting rules in the different datasets and the time
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Fig. 20. Total TCAM writes in PC-DUOS+, PC-DUOS and STCAM tent Policy Table Update Algorithm for TCAM without Locking,
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Codes for TCAM-based ClassificatioffFOCOM 2009.
[14] T. Mishra, S. Sahni and G. Seetharaman, PC-DUOS: Fast
V. CONCLUSION TCAM Lookup and Update for Packet ClassifielSCG 2011.

PC-DUOS+, which is an enhancement of PC-DUOS [14]
and an extension of DUOS[9], is proposed for packet classifier
lookup and update. Two TCAMs named LTCAM and ITCAM
are used. PC-DUOS+ stores the highest priority independent
rules in the LTCAM. The remaining rules are stored in the
ITCAM. During lookup for highest priority rule matching,
both the ITCAM and the LTCAM are searched in parallel.
Since the LTCAM stores independent rules, at most one rule
may match during lookup in the LTCAM and a priority en-
coder is not needed. If a match is found in the LTCAM during
lookup, it is guaranteed to be the highest priority match and
the corresponding action can be returned immediately yielding
up to 50% improvement in TCAM search time relative to
STCAM. The average improvement in lookup time is found
to be between 19% to 49% for the tests in our dataset. The
distribution of rules to the two TCAMs makes updates faster
by reducing the average number of TCAM writes by up to
3.72 times (for acl3) and reducing the control-plane processing
time by up to 247 times (for acl1). The maximum reduction in
control-plane processing time is observed for the ACL tests.
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APPENDIX B:

PC-TRIO: An Indexed TCAM Architecture for
Packet Classifiers
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Abstract—We propose an indexed TCAM architecture, PC- the same access rate, a TCAM may consume 30 times more
TRIO, for packet classifiers. PC-TRIO uses wide SRAMs and power than an SRAM used for a software based classification
index TCAMs. On our classifier datasets, PC-TRIO on an [18]. The more the number of entries in the TCAM, the
average reduced TCAM power by 96% and lookup time by . " ) ' .
98%, compared to PC-DUOS+ [24] that does not use indexing higher the power needed tp_ perfqrm a sgarch. This pr.o_blem is
or wide SRAMs. We extend PC-DUOS+ by augmenting it with Worsened for packet classifiers since typically a classifier rule
wide SRAMSs and index TCAMs using the same methodology as includes port range fields that need multiple TCAM entries
used in PC-TRIO, to obtain PC-DUOS+W-O On ACL datasets, per rule for representation in the TCAM. This is called range
E;Zé%&oigxva;?rggct%dp-rccféMopscTer by 86% and lookup time ey pansion. Given that the source and destination port numbers

’ ' are represented in 16 bits, the number of TCAM entries needed
|. INTRODUCTION to represent a port range in the worst case is 30 corresponding

e : __to the rangdl, 2'6 — 2]. Thus, a filter having both source and
Packet classification is a key step in routers for vario

functi h " ting fi lls. load bal Westination port ranges set fb, 2! — 2] undergoes a worst
unctions such as routing, creating firewalls, load balancing . expansion of x 30 = 900 TCAM entries,

and differentiated services. Internet packets are classified intq . paper we evaluate a triple TCAM architecture, PC-

different flows based on packet header fields and using atalﬂslo for packet classifiers. In PC-TRIO, the TCAMs are

of _rules n Wh'Ch each rule is of the_fon(rF_, A), whereF is augmented with indexing and wide SRAMs. The technique
a filter andA is an action. When an incoming packet matche&

appropriate output link, or it may be droppeddAlimensional port ranges are stored in wide SRAM words, rather than in

filler I is a d- tuple (F[l]’F.[Q]"".  Eld]), where Fli] is y,0 TcAM for most of the rules, and hence do not need
a range sp_ecmed for an attribute in the packet header, Slfﬁﬁl iple TCAM entries to represent them. The content of the
as destination address, source address, port number, prot t SRAM word may be processed by a specialized and

type, TCP flag, etc. A packet matches filer if its attribute f . L
. R ) t hard . Finally, t eff t tal updat
values fall in the ranges df[1],-- - , F'[d]. Since it is possible ast harcware. Finaly, we present eflicient incrementa’ Upaate

. . _algorithms. To the best of our knowledge, this is the first work
for a packet to match more than one of the filters in a classif rg g

L : . Hat attempts to use an indexed TCAM architecture for packet
thereby resulting in a tie, each rule has an associated COStc%rssifiers

priority. When a packet matches two or more filters, the actionoLjr paper is organized as follows. Section Il presents

of the matching rule with the lowest cost (highest priority) i ackground and related work in this larea Section Il de-

applied on the packgt. Itis ass.“”.”.ed that filters that match tEéaribes the PC-TRIO architecture and assc;ciated algorithms

same packet have d'ﬁefe”‘ priorities. e and Section IV presents experimental results. We conclude in
TCAMs are used widely for packet classification. Th%ection v

popularity of TCAMs is mainly due to their high-speed table |

lookup mechanism in which all the TCAM entries are searched Il. BACKGROUND AND RELATED WORK

in parallel. Each bit of f‘), TCAM may be set to one of the v, gescribe the research on TCAM based packet classifiers
thre_e stgtes 0 1, and 7 (don_t care). A TCAM is U_SEd 'th Section I1-A, and describe existing indexed TCAM architec-
conjunction with an SRAM. Given a rulgr’ A), the filter o5 for packet forwarding tables in Section II-B. We discuss

I” of a packet classifier rule is stored in a TCAM word anghe main problems in having an indexed TCAM architecture
action A is stored in an associated SRAM word. All TCAM¢o o cket classifiers in Section 1I-C and then in Section 11-D

entries are searched in parallel and the first match is use fRw how to overcome these problems.
access the corresponding SRAM word to retrieve the action.
So, when the packet classifier rules are stored in a TCAM i Packet Classifiers
decreasing order of priority (increasing order of cost), we can
determine the action corresponding to the matching rule of tmea
highest priority, in one TCAM cycle. The main limitation of
TCAMs is that these memories are power hungry. In fact

he work on packet classifiers in TCAMs, targets three
in problems: port range expansion, power consumption and
updates. The first two problems are inter-related as reducing
8 rt range expansion also reduces the power consumption in
This material is based upon work funded by AFRL, under AFRL Contra@ TCAM. Various approaches have been proposed in the liter-
No. FA8750-10-1-0236. ature to alleviate the range expansion problem. The schemes
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in [1], [7], [6], [9], [13], [16] encode theranges and store C. Problems in storing a classifier in an indexed TCAM
modified rules in the TCAM. As a packet arrives, an encoded There are two problems in mapping a packet classifier to

search key is created from the packet header fields usifg indexed TCAM architecture with wide SRAMs. Recall
the encoding algorithm and the TCAM is searched using they; during a TCAM lookup, the contents in the SRAM
encoded search key. Spitznagel et al. [11] proposed enhanggrd corresponding to the first matching rule is returned. A
ments to the TCAM hardware to.mc!ude range compariSogpnstraint on the size of a wide SRAM word (and also that on
With such an enhanced TCAM circuit, each rule occupiestge size of a TCAM bucket), makes it impossible to guarantee
single entry in the TCAM. that the first matching word will contain the highest priority
Compressing packet classifiers by removing redundancigge matching the packet. For example, consider the classifier
is an effective strategy to reduce TCAM power consumptioith 4 rules in Figure 1, where each rule has two fields -
The approaches in [4], [15], [10], [12], [14] present algorithmg destination, and a source. The classifier is mapped to the
that transform an input classifier to an equivalent smallgidexed TCAM in Figure 2. The data TCAM has two buckets

classifier. These algorithms quite naturally contain port range Fiter Action] Prioriy
expansions. While these approaches bring about significant Destinatioh Source
reductions in classifier size, they are generally not suitable for T oror
incremental updates, since a rule to be deleted, for instance, 00 | o1r | A3 3
may not be present in the transformed classifier. - - Ad L4

Song and Turner [8] describe an algorithm for fast incré:d- 1+ AN example classifier

mental filter updates. An explicit priority value (which we g 880 (1)(1)90 ’,:é
call block number in this paper) is calculated for each rule oo ol . A4
based on the rule’s implicit priority, which is derived from ’ e 6101 r2
the position of the rule in the classifier, and the implicit Index TCAM

priority values of the overlapping rules. The block number so Data TCAM Data SRAM

computed is stored along with the rule in the TCAM usingig. 2. Classifier rules stored in a indexed TCAM

unused TCAM bits. A new rule may be placed anywhergng the index TCAM uses bits from thiestination prefix
in the TCAM. This relieves the TCAM of moving existingof each rule, to index into the buckets of the data TCAM.
rules to maintain priority ordering. Instead, during lookupp this setup, assuming that addresses are 4 bits, suppose a
multiple lookups per packet are performed to identify the beghcket arrives with destination and source addresses as 0000
matching rule. Mishra, Sahni and Seetharaman in PC-DUQRfd 0101 respectively. The best matching rule from Figure 2 is
[21] and PC-DUOS+ [24] use dual TCAMs for representatiofhe second rule on the first bucket of the data TCAM and A3
and incremental update of classifiers. is returned as the action to be applied on the packet. However,
from the table in Figure 1, A2 is the desired action. Thus if
there are multiple matching rules on a TCAM, then all the
B. Forwarding tables with indexed TCAMs corresponding SRAM words must be processed to return the

action of the matching rule with the highest priority, and this

The concept of using an index TCAM for a forwgrdlnqull take more than one TCAM clock cycle to finish a search.
table was proposed by Zane et al. [2] and further refined W}is is the first problem

Lu and Sahni in [3]. A forwarding table can be viewed as a The second problem is about thevering rules of a wide

one dimensional packet classifier, containing only destinati%rhAM word or a data TCAM bucket. Aovering pre fix

prefixes. Zane et al. [2] proposed a 2-level TCAM archltectuig]' [3], in the context of packet forwarding tables, is a default

in which the first level TCAM is an index to the partitions™” -’ : . .
. o refix for a TCAM bucket. The presence of covering prefixes
in the second level TCAM. We refer to a partition in .
.. . in a TCAM bucket makes every search in the TCAM bucket
TCAM as abucket. The partitions and indexes are constructed o .
. : . . ) . return at least one match. In a packet classifier, covering rules
by carving the binary trie representing the prefixes in the
: Similarly guarantee that a search on a TCAM bucket matches
forwarding table.

