

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ENERGY-EFFICIENT HIGH-PERFORMANCE ROUTERS

UNIVERSITY OF FLORIDA

FEBRUARY 2012

FINAL TECHNICAL REPORT

 ROME, NY 13441 UNITED STATES AIR FORCE  AIR FORCE MATERIEL COMMAND

AFRL-RI-RS-TR-2012-055

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any
purpose other than Government procurement does not in any way obligate the U.S. Government.
The fact that the Government formulated or supplied the drawings, specifications, or other data
does not license the holder or any other person or corporation; or convey any rights or
permission to manufacture, use, or sell any patented invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB Public
Affairs Office and is available to the general public, including foreign nationals. Copies may be
obtained from the Defense Technical Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TR-2012-055 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/
WILLIAM E. STANTON, 1st Lt, USAF PAUL ANTONIK, Technical Advisor
Work Unit Manager Computing & Communications Division

Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

http://www.dtic.mil

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

FEB 2012
2. REPORT TYPE

Final Technical Report
3. DATES COVERED (From - To)

AUG 2010 – AUG 2011
4. TITLE AND SUBTITLE

ENERGY-EFFICIENT HIGH-PERFORMANCE ROUTERS

5a. CONTRACT NUMBER
FA8750-10-1-0236

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
63788F

6. AUTHOR(S)

Sartaj Sahni

5d. PROJECT NUMBER
T3TE

5e. TASK NUMBER
HP

5f. WORK UNIT NUMBER
IR

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Florida
339 Weil Hall
P.O. Box 116550

8. PERFORMING ORGANIZATION
REPORT NUMBER

 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RITD
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)
 AFRL/RI

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TR-2012-055

12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. PA# 88ABW-2012-0311
Date Cleared: 19 JAN 2012

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Under this award, the PI Dr. Sartaj Sahni, AFRL research scientist Dr. Gunasekaran Seetharaman, and University of
Florida Ph.D. student Ms. Tania Banerjee-Mishra collaboratively researched TCAM (Ternary Content Addressable
Memory) architectures for Internet packet classifiers. The objective was to develop low-energy high-performance
TCAM architectures that supported both lookup and update. To this end, the architectures PC-DUOS, PC-DUOS+, and
PC-TRIO were developed and evaluated. The first two of these use 2 TCAMs while the third uses 3 TCAMs. Significant
improvements in performance and power consumption are achieved.

15. SUBJECT TERMS

TCAM (Ternary Content Addressable Memory), Internet packet classifiers

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

66

19a. NAME OF RESPONSIBLE PERSON
WILLIAM E. STANTON, 1st Lt, USAF

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

Gainsville, FL 32611-6550

i

Table of Contents

1 INTRODUCTION .. 1

2 METHODS, ASSUMPTIONS, AND PROCEDURES .. 1

2.1 Background and Related Work ... 1

2.2 PC-DUOS ... 4

2.3 PC-DUOS+ ... 5

2.4 PC-TRIO ... 5

2.5 Differences among PC-DUOS, PC-DUOS+ and PC-TRIO ... 7

3 RESULTS AND DISCUSSION ... 7

3.1 Setup ... 7

3.2 Datasets ... 8

3.3 Results ... 8

4 CONCLUSIONS... 12

5 REFERENCES ... 14

APPENDIX A – PC-DUOS: Fast TCAM Lookup and Update for Packet Classifiers 16

APPENDIX B – PC-TRIO: An Indexed TCAM Architecture for Packet Classifiers .. 28

APPENDIX C – PETCAM – A Power Efficient TCAM for Forwarding Tables ... 37

LIST OF ABBREVIATIONS ... 61

ii

List of Figures

Figure 1 Dual TCAM with simple SRAM .. 2
Figure 2 Flow diagram for storing packet classifiers in TCAMs ... 5
Figure 3 PC-TRIO architecture ... 6
Figure 4 Classifier rules stored in an indexed TCAM .. 7
Figure 5 Statistics for PC-DUOS+ .. 9
Figure 6 Statistics for PC-DUOS+W .. 9
Figure 7 Statistics for PC-TRIO ... 9
Figure 8 Comparison of compaction ratio, total power, lookup time and area 10
Figure 9 TCAM writes .. 11
Figure 10 Timing and power results for additional hardware ... 12

Approved for Public Release; Distribution Unlimited.
1

1 INTRODUCTION
Packet classification is a key step in routers for various functions such as routing, creating firewalls, load
balancing and differentiated services. Internet packets are classified into different flows based on packet
header fields and using a table of rules in which each rule is of the form (F,A) , where F is a filter and
A is an action. When an incoming packet matches a rule in the classifier, its action determines how the
packet is handled. For example, the packet could be forwarded to an appropriate output link, or it may be
dropped. A d –dimensional filter F is a d – tuple (F[1], F[2], …, F[d]) , where F[i] is a range
specified for an attribute in the packet header, such as destination address, source address, port number,
protocol type, TCP flag, etc. A packet matches filter F , if its attribute values fall in the ranges of F[1],
…, F[d] . Since it is possible for a packet to match more than one of the filters in a classifier thereby
resulting in a tie, each rule has an associated cost or priority. When a packet matches two or more filters,
the action of the matching rule with the lowest cost (highest priority) is applied on the packet. It is
assumed that filters that match the same packet have different priorities.

TCAMs are used widely for packet classification. The popularity of TCAMs is mainly due to their high-
speed table lookup mechanism in which all the TCAM entries are searched in parallel. Each bit of a
TCAM may be set to one of the three states 0, 1, and ‘?’ (don’t care). A TCAM is used in conjunction
with an SRAM. Given a rule (F, A) , the filter F of a packet classifier rule is stored in a TCAM word
and action A is stored in an associated SRAM word. All TCAM entries are searched in parallel and the
first match is used to access the corresponding SRAM word to retrieve the action. So, when the packet
classifier rules are stored in a TCAM in decreasing order of priority (increasing order of cost), we can
determine the action corresponding to the matching rule of the highest priority, in one TCAM cycle. The
main limitation of TCAMs is that these memories are power hungry. The more the number of entries in
the TCAM, the higher the power needed to perform a search. This problem is worsened for packet
classifiers since typically a classifier rule includes port range fields that need multiple TCAM entries per
rule for representation in the TCAM. This is called range expansion. Given that the source and
destination port numbers are represented in 16 bits, the number of TCAM entries needed to represent a
port range in the worst case is 30 corresponding to the range [1, 216-2] . Thus, a filter having both source
and destination port ranges set to [1, 216-2] undergoes a worst case expansion of 30 x 30 = 900 TCAM
entries.

2 METHODS, ASSUMPTIONS, AND PROCEDURES

2.1 Background and Related Work

The starting point for our research on TCAM-based packet classifiers is the packet forwarding
architecture DUOS proposed earlier by us [7]. DUOS, as shown in Figure 1, has two TCAMs,

Approved for Public Release; Distribution Unlimited.
2

Figure 1 Dual TCAM with simple SRAM

labeled as the ITCAM (Interior TCAM) and the LTCAM (Leaf TCAM). DUOS also employs a binary
trie in the control plane of the router to represent the prefixes in the forwarding table. The prefixes found
in the leaf nodes of the trie are stored in the LTCAM, and the remaining prefixes are stored in the
ITCAM. The prefixes stored in the LTCAM are independent and therefore at most one LTCAM prefix
can match a specified destination address. Hence the LTCAM doesn't need a priority encoder. Prefix
lookup works in parallel on both TCAMs. If a match is found in the LTCAM then that is guaranteed to
be the longest matching prefix and the corresponding next hop is returned. At the same time the ongoing
lookup process on the ITCAM (interior TCAM), which takes longer due to the priority resolution step, is
aborted. Thus, if a match is found on the LTCAM, the overall lookup time is shortened by about 50%
[2]. The final stage logic in Figure 1 that chooses between the two next hops could be moved ahead and
placed between the TCAM and SRAM stages. In that case, the logic receives one “matching index" input
from the LTCAM and another from the ITCAM. If a match is found in the LTCAM, the index from
LTCAM input is used to access the LSRAM; otherwise, the ITCAM index is used to access the ISRAM.
Further, if a match is found in the LTCAM, the ITCAM lookup is aborted.

The memory management schemes used in DUOS are highly efficient. The ITCAM needs to store the
prefixes in decreasing order of length, for example, so that the first matching prefix is also the longest
matching prefix. DUOS [7] uses a memory management scheme (Scheme 3, also known as
DLFS_PLO), which initially distributes the free space available in a TCAM between blocks of prefixes
(of same length) in proportion to the number of prefixes in a block. A free slot needed to add a new

Approved for Public Release; Distribution Unlimited.
3

prefix is moved from a location that requires the minimum number of moves. As a prefix is deleted, the
freed slot is added to a list of free spaces for that prefix block. Each prefix block has its own list of free
slots. With this scheme even with 99% prefix occupancy in the TCAM and 1% free space, the total
number of prefix moves using DLFS_PLO is at most 0.7% of the total number of prefix inserts and
deletes.

To support lock-free updates, so the TCAMs can be updated without locking them from lookups, DUOS
implements consistent update operations that rule out incorrect matches or erroneous next hops during
lookup. For consistent updates, it is assumed that:

1. Each TCAM has two ports, which can be used to simultaneously access the TCAM from the
control plane and the data plane.

2. Each TCAM entry/slot is tagged with a valid bit that is set to 1 if the content for the entry is valid
and to 0 otherwise. A TCAM lookup engages only those slots whose valid bit is 1. The TCAM
slots engaged in a lookup are determined at the start of a lookup to be those slots whose valid bits
are 1 at that time. Changing a valid bit from 1 to 0 during a data plane lookup does not disengage
that slot from the ongoing lookup. Similarly, changing a valid bit from 0 to 1 during a data plane
lookup does not engage that slot until the next lookup.

Additionally, the availability of the function waitWriteValidate is assumed which writes to a TCAM slot
and sets the valid bit to 1. In case the TCAM slot being written to is the subject of an ongoing data plane
lookup, the write is delayed till this lookup completes. During the write, the TCAM slot being written to
is excluded from data plane lookups. Similarly, the availability of the function invalidateWaitWrite, is
assumed. This function sets the valid bit of a TCAM slot to 0 and then writes an address to the associated
SRAM word in such a way that the outcome of the ongoing lookup is unaffected. All these assumptions
for DUOS are also made by our PC-DUOS architecture.

The problem of incorporating updates to packet classifiers stored in TCAMs has been studied in [6] and
[5]. The authors in [6] present a method for consistent updates when the classifier updates arrive in a
batch. All deletes in an update batch are first performed to create empty slots in the TCAM. Then the
relative priority of the relevant rules (for example rules overlapping with a new rule being inserted) is
determined and the existing rules are moved accordingly to reflect any change in priority ordering as the
entire batch of updates is applied. Following the ordering of existing rules, new rules are inserted in
appropriate locations. A problem with the algorithm of [6] is that it performs the deletes in the update
batch first. This could lead to temporary inconsistencies in lookup [8].

Given a packet classifier, a naive approach is to store it in a TCAM by entering each rule sequentially as
it appears in the classifier and distribute all the empty slots between rules. As mentioned in [5], this
approach could lead to high power consumption for a lookup as the whole TCAM has to be searched
including the empty entries. On the other hand, if the empty entries are kept together at the higher
addresses of the TCAM, then those may be excluded from lookups. However, if the empty spaces are
kept at one end of the TCAM, then it would require a large number of rule moves to create an empty slot
at a given location. Specifically, all the rules in the TCAM below the slot to be emptied must be moved
below.

We use a simple TCAM (STCAM) architecture for comparing our PC-DUOS performance. The STCAM
is a modification over the naive TCAM in that the rules are grouped by block numbers, which reduces

Approved for Public Release; Distribution Unlimited.
4

the number of required moves when a free slot is needed. The required number of moves is now bounded
by the total number of blocks. The block numbers are assigned to the rules using the algorithm
presented in [5], based on a priority graph. In this method a subset of the rules is identified such that
within the subset, each rule overlaps with every other rule. Each rule in the subset is assigned a different
block number based on its priority. Block numbers can be reused for different non-overlapping rule
subsets. Thus, rules with the same block number are all non-overlapping or independent. Two rules are
independent iff there is no packet that matches both the rules. Filters are grouped based on their
assigned block numbers. The group with the lowest block number is of highest priority and these rules
are stored in the lowest memory addresses of the TCAM.

The authors in [5] describe a fast TCAM update scheme on packet classifiers. In their method, the
classifier rules are entered arbitrarily in the TCAM and are not arranged according to decreasing order of
priority. They ensure that the action corresponding to the highest priority matching rule is returned by
performing multiple searches on the TCAM. Specifically, they assign a priority (which we call block
number here) to each rule and encode the block number as a TCAM field and allow the highest priority
TCAM match to be found using log (2n) searches, where n is the total number of block values assigned
in the classifier. The highest priority match corresponds to the rule with the minimum block number.
The rule and its assigned block number are entered in the TCAM. Even though this method does not
incur TCAM writes due to rule moves for maintaining consistent block numbers for overlapping rules or
to create an empty slot at the right place for inserting a new rule, this method involves a number of
TCAM writes as the assigned block numbers of rules change due to inserts or deletes. Moreover, lookup
speed is slowed down since multiple TCAM searches are required and these searches cannot be
pipelined as they take place on the same TCAM. Our PC-DUOS architecture performs lookup using a
single TCAM search.

2.2 PC-DUOS

PC-DUOS uses the same two TCAM architecture as used in DUOS [7] (Figure 1). Lookup also works in
the same way as for DUOS. That is, the LTCAM and ITCAM (interior TCAM) are searched in parallel
using the packet header information. In case a match is found in the LTCAM, the ongoing search in the
ITCAM is aborted. When the ITCAM search is aborted, lookup time is reduced by about 50%, because
the LTCAM has no priority encoder. For this lookup strategy to yield correct results, the following
requirements must hold:

1. No packet is matched by more than one rule in the LTCAM.
2. When a packet is matched by a rule in the LTCAM, the matched rule must be the highest priority

matching rule.

Figure 2 shows the overall flow of our methodology of storing rules in the ITCAM and LTCAM. The
first phase involves storing all the rules in a multi-dimensional trie maintained on the control plane of the
classifier. The second phase in our methodology consists of traversing the multi-dimensional trie and
identifying independent rules for inclusion in the LTCAM. In the third phase, rules not stored in the
LTCAM are stored in the ITCAM in priority order. Further details including lookup and update
algorithms are given in [1].

Approved for Public Release; Distribution Unlimited.
5

Figure 2 Flow diagram for storing packet classifiers in TCAMs

2.3 PC-DUOS+

PC-DUOS+ uses the two TCAM architecture used in PC-DUOS and DUOS (Figure 1). During lookup,
the LTCAM and ITCAM are searched in parallel using the packet header information. If a match is
found in the LTCAM, the ongoing search in the ITCAM is aborted.

PC-DUOS+ differs from PC-DUOS in the way the selection of rules for the LTCAM is made. PC-DUOS
filters the leaves of leaves set in a multi-dimensional trie to keep only the highest priority rules among all
overlapping rules. The rules in the filtered leaves of leaves set is then entered in the LTCAM. PC-
DUOS+, on the other hand, uses a priority graph to select rules for the LTCAM. PC-DUOS+ also uses
enhanced algorithms for ITCAM rule insertion which require fewer moves to rearrange rules for priority
based adjustments. Further details including lookup and update algorithms are given in [2].

2.4 PC-TRIO

Figure 3 illustrates the PC-TRIO architecture. It primarily consists of three TCAMs, the ITCAM (interior
TCAM), the LTCAM1 (leaf TCAM) and the LTCAM2. The corresponding associated SRAMs are:
ISRAM, LSRAM1 and LSRAM2, respectively. The LTCAMs store independent rules; hence both the
TCAMs are augmented with wide SRAMs and index TCAMs. ILTCAM1 and ILTCAM2 are the index

Approved for Public Release; Distribution Unlimited.
6

TCAMs for LTCAM1 and LTCAM2, respectively. The index TCAMs also have wide associated
SRAMs, namely, ILSRAM1 and ILSRAM2. Since the rules stored in the two LTCAMs and the two
ILTCAMs are independent, at most one rule (in each LTCAM and ILTCAM) will match during a search.
So these TCAMs do not need a priority encoder. A priority encoder assists in resolving multiple TCAM
matches and is used with the ITCAM to access the ISRAM word corresponding to the highest priority
matching rule in the ITCAM.

Figure 3 PC-TRIO architecture

A lookup in PC-TRIO is pipelined with 6 stages marked A-F in Figure 3. In the first stage A, the
ILTCAMs (index TCAM for an LTCAM) are searched. The ILSRAMs (index SRAM for an ILTCAM)
are accessed, using the address of the matching ILTCAM1 andILTCAM2 entries in stage B. The
matching wide ILSRAM words are processed in stage C to obtain the corresponding bucket index for
LTCAM1 and LTCAM2. In stage D, the bucket indexes so obtained are used to search the
corresponding buckets in the LTCAMs. The ITCAM is also searched in this stage. In the next stage E,
the ISRAM, and the LSRAMs are accessed using the addresses of the matching TCAM entries. In the
final stage F, the contents of the wide LSRAM words are processed and the best action is chosen from
the at most three actions returned by the ISRAM, LSRAM1 and LSRAM2 by comparing the priorities of
the corresponding rules. Further details including lookup and update algorithms are given in [3].

Approved for Public Release; Distribution Unlimited.
7

2.5 Differences among PC-DUOS, PC-DUOS+ and PC-TRIO

Figure 4 highlights the differences among PC-DUOS, PC-DUOS+ and PC-TRIO.

Figure 4 Classifier rules stored in an indexed TCAM

We note that the methodology used for PC-TRIO may be used to add index TCAMs and wide SRAMs to
PC-DUOS+ to arrive at a new architecture PC-DUOS+W. Similarly, PC-DUOS may be extended to
obtain PC-DUOS+W.

Unlike the other architectures, PC-TRIO does not guarantee that the rules in the LTCAMs are of the
highest priority among all overlapping rules. Thus, PC-TRIO must wait for an ITCAM lookup to
complete even if there are matching rules in the LTCAMs. Although the rule assignment algorithms for
PC-TRIO may be modified so that the LTCAM rules are the highest priority among all overlapping rules
(and thus avoid having to wait for an ITCAM lookup to complete in cases when a match is found in an
LTCAM), doing so retards the performance of PC-TRIO to the point where it offers little or no power
and lookup time benefit over PC-DUOS+W.

3 RESULTS AND DISCUSSION
We compare PC-TRIO, with PC-DUOS+W and PC-DUOS+. (A detailed comparison of PC-DUOS and
PC-DUOS+ appears in [2] where the superiority of PC-DUOS+ over PC-DUOS is established.) We first
give the setup used by us for the experiments in Section 3.1 and then describe our datasets in Section 3.2.
Finally we present our results in Section 3.3.

3.1 Setup

We programmed the rule assignment, trie carving and update processing algorithms of our packet
classification architectures using C++. We designed a circuit for processing wide SRAM words using

Approved for Public Release; Distribution Unlimited.
8

Verilog and synthesized it using Synopsys Design Compiler to obtain power, area and gate count
estimates. We used CACTI [13] and a TCAM power and timing model [14] to estimate the power
consumption and search time for the SRAMs and the TCAMs respectively. The process technology used
in the experiments is 70 nm and the voltage is 1.12 V. It is assumed that the TCAMs are being operated
at 360 MHz [14].

The TCAM and SRAM word sizes used are consistent for all the architectures used in the comparison.
The word size is 144 bits for the TCAMs. For SRAMs we have different word sizes depending upon the
TCAMs they are used with. The ISRAM words of all the architectures, as well as the LSRAM words of
PC-DUOS+, are 32 bits wide. The LSRAM1 and LSRAM2 words of PC-TRIO and the LSRAM words
of PC-DUOS+W are 512 bits, while the ILSRAMs are 144 bits wide. The bucket size for LTCAMs in
PC-TRIO and PC-DUOS+W is set to 65 TCAM entries.

 PC-DUOS+ uses DIRPE [9] to encode port ranges. The classifier rules stored in the ITCAMs of PC-
TRIO and PC-DUOS+W also use DIRPE to encode port ranges. Since the TCAM word size is set to
144 bits, we assume that 36 bits are available for encoding each port range in a rule. With this
assumption, we use the strides 223333 as these give us minimum expansion of the rules [9].

3.2 Datasets

We used two sets of benchmarks derived from ClassBench [10]. The first set of benchmarks consists of
12 datasets each containing about 100,000 classifier rules and is generated from seed files in
ClassBench. This dataset is used to compare the number of TCAM entries, power, lookup performance
and space requirements of PC-TRIO, PC-DUOS+W and PC-DUOS+.

The second set of benchmarks has 13 datasets, which are used to compare incremental update
performance of PC-TRIO, with PC-DUOS+ and PC-DUOS+W.

3.3 Results

Number of TCAM entries
Using wide SRAM words to store portions of classifier rules reduces the number of TCAM entries.
Figures 5-7 give the results of storing our datasets in the three architectures. The first, second and third
columns show the index, name, and the number of classifier rules, respectively, of a dataset. The fourth,
fifth and sixth and seventh columns give for PC-DUOS+, the total number of TCAM entries, the number
of ITCAM entries, the TCAM power and lookup time, respectively. Similarly, Figure 6 gives the
corresponding numbers for PC-DUOS+W and Figure 7 gives those statistics for PC-TRIO.

Approved for Public Release; Distribution Unlimited.
9

Index Dataset #Rules Entries #ITCAM Watts Time(ns)

1 acl1 99309 117033 379 36 2624.39
2 acl2 74298 101857 19421 31 1122.39
3 acl3 99468 131243 30859 40 1640.47
4 acl4 99334 127320 25189 39 1730.46
5 acl5 98117 105375 1535 32 2072.16
6 fw1 89356 142085 91473 43 2466.72
7 fw2 96055 129249 27084 39 1543.76
8 fw3 80885 117731 39199 36 1007.04
9 fw4 84056 211403 116149 64 3182.03
10 fw5 84013 111989 55650 34 930.94
11 ipc1 99198 112154 22165 34 1288.02
12 ipc2 100000 100000 30133 30 784.69

Figure 5 Statistics for PC-DUOS+

Index Dataset #Rules Entries #ITCAM Watts Time(ns)
1 acl1 99309 21146 379 0.23 0.50
2 acl2 74298 37491 19421 6.35 30.36
3 acl3 99468 52632 30859 9.47 80.49
4 acl4 99334 49912 25189 7.98 45.95
5 acl5 98117 32932 1535 0.53 0.41
6 fw1 89356 98425 91473 27.92 2318.82
7 fw2 96055 43146 27084 8.30 86.77
8 fw3 80885 51228 39199 11.99 215.21
9 fw4 84056 131505 116149 35.46 2139.21
10 fw5 84013 65598 55650 17.00 615.49
11 ipc1 99198 41920 22165 6.82 45.11
12 ipc2 100000 47247 30133 9.23 113.77

Figure 6 Statistics for PC-DUOS+W

Index Dataset #Rules Entries #ITCAM Watts Time(ns)
1 acl1 99309 21085 182 0.19 1.00
2 acl2 74298 36593 18439 6.04 149.43
3 acl3 99468 26823 1017 0.40 2.19
4 acl4 99334 34034 6547 2.32 24.12
5 acl5 98117 34993 2209 0.77 4.98
6 fw1 89356 26610 4864 1.60 15.01
7 fw2 96055 22196 1494 0.53 3.18
8 fw3 80885 26269 7479 2.38 30.09
9 fw4 84056 27617 4894 1.60 15.16
10 fw5 84013 22361 3454 1.15 9.02
11 ipc1 99198 23894 567 0.26 1.40
12 ipc2 100000 20195 0 0.09 0.75

Figure 7 Statistics for PC-TRIO

Approved for Public Release; Distribution Unlimited.
10

Figure 8(a) gives the TCAM compaction ratio of the three architectures, obtained by dividing the number
of TCAM entries for each dataset by the number of rules in the classifier. PC-DUOS+ does not use wide
SRAMs, hence there is no compaction. Instead, there is expansion to handle port ranges. Thus, the
compaction ratio for PC-DUOS+ is at least 1 for every dataset. The compaction achieved by PC-TRIO
is more than that of PC-DUOS+W for almost all the datasets. This is because PC-TRIO has fewer
ITCAM entries and therefore stores more rules in wide SRAM words. For acl5, PC-DUOS+W
identified more independent rules compared to PC-TRIO. The algorithm to identify independent rules is
the same for PC-DUOS+W and PC-DUOS+ which results in identical ITCAM entries for these two
architectures. No classifier rules in the LTCAMs of PC-DUOS+W and PC-TRIO needed partial port
range expansion. So, all LTCAM entries in PC-DUOS+W and PC-TRIO were at most 72 bits.

Power
Figures 5-7 give the TCAM power consumption during a lookup, while Figure 8 (b) gives the
normalized total power obtained for each dataset by dividing the total TCAM and SRAM power in an
architecture by that of PC-TRIO during a lookup. The vertical axis is scaled logarithmically and based at
1. PC-TRIO uses less power for all datasets except acl5. The average improvement in power with PC-
TRIO is 96% relative to PC-DUOS+, and 65% relative to PC-DUOS+W. The average improvement in
power with PC-DUOS+W is 71%, relative to PC-DUOS+. The maximum improvement with PC-TRIO
is observed for ipc2 (99%) and the minimum for acl2 (80%), compared to PC-DUOS+. The maximum
improvement with PC-DUOS+W is observed for acl1 (99%) and the minimum for fw1 (35%), compared
to PC-DUOS+. The maximum improvement with PC-TRIO is observed for ipc2 (98%) and the
minimum for acl1 (2%), compared to PC-DUOS+W.

Figure 8 Comparison of compaction ratio, total power, lookup time and area

Approved for Public Release; Distribution Unlimited.
11

Lookup Performance
Figure 8 (c) gives the average lookup time, normalized with respect to that of PC-TRIO. The average
lookup time was computed from TCAM search times obtained using the timing models of [11]. TCAM
search time is proportional to the number of TCAM entries. Hence, PC-DUOS+ requires the maximum
time.

PC-DUOS+W is faster than PC-TRIO for the ACL tests acl1, acl2 and acl5. For these datasets, the
number of ITCAM entries in PC-DUOS+W and PC-TRIO are comparable. Thus, the ITCAM search
times are comparable, as are the number of lookups served by the ITCAMs. This, coupled with the fact
that ITCAM searches are slower, give PC-DUOS+W an immediate advantage since it, unlike PC-TRIO,
aborts an ITCAM search after finding a match in the LTCAM. However, for these three tests, the
lookup times using PC-TRIO are quite reasonable. For the other datasets PC-TRIO has fewer rules in
the ITCAM, which makes PC-TRIO lookups faster even though it has to wait for ITCAM search to
finish. The average improvement in lookup time with PC-TRIO and PC-DUOS+W (relative to PC-
DUOS+) are 98% and 76%, respectively. The average improvement in lookup time with PC-TRIO
(relative to PC-DUOS+W) is 68%. The maximum improvement using PC-TRIO rather than PC-DUOS+
is observed for acl1 (99.96%) and the minimum for acl2 (86.6%). The maximum improvement using PC-
DUOS+W rather than PC-DUOS+ is observed for acl1 (99.98%) and the minimum for fw1 (5%). The
maximum improvement with PC-TRIO rather than PC-DUOS+W is observed for tests fw1, fw4 and ipc2
(99%) and the minimum for acl4 (47%). For PC-TRIO, the average look up time was the maximum time
a TCAM took. For PC-DUOS+ and PC-DUOS+W, the average lookup time is an weighted average of
the ITCAM and LTCAM search times where the weight for the ITCAM is the number of classifier rules
in the ITCAM divided by the total number of rules and the weight for the LTCAM is similarly
determined. Recall that during lookup in PC-DUOS+ (and also for PC-DUOS+W) ITCAM lookup is
aborted upon finding an LTCAM match. It was found that the ratio of the number of hits in the ITCAM
to that in the LTCAM depends on the ratio of the number of entries in these TCAM. Thus, the weighted
average closely models the actual time.