L d Sahni in 131 furth h ditional 1at least one rule. The fourth rule in Figure 1 is a covering rule
u and Sahni in [3], further augment the traditional 1z, honce entered in both the TCAM buckets in Figure 2. A
level TCAM lookup structure as well as the 2-level TCA

7 L 121 with wide SRAM q h acket classifier may have several covering rules for a TCAM
strupture of zane et a..[ ] W't wiae MS an store g, cket. Further, different TCAM buckets may need the same
suffixes of several prefixes in a single wide SRAM wo

. S , r overing rules which makes it necessary to store a single rule
This enables a reduction in both power consumption and tOFﬁmele times in the TCAM, once in every TCAM bucket for

leAM ?%TJ%W ;%quirbem_eng :c\/lis::ra an(;:l S?h”iz in I:’E-I-C’A"\(!vhich it is a covering rule. Having a rule replicated as such in
[19] an [20] obtained further reduction in power arW’he TCAM, is unacceptable specially considering the fact that

TCAM space for packet forwarding, using the indexing anﬂ’1e replicated rules themselves may undergo range expansion
wide SRAM schemes. In particular, DUO [20] is a dual TCAM P y g ge &xp '

architecture used for packet forwarding that uses efficieRt Overcoming these problems

memory management algorithms for the two TCAMs. These The dual TCAM architecture presented for PC-DUOS [21]
algorithms help DUO in executing consistent incrementahd PC-DUOS+ [24], as well as the PC-TRIO architecture
updates [22], [23]. presented in this paper, makes it possible to get around both
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Fig. 3. PC-TRIO Architecture

the problems mentioneabout using wide SRAMs and inde ILSRAM2. Since the rules stored in the two LTCAMs and
TCAMs with a TCAM for packet classifiers. The LTCAM the two ILTCAMs are independent, at most one rule (in each
(Leaf TCAM) of PC-DUQOS stores independent rules. TwaTCAM and ILTCAM) will match during a search. So these
rules are independent iff no packet matches both the ruld&€AMs do not need a priority encoder. A priority encoder
Storing a set of independent rules in a TCAM, ensures thatassists in resolving multiple TCAM matches and is used with
most one TCAM entry matches during a search and we simghe ITCAM to access the ISRAM word corresponding to the
process the corresponding SRAM word. The ITCAM (Interiohighest priority matching rule in the ITCAM.
TCAM) of PC-DUOS stores all the remaining rules which A lookup in PC-TRIO is pipelined with 6 stages marked A-
includes the covering rules. During a lookup both TCAME in Figure 3. In the first stage A, the ILTCAMs are searched.
are searched in parallel, and in case there is no match on T ILSRAMs are accessed, using the address of the matching
LTCAM, the ITCAM returns the action for the matching rulelLTCAM1 and ILTCAM2 entries in stage B. The matching
with the highest priority. Note that the LTCAM of PC-DUOSwide ILSRAM words are processed in stage C to obtain the
is a suitable candidate for augmenting with wide SRAM wordsorresponding bucket index for LTCAM1 and LTCAM2. In
and an index TCAM, since at most one TCAM entry matchestage D, the bucket indexes so obtained are used to search
during a search. The rules in the ITCAM, on the other hanthe corresponding buckets in the LTCAMs. The ITCAM is
are not independent and hence multiple TCAM entries willlso searched in this stage. In the next stage E, the ISRAM,
match during a search. Thus, the ITCAM is not a suitabknd the LSRAMs are accessed using the addresses of the
candidate for using with it a wide SRAM or an index TCAMmatching TCAM entries. In the final stage F, the contents of
the wide LSRAM words are processed and the best action is
. PC-TRIO chosen from the at most three actions returned by the ISRAM,
The PC-TRIO architecture is presented in Section IlI-A.SRAM1 and LSRAM2 by comparing the priorities of the
The algorithms for storing and updating the TCAMs areorresponding rules.
discussed in Sections 1lI-B and 1lI-C. The differences wit%_ Storing rules in TCAMs

related architectures are presented in Section IlI-D.
) There are several steps of processing a packet classifier

A. The Architecture to store the rules in the TCAMs. The first step is to create

Figure 3 illustrates the PC-TRIO architecture. It primarila priority graph and multi-dimensional tries for the rules
consists of three TCAMs, the ITCAM (Interior TCAM), thein the classifier. This is further discussed in Section |lI-B1.
LTCAM1 (Leaf TCAM) and the LTCAM2. The correspondingln the second and third steps, the LTCAM1 and LTCAM2
associated SRAMs are: ISRAM, LSRAM1 and LSRAM2subsystems are populated as discussed in Sections 11I-B2 and
respectively. The LTCAMs store independent rules, hence bdthB3, respectively. The fourth step is to store the remaining
the TCAMs are augmented with wide SRAMs and indesules in the ITCAM in priority order, which is discussed in
TCAMSs. ILTCAM1 and ILTCAM2 are the index TCAMs Section IlI-B4.
for LTCAM1 and LTCAM2, respectively. The index TCAMs 1) Representing Classifier Rule§he classifier rules are
also have wide associated SRAMs, namely, ILSRAM1 andpresented in a priority graph, which contains one vertex for
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each rule in the classifier. A priority graiontains one vertex
for each rule in the classifier. There is a directed edgev)u
from vertexu to vertexw iff (a) the rules corresponding to
u andwv overlap (i.e., at least one packet matches both rule
and (b) the priority ofu is more than that ob (we assume
that overlapping rules have different priority). For the directe
edge (u,v), we say thatu is the parent ofv and v is the
child of u. The priority graph is used to assign block number:
to rules/vertices as follows [8]. All vertices with in-degree O
are assigned the block number 1. Each remaining vertisx

Algorithm: findNode(node) Inputs:
node: a trie node, initially set to th®ot of a multi-dimensional trie.
Output:
a leaves of leaves set of protocol nodes storing classifier rules.
5) for each child i of node
findNode(node—child[i]);
endfor
if (node is a leaf) // true if node has no left or right child.
if (node contains root of a trie)
findNode(node—trie—+oot);
else// node belongs to trie for the last field (protocol)
append protocol node to leaves of leaves set
endif
endif

)

assigned a block number equal to

1+ max {block number of u} Fig. 4. Selecting protocol nodes for leaves of leaves set
(wv)€E traversing the multi-dimensional trie from the rdotthe leaves
whereF is the set of edges in the priority graph. Thus a childf the destination trie and then from these leaves into their
of any vertex is assigned a block number that is at least odached source trie and then from the leaves of the source
more than the block number of this vertex. trie into the leaves of their attached innermost trie for the
Next we create a multi-dimensional trie, Triel, where eadhotocol field.
dimension represents one field of a rule. Initially, Triel is In the second step, for each protocol node in the leaves
three-dimensional, with the three fields, source, destinatiohleaves set, we identify a set of independent rules stored in
and protocol of a classifier rule used for this purpose. Ttigat protocol node by building a small priority graph with rules
fields appear in the following order in the triecdestination, only in that protocol node. Vertices in the priority graph with
source, protocol>We assume that the destination and sourd@-degree O comprise a set of independent rules. A collection
fields as well as the protocol field of the filters are specifie®f independent rules from all protocol nodes in the leaves of

as prefixes. So, these are represented in a trie in the stand@@yes set, gives us the rules to be entered in the LTCAML.
way with the left child of a node representing a 0 and the b) Wide SRAM Word FormatOnce the rules to be stored

right child a 1. A classifier rule, along with its source andn LTCAML are identified, subtries of the multi-dimensional
destination port ranges, is stored on the protocol node thatri€ are carved and rules in the protocol nodes in a subtrie are
arrived at after traversing the trie starting from its root, usingfored in a LSRAM1 word. In particular, for each rule in a
first the destination, then the source and finally the protod@iotocol node we store the rule’s source and destination port
fields of the rule. ranges, block number, and action. We also store the suffix
We identify a set of independent rules as described @ & protocol node, which is the path from the root of the
Section 11I-B2. All the remaining rules are used to creatgarved subtrie to the protocol node. Figure 5 shows a format
another multi-dimensional trie, Trie2, in which fields in a filtefor encoding this information in a wide SRAM word. The
rule appear in the ordersource, destination, protocol>Note fields in this format are described briefly as follows:
that the source and destination tries are switched in Trie2, withl) Match start position: This field specifies the positions
respect to Triel. So, while destination trie is the outermost trie  of the first bit in the source, destination and protocol
in Triel, in Trie2, source is the outermost trie. fields of a packet header starting from which suffixes of
2) Storing rules in the LTCAM1The process of storing protocol nodes in the SRAM word must be matched.
rules in the LTCAM1 subsystem is described in five sub- 2) Count: This is the number of protocol nodes in the leaves
sections below. First, independent rules are identified (Sec- of leaves set stored in the SRAM word.
tion I1l-B2a), next, the format of storing information in a 3) len(Si): This field specifies the length of the suffix for
wide LSRAM word is discussed (Section 1lI-B2b), then we protocol node; in the SRAM word.
describe the creation of LTCAM1 entries using the process4) Ci: This gives the number of classifier rules stored for
of carving (Section IlI-B2c). Next we describe partial port protocol nodei.
range expansion (Section IlI-B2d) that may be necessary5) Data;: Datay,--- , Datay give details of theN rules
and finally, the creation of ILTCAM1 and ILSRAM1 entries in the carved subtrie. The rules for protocol node 1 of
(Section IlI-B2e). this subtrie come first, followed by those of the second
a) ldentifying Independent Rule®ecall that two rules protocol node and so o2ata; gives the block number,
are independent iff no packet is matched by both rules. For action, source and destination port range types for the
the LTCAM1, we are interested in identifying the largest set  jth classifier rule.
of rules that are pairwise independent. To find an independen®) Si: This field stores the suffix for protocol node
rule set in acceptable computing time, we relax the “largest?) Port ranges: Stores the port ranges for tNerules.
set” requirement and instead look for a large set of independdiftere are three types of ranges found in a classifier. These
rules using a two step process. In the first step, we create: a whole range ([0-65535]), a range with the same start
a leaves of leaves sqP1] of protocol nodes in a multi- and end point, and a range with different start and end points.
dimensional trie using the algorithm in Figure 4. The nodékhe port range type subfield in the Data field represents these
belonging to the leaves of leaves set in Triel are obtained thyee types of ranges using two bits. To save space in a SRAM
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Fig. 5. Data encoding in a wide SRAM word

word, a whole range is never entei@uld only one port number is a protocol node in the leaves of leaves set and the size
is entered for a range with the same start and end points. assigned to it is 600 bits. Suppose the width of the SRAM
c) Creating LTCAML1 entriesA trie is carved into sub- word is 500 bits. Then to avoid overflowing an SRAM word,
tries to assign rules to the wide SRAM words. The Triel iwe must split the rules in the protocol node, into two or more
carved using the carving heuristigsit_postorder of DUO SRAM words. Instead of replicating the LTCAM1 entry for
[20] that has been enhanced for multi-dimensional tfiggs each of the split SRAM words, we create a source port range
carving heuristic creates independent (disjoint) entries for thiée as shown in Figure 7(b), and carve nodes on this trie to

from destination trie
with prefix 1101

LTCAM Entries ® 600 bits
27 2772 . ] N
100 200 010072372 600 bits 400 bits 200 bit
bits bits 1101 1177 7?77 (a) a proto- (b) a new source port trie is
col node attached to the protocol node

Fig. 6. Nodes in a source trie is being carved. ) ) ) ) )
Fig. 7. Prefixes irforwarding table before and after applying updates

LTCAML. The path starting from the root Oﬁfél to the root create independent LTCAML1 entries. Each node in the source
of the subtrie defines an LTCAM1 entry. Figure 6 shows a ie inherits th lassifi les (for LTCAM1) f h
ortion of a source trie that hangs off a destination trie Whe?grt trie inherits those classitier rules (for ) from t ©
Earvin takes place at nodes 00 01 and 11 of the sofjrce i Eotocol node that have their source port range overlap with

9 P o S . E port range represented by the trie node. Thus multiple
The path from the root to the node of the destination trie fror(1:1O ies of a rule mav be created. one for each trie node with
which the source trie hangs off is 1101. Thus, after carving thep Y '

node at 00 on the source trie, the LTCAML1 entry is 1101 009’.9rt range overlap_pmg the source port range of the_rule. After
the gsource port trie is created, the carving heuristic resumes

???7?, assuming addresses and protocol fields are represent .
g P Preseietaversal along the source port trie, and carves source port

using 4 bits each. Similarly, the two other LTCAML entries "Modes if they satisfy either condition C1, or C2. In the example

. . S of Figure 7(b), two LTCAML entries are created, one each for
also shows a size assignment (in bits) on the three nodes Wr}%reetwo carved nodes. These LTCAML1 entries differ on the first
carving takes place. These sizes are computed for all the :

Ti ' . . .
nodes even before the carving algorithm is invoked. The si%g9 on the source port field, with one entry having a 0 while

assianed to a trie node represents the number of LSRA e other having a 1. If the classifier rules in a leaf node of the
bits gr]1ezeded to store all the Elassifier rules (for LTCAM1) in gource port trie overflows an SRAM word, then a destination
rt trie is created for the destination port ranges on rules

subtrie rooted at that node. For example, for a subtrie rom%ﬁthat leaf node, and the carving heuristic finds appropriate

at the source node 01, the number of bits needed to store S .
n8des to carve on the destination port trie.

the action, block number, port ranges of classifier rules an The source and destination port tries are thus created in PC-

suffixes of protocol nodes present in this subtrie, is 450. ¥R|O only when necessary, and then, to minimize the range

the actual width of 2 SRAM word is, say, 500 bits, then thgxpansion problem we use multi-bit tries for storing the port

rules in this subtrie will fit in an SRAM qud and we mayranges. The bits used to arrive at a node in the multi-bit trie
carve at the source node 01. A corresponding LSRAM1 ent(%ﬁne an LTCAM1 entry.

is_ constructed for t_he classjfigr rules in the format givgn by e) Creating ILSRAM1 and ILTCAM1 entrieafter carv-
Figure 5. The carving _heurlstlc carves a .node)n the “f'e ing Triel to create suffixes for entering into LSRAM1, we
when any of the foIIovymg two conditions is true. Hegejs carve Triel again a second time, to create subtries that contain
the parent of: in the trie. LTCAML1 entries. All LTCAML entries in a subtrie are entered
Cl) The size assigned to is less than the width of a jn 53 LTCAM1 bucket. Thus, at the end of this carving step, the
SRAM word, but that assigned fois more than the | TcAM1 entries are partitioned into buckets. The bits from

the width of a SRAM word. the root of the multi-dimensional trie to a carved node defines
C2) A descendant of was carved. an index that points to an LTCAM1 bucket.
The second condition ensures that the carving creates disjoinifter partitioning the LTCAML1 into buckets, Triel is carved
TCAM entries [20]. a third and final time. This time, a carved subtrie contains

d) Partial port range expansion: It is possible that the indexes to LTCAM1 buckets. Suffixes of these indexes, along
SRAM bits needed to store the classifier rules for LTCAMWith the corresponding LTCAM1 bucket indexes, are stored
on a protocol node exceeds the capacity of a wide SRAM the ILSRAM1, and the bits on path from the root of the
word. This case is shown in Figure 7(a) where the black nodeel to a carved node define an ILTCAML1 entry.
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3) Storing rules in LTCAM2:This is done eactly as for LTCAML1 to the ITCAM. Similarly, a new rule added to the
LTCAML, by processing the rules stored in Trie2. In particulab, TCAM2 may cause some of the existing LTCAM2 rules to
Trie2 undergoes carving in a similar manner as described toe moved to the ITCAM.

Triel and the LTCAM2 system is populated. The remaining To delete a rule, the rule is deleted from Triel and also
rules, i.e. rules that are stored neither in the LTCAM1 nor iftom Trie2 if it was stored in Trie2. The rule is then deleted
the LTCAM2 subsystem, are stored in the ITCAM. from the TCAM that stores the rule.

4) Storing rules in the ITCAMThe ITCAM does not have  3) Updating the trie carvingMWe now discuss the dynamics
a wide ISRAM, hence, a rule to be entered in the ITCAMpf creation and merging of LSRAM words when a new rule
must have its port range stored in the ITCAM itself. Ans added or an existing rule is deleted. Both Triel and Trie2
ISRAM word contains the action and block number of aontain nodes that were carved to create TCAM and SRAM
classifier rule stored in the corresponding ITCAM entry. Wentries. We describe how these entries change for Triel. The
use DIRPE to encode these port ranges on the ITCAM. DIRPEocess is similar for Trie2. When a rule is added to Triel at
is suitable for incremental updates, unlike database dependsudet, if there is an ancestar of ¢, where carving was done
range encoding schemes. However, if fast incremental updaiesreate a wide LSRAM1 word, and if there is space in
are not needed, then any range encoding scheme mayske place the action, block number, port ranges of the new
chosen for the ITCAM. rule, then, the new rule is placed i If there is no space
in s, then the contents of are split, by carving descendants
of a to create two or more LTCAML1 entries. If, on the other

When an update request is received, the priority graphtiand,t does not have an ancestgrthen one of the two things
updated as described in Section [II-C1. Then Triel and, below may happen. If there is an ancediaf ¢, such that
necessary, Trie2 are updated as described in Section 1lI-G3s at least one carved descendant and the subtrie rooed at
As the tries are updated, it may be necessary to carve the trieeds fewer SRAM bits than the width of a SRAM word to
at different trie nodes. This is discussed in Section Ill-C3epresent the classifier rules, thieis carved. As a result, the
Updating the TCAMs is discussed in Section III-C4. new rule is stored with some existing rules in a new SRAM

1) Updating the priority graph:To insert a new rule, the word. Note that the existing rules, have additional suffix bits
first step is to store the rule in the priority graph. A new vertex the newly created SRAM word and old LTCAM1 entries
v is created for the rule. The existing rules that overlap witfor the existing rules are deleted. If no suklexists, a new
v are identified and new edges are formed betweeand LTCAMI1 entry is created by carving at The corresponding
the vertices of overlapping rules, with directions of the edgé$SRAM1 word contains only the newly added rule.
set from the higher to the lower priority rules. Then, a block When a rule in an LTCAM1 is deleted, then the rule is
number is assigned tg which is one more than the maximumfirst removed from the LSRAM1 word. If the LSRAM1 word
block number of the nodes from which has an incoming becomes empty, then the corresponding LTCAM1 word is
edge. If the block number of a child vertex is not more thatgeleted. Otherwise, if the contents of the LSRAM1 word can
that assigned to, the child’s block number is updated so thabe merged with another LSRAM1 word then a new LTCAM1
it is at least one more than the block numberwflf the entry is created while the LTCAML1 entries for the merged
rule  corresponding to this child vertex is stored in ITCAMwords are deleted.
then, » must be moved to the ITCAM block represented by The algorithms to merge and split buckets on the LTCAMs
its updated block number, and the ISRAM entry fois also are similarly based on manipulating the carving in Triel and
updated with the changed block number. On the other handTife2.

r is in one of the LTCAMSs, then, we simply changs block 4) Updating the TCAMs:To insert or move a rule in a
number in the corresponding LSRAM entry. Updates to blockCAM we need a free slot at an appropriate location in the
numbers are propagated to all vertices reachable from TCAM. This slot can be obtained efficiently using memory

To process a delete request, the vertex corresponding to tii@nagement algorithms developed for TCAMs. In particular,
rule along with the incident edges is removed from the priorithe memory management schemes from DUO [20] may be
graph. used. For the ITCAM of PC-TRIO, we implemented the

2) Updating the tries: To insert a new rule, the rule isDLFS _PLO scheme, as its the most efficient scheme known
first added to Triel. If the rule is an independent rule in @ us for moving free slots to desired location in a TCAM.
protocol node in the leaves of leaves set, then it is insertedthe DLFS PLO initial rule placement scheme, free slots
in the LTCAML1. Otherwise, the rule is added to Trie2. If there kept in the region betweendvblocks. Additionally, there
rule is an independent rule in a protocol node in the leavesmafy be free slotsvithin a block. So a list of free slots is
leaves set for Trie2, then the rule is inserted in the LTCAM2naintained for each block on the TCAM, with the list being
Otherwise, the rule is inserted in the ITCAM. empty initially. As rules are deleted from a block, the freed

If a new rule is stored in the LTCAM1 or the LTCAMZ2, slots are added to the list for that block. Thus, DLPEO
then some of the existing rules in that TCAM may no longaequires no moves for most of tiiene to get or return a free
be independent. If such a non-independent rule exists in tlet.

LTCAM1, then that rule is added to the Trie2 and if the rule The memory management scheme for the LTCAM of DUO
can be added to the LTCAM2 it is moved from the LTCAM1is relatively simple as all the rules in the LTCAM are in-
to the the LTCAM2. Otherwise, the rule is moved from thelependent so a new rule may be inserted anywhere in the

C. Incremental Updates
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PC-DUOS PC-DUOS+ PC-TRIO PC-DUOS+W

1. | Uses single LTCAM | Uses single LTCAM | Uses two LTCAMs Uses two LTCAMs

2. | No wide SRAMs or | No wide SRAMs or | Uses wide SRAMs arjdUses wide SRAM and
index TCAMs index TCAMs index TCAMs index TCAM

3. | LTCAM stores highest. TCAM stores highest. TCAMs store LTCAM stores highest
priority independent | priority independent | independent rules priority independent
rules rules rules

4. | Aborts ITCAM search Aborts ITCAM search Waits for ITCAM Aborts ITCAM search
when LTCAM search| when LTCAM search| search to finish when LTCAM search
succeeds succeeds succeeds

5. | Independent rules areIndependent rules ar¢Independent rules are Independent rules are
filtered leaves of vertices in priority leaves of leaves set | vertices in priority
leaves set in trie graph with indegree=(n trie graph with indegree=0

Fig. 8. Differences among the architectures

TCAM. However, we still needto locate a free slot. The The TCAM and SRAM word sizes used are consistent for
LTCAM memory management algorithm of DUO creates all the architectures used in the comparison. The word size is
linked list of the free slots. When a free slot is needed, a slb#4 bits for the TCAMs. For SRAMs we have different word
is obtained from the head of the free slot list. PC-TRIO usaizes depending upon the TCAMs they are used with. The
the memory management algorithm in DUO for its LTCAMISRAM words of all the architectures, as well as the LSRAM
and LTCAM2. words of PC-DUOS+, are 32 bits wide. The LSRAM1 and
LSRAM2 words of PC-TRIO and the LSRAM words of PC-
D. Differences among PC-DUOS, PC-DUOS+, PC-DUOS+WUQS+W are 512 bits, while the ILSRAMs are 144 bits wide.
and PC-TRIO The bucket size for LTCAMs in PC-TRIO and PC-DUOS+W

We note that the methodology used in this paper for P@s set to 65 TCAM entries. PC-DUOS+ uses DIRPE [1] to
TRIO may be used to add index TCAMs and wide SRAM8Ncode port ranges. The classifier rules stored in the ITCAMs
to PC-DUOS+ to arrive at a new architecture PC-DUOS+\Qf PC-TRIO and PC-DUOS+W also use DIRPE to encode
Although PC-DUOS [21] may be similarly extended to obtaiROrt ranges. Since the TCAM word size is set to 144 bits, we
PC-DUOSW, we do not consider this extension here as P&ssume that 36 bits are available for encoding each port range
DUOS+ was shown to be superior to PC-DUOS [24]. Figurei8 a rule. With this assumption, we use the strides 223333 as
highlights the differences among PC-DUOS, PC-DUOS+, Pdliese give us minimum expansion of the rules [1], [21].
DUOS+W and PC-TRIO. B. Datasets

Unlike the other architectures, PC-TRIO does not guarantee )
that the rules in the LTCAMs are of the highest priority among /& used two sets of benchmarks derived from ClassBench

all overlapping rules. Thus, PC-TRIO must wait for an ITCAI?/{%]' Thg first set of benchmark's. consists of _12 datasets each
lookup to complete even if there are matching rules in ﬂ%)ntaln_mg gbout 100,000 Class_lﬂer rules and is generated from
LTCAMs. Although the rule assignment algorithms for pcseed files in ClassBench. _Th|s dataset is used to compare
TRIO may be modified so that the LTCAM rules are th&he® number of TCAM entries, power, lookup performance

highest priority among all overlapping rules (and thus avof@'d SPace requirements of PC-TRIO, PC-DUOS+W and PC-

having to wait for an ITCAM lookup to complete in casePUOSH [24].
when a match is found in an LTCAM), doing so retards the The second set of benchmarks was reused from [24]. There

performance of PC-TRIO to the point where it offers little of"® 13 datasets here which are used to compare incremental
no power and lookup time benefit over PC-DUOS+W. update performance of PC-TRIO, with PC-DUOS+ [24] and
PC-DUOS+W.