Space requirements
We obtained SRAM area from CACTI results and estimated TCAM area using the same technique as
used in PETCAM [12], where area of a single cell is multiplied by the number of cells and then adjusted
for wiring overhead. Figure 8(d) gives the total area needed for the TCAMs and associated SRAMs. The
total area is comparable for the three architectures. PC-TRIO and PC-DUOS+W have lower TCAM area
(due to fewer TCAM entries) and higher SRAM area (due to wider SRAM words) than PC-DUOS+.

Update Performance
Figure 9 shows the average number of TCAM writes used per update.

Figure 9 TCAM writes

Approved for Public Release; Distribution Unlimited.
12

PC-TRIO needs comparable number of writes as PC-DUOS+ and hence supports efficient and consistent
incremental updates. PC-DUOS+W needs more writes than PC-TRIO to preserve the property that all
rules stored in the LTCAM have the highest priority compared to overlapping rules.

Characteristics of the logic that processes wide SRAM words
A circuit designed to process the contents of a wide LSRAM word was synthesized using a 0.18 µm
library [15, 16] and it was found that the design successfully met the timing constraints with a 500 MHz
clock. The results are presented in the Figure 10. The throughput is represented in terms of million
searches per second (Msps). An example of a TCAM with a speed of 143 MHz (effectively, 143 Msps)
is found in [17], using 0.13 µm technology. It is expected that the delay overhead and throughput of our
design will improve on using a 0.13 µm library. Thus, our design can operate at the same speed as that of
a TCAM.

Process Time (ns) Throughput
(Msps)

Voltage (V) Power (mW) Gate Count

0.18 µm 2 500 1.8 61.13 59724
Figure 10 Timing and power results for additional hardware

4 CONCLUSIONS
Under this award, the PI Dr. Sartaj Sahni, AFRL research scientist Dr. Gunasekaran Seetharaman, and
University of Florida Ph.D. student Ms. Tania Banerjee-Mishra collaboratively researched TCAM
(Ternary Content Addressable Memory) architectures for Internet packet classifiers. The objective was
to develop low-energy high-performance TCAM architectures that supported both lookup and update. To
this end, the architectures PC-DUOS, PC-DUOS+, and PC-TRIO were developed and evaluated. The
first two of these use 2 TCAMs while the third uses 3 TCAMs. Three technical papers [1, 2, 3], one for
each of the three developed architectures, were written. The paper on PC-DUOS was published in the
2011 IEEE International Symposium on Computers and Communications and the other two are in the
review process (one at a journal and the other at a conference); all three can be referenced in Appendices
A, B, and C respectively. PC-DUOS+, which is an enhancement of PC-DUOS and an extension of
DUOS uses two TCAMs named LTCAM and ITCAM are used. PC-DUOS+ stores the highest priority
independent rules in the LTCAM. The remaining rules are stored in the ITCAM. During lookup for
highest priority rule matching, both the ITCAM and the LTCAM are searched in parallel. Since the
LTCAM stores independent rules, at most one rule may match during lookup in the LTCAM and a
priority encoder is not needed. If a match is found in the LTCAM during lookup, it is guaranteed to be
the highest priority match and the corresponding action can be returned immediately yielding up to 50%
improvement in TCAM search time relative to STCAM (simple TCAM). The average improvement in
lookup time is found to be between 19% and 49% for the tests in our dataset. The distribution of rules to
the two TCAMs makes updates faster by reducing the average number of TCAM writes by up to 3.72
times (for acl3) and reducing the control-plane processing time by up to 247 times (for acl1). The
maximum reduction in control-plane processing time is observed for the ACL tests.

PC-TRIO and PC-DUOS+W (which as an extension of PC-DUOS+ to indexed TCAMs and wide
SRAMs) may be updated incrementally. The average improvements in TCAM power and lookup time
using PC-TRIO were 96% and 98%, respectively, while that using PC-DUOS+W were 71% and 76%,
respectively, relative to PC-DUOS+.

Approved for Public Release; Distribution Unlimited.
13

PC-DUOS+W performed better on the ACL datasets compared to the other types of classifiers. There
was 86% reduction in TCAM power, and 98% reduction in lookup time with PC-DUOS+W on the ACL
datasets on an average compared to PC-DUOS+. Even though PC-DUOS+W lookup performance was
better than that of PC-TRIO on three ACL tests, PC-TRIO lookup performance was quite reasonable and
in fact, using PC-TRIO, there was a reduction in TCAM power by 94% and lookup time by 97% on an
average for the ACL tests, compared to PC-DUOS+.

Therefore, we recommend PC-TRIO for packet classifiers.

Approved for Public Release; Distribution Unlimited.
14

5 REFERENCES

1. T. Mishra, S.Sahni, and G. Seetharaman, PC-DUOS: Fast TCAM Lookup and Update for Packet
Classifiers, ISCC, 2011.

2. T. Mishra, S. Sahni and G. Seetharaman, PC-DUOS+: A TCAM Architecture for Packet

Classifiers, http://www.cise.ufl.edu/~sahni/papers/pcduosplus.pdf, 2010.

3. T. Mishra, S. Sahni and G. Seetharaman, PC-TRIO: An Indexed TCAM Architecture for Packet
Classifiers, http://www.cise.ufl.edu/~sahni/papers/trio.pdf, 2011.

4. M. Akhbarizadeh and M. Nourani, Efficient Prefix Cache For Network Processors, IEEE Symp.

on High Performance Interconnects, 41-46, 2004.

5. H. Song and J. Turner, Fast Filter Updates for Packet Classification using TCAM, Routing Table
Compaction in Ternary-CAM, GLOBECOM, 2006

6. Z. Wang, H. Che, M. Kumar, and S.K. Das, CoPTUA: Consistent Policy Table Update

Algorithm for TCAM without Locking, IEEE Transactions on Computers, 53, 12, December
2004, 1602-1614.

7. T. Mishra and S.Sahni, DUOS -- Simple Dual TCAM architecture for routing tables with

incremental update, IEEE Symposium on Computers and Communications, 2010.

8. T. Mishra and S. Sahni, CONSIST - Consistent Internet Route Updates IEEE Symposium on
Computers and Communications, 2010.

9. K. Lakshminarayan, A. Rangarajan and S. Venkatachary, Algorithms for Advanced Packet

Classification with Ternary CAMs, SIGCOMM, 2005.

10. D. E. Taylor and J. S. Turner, ClassBench: A Packet Classification Benchmark, TON, 15, 3, Jun
2007, 499-511.

11. B. Agrawal and T. Sherwood, Ternary CAM Power and Delay Model: Extensions and Uses,

TVLSI, 16, 5, May 2008, 554-564.

12. T. Mishra and S.Sahni, PETCAM -- A Power Efficient TCAM for Forwarding Tables,
http://www.cise.ufl.edu/~sahni/papers/petcam.pdf, 2010.

13. N. Muralimanohar, R. Balasubramonian and N. P. Jouppi, Optimizing NUCA Organizations and

Wiring Alternatives for Large Caches with CACTI 6.0, ISM December 2007, 3-14

14. Renesas R8A20410BG 20Mb Quad Search Full Ternary CAM.
http://am.renesas.com/products/memory/TCAM/tcam_root.jsp. Jan 2010.

http://www.cise.ufl.edu/~sahni/papers/pcduosplus.pdf
http://www.cise.ufl.edu/~sahni/papers/trio.pdf
http://www.cise.ufl.edu/~sahni/papers/petcam.pdf
http://am.renesas.com/products/memory/TCAM/tcam_root.jsp

Approved for Public Release; Distribution Unlimited.
15

15. J. B. Sulistyo, J. Perry and D. S. Ha, Developing Standard Cells for TSMC 0.25um Technology
under MOSIS DEEP Rules, Virginia Tech, Technical Report VISC-2003-01 Nov 2003.

16. J. B. Sulistyo and D. S. Ha, A New Characterization Method for Delay and Power Dissipation of

Standard Library Cells, VLSI Design 15, 3, Jan 2002, 667-678.

17. H. Noda, K. Inoue, M. Kuroiwa, F. Igaue and K. Yamamoto, A Cost-Efficient High-Performance
Dynamic TCAM With Pipelined Hierarchical Searching and Shift Redundancy Architecture,
IJSSC, 40, 1, Jan 2005, 245-253.

PC-DUOS+: A TCAM Architecture for Packet
Classifiers

Tania Banerjee-Mishra and Sartaj Sahni
Department of Computer and Information Science and Engineering,

University of Florida, Gainesville, FL 32611
{tmishra, sahni}@cise.ufl.edu

Gunasekaran Seetharaman, AFRL, Rome, NY
Gunasekaran.Seetharaman@rl.af.mil

Abstract—We propose algorithms for distributing the classifier
rules to two TCAMs (ternary content addressable memories)
and for incrementally updating the TCAMs. The performance of
our scheme is compared against the prevalent scheme of storing
classifier rules in a single TCAM in priority order. Our scheme
results in an improvement in average lookup speed by up to 49%
and an improvement in update performance by up to3.72 times
in terms of the number of TCAM writes.

Index Terms—Packet classifiers, TCAM, updates.

I. I NTRODUCTION

Internet packets are classified into different flows based on
the packet header fields. This classification of packets is done
using a table of rules in which each rule is of the form(F,A),
whereF is a filter andA is an action. When an incoming
packet matches a filter in the classifier, the corresponding
action determines how the packet is handled. For example,
the packet could be forwarded to an appropriate output link,
or it may be dropped. Ad-dimensional filterF is a d-tuple
(F [1], F [2], · · · , F [d]), whereF [i] is a range specified for an
attribute in the packet header, such as destination address,
source address, port number, protocol type, TCP flag, etc. A
packet matches filterF , if its attribute values fall in the ranges
of F [1], · · · , F [d]. Since it is possible for a packet to match
more than one of the filters in a classifier thereby resulting
in a tie, each rule has an associated cost or priority. When a
packet matches two or more filters, the action corresponding
to the matching rule with the lowest cost (highest priority) is
applied on the packet. It is assumed that filters that match the
same packet have different costs.

[4], [5] survey the many solutions that have been proposed
for packet classifiers. Among these, TCAMs have widely
been used for packet classification as they support high speed
lookups and are simple to use. Each bit of a TCAM may be set
to one of the three states 0, 1, andx (don’t care). A TCAM is
used in conjunction with an SRAM. Given a rule (F , A), the
filter F of a packet classifier rule is stored in a TCAM word
whereas and actionA is stored in an associated SRAM word.
All TCAM entries are searched in parallel and the first match
is used to access the corresponding SRAM word to retrieve

This material is based upon work funded by AFRL, under AFRL Contract
No. FA8750-10-1-0236.

the action. So, when the packet classifier rules are stored in
a TCAM in decreasing order of priority (increasing order of
cost), we can determine the action in one TCAM cycle.

We present a TCAM architecture, update algorithms and a
TCAM lookup mechanism in this paper for packet classifiers.
We begin in Section II by reviewing the background and
related work. In Section III we describe our scheme of storing
packet classifiers in TCAMs. An experimental evaluation
of our scheme is done in Section IV and we conclude in
Section V.

II. BACKGROUND AND RELATED WORK

PC-DUOS+ is an extension of PC-DUOS (Packet Classifier
- DUOS) proposed by us in [14]. PC-DUOS+ and PC-DUOS
use an architecture as shown in Figure 1, which was first
proposed for DUOS [9] for packet forwarding. There are two
TCAMs, labeled as the ITCAM (Interior TCAM) and the
LTCAM (Leaf TCAM). DUOS also employs a binary trie in
the control plane of the router to represent the prefixes in
the forwarding table. The prefixes found in the leaf nodes of
the trie are stored in the LTCAM, and the remaining prefixes
are stored in the ITCAM. The prefixes stored in the LTCAM
are independent and therefore at most one LTCAM prefix
can match a specified destination address. Hence the LTCAM
doesn’t need a priority encoder. Prefix lookup works in parallel
on both the TCAMs. If a match is found in the LTCAM
then that is guaranteed to be the longest matching prefix and
the corresponding next hop is returned. At the same time the
ongoing lookup process on the ITCAM (which takes longer
due to the priority resolution step) is aborted. Thus, if a match
is found on the LTCAM, the overall lookup time is shortened
by about 50% [1]. The logic on the final stage in Figure 1 that
chooses between the two next hops could be moved ahead
and placed between the TCAM and SRAM stages. In that
case, the logic receives one “matching index” input from the
LTCAM and another from the ITCAM. If a match is found in
the LTCAM, the index from LTCAM input is used to access
the LSRAM, otherwise, the ITCAM index is used to access
the ISRAM. Further, if a match is found in the LTCAM, the
ITCAM lookup is aborted.

The memory management schemes used in DUOS are
highly efficient. The ITCAM needs to store the prefixes in

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
16

APPENDIX A:

mailto:Gunasekaran.Seetharaman@rl.af.mil

decreasing order of length, for example, so that the first
matching prefix is also the longest matching prefix. DUOS
[9] uses a memory management scheme (Scheme 3, also
known as DLFSPLO), which initially distributes the free

Input

address
destination

(100.24.1.7)

P
R

IO
R

IT
Y

 E
N

C
O

D
E

R

ITCAM

Index

ISRAM Nexthop

Nexthop

Index

LTCAM LSRAM

Nexthop

Fig. 1. Dual TCAM Architecture

space availablein a TCAM between blocks of prefixes (of
same length) in proportion to the number of prefixes in a
block. A free slot needed to add a new prefix is moved from
a location that requires the minimum number of moves. As a
prefix is deleted, the freed slot is added to a list of free spaces
for that prefix block. Each prefix block has its own list of
free slots. With this scheme even with 99% prefix occupancy
in the TCAM and 1% free space, the total number of prefix
moves using DLFSPLO is at most 0.7% of the total number
of prefix insertsand deletes.

To support lock-free updates, so the TCAMs can be up-
dated without locking them from lookups, DUOS implements
consistent update operations that rule out incorrect matches or
erroneous next hops during lookup. For consistent updates, it
is assumed that:

1) Each TCAM has two ports, which can be used to
simultaneously access the TCAM from the control plane
and the data plane.

2) Each TCAM entry/slot is tagged with a valid bit, that
is set to 1 if the content for the entry is valid, and to
0 otherwise. A TCAM lookup engages only those slots
whose valid bit is 1. The TCAM slots engaged in a
lookup are determined at the start of a lookup to be
those slots whose valid bits are 1 at that time. Changing a
valid bit from 1 to 0 during a data plane lookup does not
disengage that slot from the ongoing lookup. Similarly,
changing a valid bit from 0 to 1 during a data plane
lookup does not engage that slot until the next lookup.