IV. EXPERIMENTAL RESULTS C. Results

We compare PC-TRIO, with PC-DUOS+W and PC-DUOS+ 1) Number of TCAM entriestUsing wide SRAM words to

[24]. We first give the setup used by us for the experiments &fore portions of classifier rules, reduces the number of TCAM
Section IV-A and then describe our datasets in Section IV-Bntries. Figure 9 gives the results of storing our datasets in

Finally we present our results in Section IV-C. the three architectures. The first, second and third columns
show the index, name, and the number of classifier rules,
A. Setup respectively, of a dataset. The fourth, fifth and sixth and

We programmed the rule assignment, trie carving arsgventh columns give for PC-DUOSH+, the total number of
update processing algorithms of PC-TRIO using C++. WECAM entries, the number of ITCAM entries, the TCAM
designed a circuit for processing wide SRAM words usingower and lookup time, respectively. Similarly, the eighth,
Verilog and synthesized it using Synopsys Design Compiler tinth, tenth and eleventh columns give the corresponding
obtain power, area and gate count estimates. We used CA@uUimbers for PC-DUOS+W and the remaining four columns
[25] and a TCAM power and timing model [17] to estimataive those for PC-TRIO.
the power consumption and search time for the SRAMs andFigure 10(a) gives the TCAM compaction ratio of the three
the TCAMs respectively. The process technology used in thechitectures, obtained by dividing the number of TCAM
experiments is 70nm and the voltage is 1.12V. It is assumedtries for each dataset by the number of rules in the classifier.
that the TCAMs are being operated at 360MHz [29]. PC-DUOS+ does not use wide SRAMs, hence there is no
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Index | Dataset| #Rules PC-DUOS+ PC-DUOS+W PC-TRIO

Entries | #ITCAM | Watts | Time(ns) || Entries | #ITCAM | Watts | Time(ns) || Entries [ #ITCAM | Watts | Time(ns)
1 acll 99309 117033 379 36 2624.39 || 21146 379 0.23 0.50 || 21085 182 0.19 1.00
2 acl2 74298 101857 19421 31 1122.39 || 37491 19421 6.35 30.36 36593 18439 6.04 149.43
3 acl3 99468 131243 30859 40 1640.47 || 52632 30859 9.47 80.49 26823 1017 0.40 2.19
4 acl4 99334 127320 25189 39 1730.46 || 49912 25189 7.98 45.95 34034 6547 2.32 24.12
5 acls 98117 105375 1535 32 2072.16 || 32932 1535 0.53 0.41 34993 2209 0.77 4.98
6 fwl 89356 142085 91473 43 2466.72 || 98425 91473 | 27.92 | 2318.82 || 26610 4864 1.60 15.01
7 fw2 96055 129249 27084 39 1543.76 || 43146 27084 8.30 86.77 || 22196 1494 0.53 3.18
8 fw3 80885 117731 39199 36 1007.04 || 51228 39199 | 11.99 21521 || 26269 7479 2.38 30.09
9 fwé 84056 211403 116149 64 3182.03 || 131505 116149 | 35.46 2139.21 || 27617 4894 1.60 15.16
10 fwb 84013 111989 55650 34 930.94 || 65598 55650 | 17.00 615.49 [| 22361 3454 1.15 9.02
11 ipcl 99198 112154 22165 34 1288.02 || 41920 22165 6.82 45.11 23894 567 0.26 1.40
12 ipc2 100000 || 100000 30133 30 784.69 || 47247 30133 9.23 113.77 20195 0 0.09 0.75

Fig. 9. Number of TCAM entries, ITCAM entries and TCAM power and lookup time in PC-DUOS+, PC-DUOS+W, PC-TRIO

compactionjnstead, there is expansion to handle port rangd®C-DUOS+. The maximum improvement with PC-TRIO is
Thus, the compaction ratio for PC-DUOS+ is at least dbserved for ipc2 (98%) and the minimum for acll (2%),
for every dataset. The compaction achieved by PC-TRIO égempared to PC-DUOS+W.
more than that of PC-DUOS+W for almost all the datasets.3) Lookup Performance:Figure 10(c) gives the average
This is because, PC-TRIO has fewer ITCAM entries anidokup time, normalized with respect to that of PC-TRIO.
therefore stores more rules in wide SRAM words. For acl3.CAM search time is proportional to the number of TCAM
PC-DUOS+W identified more independent rules compareditries. Hence, PC-DUOS+ requires the maximum time.
to PC-TRIO. The algorithm to identify independent rules is PC-DUOS+W is faster than PC-TRIO for the ACL tests
the same for PC-DUOS+W and PC-DUOS+ which results &cll, acl2 and acl5. For these datasets, the number of ITCAM
identical ITCAM entries for these two architectures. entries in PC-DUOS+W and PC-TRIO (columns 9 and 13
No classifier rules in the LTCAMs of PC-DUOS+Wof Figure 9) are comparable. Thus, the ITCAM search times
and PC-TRIO needed partial port range expansion (Setce comparable, as are the number of lookups served by the
tion 111-B2d). So all LTCAM entries in PC-DUOS+W and ITCAMs. This, coupled with the fact that ITCAM searches
PC-TRIO were at most 72 bits. are slower, give PC-DUOS+W an immediate advantage since
2) Power: Figure 9 gives the TCAM power consumptiont, unlike PC-TRIO, aborts an ITCAM search after finding
during a lookup, while Figure 10(b) gives the normalized total match in the LTCAM. However, for these three tests, the
power obtained for each dataset by dividing the total TCANdokup times using PC-TRIO are quite reasonable (column 15
and SRAM power in an architecture by that of PC-TRI®@f Figure 9). For the other datasets PC-TRIO has fewer rules
during a lookup. The vertical axis is scaled logarithmicallin the ITCAM, which makes PC-TRIO lookups faster even
(a) Compaction (b) Power though it has to wait for ITCAM search to finish.

) The average improvement in lookup time with PC-TRIO

w
[
o

and PC-DUOS+W (relative to PC-DUOS+) are 98% and 76%,

respectively. The average improvement in lookup time with
PC-TRIO (relative to PC-DUOS+W) is 68%. The maximum
improvement using PC-TRIO rather than PC-DUOS+ is ob-
served for acll (99.96%) and the minimum for acl2 (86.6%).
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L2 S e 123456 789101112 The maximum improvement using PC-DUOS+W rather then
I FC-TRIO Dataset Index . .
[ Pc-DUOS+W PC-DUQOS+ is observed for acll (99.98%) and the minimum
. (c) Time | B PC-DUOS+ () Area for fwl (5%). The maximum improvement with PC-TRIO
10 60 rather than PC-DUOS+W is observed for tests fwl, fw4 and
g - ipc2 (99%) and the minimum for acl4 (47%).
5 Mﬂ H”Mﬂ HIM] E40 4) Space requirementsWe obtained SRAM area from
8y | | (” E CACTI results and estimated TCAM area using the same
2 I £° m technique as used in PETCAM [19], where area of a single
Fip2 cell is multiplied by the number of cells and then adjusted
L e ey L2sd aiasetﬂngef 1011 12 for wiring overhead. Figure 10(d) gives the total area needed

Fig. 10. Comparison of compaction ratio, total power, lookup time and arg;Or the TCAMs and associated SRAMSs. The total area is
omparable for the three architectures. PC-TRIO and PC-
and based at 1. PC-TRIO uses lgsswver for all datasets DUOS+W have lower TCAM area (due to fewer TCAM
except acl5. The average improvement in power with P@ntries) and higher SRAM area (due to wider SRAM words)
TRIO is 96% relative to PC-DUOS+, and 65% relative tthan PC-DUOS+.
PC-DUOS+W. The average improvement in power with PC- 5) Update Performance:Figure 11 shows the average
DUOS+W is 71%, relative to PC-DUOS+. The maximummumber of TCAM writes used per update on the datasets
improvement with PC-TRIO is observed for ipc2 (99%) antfom [24]. PC-TRIO needs comparable number of writes
the minimum for acl2 (80%), compared to PC-DUOS+. Thas PC-DUOS+ and hence supports efficient and consistent
maximum improvement with PC-DUOS+W is observed foincremental updates. PC-DUOS+W needs more writes than
acll (99%) and the minimum for fwl (35%), compared t®C-TRIO to preserve the property that all rules stored in the
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Abstract

We investigate various TCAM architectures recently proposed for TCAM power and memory reduction and
show that far better power and memory performance is possible when we use an optimal prefix set for the given
router table than when the original prefix set or the reduced prefix set as proposed in other work is used. For
EaseCam [8, 9], our experiments show a power and TCAM memory reduction of 96% to 98% and 62% to 69%
respectively. For the suffix node architecture of [3], we get a power and TCAM memory reduction of 16% to
25% and 45% to 78% respectively.

Keywords
Packet forwarding, TCAM, power.

1 Introduction

Internet packets get from source to destination via a number of hops. At each hop, a forwarding engine uses the
destination address of the packet and a set of rules to determine the next hop for the packet. A packet forwarding
rule (P, H) comprises a prefix P and a next hop H. A packet with destination address d is forwarded to H where
H is the next hop associated with the rule that has the longest prefix that matches d (we assume, throughout this
paper, that no two rules have the same prefix). We refer to the set of rules as the rule table or router table. Figure 1
shows a small router table with 6 prefixes. The prefix associated with rule R4 is 01 (the * at the end indicates a
sequence of don’t care bits) and the associated next hop is H4. Rule R4 matches all destination addresses that
begin with 01. The length of the prefix 01 associated with R4 is 2. A destination address that begins with 010 is
matched by rules R1, R2, R4, and R5. Of these rules, R5 is the one with the longest prefix. So, H5 is the next
hop for packets with a destination address that begins with 010.

[11, 12] survey the many solutions that have been proposed for longest prefix matching in the context of packet
forwarding. Our focus, in this paper, is longest prefix matching using a TCAM (ternary content addressable
memory). Each bit of a TCAM may be set to one of the 3 states 0, 1, and x (don’t care). A simple and fast
solution to longest prefix matching results from the use of a TCAM in conjunction with an SRAM. The prefix of
a rule is stored in a word of TCAM and the next hop is stored in the corresponding SRAM word. Figure 2 shows

a TCAM in which each word is 4 bits long; the prefixes of our 6-rule example of Figure 1 have been stored in the

*This research was supported, in part, by the National Science Foundation under grant ITR-0326155
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Prefixes | Next Hop
R1 * H1
R2 0* H2
R3 1* H3
R4 01* H4
Rb5 010* H5
R6 111% H6

Figure 1: An example 6-prefix forwarding table

TCAM in decreasing order of length along with an SRAM in which the next hop information has been stored. A
TCAM searches all its words, in parallel, for the first word that matches the content of its search register. By
loading a destination address into the search register of a TCAM we can determine the index of the first TCAM
word that matches this destination address. Using this index, we then access the corresponding SRAM word to
determine the next hop. So, when router-table prefixes are stored in a TCAM in decreasing order of length, we
can determine the next hop in 1 TCAM cycle! We note that, in practice, using the described strategy, a TCAM
word will be 32 bits for IPv4 applications.

111* H6
010* H5
01* H4
1* H3
o* H2
* Hl

Figure 2: TCAM for the 6 rules of Figure 1

Although TCAMs lead to a very simple and fast solution to the packet forwarding problem of finding the
next hop associated with the longest matching prefix, there are several pitfalls associated with their use. These
pitfalls include high power consumption, limited capacity, and high cost. Several researchers have recently proposed
methods to alleviate the power consumption and capacity limitations. Central to the proposed methods [8, 9, 3, 19]
to reduce power consumption is the observation that the power consumed by a TCAM search is proportional to
the size of the portion of the TCAM that needs to be searched rather than to the TCAM’s overall size. Zane et
al. [19] propose a two-level architecture in which the first level extracts some number of bits from the destination
address and these extracted bits are used to index into a segment of the TCAM that is to be searched for the
longest matching prefix. Ravikumar et al. [8, 9] propose a similar two-level architecture. However, the extracted

bits are restricted to be a prefix of the destination address (first 8 bits) and the TCAM segments are of variable
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size. The use of variable size segments requires the use of a table of segment start addresses but reduces wasted
TCAM space. The two-level schemes of [8, 9, 19] also increase the effective capacity of a TCAM as the word size of
the TCAM is reduced by the number of extracted bits. So, in an IPv4 application, for example, if 8 bits are used
for the first-level indexing, a TCAM word need only be 24 bits rather than 32 bits (as in the scheme of Figure 3).
Liu [7] proposes the use of pruning and mask extension to compact a TCAM table and hence reduce the number of
rules that has to be stored. This compaction reduces power consumption and also increases the effective capacity
of the TCAM. Lu and Sahni [3] propose table segmenting methods and the use of wide SRAMs to reduce power
consumption and increase effective table capacity.

In this paper, we propose the use of a minimum set of rules equivalent to those in the given router table coupled
with the wide SRAM strategy of [3]. We perform batch updates to the set of rules to accomodate the incoming
route advertisements. We begin in Section 2 by reviewing related work. In this section, we clarify the proposal of
[7] and point out deficiencies in the scheme of [8, 9]. In Section 5 we describe our proposed PETCAM method. An

experimental evaluation of the various methods proposed for low-power TCAMs is done in Section 6.

2 Background and Related Work

Much research has been done to improve the power efficiency of TCAM-based router tables [7, 3, 8, 9, 19, 13, 14,
15, 16, 17]. Pure hardware approaches for power reduction are presented in [13, 14, 15, 16]. Z. Wang et al in
[17] present an algorithm for consistent and incremental updates to TCAMs. We describe the results reported in

[7, 3, 8,9, 19] in this section as these are most relevant to the work we report in this paper.

Definition 1 P1 C P2 iff addr(P1) C addr(P2), where addr(P) is the set of addresses matched by prefiz P. Note
that P1 C P2 iff P2 is a proper prefiz of P1.

Definition 2 A rule (P1, H1) is Type I redundant iff (a) there exists a rule (P2, H2) such that P1 C P2 and H1
= H2 and (b) there is no rule (P3, H3) such that P1 C P3 C P2.

Definition 3 A generalized prefix is a sequence comprised of the symbols 0, 1, and ¢ and possibly terminated by
the symbol *. A simple prefix (or simply, prefiz) is a generalized prefix that has no occurrence of the symbol ?.
(Alternatively, we may limit the occurrence of the symbol ? to the right end of the sequence. Note that ?s at the
right end of a sequence may be replaced by a * so that the sequence 10222 may be regarded as a simple prefix by

rewriting it is 10*.)

For example, 0771?770* and ?77100711* are generalized prefixes. In router table applications, a generalized prefix

may be stored in a word of TCAM by replacing * with a suitable number of ?s.
Definition 4 Two sets of generalized prefixes are equivalent iff they match the same addresses.

Liu [7] proposes two schemes—pruning and mask extension—to compact the rules of a router table. In pruning,

rules with type I redundant prefixes are eliminated from the rule table. It is easy to see that the elimination
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of type I redundant prefixes does not change the next-hop decision for any destination address. Following the
elimination of type I redundant prefixes, each set, S, of prefixes that have the same length and the same next
hop is subjected to mask extension in which S is replaced by an equivalent set of generalized prefixes T such that
|T| < |S]. Liu [7] proposes the use of a logic minimization heuristic-Espresso II-to compute a nearly minimal
equivalent set T'. Liu [7], however, does not address the issue of how to assign lengths to the generalized prefixes
of T (or, equivalently, how to place the generalized prefixes of T" into the TCAM) so that a TCAM search reports
the same next hop as reported using longest prefix matching on the original set of simple prefixes. We address
this issue in Section 3. Liu [7] reports that pruning and mask extension result in a reduction of 42% to 48% in
the number of generalized prefixes that need to be stored in the TCAM. Note that without pruning and mask
extension, we store simple prefixes in the TCAM. However, the TCAM word size is the same regardless of whether
simple or generalized prefixes are stored. So, a 42% reduction (say) in the number of generalized prefixes translates
to a 42% reduction in TCAM memory.

Ravikumar et al. [8, 9] extend the work of Liu [7] and propose the 2-level EaseCAM architecture for router
tables (Figure 3). For an IPv4 router table, the first level stores 8-bit sub-prefixes. Prefixes that have the same
first 8 bits define a prefix cluster. Pruning, prefix aggregation, and prefix expansion are used to replace the simple
prefixes in each cluster with a smaller set of generalized prefixes with the property that a search of the TCAM
segment that contains this smaller set of generalized prefixes results in the same next hop as does a search in
the TCAM segment for the original cluster of simple prefixes. Since the generalized prefixes in a cluster have the
same first 8 bits, it is necessary to store only the remaining 24 bits of each generalized prefix in the second-level
TCAM (note that to store the terminating * of a generalized prefix, we must replace it with a sufficient number of
% so that the total number of symbols in the generalized prefix is 32). Consequently, second-level TCAM words
are 25% smaller than the TCAM words in the design of [7]. Prefixes shorter than 8 bits are stored in a separate
bucket. The pruning process of Ravikumar et al. [8, 9] is identical to that of Liu [7]-type I redundant prefixes
are eliminated. The compaction process of Ravikumar et al. [8, 9] differs from that of Liu [7] in how generalized
prefixes are created from a set of same-hop prefixes that is free of type I redundancies. In an effort to reduce the
time required by Espresso to process same length same hop prefixes, Ravikumar et al. [8, 9] propose aggregating
prefixes (in a cluster) that have the same hop into sets in which the prefixes have a common longest sub-prefix
of size a multiple of 8. Then, prefixes in each such aggregated set are expanded using prefix expansion [8, 9] so
that the length of each prefix is a multiple of 8. For example, following aggregation the prefixes in an aggregated
set may have length between 16 and 23 with all prefixes in this set having the same first 16 bits. Using prefix
expansion, the lengths of all prefixes in the set becomes 24. Since all prefixes in this prefix-expanded aggregated
set have the same first 16 bits, Espresso may be used to find a minimum number of generalized prefixes equivalent
to the 7-bit suffixes in this set. Working with 7-bit suffixes rather than full 23-bit prefixes reduces the run time
of Espresso [9]. The fact that the aggregated prefix-expanded sets are relatively small (compared to sets of same
hop same length prefixes) is another (and significant) contributing factor to the observed reduction in time spent

on Espresso optimization. Although prefix aggregation and expansion reduce Espresso time with little loss in
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compaction effectiveness [8, 9], there are correctness issues that we address in Section 4. Since the power consumed
by a TCAM lookup is proportional to the size of the TCAM segment that is searched rather than to the overall
TCAM size, the scheme of [9] achieves power reduction from using a compacted set of prefixes, storing only the

last 24 bits of each prefix in TCAM, and from searching only the prefixes in a cluster.

24 bits
1x
2x
8 bits
1
2
3
249 250x
250
251
252 251x| Variable Sized Segment
253
254
255 252x]
1st Level
253X
254x]
255x]

2nd Level

Figure 3: EaseCam architecture of [9]

Zane et al. [19] propose two schemes to achieve power reduction. In the first, bit selection, a few bits (not
necessarily the first few) of each prefix are used to partition the prefix set so that each partition agrees on these
selected bits. The bits are called the partition selector bits. Prefixes in the same partition are stored together in
decreasing order of length. To search for the longest matching prefix for a given destination address d, the partition
selector bits are extracted from d and used to determine which partition is to be searched. Although all prefixes
of an uncompacted router table are stored in the TCAM, power reduction results from having to search only one

partition !

. Additional power reduction is possible if the partition selector bits are extracted from the prefixes
before storage in the TCAM as this results in a reduction in the total number of bits in a partition. Note that bit
selection, which predates the work of [9], is similar to the 2-level strategy employed in [9], where the first 8 bits
are used to determine the partition to search.

The second strategy proposed by Zane et al. [19] is a 2-level TCAM architecture in which the first level TCAM
is an index to the partitions in the second level TCAM. The partitions and index are constructed by decomposing
the binary trie representation of the router-table prefixes. Although both Zane et al. [19] and Ravikumar et al. [9]
propose 2-level TCAM architectures, Zane et al. [19] do not compact the router table (except when bit selection

is used and the partition selector bits are not stored in the second level TCAM) while Ravikumar et al. [9] do. As

a result, the total TCAM memory required by the schemes of Zane et al. [19] is more than that required by the

I The power required by a TCAM lookup is proportional to the total number of bits in the TCAM partition that is searched.
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scheme of Ravikumar et al. [9].

The most recent work on TCAM power reduction in the context of router tables appears to be that of Lu and
Sahni [3]. They augment the traditional 1-level TCAM lookup structure as well as the 2-level TCAM structure
of Zane et al. [19] with wide SRAMs and store the suffixes of several prefixes in a single wide SRAM word. This

enables a reduction in both power consumption and total TCAM memory requirement.

3 Issues Related to [7]

As noted in Section 2, when logic minimization is applied to a set of same-hop same-length prefixes, we get a
set of equivalent generalized prefixes. So, for example, A = {000x,001%,010%,011%} optimizes to B = {0x}.
While it may be natural to assign 0* a length of 1, such a length assignment can result in an incorrect next
hop computation. To see this, suppose that the next hop associated with the prefixes of A is H1 and that the
router table has another prefix 00« whose next hop is H2 and H1 # H2. When using the original prefix set
C = {000%,001%,010%,011%, 00« }, packets with destination address beginning with 000 are sent to H1. Consider
what happens when we apply the compaction scheme of Liu [7]. Since C has no type I redundancy, pruning does
not weed out any member of C. Mask extension compacts A to B. So, the compacted prefix set is D = {0x, 00}
with 0* having H1 as its next hop and 00* having H2. Using the prefix set D, packets with destination addresses
that begin with 000 are sent to H2! We can overcome this difficulty in one of two ways. The first and simplest
is to declare the length of each generalized prefix in the optimized set D to be the same as that of the prefixes in
the set A. This ensures that, when prefixes are loaded to the TCAM in length order, the outcome is the same (in
terms of next hop) as when the original prefix set is loaded in length order. For example, using this definition of
length for a generalized prefix, 0% in set D has length 3, and prefix 00* has length 2. Thus, 0* is loaded first in
the TCAM followed by 00*.

The second strategy is to use a more intuitive definition of length such as the index of the rightmost symbol
that is not a 7 or a *. So, the length of 17701* is 5 and the length of ?700771* is 7. This is consistent with
the accepted definition of the length of a simple prefix where, for example, the length of 001* is 3. We use the
notation |G| to denote the length (using the just stated intuitive definition) of the generalized prefix G. Using such

a definition works provided we remove also type II redundant rules as is shown below.

Definition 5 A rule (P, Hy) is Type Il redundant iff the router table contains a set of rules {(Pa, Ha),- - -, (Px, Hi)}
such that |P1| < |P;|, 2 <i <k and every address matched by Py is also matched by a P;, 2 < i <k.

In the rule set {(10*H1), (100*,H2),(101* H3)}, no prefix is type I redundant. However, (10* H1) is type
IT redundant. Neither Liu [7] nor Ravikumar et al [8, 9] remove type II redundant rules. We note that every
generalized prefix may be written as the sum of simple prefixes that have the same length as the generalized prefix

and such that the addresses matched by the generalized prefix are the union of those matched by the simple prefixes.

So, for example, 170071* = 100001* + 100011* + 110001* 4+ 110011*. This decomposition of a generalized prefix
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into the sum of simple prefixes that have the same length as the generalized prefix is referred to as generalized

prefiz decomposition (GPD) and GPD(X) is the generalized prefix decomposition of the generalized prefix X.