Additionally, the availability of the function
waitWriteV alidate is assumed which writes to a TCAM
slot and sets the valid bit to 1. In case the TCAM slot being
written to is the subject of an ongoing data plane lookup,

the write is delayed till this lookup completes. During the
write, the TCAM slot being written to is excluded from
data plane lookups. Similarly, the availability of the function
invalidateWaitWrite, is assumed. This function sets the
valid bit of a TCAM slot to 0 and then writes an address to
the associated SRAM word in such a way that the outcome
of the ongoing lookup is unaffected. All these assumptions
for DUOS are also made by our PC-DUOS and PC-DUOS+
architectures.

The problem of incorporating updates to packet classifiers
stored in TCAMs has been studied in [6] and [2]. The authors
in [6] present a method for consistent updates when the
classifier updates arrive in a batch. All deletes in an update
batch are first performed to create empty slots in the TCAM.
Then the relative priority of the relevant rules (for example
rules overlapping with a new rule being inserted) is determined
and the existing rules are moved accordingly to reflect any
change in priority ordering as the entire batch of updates is
applied. Following the ordering of existing rules, new rules are
inserted in appropriate locations. A problem with the algorithm
of [6] is that it performs the deletes in the update batch first.
This could lead to temporary inconsistencies in lookup [10].

Given a packet classifier, a naive approach is to store it in
a TCAM by entering each rule sequentially as they appear
in the classifier and distribute all the empty slots between
rules. As mentioned in [2], this approach could lead to high
power consumption during look as the whole TCAM has to be
searched including the empty entries. On the other hand, if the
empty entries are kept together at the higher addresses of the
TCAM, then those may be excluded from lookups. However,
if the empty spaces are kept at one end of the TCAM, then
it would require a large number of rule moves to create an
empty slot at a given location. Specifically, all the rules in the
TCAM, below the slot to be emptied must be moved below.

We use a simple TCAM (STCAM) architecture for perfor-
mance comparison. The STCAM is a modification over the
naive TCAM in that the rules are grouped by block numbers,
which reduces the number of required moves when a free slot
is needed. The required number of moves is now bounded by
the total number of blocks. The block numbers are assigned
to the rules using the algorithm presented in [2], based on a
priority graph. In this method a subset of the rules is identified
such that within the subset, each rule overlaps with every other
rule. Each rule in the subset is assigned a different block
number based on its priority. Block numbers can be reused
for different non-overlapping rule subsets. Thus, rules with the
same block number are all non-overlapping or independent.
Two rules are independent iff there is no packet that matches
both the rules. Filters are grouped based on their assigned
block numbers. The group with the lowest block number is
of highest priority and these rules are stored in the lowest
memory addresses of the TCAM.

Song and Turner [2] describe a fast TCAM update scheme
on packet classifiers. In their method, the classifier rules are
entered arbitrarily in the TCAM and are not arranged accord-
ing to decreasing order of priority. They ensure that the action
corresponding to the highest priority matching rule is returned
by performing multiple searches on the TCAM. Specifically,

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
17

they assign a priority (which we call block number here) to
each rule and encode the block number as a TCAM field
and allow the highest priority TCAM match to be found
using log

2
n searches, wheren is the total number of block

values assigned in the classifier. The highest priority match
corresponds to the rule with the minimum block number. The
rule and its assigned block number are entered in the TCAM.
Even though this method does not incur TCAM writes due
to rule moves for maintaining consistent block numbers for
overlapping rules or to create an empty slot at the right place
for inserting a new rule, this method involves a number of
TCAM writes as the assigned block numbers of rules change
due to inserts or deletes. Moreover, lookup speed is slowed
down since multiple TCAM searches are required and these
searches cannot be pipelined as they take place on the same
TCAM.

PC-DUOS+ differs from PC-DUOS in the way the selection
of rules for the LTCAM is made. PC-DUOS filters theleaves
of leavesset in a multi-dimensional trie to keep only the
highest priority rules among all overlapping rules. The rules
in the filtered leaves of leaves set is then entered in the
LTCAM. PC-DUOS+, on the other hand, uses a priority graph
to select rules for the LTCAM. PC-DUOS+ also uses enhanced
algorithms for ITCAM rule insertion which require fewer
moves to rearrange rules for priority based adjustments.

III. PC-DUOS+: METHODOLOGY

PC-DUOS+ uses the two TCAM architecture used in PC-
DUOS[14] and DUOS[9] (Figure 1). During lookup, the
LTCAM and ITCAM are searched in parallel using the packet
header information. If a match is found in the LTCAM, the
ongoing search in the ITCAM is aborted. When the ITCAM
search is aborted, lookup time is reduced by about 50%[1],
because the LTCAM has no priority encoder. For this lookup
strategy to yield correct results, the following requirements
must hold:

R1) No packet is matched by more than one rule in the
LTCAM.

R2) When a packet is matched by a rule in the LTCAM,
the matched rule must be the highest priority match-
ing rule.

The algorithms used for storing and updating rules in the
TCAMs are discussed in detail below.

A. Storing Rules in TCAMs

Figure 2 shows the overall flow of storing rules in the
ITCAM and the LTCAM. The first phase involves creating
a priority graph and a multi-dimensional trie for the rules in
the classifier. This is further discussed in Section III-A1. The
second phase in our methodology consists of identifying a
set of highest priority independent rules and storing these in
the LTCAM, which is discussed in Section III-A2. In the third
phase, the remaining rules are stored in the ITCAM in priority
order. This is discussed in Section III-A3.

multi−dimensional trie

Packet Classifier, Empty TCAMs

Create priority graph and

Store some rules in LTCAM

Store remaining rules in ITCAM

Filled TCAMs

Fig. 2. Flow diagram for storing packet classifiers in TCAMs

1) RepresentingClassifier Rules:The classifier rules are
represented in a priority graph as well as in a multi-
dimensional trie. A priority graph contains one vertex for each
rule in the classifier. There is a directed edge between two
vertices iff the two rules overlap and the direction of the edge
is from the higher to the lower priority rule. Two rules overlap
iff there exists at least one packet that matches both the rules.

Each dimension in a multi-dimensional trie represents one
field of the rule. The fields in a filter rule appear in the
following order in the trie:<destination, source, protocol,
source port range, destination port range>. We assume that
the destination and source fields of the filters are specified
as prefixes. So, these are represented in a trie in the standard
way with the left child of a node representing a 0 and the right
child a 1. Ranges may be handled in one of many ways. In
this paper, we use the DIRPE scheme of [3] that requires the
use of a multi-bit trie. Our methodology may also be applied
to other range encoding schemes, such as those in [12] and
[13].

2) Storing rules in the LTCAM:Recall that two rules are
independent iff no packet is matched by both rules. For the
LTCAM we are interested in identifying the largest set of rules
that are pairwise independent. Note that every independent
rule set satisfies the first requirement (R1) for a lookup to
work correctly. To find an independent rule set in acceptable
computing time, we relax the “largest set” requirement and
instead look for a large set of independent rules. It is easy
to see that the rules in the vertices of the priority graph with
in-degree 0 are independent rules. Further, these rules are also
the highest priority rules among all rules that overlap with
them. This satisfies the second requirement (R2) for a lookup
to work correctly. Hence, we choose to enter these rules into
the LTCAM. All remaining rules are entered in the ITCAM.

3) Storing rules in the ITCAM:The rules to be stored in
the ITCAM, are assigned block numbers. The priority graph
is used to assign block numbers as follows [2]. All vertices,
to which there are no incoming edges, are assigned a block
number of 1. All children of the vertices with block number
1 are assigned a block number of 2 and so on. Aparent of a

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
18

vertexv in the priority graph, is a vertex from which there is
an incoming edge to v. Similarly, a child of v is a vertex to
which there is an out-going edge fromv. Thus a child of any
vertex is assigned a block number that is at least one more
than that of this vertex. Apath in a graph is a sequence of
vertices such that from each vertex there is an edge to the
next vertex in the sequence. A non-trivial path is a path with
at least two vertices. Anancestor of a vertexv is a node that
has a non-trivial path tov. A descendant of v is a vertex
to which there is a non-trivial path fromv. In other words, a
descendant ofv hasv as one of its ancestors.

In the block assignment scheme, rules that are assigned
the same block number are independent and hence grouped
together in a single block. These blocks are entered in the
TCAM in increasing order of the assigned block numbers.
In our implementation, each vertexv in the priority graph
has a fieldv→hpri which stores a pseudo priority associ-
ated with the block number of the vertex. Whilev→hpri
equals the block number ofv in PC-DUOS, in PC-DUOS+,
priorityMap(v→hpri) is the block number for rulev. When
the priority graph is constructed for the initial classifier,
v→hpri equals the block number ofv and priorityMap is
an identity mapping. However, as we insert and delete rules,
v→hpri may no longer equal the block number ofv (in fact,
v→hpri may not be an integer) andpriorityMap is no longer
an identity mapping.

To build the priority graph, we first iterate over the classifier
rules and for each rule, identify all rules that overlap with it. A
trie-based algorithm to determine the rules that overlap a given
rule is presented in Figure 3. For simplicity, the algorithm
is specified for the case when rules have only two fields -
destination and source prefix. Its extension to rules with a
larger number of fields is straight forward. Given a rule, the
algorithm first extracts the values for the different fields for
the rule, and traverses the trie along these prefix paths until all
overlapping rules are found. For each overlapping rule found, a
directed edge is added to the priority graph. The priority graph
is a directed acyclic graph and block numbers are assigned
using an iterative process.

Even though in the worst case all the trie nodes have
to be explored for finding overlapping rules (this happens,
for example, whenruleInstance is the root of the multi-
dimensional trie and thus represents a classifier rule with wild-
carded fields) this approach works well on average and, in
fact, it makes the computation in PC-DUOS+ scalable during
the initial setup as well as while processing the updates. In
contrast, the simple approach of iterating over all the rules
of the classifier to compare overlaps and priorities, quickly
becomes a performance bottleneck as the number of rules in
the classifier increases.

B. Update algorithms

When an update request is received, the priority graph
and the multi-dimensional trie are updated. Section III-B1
describes how this is done. Next the existing ITCAM rules that
overlap with the rule involved in the update arerearranged
to ensure that the highest priority rules are still matched after

Algorithm: findOverlappingRules(ruleInstance)
Inputs:
ruleInstance: a trie node representing a rule and storing its
action.
Output:
list: a list of rules overlapping with the input rule

get destination prefixDest, source prefix Src from
ruleInstance

nodeD = root of destination trie;
for (i=0; i<length of destination prefix; ++i)

if (root of a source trie is stored at nodeD)
nodeS = root of source trie
for (j=0; j<length of source prefix and nodeS; ++j)

if nodeS stores a ruleR
appendR to list.

branchBitS =Src[j];
nodeS = nodeS→child[branchBitS];

endfor
if (nodeS != NULL) then

visit all nodes in subtrie rooted at nodeS
if (any node stores a ruleR)

appendR to list.
endif

endif
endif
branchBitD =Dest[i];
nodeD = nodeD→child[branchBitD];

endfor
visit all nodes in subtrie rooted at nodeD
if (any node stores a ruleR)

appendR to list.
endif

Fig. 3. Find overlapping rules by trie traversal

the update is complete. Rules may also be moved from the
ITCAM to the LTCAM or vice versa as a result of the updates.
This step is discussed in Section III-B2.

1) Update the priority graph and the trie:This is the
first step in the update process. The multi-dimensional trie
is updated with the help of functions as described in Figure 4.

Function: Trie.insert
Trie.insert(rule, action);
This function inserts a rule and its action into the control-
plane multi-dimensional trie.
Function: Trie.delete
Trie.delete(rule);
This function deletes a rule from the control plane trie.
Function: Trie.change
Trie.change(rule, action);
This function changes the action associated with a prefix.

Fig. 4. Table of control-plane trie functions

The priority graph is updated next. If the update is a delete
request, then the vertex for the rule to be deleted (together
with incident edges) is removed from the priority graph and
rules corresponding to vertices whose in-degree becomes 0 are
moved from the ITCAM to the LTCAM. Each rule that is to

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
19

(a) Original graph

3

4 4 4

5 5

3

4

4 4

4

5 5

3

2 3

4 4

4

4

55

4

55

3.5

3

4 44

5

6 6

(c) Adjusted descendants (d) Adjusted ancestors

(b) Added new vertex v

(e) Created new block for v

Fig. 5. Settinghpri on a new vertex in a priority graph

be so moved is first inserted into the LTCAM and then deleted
from the ITCAM using insert/delete procedures described in
Sections III-B2b and III-B2d. If the update is an insert, then a
new vertex is added to the priority graph. All rules overlapping
with the new rule are found, and a new edge is added for each
overlapping rule. Overlapping rules are identified by traversing
the trie using the algorithm of Figure 3. After adding a new
vertexv to the priority graph,v→hpri is calculated. Ifv has
no incoming edgesv→hpri is set to 1 and the new rule inv is
placed in the LTCAM. Otherwise,v is placed in the ITCAM.

If v is placed in the ITCAM thenv→hpri is set either
by movingv’s ancestors upward or its descendants downward
or by moving neither descendants nor ancestors. These three
possibilities are shown in Figures 5(c), (d) and (e). Figure 5(a)
depicts a portion of the original graph. The number next to
each vertex shows thehpri value on that vertex. The newly
added vertexv is colored black in Figure 5(b). In Figure 5(c),
v→hpri is set based onv’s parenthpri so thatv will be placed
in the ITCAM block below that of its parent. Note that the
hpri of v’s child must be updated too and the child is moved
one block downward, thus avoidingv and its child being
placed in the same ITCAM block. Such updates propagate
to all descendants. In Figure 5(d),v→hpri is set based on the
hpri of v’s child so thatv will be placed in the block above
that of its child. Thehpri of v’s parent is updated so that the
parent is moved one block upward and these updates propagate
to all ancestors. Figure 5(e) shows a case where a new block
is inserted between the parent block and the child block, and
the hpri associated with the new block is 3.5. Thusv→hpri
is set to 3.5, and neither the descendants nor the ancestors of

the new block are moved.