Definition 6 Let R = {Ry,Ra, -+, R} be a set of generalized prefizes that is equivalent to the set of simple
equal-length same-hop prefizes S = {S1,--+,Ss}. R is a canonical equivalent set iff each R; is the sum of some of

the Sgs.

Theorem 1 Let R and S be as in Definition 6. There exists a canonical equivalent set for S that has the same

number of generalized prefizes as does R.

Proof Consider an R; in R. Let R; = R + Ria + -+ + Ryy(;) be the GPD of R;. Since R and S are equivalent
and prefixes of the same length are disjoint (i.e., have no common matching address), there is exactly one f (i, j),

1< f(4,4) < s, such that R;; and Sf(i)j) are not disjoint, 1 <i <r, 1 < j < ¢(i). We consider 3 cases.
Case 1: If |R;| = [S1|, Rij = Sj(;,j for all j and so R; is the sum of some of the Ss.

Case 2: If |R;| > |S1], let R} be the first |S1]| bits of R;. So, the addresses matched by R; are a subset of those
matched by R} = R}y + R+ + R;.*q(i) = Sy T Sp@,2) + 0+ Stiiei)), where R} is obtained from R;;
by truncating the last |R;| — |S1| bits. Since R} matches no address not matched by S, replacing R; by R}
in R preserves the equivalence between R and S and doesn’t increase the number of R;s in R. We may use
this replacement transformation as often as need to replace all R;s in R whose length is more than |S;| with

Rfs whose length equals |S1|. From Case 1, it follows that each of the replacing R}s is the sum of some of

the Sgs.

Case 3: When |R;| < |S1|, we may use prefix expansion to represent each R;; as the sum of 2!, ¢ = |S;| — |R;]
simple prefixes whose length is |S;|. From the equivalence of R and S and the fact that prefixes of the same
length are disjoint, it follows that each expanded prefix is one of the Sgs. So, each R;; and hence R; is the

sum of some of the Sgs.

The prefixes of a canonical equivalent set are called canonical prefizes and CD(R;;) is the set of prefixes of S
that sum to R;;. From Theorem 1, it follows that for every set of equivalent generalized prefixes computed by
a minimization algorithm, there is a canonical equivalent set with the same number of generalized prefixes. So,

henceforth, we assume that minimization algorithms return canonical prefixes.

Theorem 2 Let U be a set of rules comprised of simple prefizes that is free of type II redundancies. Let V be
the set of rules comprised of (canonical) generalized prefizes obtained from U by applying logic minimization to the
equal-length same-hop prefizes of U as is done in mask extension [7]. Longest prefix matching in U and V results

in the same next hop for every destination address A.
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Proof Suppose there is an address A for which the longest matching simple prefix in U is U; with next hop
H; and for which the longest matching generalized prefix in V' is V5 with next hop He and Hy # Hs. Let Va1 be
the prefix of GPD(V3) that matches A. Note that since all prefixes in GPD(V3) have the same length, they are
disjoint and so exactly one of these matches A. Further, let Us be the prefix of C'D(Va1) that matches A. Again,
exactly one prefix of C'D(Va1) matches A. Since Us is the longest prefix of U that matches A, |U1| > |Us|. Let V4
be the generalized prefix of V' such that V17 € GPD(V;) matches A and U; € CD(Vi1). Such a V4 must exist in V'
because of the way V' is constructed from U using logic minimization. Since V3 is the longest matching generalized
prefix for A in V and V; also matches A, |Va1| = |Va| > |V4| = |V11]. Now, since two prefixes are either disjoint or

nest and since Uy, Us, Vi1, and Vo1 match A,
addr(Ur) C addr(Usz) C addr(Ve1) C addr(Vii)

From this and the observation that all prefixes in C'D(V7;1) are of the same length and hence are disjoint, it

follows that some subset of CD(V11) that includes U; sums to Us. Hence, Us is type II redundant. [ |

From Theorem 2, it follows that if we start with a set of prefixes that contains no type II redundancy, apply
the reductions of [7] to obtain generalized prefixes, and enter these generalized prefixes into a TCAM in decreasing
order of length, then lookups yield the same next hops as when we load the TCAM with the non-reduced prefix

set in length order.

4 Issues Related to [8, 9]

The issues with the mask extension method of Liu [7] may be resolved by either using an unnatural definition for
the length of a generalized prefix (i.e., length equals that of the equal-length simple prefixes that were input to the
logic minimizer) or by eliminating type II redundancies prior to logic minimization and defining length as in the
definition of |G| provided in Section 3. These resolution methods do not, however, extend to the aggregation and

prefix expansion techniques proposed in [8, 9] to reduce the number of rules to be stored in the TCAM.

4.1 Prefix Aggregation

In prefix aggregation, prefixes that have the same hop are aggregated into clusters with each cluster containing
prefixes that have the same common sub-prefix. The common sub-prefix length is constrained to be a multiple
of 8. So, for example if two prefixes that have the same next hop agree on their first 18 bits only, then they will
be in a cluster of same-hop prefixes that agree on their first 16 bits. Logic minimization is then applied to each
cluster. Since the prefixes in a cluster have different length, there appears to be no reasonable way to determine
where to place the generalized prefixes that result from logic minimization into the TCAM so as to correctly route
packets. Neither of the length resolution methods proposed for mask extension in Section 3 work when aggregation
is employed. For example, consider the rule set {(1*,A), (10*B), 101* A)}, where the first 8 bits of each prefix are

omitted and are the same. The rule set is devoid of type I and type II redundancies and so no rule is eliminated in
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the initial pruning step. In the aggregation step, 1* and 101* form a cluster and 10* is in a different cluster as it
has a different next hop. Logic minimization reduces the first cluster to 1* and has no effect on the second cluster.
The new rule set is {(1*,A), (10%,B)}. 1* was derived from a prefix of length 1 and one of length 3. Neither length
assignment 1 or 3 for 1* allows the new rule set to work like the original rule set. For example, with the natural
length assignment of 1 to 1*, packets destined to 101* addresses get routed to B rather than to A and with a
length assignment of 3, packets to 10* get sent to A rather than to B!

4.2 Prefix Expansion

[8, 9] propose using prefix expansion within an aggregated cluster to improve the runtime performance of logic
minimization. In prefix expansion, short prefixes in a cluster are replaced by a set of prefixes whose length equals
that of the longest prefix in the cluster. So, following prefix expansion, all prefixes in a cluster have the same length.
Since logic minimization is faster when the input prefixes are of the same size, runtime efficiency is achieved [8, 9].
In the example cluster {1*,101*} of Section 4.1, prefix expansion yields the cluster {100*, 101*, 110*, 111*}, which
is reduced to 1* by logic minimization. The new rule set is {(1*,A),(10*,B)}, which, as noted in Section 4.1 cannot

be made to work the same as the original rule set.

5 PETCAM

Our power-efficient TCAM, PETCAM, employs the following construction steps:

Step 1: Transform the given routing table to an equivalent optimal routing table using the dynamic programming

algorithm of [10].

Step 2: Use mask extension as in [7] to reduce the number of prefixes in the optimal routing table obtained in
Step 1 even further. This is possible as the optimal routing table is limited to be comprised of simple prefixes

alone whereas mask extension results in generalized prefixes.

Step 3: Map the reduced set of generalized prefixes constructed in Step 2 to a 2-level TCAM augmented with a
wide SRAM by extending the suffix node method developed in [3].

Since the dynamic programming algorithm of [10] transforms a set of prefix rules into a provably optimal
equivalent set of prefix rules, the transformed set is guaranteed to be free of type I and type II redundancies.
Hence, the generalized prefixes that result from the mask extension done in step 2 correctly classify packets when
these prefixes are entered into a TCAM in decreasing order of length (|G|). For step 3, we need to adapt the suffix-
node method of [3] so as to accommodate generalized prefixes rather than simple prefixes. For this adaptation,
we need to modify the structure of a suffix node as well as develop an algorithm to map suffixes into suffix nodes.

Before developing these adaptations, we provide a brief overview of the suffix-node method of [3].
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5.1 Suffix-Node Method of [3]

Lu and Sahni [3] propose the use of wide SRAMs in conjunction with TCAMs so as to reduce power consumption
and increase effective TCAM capacity. Although Lu and Sahni [3] propose methods for both 1- and 2-level TCAMs,
we review only the 1-level method here and adapt this to generalized prefixes. A similar adaptation may be done
for the 2-level methods of [3].

Lu and Sahni [3] make the observation that the simple TCAM organization of Figure 2 does not make effective
use of modern wide access SRAMs. Whereas a next hop can often be encoded using 10 to 12 bits we can fetch, in
a single memory fetch cycle, 72 bits from a QDRII SRAM in dual burst mode and 144 bits in quad burst mode. A
larger number of bits may be fetched per cycle by employing multiple SRAMs that may be simultaneously accessed.
Further, given the orders of magnitude discrepancy between the time for an SRAM fetch cycle and the time to
perform an arithmetic, it is possible to do significant processing of the data stored in a word of a wide SRAM in
much less time than it takes to fetch that word of data from the SRAM. To capitalize on these observations, Lu
and Sahni [3] propose packing the suffixes of several router-table prefixes that are in the same subtree of the binary
trie for the router-table prefixes into a suffix node, which is then stored in one or more SRAM words in such a way
that the entire suffix node may be retrieved in a single memory cycle. Figure 4 gives the structure of the suffix
node of [3]. We have added a 5-bit match start position field which indicate the bit position in the destination
prefix from where suffix matching can start for all suffixes encoded in the suffix node. The suffix count field gives
the number of suffixes packed in the suffix node. For each suffix Si stored in a suffix node, we keep the suffix
length, len(S7), the suffix, Si, and the next hop associated with the suffix. Using the suffix node creation scheme
in [3], each suffix node must have exactly one suffix of length 0. This suffix can come from either a prefix that
is stored in the root of the subtree that is carved to form the suffix node, or a covering prefix which is inherited
from the nearest ancestor with a prefix in case the root of the subtree does not store a prefix. To optimize SRAM
further, we store this suffix as the first suffix in the node, and since it has a length 0, we drop the suffix length
field for the first suffix. Thus a suffix of length 0 appears as the first suffix in a suffix node, and is represented only
by its next hop.

Match start . next hop nexthop next ho
position Suffix count™ Jfqq [ len (S2) S2' r'sn len (Sk) Sk !

of SK unused

Figure 4: Suffix node of [3] with a 5-bit match start position field and an optimized representation of the first
suffix.

Figure 5 shows the binary trie for the prefixes of Figure 1 together with a mapping of these prefixes into a
simple TCAM with wide SRAM. For this example, we assume an SRAM word width of 32 bits with 2 bits allocated
for the match start position field (allowing prefixes to be of length 5 bits), 2 bits allocated for the count field of a
suffix node (permitting up to 4 suffixes to be stored in a node), 2 bits for the suffix length field (permitting suffixes
of length between 0 and 3), and 12 bits for the next-hop field (permitting upto 4096 different next hops). In the

worst-case, a suffix node stores a single suffix of length 0, for which a next hop field of 12 bits is used along with the
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match start position and suffix count fields, utilizing only 16 of the 32 bits. In the best case, we may store a suffix
of length 0 and one of length 2 resulting in the utilization of all 32 bits in the node. The allocation of suffixes to
suffix nodes is done by carving out subtries of the binary trie for the prefix set. For example, from the binary trie
of Figure 5, we first carve out the binary trie rooted at node A. The path from the root to A is Q(A4) = 01. Q(A)
is stored in the TCAM and the suffixes * (length 0) and 0* (length 1) that result from eliminating Q(A) from the
front of each prefix in the carved subtrie are packed into a suffix node. This carving-packing process is repeated
at nodes B, C, and D resulting in the suffix nodes of Figure 5. When carving is done at a node R whose subtree
doesn’t contain a matching prefix for every destination address that begins with Q(R), we add a covering prefiz
into the suffix node for this carving. The covering prefix for node R, which is stored as a suffix whose length is 0
is the prefix in the nearest binary trie ancestor of R. Assuming that each router table contains the default prefix
* each node of the binary trie has a well defined covering prefix. The covering prefix for node B of the binary trie
of Figure 5 is P3 with a next hop of H3. In practice, we store a covering prefix whenever the root of the carved

subtree does not contain a prefix. Hence, every suffix node has a prefix, its first one, whose length is 0.