Figure 6 shows the algorithm to setv→hpri. Figure 7
shows how the descendants are moved downwards. In Fig-
ure 6, we first calculate the number of moves to setv→hpri
when descendants are moved downwards (childMoves) and
when the ancestors are moved upwards (parentMoves). These
calculations are based on the flow diagram in Figure 8(b).
Supposev→hpri is set by moving descendants downwards,
and the block number corresponding to the maximumhpri of
the parent vertices isB. Thenv is assigned to a blockB + 1
and no child vertex ofv can be in a block lower thanB + 2.
If a child vertex is found to be in a block lower thanB + 2
by mapping the child’shpri, then that child must be moved
to an appropriate block, which could be either blockB+2 or
some higher block such asB + 3, B + 4, etc. Such updating
happens recursively for all descendants as shown in Figure 7.
The algorithm to setv→hpri by moving ancestors upwards
is similar.

Moving either the descendants or the ancestors to adjust
priorities is computationally intensive, with a worst case
complexity of O(NL), whereN is the number of vertices
in the priority graph andL is number of vertices on the
longest path.L is also referred to as themaximum chain
length of the priority graph. The worst case happens when
each vertex is connected to every other vertex. In that case, to
find the minimum and the maximum hpri (the first two lines
of Figures 6 and 7) the algorithms must touch all the vertices.

Calculating the number of moves is a compute intensive
task too, with the same complexity ofO(NL) since the
same algorithms are used, without actually moving the rules.

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
20

Algorithm: insertRule(v)
Input: Rule stored in vertexv in the priority graph.

1 maxP = max(parent→hpri) from ITCAM parents ofv;
2 minC = min(child→hpri) from children ofv;
3 // Default values are maxP:−1 and minC: infinity
4 childMoves = parentMoves = 0;
5 if (!(maxP< minC)) then
6 compute childMoves to push descendants down and
7 parentMoves to push ancestors up according to Figure 8(b).
8 endif
9 // Get blockBC corresponding to minC. Ifv has no outgoing
10 // edges, thenBC − 1 is the last block in the ITCAM.
11BC = priorityMap(minC);
12BP = priorityMap(maxP);
13if (v has a parent vertex in the ITCAMand
14 parentMoves< childMovesand
15 childMoves> 50) then // Move ancestors upwards
16 targetBlock =BC − 1;
17 if (BC − 1== BP and parentMoves> 50) then
18 targetBlock = create a new block betweenBP andBC.
19 endif
20 // Function reversePriorityMap returnspseudo-priority
21 // corresponding to targetBlock.
22 v→hpri = reversePriorityMap(targetBlock);
23 assign slot in targetBlock forv;
24 if (!(v→hpri > maxP))begin
25 sort the parent vertices in a decreasing order of hpri;
26 for each parent ofv
27 if (!(v→hpri > parent→hpri))
28 if (parent is in ITCAM) moveParentUp(parent);
29 endif
30else// Move descendants downwards
31 // Initially, the highest priority rules in ITCAM havehpri
32 // set to2. So, targetBlock is initialized to that block.
33 targetBlock = priorityMap(2);
34 if (v has no parent in the ITCAM)then
35 if (there exists a blockBC − 1) then
36 targetBlock =BC − 1;
37 else if (childMoves> 50) then
38 targetBlock = create a new block on top ofBC.
39 endif
40 else
41 targetBlock =BP + 1;
42 if (BP + 1 == BC and childMoves> 50) then
43 targetBlock = create a new block betweenBP andBC.
44 endif
45 endif
46 v→hpri = reversePriorityMap(targetBlock);
47 assign slot in targetBlock forv;
48 if (!(v→hpri < minC)) begin
49 sort the descendant vertices in an increasing order of hpri
50 for each child ofv
51 if (!(v→hpri < child→hpri)) moveChildDown(child);
52 endif
53endif
54 // Process nodeList from moveParentUp/moveChildDown
55for eachw in nodeList starting from the last one
56 slotW = current TCAM slot occupied by the rule ofw;
57 write the rule ofw in the assigned slot;
58 free slotW;
59endfor
60 write the rule ofv in the assigned slot.

Fig. 6. Insert a rule in the ITCAM

Algorithm: moveChildDown(child)
Input: Rule stored in vertex ‘child’ in the priority graph.

mP = find max(parent→hpri) from all parents of child
mC = find min(child→hpri) from all children of child
if (mP< child→hpri and child→hpri < mC) return ;
block = priorityMap(maxP) + 1;
child→hpri = reversePriorityMap(block);
assign a slot in block for child; append child to nodeList;
if (!(child→hpri < mC)) begin

sort the descendant vertices in an increasing order of hpri
for each childi of child

if (!(child→hpri < childi→hpri)) moveChildDown(childi);
endif

Fig. 7. Moving descendants downward in the ITCAM

So, to avoid a performance bottleneck, we perform these
calculations selectively. Further, a maxLimit is set so that
as soon as the number of moves exceeds maxLimit we stop
further calculations. The flowchart in Figure 8(a) shows an
unoptimized decision diagram that causes significant perfor-
mance degradation. In this case, the actual number of moves
is computed for both the cases when the descendants and the
ancestors are moved. Whichever direction results in a lower
number of moves, the priorities are adjusted for that direction.

The flowchart in the Figure 8(b) shows an optimized de-
cision diagram, that breaks up the process into three stages
and focuses on relative instead of actual number of moves. In
the first stage of this flow, we calculate childMoves which
is the number of moves needed to shift the descendants
downward, with maxLimit set to500. If childMoves is less
than 50, we go ahead and move the descendants downwards
without calculating parentMoves, which is the number of
moves required to shift the ancestors upward. However, if it
takes more than50 childMoves, then we are at the second stage
where the parentMoves are calculated with maxLimit set to
(childMoves+100), which could potentially be a number up to
600. If parentMoves is less than childMoves at this stage, then
we move the ancestors upwards. If parentMoves is more than
500 then we are at the third stage where the exact number of
childMoves is first calculated (by setting maxLimit to infinity)
and then a relative number of parentMoves is calculated
(by setting maxLimit to (childMoves+100)). Descendants
are moved downwards if childMoves is smaller, otherwise
ancestors are moved upwards. This flow gives an acceptable
update performance on our datasets, since very few updates
involve over500 moves in either or both the directions.

We use another optimization in the ITCAM rule placement
strategy, where a new block is inserted into the TCAM
between two existing blocks as shown in Figure 5(e) and on
lines 18 and 43 of Figure 6. If the maximum block number of
the parents ofv is B and the minimum block number of its
children isB+1, then instead of moving all children in block
B+1 to B+2 or all parents in blockB to B−1, a new block
is created in the ITCAM between the blocksB andB+1 and
v→hpri is set to the average of the hpri-s of the two blocks
(i.e. (hpri of(B) + hpri of(B+1)) /2). The new rule for v is
then added to the new block. If the new rule is to be added on

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
21

adjust ancestors

Yes

Set maxLimit to infinity

compute childMoves

compute parentMoves

parentMoves >
childMoves ?

adjust descendants

No

(a) Inefficient flow

Move descendants50 ?

500 ?

Yes

Yes

No

No

maxLimit = 500

Set maxLimit to infinity

Compute childMoves

maxLimit = childMoves + 100

Compute parentMoves

Compute parentMoves

Compute childMoves
maxLimit = childMoves + 100

childMoves >

parentMoves >
the ancestors accordingly

Compare with childMoves and
move the descendants or

(b) Efficient flow

Fig. 8. Decisiondiagrams for priority adjustment of descendants vs. ancestors

top of the topmost ITCAM block as on line 38 of Figure 6,
then v→hpri is set to (1 + hpri of(B) /2). Recall that the
vertices with in-degree 0 are assigned an block number 1. So,
we add1 in this expression to ensure that no hpri becomes
less than 1. Addition of a new block must be done judiciously,
since it requires an extra move while bringing in a free slot to
a particular blockB when the newly inserted block is between
the free space pool andB. So, we add new blocks only if the
number of moves was calculated to be over50. Figure 5(e)
shows thatv→hpri for the new vertexv is set to3.5. A new
block is added between the parent and the child blocks in this
case.

For consistent updates [10], [11], if the vertices are to
be moved downwards, then the moves may be executed in
increasing order of priority starting from the lowest priority
rule and after all the descendants are moved, the new rule
is added. If the vertices are moved upwards, then the moves
may be executed in decreasing order of priority, starting from
the highest priority rule. After all the ancestors are moved,
the new rule is added. Lines 55-59 of Figure 6 ensure that
nodes are moved to their assigned slots in the reverse order
of visiting them. Thus, the node last visited for updatinghpri
is the first to be moved to its assigned slot. This preserves
update consistency for both the cases when the descendants
are moved downwards and the parents upwards. The new rule
is added at the end (Line 60).

2) Updating the TCAMs:TCAM updates are generated
after updating the priority graph. Rules may be moved from
the ITCAM to the LTCAM or vice versa or they may be moved
within the ITCAM for rearrangement of overlapping rules. To
insert or move a rule in a TCAM we need a free slot at an

appropriate location. This slot can be obtained efficiently using
memory management algorithms. In particular, the memory
management schemes from DUOS may be used here. For the
ITCAM of PC-DUOS+ as well as PC-DUOS, we implemented
the DLFS PLO scheme, as its the most efficient scheme
known to us for moving free slots to a desired location in a
TCAM. In the DLFS PLO initial rule placement scheme, free
slots are kept inthe region between two blocks. Additionally,
there may be free slotswithin a block. So a list of free
slots is maintained for each block on the TCAM, with the list
being empty initially. As rules are deleted from a block, the
freed slots are added to the list for that block. The memory
management scheme for LTCAM is relatively simple as all
the rules in the LTCAM are independent so a new rule
can be inserted anywhere in the TCAM. However, we still
need to locate a free slot. The LTCAM memory management
algorithm of DUOS creates a linked list of the free slots. When
a free slot is needed, a slot is obtained from the head of the free
slot list. PC-DUOS+, as well as PC-DUOS, uses the memory
management algorithm for DUOS for its LTCAM [9].

Since the blocks grow both ways, up as well as down, PC-
DUOS+ has a modified initial rule placement policy as shown
in Figure 9 where 25% of the free slots (represented by white
blocks) are placed on the top of the TCAM (that is, covering
the lowest addresses) and another 25% are kept at the bottom
of the TCAM (covering the highest addresses). The remaining
50% of the free slots are distributed to the region between the
blocks in proportion to the number of rules in a block.

a) ITCAM.insert: :
To insert a new rule in the ITCAM, a free slot is first made
available at the desired block. A free slot may be present in

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
22

�����������
�����������
�����������

�����������
�����������
�����������

�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������

�����������
�����������
�����������

�����������
�����������
�����������

0

N

Fig. 9. Initial ITCAM layout

the same block inwhich case no moves are needed to get it
from the free slot list of the block. If there is no free slot in the
block, then a free slot may be obtained from the inter-block
region on the top or the bottom of the block. No moves are
needed in this case too. If there is no free slot in the inter-
block region adjacent to the block, then a free slot is moved
from the nearest neighboring block where its available.

To insert a new block between two blocks in the ITCAM,
it is first checked if there is a free slot between the top and
bottom blocks. If there are free slots in the region between
the top and the bottom blocks, then the rule in the new block
is inserted there in such a way that there are some free slots
above and below the new block. Otherwise, free slots for the
new block are moved in from the nearest neighboring block
that has free slots.

b) ITCAM.delete::
After deleting the vertex corresponding to the rule in the
priority graph, the valid bit on the corresponding TCAM slot
is set to 0. DLFSPLO frees up the block if the rule deleted is
the last rule in the block. Otherwise, the freed slot is prepended
to the head of the list of free slots in the block.

c) ITCAM.change::
Suppose the specified change is with respect to the fields of a
rule, then such a change is implemented as an insert followed
by a delete. The insert adds the changed rule to the same
block as the old rule, while the delete removes the old rule
from this block. If the change is in the priority of the rule,
then, we revisit all the incoming and outgoing edges of the
corresponding vertexv in the priority graph and reverse the
edges appropriately to maintain the edge direction from the
higher to the lower priority rule. Then the block number is
freshly calculated forv, and the rule is moved to a block at
a higher address (if the priority was lowered) or to a block at
a lower address (if the priority of the rule was increased) in
the ITCAM. If the vertexv does not have any incoming edge
following the update, it is moved to the LTCAM.

d) LTCAM.insert, LTCAM.delete and LTCAM.change::
To insert a new rule in the LTCAM, a free slot is obtained
from the head of the LTCAM free slot list. If a rule is deleted

from the LTCAM, then the valid bit of the slot is set to 0 and
the freed up slot is prepended to the head of the free slot list.

For incorporating a changed rule, if the change is with
respect to the fields of a rule, then the changed rule is simply
inserted in the LTCAM and the old rule deleted. If the change
is in the priority of a rule in such a way that the corresponding
vertex now has an incoming edge, then the rule is moved to
the ITCAM. Otherwise, if the rule continues to be the highest
priority rule among all overlapping rules even after the change,
then nothing needs to be done.

IV. EXPERIMENTAL RESULTS

The experimental setup is first described in Section IV-A.
The results obtained for lookup and update performance are
described in Sections IV-B and IV-C.

A. Setup

We programmed the lookup and update algorithms for
STCAM, PC-DUOS and PC-DUOS+ in C++ and compared
their performance on an x86 Linux box with a 64-bit, 1.2GHz
CPU. We generated test data using ClassBench [7]. Each
dataset was generated using one of the seeds provided in Class-
Bench. We randomly marked some of the rules in a dataset
for insertion and some others for deletion. The rules marked
for insertion were removed from the dataset to arrive at the
initial configuration for the classifier. A random permutation of
the removed rules (i.e., those marked for insertion) together
with those marked for deletion define the update sequence.
Figure 10 describes the data sets generated in this way using
ClassBench. The first and second columns in this figure give
the indexes and names of the classifiers, the third column
shows the seed files in ClassBench from which these tests
were derived, the fourth column shows the number of rules
in the initial configuration of a classifier, and columns five to
seven give the number of insert and delete operations in the
update sequence. We used 12 seed files based on access control
lists (acl), firewalls (fw) and IP chains (ipc) to generate the
13 classifiers. Out of these 13 tests, the first seven were used
in [14]. Each rule in a dataset consists of the fields: source
address, destination address, source port range, destination port
range, and protocol.