32 bits
01* 10 | 10 H4 01|0| ms
11* 10 | 10 H3 011 H6
0~ 01| 01 H2
* 00 | 10 H1 01 ‘1 ‘ H3
\‘; TCAM SRAM

1-bit Trie

Figure 5: Suffix node example

The Q(R)s and associated suffix nodes are assigned, respectively, to TCAM and SRAM words in descending
order of length [3].

5.2 Our Suffix-Node Structure

The suffix node method of [3] cannot be used as is for PETCAMs because, in a PETCAM, we store generalized
prefixes rather than simple prefixes. Specifically, we need to define a new format for a suffix node as well as
formulate an algorithm to populate suffix nodes with the suffixes of generalized prefixes. Our new suffix-node
structure has a 1-bit type field that permits the use of two variants. A type I suffix node is used to store simple
suffixes exclusively (i.e., all suffixes in a type I suffix node are comprised of Os and 1s). Such a suffix node is
structured the same as the suffix node of [3] except for the addition of a type field (Figure 6).

A type II suffix node (Figure 7) stores a mix of simple and non-simple suffixes (i.e., suffixes that have at least

one don’t care bit). Simple suffixes are stored first using triples (length, suffix, next hop) as used in Figure 6. These
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Shits 4 hits 1 bit 4 bits 12 bits 4 bits 12 bits

Match start ) next hop lenath(Sk sk | nexthop | unused
position Suffix count | Type | length(S1) | S1| o) gth(Sk) of Sk

Figure 6: Type I suffix node

triples are followed by 4-tuples (length, suffix, mask, next hop) that represent non-simple suffixes. The suffix and
mask entries are of the same length and the 1s in the mask identify the don’t cares in the suffix. For example, the
suffix x0x1 may be represented by the simple suffix 0001 and the mask 1010, for example. The index field gives
the index of the first non-simple suffix. So, for example, if we have 2 simple suffixes and 3 non-simple suffixes in a

type II suffix node, the count field would be 5 and the index field would be 3.

5 bits 4 bits 1bit 3bits 12 bits 4 bits 12 bits 4 bits 12 bits
Match start . next hop next hop next hop
position Suffix count |Type| Index | 4rgq |len(S2) [S2 |M2 of S2 len(Sk) | Sk | Mk of Sk unused

Figure 7: Type II suffix node

5.3 Normalized Ternary Tries

To map the generalized prefixes that result from steps 1 and 2 of our PETCAM construction algorithm we first
construct a ternary trie?. Figure 8 shows an example router table following steps 1 and 2 of our PETCAM

construction algorithm. Figure 9 shows the corresponding ternary trie.

Address | Next Hop
1 x0 H1
2 00x0 H2
3 00x1 H3
4 1100 H4
5 11x1 H5

Figure 8: Router table with generalized prefixes

A normalized ternary trie is a ternary trie in which each node that is the a-child (i.e., the don’t care child) of
its parent has no sibling. So, in a normalized ternary trie, the children of degree 2 nodes are 0- and 1-children,
the child of a degree 1 node may be a 0-, 1-, or z-child, and there are no degree 3 nodes. A ternary trie may be
normalized by eliminating the z-child of each degree 3 node by merging the subtree rooted at this x-child with the
subtrees rooted at the two siblings of this z-child. For example, in the ternary trie of Figure 9, the root is a degree
3 node and the subtree rooted at its x-child may be merged with the subtree rooted at the root’s 0-child as well
as with that rooted at the root’s 1-child to obtain the ternary tree of Figure 10. One may verify that the ternary

tries of Figures 9 and 10 are equivalent in that both route all packets to the same next hop.

2A ternary trie differs from a binary trie in that each node of a ternary trie may have up to 3 children depending on whether the
branching bit is a 0, 1, or an x.
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Figure 10: Ternary trie following the merging of the z-child of the root of Figure 9

The trie of Figure 10 is not yet a normalized ternary trie as it contains an z-child that has a sibling (i.e., the
a-child with Q(R) = 11z). This subtree rooted at this z-child may be merged with that rooted at its 0-sibling and
its empty 1-sibling to obtain the normalized ternary trie of Figure 11.

Figure 12 gives our algorithm to normalize a ternary trie. This algorithm assumes that each node y of a ternary
trie has 3 children fields with y.child[0] and y.child[1] pointing to the 0- and 1-children of node y and y.child[2]
pointing to the x-child of node y. The algorithm employs two other algorithms—delete, which deletes a subtree

given its root and merge, which merges two subtrees together. We do not further specify delete as this is a simple
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Figure 11: Normalized ternary trie following merging of the Q(R) = 11z subtree of Figure 10

postorder traversal. Algorithm merge is specified in Figure 13.

Algorithm normalize(root)

{

if (!'root) return;
if (root.child[2]) {
if (root.child[0] || root.child[1]) {
merge (root, root.child[0], 0, root.child[2]);
merge (root, root.child[1], 1, root.child[2]);
delete(root.child[2]);
root.child[2] = NULL;

}

normalize(root.child[0]);
normalize(root.child[1]);

normalize(root.child[2]);

Figure 12: Algorithm to normalize a ternary trie

In algorithm merge, oChild and xChild are children of parent. xChild is the z-child while oChild is the
oChildI D-child. Notice that when we start with a prefix set that has no type I and II redundancies and perform
mask extension, at most one of oChild and xChild may have a non-null next hop. Further, note that an optimal

prefix set is devoid of type I and type II redundancies.

5.4 Our Carving Heuristic

Our carving heuristic starts with the normalized ternary trie for the canonical prefixes that result when mask

extension is done on an optimal prefix set. To carve the normalized ternary trie into suffix nodes, we first compute
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Algorithm merge(parent, oChild, oChildID, xChild)

{

if (!'xChild) return;
if (toChild) {
oChild = new node;
oChild.nextHop = xChild.nextHop;
parent.child[oChildID] = oChild;
}
else {
if (!xChild.nextHop) then
oChild.nextHop = xChild.nextHop;

}

merge (oChild, oChild.child[0], O, xChild.child[0]);
merge (oChild, oChild.child[1], 1, xChild.child[1]);
merge (oChild, oChild.child[2], 2, xChild.child[2]);

Figure 13: Algorithm to merge an x-subtree

the following values for each node y of the normalized trie.

1. y.numP --- number of prefixes stored in the subtrie rooted at y. This is equivalent to the number of nodes

in this subtrie that have a non-null next hop field. Let y.h = 0 if y.nextHop is null and 1 otherwise. It is

easy to see that y.numP is the sum of the numP values for its up to 2 non-empty subtrees plus y.h.

2. y.xNumP - -- number of nodes in the subtree rooted at y that have a non-null next hop stored and the path

from y to each of these nodes includes at least one z-child other than y. Note that if y has an z-child it can
have no other child and so y.xNumP is the numP value of this z-child. When y does not have an z-child,

its xNumP value is the sum of the  NumP values of its children.

3. y.size - - - number of bits needed to store the suffixes (together with suffix count, node type, index (if required),

suffix lengths, masks (if required), and next hops) for the prefixes in the subtree rooted at y. Each such suffix
is obtained by removing Q(p) from the y.numP prefixes in the subtree rooted at y. In case y.xNumP = 0,
a type I suffix node is used. Otherwise, a type II suffix node is used. y.size also includes the bits needed to
store the next hop for the covering prefix for y in case this is needed. When a covering prefix is needed, we

store a suffix of length 0 along with the next hop associated with this covering prefix.

Figure 14 gives the numP, xtNumP, and size values for each of the nodes of the normalized ternary trie of

Figure 11, where size here includes only a nexthop and suffix bits for simplicity.

To carve a normalized ternary trie into suffix nodes that use at most w bits per node, we perform a postorder

traversal of the trie using the visit function of Figure 15, which differs from that of [3] in the manner in which

size is computed. Although the visit function, as stated in Figure 15, does not make explicit use of numP and

xNumP, these values are useful in the computation of size. Note that in Figure 15, the value of y.size is its value

at the time y is visited and accounts for the fact that several of y’s original subtrees may have been carved out by

this time.
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(1,0,12) (1,0,12) (1,0,12)1,0,12) (1, 0, 12)

Figure 14: (numP, xNumP, size) for nodes of normalized ternary of Figure 11. Nodes that require a covering
prefix are labeled *

Algorithm visit(y)

if (y.size < w) return;

if (y.size == w) {carve(y); return;}

// y.size > w

if (y has a single child z) {carve(z); return;}
// z could be 0-, 1- or x-child

// y has both a O-child u and a 1-child v
if (u.size <= v.size) {

carve (v);

recompute y.size;

if (y.size < w) return;

if (y.size == w) carve(y);

else carve(u);

}

else // u.size > v.size
this is symmetric to the case u.size <= v.size

Figure 15: Visit function for subtree carving heuristic [3]

5.5 PETCAM Updates

PETCAM supports batch updates rather than incremental updates. To support batch updates, we use two copies
of the TCAM-SRAM lookup subsystems as shown in Figure 16. At any given time, one copy of the TCAM-SRAM
subsystem is used for lookup and the other is used to prepare an updated version of the lookup table. In a batch
update, the control plane processes all updates received. This is done using a control plane representation (e.g., a

trie) of the routing table. With some frequency, the PETCAM construction algorithm is run, creating an updated
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TCAM-SRAM representation is the subsystem not currently used for lookup. When construction is complete,
lookup is switched to the new subsystem. So, lookups have minimal interruption; the interruption time being that
to switch from one subsystem to another. For this strategy to work, the delay between successive rebuilds must
at least equal the time to run the PETCAM construction algorithm. Hence, it is important to have an efficient
PETCAM construction algorithm.

The same strategy may be used for batch updates using the TCAM schemes of [3, 7, 8, 9]. We note that none

of these schemes provide efficient support for incremental updates.

% Control Mlanagement

s Plane

3 1 2
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9 . systeml
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Figure 16: Router architecture using PETCAM.

6 Experimental Results

We programmed our PETCAM strategy in C+4 and compared its performance with the power reduction schemes
of [7, 3, 8, 9]. The comparison was done using the IPv4 router tables AS1221, AS4637, AS6447, and AS65000,
which were obtained from [5] and rrc00, which was obtained from [6]. Data sets AS65000 and rrc00 are from
May 2008, AS6447 is from July 2008, and the remaining data sets are earlier than 2008 and were used in [3], for
example. Our experiments aim to measure the relative effectiveness of the scheme of Liu [7] (type I redundancy
removal followed by mask extension) and the PETCAM scheme (dynamic programming optimization followed by
mask extension) to compact the router table as well the overall relative performance of PETCAM, EaseCam, and
the method of Lu and Sahni [3] with respect to TCAM power and memory reduction. For our experiments we

assume the SRAM word size, and hence the size of a suffix node, is 144 bits.

6.1 Compaction Efficiency

The compaction efficiency is measured by the number of prefixes following the compaction steps. Figure 17 gives
the number of prefixes in each of our data sets as well as the number of prefixes following each of steps 1 and 2 of
the PETCAM strategy. The dynamic programming algorithm of [10] reduces the number of prefixes in the data

sets by between 45% and 79%. Another approximately 5% reduction is achieved when mask extension is employed
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on the optimal prefixes produced by the algorithm of [10]. So, PETCAM reduces the number of prefixes by about
50% to 84%.