Index Datasetseedfile #Rules #Inserts #Deletes
1 acl1 acl1 seed 30075 69300 29700
2 fw1 fw1 seed 7989 28800 7200
3 ipc1 ipc1 seed 15338 34300 14700
4 acl2 acl2 seed 53970 45000 45000
5 fw5 fw5 seed 5571 45900 5100
6 acl4 acl4 seed 34254 5000 5000
7 ipc2 ipc1 seed 5165 94050 4950
8 acl3 acl3 seed 19745 2976 3124
9 acl5 acl5 seed 19492 12500 12500
10 fw2 fw2 seed 16668 15000 15000
11 fw3 fw3 seed 16841 33400 16600
12 fw4 fw4 seed 12882 10000 10000
13 ipc3 ipc2 seed 20000 15000 15000

Fig. 10. Synthetic classifiers and update traces used in the experiments

We use DIRPE [3] to store the port ranges in the TCAM.
DIRPE was implemented by using multi-bit tries for source

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
23

and destination port ranges. We assume that 36 bits are
available for encoding each port range in a rule. With this
assumption, we use strides 223333 for our experiments, which
give us minimum expansion of the rules. The stride value
223333 indicates that for a given port number (16 bits), the
root of the port range trie will use the first two bits to branch
to one of its four possible child nodes at level 1. Each node
at level 1 uses the next two bits to branch to one among its
four possible child nodes at level 2. A node at the level 2, on
the other hand, uses the next 3 bits to branch to one among
its eight possible child nodes at the level 3, and so on. Thus,
all the 16 bits (2 + 2 + 3 + 3 + 3 + 3 = 16) are used to
traverse the trie and arrive at the last node (at the 6th level)
representing the port number.

1 2 3 4 5 6 7 8 9 10 11 12 13
0

10

20

30

40

50

60

70

80

90

100

tests

P
er

ce
nt

ag
e

of
 L

T
C

A
M

 r
ul

es

(a) Percentage of rules in the LTCAM

1 2 3 4 5 6 7 8 9 10 11 12 13
0

5

10

15

20

25

30

35

40

45

50

tests

Lo
ok

up
 ti

m
e

im
pr

ov
em

en
t (

%
)

(b) Percentage of improvement in lookup time

Fig. 11. Number of rules in the LTCAM and improvement in lookup time
relative to STCAM

We compare our results with those from a single TCAM
setup (STCAM) as is commonly used today for packet clas-
sification. In this setup, all rules are entered into the TCAM
in priority order. The ordering is needed only for rules that
overlap. If two rules do not overlap, their relative ordering
does not matter. We use a priority graph for the whole set
of rules to track the block numbers of the rules as well as
to compute adjustments to block numbers as new rules are
inserted. The memory management scheme DLFSPLO is
used for the STCAM to allot a free slot for rule insertion

or to manage a freed up slot following rule deletion. We do
not compare PC-DUOS+’ update performance with that of
the work in [2], since PC-DUOS+’ lookup performance is far
superior to the worst case of [2], which is at least 4 times
slower in the worst case, on our datasets (obtained as logarithm
of the number of blocks).

We analyze the results based on two perspectives – im-
provement in lookup performance and improvement in update
performance.

B. Lookup Performance

Recall that during a lookup, if a match is found in LTCAM
of PC-DUOS+ then the corresponding action is returned faster.
Figure 11(a) shows the percentage of rules that are entered in
the LTCAM of PC-DUOS+. The graph shows that for two tests
1 (acl1) and 9 (acl5), over 99% of the rules are in the LTCAM.
On the other hand, for test 2 (fw1), about 39% of the rules are
in LTCAM. Having a large number of rules in the LTCAM
makes the probability of finding a match in the LTCAM,
higher. We computed the overall improvement in lookup time
using the lookup traces generated using ClassBench. Each
lookup trace had about 100,000 packet headers. Figure 11(b)
shows the improvement in lookup time. Since the tests 1 (acl1)
and 9 (acl5) had 99% of their rules in the LTCAM, almost all
the lookups found a hit in the LTCAM, and consequently,
the improvement in average lookup time on these tests was
almost 50%. On the other hand, the test fw1 had least hits
in the LTCAM, and showed an improvement of about 19%
in the average lookup time. Figure 12 presents the details
on the number of rules in the ITCAM and LTCAM and
the percentage improvement in lookup performance. The first
three columns give the dataset index, its name and the number
of rules respectively. The fourth and fifth columns give the
number of rules entered in the ITCAM and LTCAM, respec-
tively. The sixth and seventh columns give, respectively, the
number of lookups performed and the percentage improvement
in average lookup time.

Index Dataset #Rules #ITCAM #LTCAM #Lookups %Improve
1 acl1 30075 305 29731 120301 49.6
2 fw1 7989 4885 3068 103857 19.2
3 ipc1 15338 3504 11834 107618 40.6
4 acl2 53970 8875 45095 107940 42.6
5 fw5 5571 2689 2796 105430 30.8
6 acl4 34254 5882 28372 103104 41.1
7 ipc2 5165 1476 3689 98136 38.7
8 acl3 19745 6737 13007 102851 31.4
9 acl5 19492 260 19209 97460 49.4
10 fw2 16668 4739 11929 100008 40.6
11 fw3 16841 5688 10986 103794 33
12 fw4 12882 5004 7878 103266 20.2
13 ipc3 20000 8027 11973 100163 34.9

Fig. 12. Number of rules in ITCAM and LTCAM of PC-DUOS+ and
improvement in lookup time relative to STCAM

C. Update Performance

Figure 13 shows the number of TCAM writes needed to
process the test update sequence by PC-DUOS+, PC-DUOS
[14] and STCAM, normalized with respect to that of PC-
DUOS+. A noticeable improvement in the number of writes

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
24

1 2 3 4 5 6 7 8 9 10 11 12 13
0

1

2

3

4

tests

T
C

A
M

 w
rit

e
ra

tio

PC−DUOS+
PC−DUOS
STCAM

Fig. 13. Number of TCAM writes with respect to PC-DUOS+

1 2 3 4 5 6 7 8 9 10 11 12 13
10

−1

10
0

10
1

10
2

10
3

tests

N
or

m
al

iz
ed

 T
im

e

PC−DUOS+
PC−DUOS
STCAM

Fig. 14. Run time normalized with respect to PC-DUOS+

is observed withrespect to STCAM for almost all the tests
except for tests 9 (acl5) and 13 (ipc3). Test 8 (acl3) requires
up to 3.72 times more writes using an STCAM compared to
PC-DUOS+, while test6 (acl4) requires up to 1.5 times the
number of writes using PC-DUOS versus PC-DUOS+.

Figure 14 shows the time taken to process the updates
by PC-DUOS+, PC-DUOS and STCAM. These times have
been normalized with respect to PC-DUOS+. Tests 1 (acl1)
and 9 (acl5) show the maximum improvement in runtime
compared to STCAM, the improvement being 247 and 188
times respectively. This is related to the fact that over 99%
of the rules in these tests are entered in the LTCAM of PC-
DUOS+. The LTCAM offers a fast and light-weight update
mechanism compared to the ITCAM. Note that the ITCAM
has a similar update mechanism as STCAM. In fact, from

Figures 14 and 11(a), we see that the improvement in runtime
is closely related to the number of rules that are in the LTCAM.
Figure 14 shows that compared to PC-DUOS, there is an
improvement in the runtime too, for all tests except test 1
(acl1).

From Figure 13 we observe that tests 9 (acl5) and 13 (ipc3)
need almost similar number of writes in all the three setups,
namely, PC-DUOS+, PC-DUOS and STCAM. The priority
graph for test 9 (acl5) has a very small number of edges.
In fact, the ratio of the edges to the vertices for this graph is
only 0.018 (Figure 15), and the length of the maximum chain
is just 3 (Figure 16). Thus, STCAM needs a single write for
most of the inserts. The priority graph for test 13 (ipc3), on
the other hand, is a well-structured graph with three distinct
types of vertices. The first type is for rules with very specific

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
25

1 2 3 4 5 6 7 8 9 10 11 12 13
10

−2

10
−1

10
0

10
1

10
2

10
3

tests

R
at

io
 o

f E
dg

es
 to

 V
er

tic
es

Fig. 15. Ratio of edges to vertices of graph

1 2 3 4 5 6 7 8 9 10 11 12 13
0

20

40

60

80

100

120

tests

C
ha

in
 L

en
gt

h

Fig. 16. Maximum chain length in graph before processing updates

source and destination prefix, which are specified up to 32 bits
for most cases. The second type is for rules with very specific
source address prefix, but generic destination prefix (0 or 1
bit long), and the third type is for rules with very specific
destination and generic source address prefix. As a result, the
vertices of a particular type are sparsely connected to each
other as they fail to match on the source or destination prefix
field that is specified up to 32 bits. Figure 17(a) represents
a small example of such a graph. Here the rules at the top
level are placed in block number 1, the rules at the next level
are placed in block number 2 and the rules on the last level
are placed in block number 3 in the TCAM. Now suppose an
insert request for a new rule is received. Figure 17(b) shows a
new vertex corresponding to the rule, and an updated priority
graph. As can be seen, the highest block number for a parent
is 1, and the lowest block number for a child of the new
vertex is 3, which makes the new vertex a perfect fit in block
number 2. The graph for ipc3 is close to this example, with
only 6 blocks and 100% of the rules are placed in the right
block with just one TCAM write. The fact that 100% of the
rules need just 1 TCAM write can be seen from Figure 18,

1 1

2 2

3 3

Block 1

Block 2

Block 3

(a) Initial graph

�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������

1 1

2

3 3

22

new vertex

(b) A new rule is added

Fig. 17. A small graph representing test ipc3

0 1 2 3 4 5 6 7 8 9 10 11 12 13
40

50

60

70

80

90

100

tests

P
er

ce
nt

ag
e

of
 U

pd
at

es

atmost 1 write
atmost 3 writes
atmost 10 writes

Fig. 18. Percentage of updates that require 1 write,≤ 3 and≤ 10 writes

which shows the percentage of rules requiring 1 TCAM write
and the percentage of rules requiring at most 3 and 10 TCAM
writes. Thus, ipc3 produces similar results for PC-DUOS+,
PC-DUOS as well as the STCAM. It may be noticed that a
common feature of tests acl5 and ipc3 is that both of them
have a small maximum chain length.

Figure 19 gives the average and the worst case TCAM
writes for PC-DUOS+ and STCAM. The average writes for
PC-DUOS+ are lower than the corresponding numbers for
STCAM. The worst case writes for PC-DUOS+ is lower than
those for STCAM for all tests except test 10 (fw2). The
number of TCAM writes in the worst case for PC-DUOS+
is quite high, even though we observed that more than 99%
of the rules require at most 10 writes.

Figure 20 shows the actual number of TCAM writes for
inserting or deleting rules in the different datasets and the time

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
26

Index DataSet PC-DUOS+ STCAM
#Average
TCAM
writes

#Worst
case
TCAM
writes

#Average
TCAM
writes

#Worst
case
TCAM
writes

1 acl1 1.18 31 3.31 53
2 fw1 2.07 3971 3.5 12014
3 ipc1 1.52 1900 2.25 3945
4 acl2 1.56 4274 2.28 6194
5 fw5 1.6 5167 5.84 26020
6 acl4 1.43 418 4.3 9821
7 ipc2 2.04 5152 5.27 17285
8 acl3 1.92 651 7.13 10946
9 acl5 1.12 10 1.124 11
10 fw2 1.71 9 1.98 9
11 fw3 1.55 2603 1.87 14693
12 fw4 2.83 1962 6.97 6996
13 ipc3 1 1 1.05 6

Fig. 19. Average and worst case TCAM writes for PC-DUOS+

Index Data-
Sets

PC-DUOS+ PC-DUOS STCAM

#TCAM
writes

Time(s) #TCAM
writes

Time(s) #TCAM
writes

Time(s)

1 acl1 116418 10 116393 8 327675 2469
2 fw1 76792 385 105866 928 126225 935
3 ipc1 74059 128 88736 265 110346 780
4 acl2 139397 193 148727 921 205568 1725
5 fw5 82044 969 113358 2012 297624 2702
6 acl4 14357 8 22030 31 43017 118
7 ipc2 201082 557 296663 1449 521653 4808
8 acl3 11736 16 11798 47 43494 97
9 acl5 28104 0.88 27366 1.2 28090 167
10 fw2 51250 161 51402 792 59406 488
11 fw3 77516 767 92955 1057 93426 1098
12 fw4 57822 76 69958 362 139434 378
13 ipc3 30000 217 30000 287 31647 416

Fig. 20. Total TCAM writes in PC-DUOS+, PC-DUOS and STCAM

taken to performthese updates in PC-DUOS+, PC-DUOS and
STCAM.

V. CONCLUSION

PC-DUOS+, which is an enhancement of PC-DUOS [14]
and an extension of DUOS[9], is proposed for packet classifier
lookup and update. Two TCAMs named LTCAM and ITCAM
are used. PC-DUOS+ stores the highest priority independent
rules in the LTCAM. The remaining rules are stored in the
ITCAM. During lookup for highest priority rule matching,
both the ITCAM and the LTCAM are searched in parallel.
Since the LTCAM stores independent rules, at most one rule
may match during lookup in the LTCAM and a priority en-
coder is not needed. If a match is found in the LTCAM during
lookup, it is guaranteed to be the highest priority match and
the corresponding action can be returned immediately yielding
up to 50% improvement in TCAM search time relative to
STCAM. The average improvement in lookup time is found
to be between 19% to 49% for the tests in our dataset. The
distribution of rules to the two TCAMs makes updates faster
by reducing the average number of TCAM writes by up to
3.72 times (for acl3) and reducing the control-plane processing
time by up to 247 times (for acl1). The maximum reduction in
control-plane processing time is observed for the ACL tests.

REFERENCES

[1] M. Akhbarizadeh and M. Nourani, Efficient Prefix Cache For
Network Processors,IEEE Symp. on High Performance Inter-
connects, 41-46, 2004.

[2] H. Song and J. Turner, Fast Filter Updates for Packet Classifica-
tion using TCAM, Routing Table Compaction in Ternary-CAM,
GLOBECOM, 2006

[3] K. Lakshminarayan, A. Rangarajan and S. Venkatachary, Algo-
rithms for Advanced Packet Classification with Ternary CAMs,
SIGCOMM, 2005.

[4] D. E. Taylor, Survey and taxonomy of packet classification
techniquesACM Computing Surveys (CSUR)Volume 37 Issue
3, September 2005, 238-275 .

[5] S. Sahni, K. Kim, and H. Lu, Data structures for one-
dimensional packet classification using most-specific-rule
matching, International Journal on Foundations of Computer
Science, 14, 3, 2003, 337-358.

[6] Z. Wang, H. Che, M. Kumar, and S.K. Das, CoPTUA: Consistent
Policy Table Update Algorithm for TCAM without Locking,
IEEE Transactions on Computers, 53, 12, December 2004,
1602-1614.

[7] D. E. Taylor and J. S. Turner, ClassBench: A Packet Classi-
fication Benchmark,IEEE/ACM Transactions on Networking,
Volume 15, No. 3, June 2007, 499-511

[8] T. Mishra and S.Sahni, PETCAM – A
Power Efficient TCAM for Forwarding Tables,
http://www.cise.ufl.edu/˜sahni/papers/petcam.pdf

[9] T. Mishra and S.Sahni, DUOS – Simple Dual TCAM architec-
ture for routing tables with incremental update,IEEE Symposium
on Computers and Communications, 2010.

[10] T. Mishra and S. Sahni, CONSIST - Consistent Internet Route
UpdatesIEEE Symposium on Computers and Communications,
2010.

[11] Z. Wang, H. Che, M. Kumar, and S.K. Das, CoPTUA: Consis-
tent Policy Table Update Algorithm for TCAM without Locking,
IEEE Transactions on Computers, 53, 12, December 2004,
1602-1614.

[12] H. Che, Z. Wang, K. Zheng and B. Liu, DRES: Dynamic Range
Encoding Scheme for TCAM Coprocessors,IEEE Transactions
on Computers, 57, 7, July 2008, 902-915.

[13] A. Bremler-Barr, D. Hay and D. Hendler, Layered Interval
Codes for TCAM-based Classification,INFOCOM 2009.

[14] T. Mishra, S. Sahni and G. Seetharaman, PC-DUOS: Fast
TCAM Lookup and Update for Packet Classifiers,ISCC, 2011.

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
27

http://www.cise.ufl.edu/%CB%9Csahni/papers/petcam.pdf

PC-TRIO: An Indexed TCAM Architecture for
Packet Classifiers

Tania Banerjee-Mishra and Sartaj Sahni,University of Florida, Gainesville, FL, USA
{tmishra, sahni}@cise.ufl.edu

Gunasekaran Seetharaman, AFRL, Rome, NY, USA
Gunasekaran.Seetharaman@rl.af.mil

Abstract—We propose an indexed TCAM architecture, PC-
TRIO, for packet classifiers. PC-TRIO uses wide SRAMs and
index TCAMs. On our classifier datasets, PC-TRIO on an
average reduced TCAM power by 96% and lookup time by
98%, compared to PC-DUOS+ [24] that does not use indexing
or wide SRAMs. We extend PC-DUOS+ by augmenting it with
wide SRAMs and index TCAMs using the same methodology as
used in PC-TRIO, to obtain PC-DUOS+W. On ACL datasets,
PC-DUOS+W reduced TCAM power by 86% and lookup time
by 98%, compared to PC-DUOS+.

I. I NTRODUCTION

Packet classification is a key step in routers for various
functions such as routing, creating firewalls, load balancing
and differentiated services. Internet packets are classified into
different flows based on packet header fields and using a table
of rules in which each rule is of the form(F,A), whereF is
a filter andA is an action. When an incoming packet matches
a rule in the classifier, its action determines how the packet
is handled. For example, the packet could be forwarded to an
appropriate output link, or it may be dropped. Ad-dimensional
filter F is a d- tuple (F [1], F [2], · · · , F [d]), whereF [i] is
a range specified for an attribute in the packet header, such
as destination address, source address, port number, protocol
type, TCP flag, etc. A packet matches filterF , if its attribute
values fall in the ranges ofF [1], · · · , F [d]. Since it is possible
for a packet to match more than one of the filters in a classifier
thereby resulting in a tie, each rule has an associated cost or
priority. When a packet matches two or more filters, the action
of the matching rule with the lowest cost (highest priority) is
applied on the packet. It is assumed that filters that match the
same packet have different priorities.

TCAMs are used widely for packet classification. The
popularity of TCAMs is mainly due to their high-speed table
lookup mechanism in which all the TCAM entries are searched
in parallel. Each bit of a TCAM may be set to one of the
three states 0, 1, and ’?’ (don’t care). A TCAM is used in
conjunction with an SRAM. Given a rule(F,A), the filter
F of a packet classifier rule is stored in a TCAM word and
actionA is stored in an associated SRAM word. All TCAM
entries are searched in parallel and the first match is used to
access the corresponding SRAM word to retrieve the action.
So, when the packet classifier rules are stored in a TCAM in
decreasing order of priority (increasing order of cost), we can
determine the action corresponding to the matching rule of the
highest priority, in one TCAM cycle. The main limitation of
TCAMs is that these memories are power hungry. In fact at

This material is based upon work funded by AFRL, under AFRL Contract
No. FA8750-10-1-0236.

the same access rate, a TCAM may consume 30 times more
power than an SRAM used for a software based classification
[18]. The more the number of entries in the TCAM, the
higher the power needed to perform a search. This problem is
worsened for packet classifiers since typically a classifier rule
includes port range fields that need multiple TCAM entries
per rule for representation in the TCAM. This is called range
expansion. Given that the source and destination port numbers
are represented in 16 bits, the number of TCAM entries needed
to represent a port range in the worst case is 30 corresponding
to the range[1, 216− 2]. Thus, a filter having both source and
destination port ranges set to[1, 216 − 2] undergoes a worst
case expansion of30× 30 = 900 TCAM entries.

In this paper we evaluate a triple TCAM architecture, PC-
TRIO for packet classifiers. In PC-TRIO, the TCAMs are
augmented with indexing and wide SRAMs. The technique
of indexing directly reduces the power consumption during
lookup by selectively searching only a specific TCAM parti-
tion on the second stage of the lookup. In this architecture,
port ranges are stored in wide SRAM words, rather than in
the TCAM for most of the rules, and hence do not need
multiple TCAM entries to represent them. The content of the
wide SRAM word may be processed by a specialized and
fast hardware. Finally, we present efficient incremental update
algorithms. To the best of our knowledge, this is the first work
that attempts to use an indexed TCAM architecture for packet
classifiers.

Our paper is organized as follows. Section II presents
background and related work in this area. Section III de-
scribes the PC-TRIO architecture and associated algorithms
and Section IV presents experimental results. We conclude in
Section V.

II. BACKGROUND AND RELATED WORK

We describe the research on TCAM based packet classifiers
in Section II-A, and describe existing indexed TCAM architec-
tures for packet forwarding tables in Section II-B. We discuss
the main problems in having an indexed TCAM architecture
for packet classifiers in Section II-C and then in Section II-D
show how to overcome these problems.

A. Packet Classifiers

The work on packet classifiers in TCAMs, targets three
main problems: port range expansion, power consumption and
updates. The first two problems are inter-related as reducing
port range expansion also reduces the power consumption in
a TCAM. Various approaches have been proposed in the liter-
ature to alleviate the range expansion problem. The schemes

APPENDIX B:

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
28

mailto:Gunasekaran.Seetharaman@rl.af.mil

2

in [1], [7], [6], [9], [13], [16] encode theranges and store
modified rules in the TCAM. As a packet arrives, an encoded
search key is created from the packet header fields using
the encoding algorithm and the TCAM is searched using the
encoded search key. Spitznagel et al. [11] proposed enhance-
ments to the TCAM hardware to include range comparison.
With such an enhanced TCAM circuit, each rule occupies a
single entry in the TCAM.

Compressing packet classifiers by removing redundancies
is an effective strategy to reduce TCAM power consumption.
The approaches in [4], [15], [10], [12], [14] present algorithms
that transform an input classifier to an equivalent smaller
classifier. These algorithms quite naturally contain port range
expansions. While these approaches bring about significant
reductions in classifier size, they are generally not suitable for
incremental updates, since a rule to be deleted, for instance,
may not be present in the transformed classifier.

Song and Turner [8] describe an algorithm for fast incre-
mental filter updates. An explicit priority value (which we
call block number in this paper) is calculated for each rule
based on the rule’s implicit priority, which is derived from
the position of the rule in the classifier, and the implicit
priority values of the overlapping rules. The block number so
computed is stored along with the rule in the TCAM using
unused TCAM bits. A new rule may be placed anywhere
in the TCAM. This relieves the TCAM of moving existing
rules to maintain priority ordering. Instead, during lookup,
multiple lookups per packet are performed to identify the best
matching rule. Mishra, Sahni and Seetharaman in PC-DUOS
[21] and PC-DUOS+ [24] use dual TCAMs for representation
and incremental update of classifiers.

B. Forwarding tables with indexed TCAMs

The concept of using an index TCAM for a forwarding
table was proposed by Zane et al. [2] and further refined by
Lu and Sahni in [3]. A forwarding table can be viewed as a
one dimensional packet classifier, containing only destination
prefixes. Zane et al. [2] proposed a 2-level TCAM architecture
in which the first level TCAM is an index to the partitions
in the second level TCAM. We refer to a partition in a
TCAM as abucket. The partitions and indexes are constructed
by carving the binary trie representing the prefixes in the
forwarding table.

Lu and Sahni in [3], further augment the traditional 1-
level TCAM lookup structure as well as the 2-level TCAM
structure of Zane et al. [2] with wide SRAMs and store the
suffixes of several prefixes in a single wide SRAM word.
This enables a reduction in both power consumption and total
TCAM memory requirement. Mishra and Sahni, in PETCAM
[19] and DUO [20] obtained further reduction in power and
TCAM space for packet forwarding, using the indexing and
wide SRAM schemes. In particular, DUO [20] is a dual TCAM
architecture used for packet forwarding that uses efficient
memory management algorithms for the two TCAMs. These
algorithms help DUO in executing consistent incremental
updates [22], [23].

C. Problems in storing a classifier in an indexed TCAM

There are two problems in mapping a packet classifier to
an indexed TCAM architecture with wide SRAMs. Recall
that during a TCAM lookup, the contents in the SRAM
word corresponding to the first matching rule is returned. A
constraint on the size of a wide SRAM word (and also that on
the size of a TCAM bucket), makes it impossible to guarantee
that the first matching word will contain the highest priority
rule matching the packet. For example, consider the classifier
with 4 rules in Figure 1, where each rule has two fields -
a destination, and a source. The classifier is mapped to the
indexed TCAM in Figure 2. The data TCAM has two buckets

Source
Filter PriorityAction

Destination

0101

000* 01*

* *

A1
A2
A3
A4

1
2
3
4

00*

0*

1000

Fig. 1. An example classifier

00*

*

00*
000*
*

1000
01*
*

0* 0101

* *

A1
A3
A4

A2
A4

Index TCAM

Data TCAM Data SRAM

Fig. 2. Classifier rules stored in a indexed TCAM

and the index TCAM uses bits from thedestination prefix
of each rule, to index into the buckets of the data TCAM.
In this setup, assuming that addresses are 4 bits, suppose a
packet arrives with destination and source addresses as 0000
and 0101 respectively. The best matching rule from Figure 2 is
the second rule on the first bucket of the data TCAM and A3
is returned as the action to be applied on the packet. However,
from the table in Figure 1, A2 is the desired action. Thus if
there are multiple matching rules on a TCAM, then all the
corresponding SRAM words must be processed to return the
action of the matching rule with the highest priority, and this
will take more than one TCAM clock cycle to finish a search.
This is the first problem.

The second problem is about thecovering rules of a wide
SRAM word or a data TCAM bucket. Acovering prefix

[2], [3], in the context of packet forwarding tables, is a default
prefix for a TCAM bucket. The presence of covering prefixes
in a TCAM bucket makes every search in the TCAM bucket
return at least one match. In a packet classifier, covering rules
similarly guarantee that a search on a TCAM bucket matches
at least one rule. The fourth rule in Figure 1 is a covering rule
and hence entered in both the TCAM buckets in Figure 2. A
packet classifier may have several covering rules for a TCAM
bucket. Further, different TCAM buckets may need the same
covering rules which makes it necessary to store a single rule
multiple times in the TCAM, once in every TCAM bucket for
which it is a covering rule. Having a rule replicated as such in
the TCAM, is unacceptable specially considering the fact that
the replicated rules themselves may undergo range expansion.

D. Overcoming these problems

The dual TCAM architecture presented for PC-DUOS [21]
and PC-DUOS+ [24], as well as the PC-TRIO architecture
presented in this paper, makes it possible to get around both

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
29

3

Logic to
compare
block
numbers

ITCAM

P
R

IO
R

IT
Y

 E
N

C
O

D
E

R

ex
tr

ac
t

ex
tr

ac
t

bu
ck

et
 n

um
be

r
bu

ck
et

 n
um

be
r

LTCAM1

LTCAM2

ISRAM

ex
tr

ac
t

bl
oc

k
nu

m
be

r
an

d
ac

tio
n

ex
tr

ac
t

bl
oc

k
nu

m
be

r
an

d
ac

tio
n

LSRAM1

LSRAM2

Action

A B DC E F

Triple TCAMs (ITCAM, LTCAM1, LTCAM2)

ILTCAM1

ILTCAM2 ILSRAM2

ILSRAM1

Index TCAMs

Fig. 3. PC-TRIO Architecture

the problems mentionedabout using wide SRAMs and index
TCAMs with a TCAM for packet classifiers. The LTCAM
(Leaf TCAM) of PC-DUOS stores independent rules. Two
rules are independent iff no packet matches both the rules.
Storing a set of independent rules in a TCAM, ensures that at
most one TCAM entry matches during a search and we simply
process the corresponding SRAM word. The ITCAM (Interior
TCAM) of PC-DUOS stores all the remaining rules which
includes the covering rules. During a lookup both TCAMs
are searched in parallel, and in case there is no match on the
LTCAM, the ITCAM returns the action for the matching rule
with the highest priority. Note that the LTCAM of PC-DUOS
is a suitable candidate for augmenting with wide SRAM words
and an index TCAM, since at most one TCAM entry matches
during a search. The rules in the ITCAM, on the other hand,
are not independent and hence multiple TCAM entries will
match during a search. Thus, the ITCAM is not a suitable
candidate for using with it a wide SRAM or an index TCAM.