DataSet initial # of | # after Step 1 Reduction | # after Steps 1 and | Total
prefixes (%) 2 reduction
(%)
AS1221 281516 153885 45.34 135879 51.73
AS4637 210119 43368 79.36 32562 84.50
AS6447 275509 149117 45.88 137151 50.22
AS65000 | 259026 81341 68.60 66808 74.21
rrc00 266185 92239 65.35 83146 68.76

Figure 17: Number of router table prefixes in PETCAM

Figure 18 gives the number of prefixes following the removal of type I redundant prefixes as well as following
mask extension as proposed in [7] and Figure 19 gives these numbers after the removal of type I and type II
redundancies followed by mask extension. We do not report the results of compaction using the enhancements
to Liu’s [7] compaction methods proposed in [8, 9], because, as noted in Section 4, these enhancements do not
guarantee compacted prefix sets equivalent to the input prefix set. For each of our data sets, the method of [7]
achieves less compaction than what is proposed for PETCAM. The bar chart in Figure 20 shows the relative

efficiency of the three schemes with respect to reducing the number of prefixes in a router table.

DataSet initial # of | # after type I Reduction | # after mask exten- | Total
prefixes (%) sion reduction
(%)
AS1221 281516 210582 25.20 146101 48.10
AS4637 210119 92099 56.17 40374 80.79
AS6447 275509 231193 16.09 162575 40.99
AS65000 | 259026 152267 41.22 80441 68.94
rrc00 266185 173030 35.0 105534 60.35

Figure 18: Number of router table prefixes in [7]

DataSet initial # of | # after type I and | Reduction | # after mask exten- | Total
prefixes I (%) sion reduction
(%)
AS1221 281516 209553 25.56 145467 48.33
AS4637 210119 92066 56.18 40386 80.78
AS6447 275509 227989 17.25 159909 41.96
AS65000 | 259026 151590 41.48 80076 69.09
rrc00 266185 171754 35.48 104827 60.62

Figure 19: Number of router table prefixes when type II redundancies are eliminated

The input for mask extension is comprised of sets of same hop prefixes that have the same length. Logic
minimization is performed on each of these sets. The time for logic minimization is substantial (see Section 6.4)

and critically dependent on the size of the input set. Figure 21 gives the maximum size of a set input to Espresso.
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I initial number of prefixes
a5l I type I+logic minimization
[ type I+l1+logic minimization
[__lusing PETCAM

Number of Prefixes

AS1221 AS4637 AS6447 AS65000 rrc00
Router Tables

Figure 20: Relative efficiency for table compaction

Table Original PETCAM Liu [7]
as1221 45285 13771 25953
as4637 111921 13188 40004
as6447 18808 7818 15110
as65000 94297 14693 45602
rrc00 62744 11669 34129

Figure 21: Maximum number of prefixes, having the same length and next hop prior to logic minimization/mask
extension

6.2 Comparison With EaseCam

Although the modifications to Liu’s [7] compaction strategy suggested in [8, 9] are faulty, the two-level EaseCam
architecture, which is a specialization of the bit-selection architecture proposed by Zane et al. [19], may be employed
in conjunction with any prefix set to reduce TCAM power as well as total TCAM memory. In EaseCam, each
TCAM word is 24 bits as the first 8 bits of each prefix are used in the level-1 index to the TCAM. Prefixes shorter
than 8 bits are handled in a separate bucket and are ignored in our evaluation of EaseCam. Figure 22 gives the
number of TCAM bits required by EaseCam to store each of our sample router tables following compaction using
the strategies of [7], [7] together with type II redundancy removal, and PETCAM.

To generate the numbers for PETCAM, we employ steps 1 and 2 of the PETCAM scheme and store the
resulting generalized prefixes in a 2-level TCAM system using the M-12Wb layout of [3]. We set the word-size
of the second level TCAM (also known as data-DTCAM or DTCAM) to 32 bits for IPv4 prefixes. For the first
level TCAM (index-TCAM or ITCAM), we need a word size of 24 bits based on (1) the bit allocation scheme to
suffix nodes in Figure 7, (2) suffix node size of 144 bits and (3) our choice of DTCAM bucket size of 128 prefixes

for the experiments. For example, with the given bit allocation and the suffix node size, the minimum height of
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a carved subtree (carving done using the algorithm in Figure 15) is 2, corresponding to the case when all the 7
nodes of the subtree store a prefix. Thus prefixes stored in a DTCAM are of length 29 or less. Similarly, with
a DTCAM bucket of size 128 prefixes, the carved subtree is of height at least 6 (log,(128) — 1, assuming a full
binary tree with each node storing a prefix). So, the length of a prefix in ITCAM is at most 29-7 = 22, and in
fact some further reduction is possible if we consider the wide SRAM being used with the ITCAM. However, for
ease of configuration, we choose 32 bits for DTCAM and 24 bits for ITCAM word size. It is easy to see that this
configuration can support DTCAM buckets of size >= 32 entries when the SRAM word size is 144 bits. When the
DTCAM bucket size is < 32, a larger word size for the ITCAM is required.

Figure 22 also gives the size, max P, of the largest partition that is activated in a lookup. Recall that the power
needed for a lookup is proportional to the size of the activated partition. On our data sets, PETCAM requires
less than half the TCAM memory required by EaseCam and the power requirement of EaseCam is between 26 and
97 times that of PETCAM. Figure 23 presents a bar chart for the comparitive space and power consumption by
EaseCAM and PETCAM.

DataSet | EaseCam with [7] EaseCam with [7]4+typell | PETCAM

#bits maxP #bits maxP #bits maxP
AS1221 3538608 739968 3523656 738120 1248640 7552
AS4637 1000080 138936 1000080 138912 378056 5320
AS6447 3920112 242400 3854808 237360 1239608 7624
AS65000 | 1968408 189888 1959000 188736 694240 6112
rrc00 2563176 203448 2545920 201384 784592 6352

Figure 22: Total number of bits and maximum partition size using EaseCam

551 g
I EaseCAM with [7] I EaseCAM with [7]
st [ EaseCAM with [7] + type Il 7L [ EaseCAM with [7] + type Il
45 [_]PETCAM [_]PETCAM

TCAM size (number of bits)
P
w»

TCAM power(number of enabled bits)

0
AS1221 AS4637 AS6447 AS65000  rrc00 AS1221 AS4637 AS6447 AS65000  rrc00
Router Tables Router Tables
(a) TCAM size (b) TCAM power

Figure 23: Comparison of TCAM space and power requirement between EaseCAM and PETCAM

20

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
56



6.3 Comparison With [3]

Figure 24 gives the maxzP values for the power-reduction architecture of Lu and Sahni [3] when applied to the
original prefix set as is done in [3] and when applied to a compacted prefix set. In Figure 24, we use the 1-12Wc
scheme of [3], which is recommended in [3] for power optimization. The size of a DTCAM bucket is set to 128
prefixes. In Figures 24 and 25, all columns use the architecture of [3]. The column labeled No Compaction [3]
uses the original prefix set, that labeled [7] uses the compacted prefix set resulting from type I redundancy removal
followed by logic minimization as is done in [7], the next column applies types I and I redundancy removal before
logic minimization, and the column labeled PETCAM uses the 1-12Wc scheme to store the set of generalized
prefixes obtained after applying steps 1 and 2 of the PETCAM scheme to the initial prefix set. As can be seen,
PETCAM provides power reduction relative to the scheme of [3]. This reduction ranges from 18% to 25%.

DataSet | No Compaction [3] | [7] | [7]+type II | PETCAM
AS1221 200 180 | 180 164
AS4637 183 152 | 152 139
AS6447 | 196 185 | 185 164
AS65000 | 198 171 | 170 148
rrc00 198 172 | 172 152

Figure 24: Maximum partition size using 1-12Wc of [3]

Figure 25 gives the total TCAM memory needed by the M-12Wb scheme of [3], which is the scheme recommended
in [3] for TCAM memory optimization. The numbers in the column labeled PETCAM are obtained by applying
the steps 1 and 2 of the PETCAM scheme to reduce the prefix set and then using the step 3 to map the resulting
generalized prefixes to a 2-level TCAM system. We use the carving heuristic in Figure 15 to create the suffix
nodes and then use the M1-2Wb layout of [3] to fill the first and second level TCAMs. The size of a DTCAM
bucket is set to 128 prefixes. PETCAM requires between 22% and 54% as much TCAM memory as required by
the architecture of [3] beginning with the original prefix set. Figure 26 shows the data of Figures 24 and 25 as

bar charts.
DataSet | No Compaction [3] | [7] [7]+type II | PETCAM
AS1221 71564 53964 | 53705 38913
AS4637 | 54076 24027 | 24027 11782
AS6447 | 70271 59728 | 59089 38273
AS65000 | 66285 39691 | 39560 21636
rrc00 68084 45216 | 44964 24449

Figure 25: Total TCAM memory using M1-2Wb of [3]

6.4 PETCAMLite

Since Step 2 (mask extension) of the compaction process for PETCAM is quite time consuming, we investigate a

light version, PETCAMLite, of PETCAM in which Step 2 is omitted. Our experiments indicate that PETCAMLite
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Figure 26: Comparison of TCAM space and power requirement

requires 0% to 6% more TCAM power and 0.5% to 2% more TCAM memory than required by PETCAM. So,
if Step 2 takes more computational resource than we wish to invest, we may use PETCAMLite and gain almost
the same power and memory benefits as provided by PETCAM. Figure 27 gives the CPU time on a Sun4u Sparc
SunOS 5.8 machine for executing steps 1 and 2. So, if a Sundu Sparc is used as the rebuild engine, the interval
between successive rebuilds of the TCAM system will need to be at least 700 seconds for PETCAM but only about
6 seconds for PETCAMLite.

DataSet | Time for Step 1 (seconds) | Time for Step 2 (seconds)
AS1221 5.38 642.83
AS4637 | 3.7 296.62
AS6447 | 5.14 347.25
AS65000 | 4.57 600.55
rrc00 4.78 407.05

Figure 27: Execution time

7 Conclusion

We have pointed out some of the shortcomings of the power reduction methods for TCAM lookup tables proposed
in [7, 8, 9]. By starting with an optimal prefix set for the given router table prefix set, we can achieve much better
power reduction and TCAM memory requirement than when we use the compaction schemes suggested in [7, 8, 9].
This is true regardless of whether we use the EaseCam [8, 9] architecture or the architecture of [3]. For EaseCam,
worst case power is reduced between 96% and 98% while TCAM memory is reduced between 62% and 69%. The
power and memory reduction relative to the architecture of [3] is 16% to 25% and 45% to 78%. We have proposed
two memory and power efficient TCAM lookup systems — PETCAM and PETCAMLite. While PETCAM has
slightly better memory and power characteristics than does PETCAMLite, the rebuild time for PETCAM is 2
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orders of magnitude larger than that for PETCAMLite. PETCAMLite supports acceptable rebuild times using
modest computational resources. On our data sets, the power and memory penalty using PETCAMLite are at

most 6% and at most 2%, respectively.
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LIST OF ABBREVIATIONS

Acronym Meaning

DLFS PLO A memory management scheme

DUO Dual TCAM architecture for packet
forwarding

DUOS A simple version of DUO

ILSRAM Index SRAM for an ILTCAM

ILTCAM Index TCAM for an LTCAM

ISRAM Interion SRAM

ITCAM Interior TCAM

LSRAM Leaf SRAM

LTACM Leaf TCAM

PC-DUO Dual TCAM architecture for packet
classification

PC-DUOS A simple version of PC-DUO

PC-DUO+ An enhancement of PC-DUO

PC-DUO+W A wide SRAM version of PC-DUO+

PC-TRIO Triple TCAM architecture for packet
classification

SRAM Static random access memory

STCAM A simple TCAM architecture for packet
classification

TCAM Ternary content addressable memory

TCP Transmission control protocol
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