III. PC-TRIO

The PC-TRIO architecture is presented in Section III-A.
The algorithms for storing and updating the TCAMs are
discussed in Sections III-B and III-C. The differences with
related architectures are presented in Section III-D.

A. The Architecture

Figure 3 illustrates the PC-TRIO architecture. It primarily
consists of three TCAMs, the ITCAM (Interior TCAM), the
LTCAM1 (Leaf TCAM) and the LTCAM2. The corresponding
associated SRAMs are: ISRAM, LSRAM1 and LSRAM2,
respectively. The LTCAMs store independent rules, hence both
the TCAMs are augmented with wide SRAMs and index
TCAMs. ILTCAM1 and ILTCAM2 are the index TCAMs
for LTCAM1 and LTCAM2, respectively. The index TCAMs
also have wide associated SRAMs, namely, ILSRAM1 and

ILSRAM2. Since the rules stored in the two LTCAMs and
the two ILTCAMs are independent, at most one rule (in each
LTCAM and ILTCAM) will match during a search. So these
TCAMs do not need a priority encoder. A priority encoder
assists in resolving multiple TCAM matches and is used with
the ITCAM to access the ISRAM word corresponding to the
highest priority matching rule in the ITCAM.

A lookup in PC-TRIO is pipelined with 6 stages marked A-
F in Figure 3. In the first stage A, the ILTCAMs are searched.
The ILSRAMs are accessed, using the address of the matching
ILTCAM1 and ILTCAM2 entries in stage B. The matching
wide ILSRAM words are processed in stage C to obtain the
corresponding bucket index for LTCAM1 and LTCAM2. In
stage D, the bucket indexes so obtained are used to search
the corresponding buckets in the LTCAMs. The ITCAM is
also searched in this stage. In the next stage E, the ISRAM,
and the LSRAMs are accessed using the addresses of the
matching TCAM entries. In the final stage F, the contents of
the wide LSRAM words are processed and the best action is
chosen from the at most three actions returned by the ISRAM,
LSRAM1 and LSRAM2 by comparing the priorities of the
corresponding rules.

B. Storing rules in TCAMs

There are several steps of processing a packet classifier
to store the rules in the TCAMs. The first step is to create
a priority graph and multi-dimensional tries for the rules
in the classifier. This is further discussed in Section III-B1.
In the second and third steps, the LTCAM1 and LTCAM2
subsystems are populated as discussed in Sections III-B2 and
III-B3, respectively. The fourth step is to store the remaining
rules in the ITCAM in priority order, which is discussed in
Section III-B4.

1) Representing Classifier Rules:The classifier rules are
represented in a priority graph, which contains one vertex for

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
30

4

each rule in the classifier. A priority graphcontains one vertex
for each rule in the classifier. There is a directed edge (u, v)
from vertexu to vertex v iff (a) the rules corresponding to
u andv overlap (i.e., at least one packet matches both rules)
and (b) the priority ofu is more than that ofv (we assume
that overlapping rules have different priority). For the directed
edge (u,v), we say thatu is the parent ofv and v is the
child of u. The priority graph is used to assign block numbers
to rules/vertices as follows [8]. All vertices with in-degree 0
are assigned the block number 1. Each remaining vertexv is
assigned a block number equal to

1 + max
(u,v)∈E

{block number of u}

whereE is the set of edges in the priority graph. Thus a child
of any vertex is assigned a block number that is at least one
more than the block number of this vertex.

Next we create a multi-dimensional trie, Trie1, where each
dimension represents one field of a rule. Initially, Trie1 is
three-dimensional, with the three fields, source, destination
and protocol of a classifier rule used for this purpose. The
fields appear in the following order in the trie:<destination,
source, protocol>. We assume that the destination and source
fields as well as the protocol field of the filters are specified
as prefixes. So, these are represented in a trie in the standard
way with the left child of a node representing a 0 and the
right child a 1. A classifier rule, along with its source and
destination port ranges, is stored on the protocol node that is
arrived at after traversing the trie starting from its root, using
first the destination, then the source and finally the protocol
fields of the rule.

We identify a set of independent rules as described in
Section III-B2. All the remaining rules are used to create
another multi-dimensional trie, Trie2, in which fields in a filter
rule appear in the order<source, destination, protocol>. Note
that the source and destination tries are switched in Trie2, with
respect to Trie1. So, while destination trie is the outermost trie
in Trie1, in Trie2, source is the outermost trie.

2) Storing rules in the LTCAM1:The process of storing
rules in the LTCAM1 subsystem is described in five sub-
sections below. First, independent rules are identified (Sec-
tion III-B2a), next, the format of storing information in a
wide LSRAM word is discussed (Section III-B2b), then we
describe the creation of LTCAM1 entries using the process
of carving (Section III-B2c). Next we describe partial port
range expansion (Section III-B2d) that may be necessary,
and finally, the creation of ILTCAM1 and ILSRAM1 entries
(Section III-B2e).

a) Identifying Independent Rules:Recall that two rules
are independent iff no packet is matched by both rules. For
the LTCAM1, we are interested in identifying the largest set
of rules that are pairwise independent. To find an independent
rule set in acceptable computing time, we relax the “largest
set” requirement and instead look for a large set of independent
rules using a two step process. In the first step, we create
a leaves of leaves set[21] of protocol nodes in a multi-
dimensional trie using the algorithm in Figure 4. The nodes
belonging to the leaves of leaves set in Trie1 are obtained by

Algorithm: findNode(node) Inputs:
node: a trie node, initially set to theroot of a multi-dimensional trie.
Output:
a leaves of leaves set of protocol nodes storing classifier rules.

for each child i of node
findNode(node→child[i]);

endfor
if (node is a leaf) // true if node has no left or right child.

if (node contains root of a trie)
findNode(node→trie→root);

else// node belongs to trie for the last field (protocol)
append protocol node to leaves of leaves set

endif
endif

Fig. 4. Selecting protocol nodes for leaves of leaves set

traversing the multi-dimensional trie from the rootto the leaves
of the destination trie and then from these leaves into their
attached source trie and then from the leaves of the source
trie into the leaves of their attached innermost trie for the
protocol field.

In the second step, for each protocol node in the leaves
of leaves set, we identify a set of independent rules stored in
that protocol node by building a small priority graph with rules
only in that protocol node. Vertices in the priority graph with
in-degree 0 comprise a set of independent rules. A collection
of independent rules from all protocol nodes in the leaves of
leaves set, gives us the rules to be entered in the LTCAM1.

b) Wide SRAM Word Format:Once the rules to be stored
in LTCAM1 are identified, subtries of the multi-dimensional
trie are carved and rules in the protocol nodes in a subtrie are
stored in a LSRAM1 word. In particular, for each rule in a
protocol node we store the rule’s source and destination port
ranges, block number, and action. We also store the suffix
of a protocol node, which is the path from the root of the
carved subtrie to the protocol node. Figure 5 shows a format
for encoding this information in a wide SRAM word. The
fields in this format are described briefly as follows:

1) Match start position: This field specifies the positions
of the first bit in the source, destination and protocol
fields of a packet header starting from which suffixes of
protocol nodes in the SRAM word must be matched.

2) Count: This is the number of protocol nodes in the leaves
of leaves set stored in the SRAM word.

3) len(Si): This field specifies the length of the suffix for
protocol nodei in the SRAM word.

4) Ci: This gives the number of classifier rules stored for
protocol nodei.

5) Dataj : Data1, · · · , DataN give details of theN rules
in the carved subtrie. The rules for protocol node 1 of
this subtrie come first, followed by those of the second
protocol node and so on.Dataj gives the block number,
action, source and destination port range types for the
jth classifier rule.

6) Si: This field stores the suffix for protocol nodei.
7) Port ranges: Stores the port ranges for theN rules.

There are three types of ranges found in a classifier. These
are: a whole range ([0-65535]), a range with the same start
and end point, and a range with different start and end points.
The port range type subfield in the Data field represents these
three types of ranges using two bits. To save space in a SRAM

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
31

5

...len (Sk)Match start Count len (S2)len (S1) C1 Data1 DataN S1 SKCK

Action1
S. Range
Type1

D. Range
Type1

S. Port

Number1
Block

D. Port
Range1Range1

S. Port
RangeN

D. Port
RangeNposition

Fig. 5. Data encoding in a wide SRAM word

word, a whole range is never enteredand only one port number
is entered for a range with the same start and end points.

c) Creating LTCAM1 entries:A trie is carved into sub-
tries to assign rules to the wide SRAM words. The Trie1 is
carved using the carving heuristicvisit postorder of DUO
[20] that has been enhanced for multi-dimensional tries.This
carving heuristic creates independent (disjoint) entries for the

from destination trie

0

0 1

1

1

with prefix 1101

LTCAM Entries:

1101 00?? ????
1101 01?? ????
1101 11?? ????

100 450
bits

200
bitsbits

Fig. 6. Nodes in a source trie is being carved.

LTCAM1. The path starting from the root of Trie1 to the root
of the subtrie defines an LTCAM1 entry. Figure 6 shows a
portion of a source trie that hangs off a destination trie, where
carving takes place at nodes 00, 01, and 11 of the source trie.
The path from the root to the node of the destination trie from
which the source trie hangs off is 1101. Thus, after carving the
node at 00 on the source trie, the LTCAM1 entry is 1101 00??
????, assuming addresses and protocol fields are represented
using 4 bits each. Similarly, the two other LTCAM1 entries in
this example are 1101 01?? ???? and 1101 11?? ????. Figure 6
also shows a size assignment (in bits) on the three nodes where
carving takes place. These sizes are computed for all the trie
nodes even before the carving algorithm is invoked. The size
assigned to a trie node represents the number of LSRAM1
bits needed to store all the classifier rules (for LTCAM1) in a
subtrie rooted at that node. For example, for a subtrie rooted
at the source node 01, the number of bits needed to store
the action, block number, port ranges of classifier rules and
suffixes of protocol nodes present in this subtrie, is 450. If
the actual width of a SRAM word is, say, 500 bits, then the
rules in this subtrie will fit in an SRAM word and we may
carve at the source node 01. A corresponding LSRAM1 entry
is constructed for the classifier rules in the format given by
Figure 5. The carving heuristic carves a noden on the trie
when any of the following two conditions is true. Here,p is
the parent ofn in the trie.

C1) The size assigned ton is less than the width of a
SRAM word, but that assigned top is more than the
the width of a SRAM word.

C2) A descendant ofp was carved.

The second condition ensures that the carving creates disjoint
TCAM entries [20].

d) Partial port range expansion:: It is possible that the
SRAM bits needed to store the classifier rules for LTCAM1
on a protocol node exceeds the capacity of a wide SRAM
word. This case is shown in Figure 7(a) where the black node

is a protocol node in the leaves of leaves set and the size
assigned to it is 600 bits. Suppose the width of the SRAM
word is 500 bits. Then to avoid overflowing an SRAM word,
we must split the rules in the protocol node, into two or more
SRAM words. Instead of replicating the LTCAM1 entry for
each of the split SRAM words, we create a source port range
trie as shown in Figure 7(b), and carve nodes on this trie to

600 bits

(a) a proto-
col node

600 bits

400 bits 200 bits

(b) a new source port trie is
attached to the protocol node

Fig. 7. Prefixes inforwarding table before and after applying updates

create independent LTCAM1 entries. Each node in the source
port trie inherits those classifier rules (for LTCAM1) from the
protocol node that have their source port range overlap with
the port range represented by the trie node. Thus multiple
copies of a rule may be created, one for each trie node with
port range overlapping the source port range of the rule. After
the source port trie is created, the carving heuristic resumes
its traversal along the source port trie, and carves source port
nodes if they satisfy either condition C1, or C2. In the example
of Figure 7(b), two LTCAM1 entries are created, one each for
the two carved nodes. These LTCAM1 entries differ on the first
bit on the source port field, with one entry having a 0 while
the other having a 1. If the classifier rules in a leaf node of the
source port trie overflows an SRAM word, then a destination
port trie is created for the destination port ranges on rules
of that leaf node, and the carving heuristic finds appropriate
nodes to carve on the destination port trie.

The source and destination port tries are thus created in PC-
TRIO only when necessary, and then, to minimize the range
expansion problem we use multi-bit tries for storing the port
ranges. The bits used to arrive at a node in the multi-bit trie
define an LTCAM1 entry.

e) Creating ILSRAM1 and ILTCAM1 entries:After carv-
ing Trie1 to create suffixes for entering into LSRAM1, we
carve Trie1 again a second time, to create subtries that contain
LTCAM1 entries. All LTCAM1 entries in a subtrie are entered
in a LTCAM1 bucket. Thus, at the end of this carving step, the
LTCAM1 entries are partitioned into buckets. The bits from
the root of the multi-dimensional trie to a carved node defines
an index that points to an LTCAM1 bucket.

After partitioning the LTCAM1 into buckets, Trie1 is carved
a third and final time. This time, a carved subtrie contains
indexes to LTCAM1 buckets. Suffixes of these indexes, along
with the corresponding LTCAM1 bucket indexes, are stored
in the ILSRAM1, and the bits on path from the root of the
Trie1 to a carved node define an ILTCAM1 entry.

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
32

6

3) Storing rules in LTCAM2:This is done exactly as for
LTCAM1, by processing the rules stored in Trie2. In particular,
Trie2 undergoes carving in a similar manner as described for
Trie1 and the LTCAM2 system is populated. The remaining
rules, i.e. rules that are stored neither in the LTCAM1 nor in
the LTCAM2 subsystem, are stored in the ITCAM.

4) Storing rules in the ITCAM:The ITCAM does not have
a wide ISRAM, hence, a rule to be entered in the ITCAM,
must have its port range stored in the ITCAM itself. An
ISRAM word contains the action and block number of a
classifier rule stored in the corresponding ITCAM entry. We
use DIRPE to encode these port ranges on the ITCAM. DIRPE
is suitable for incremental updates, unlike database dependent
range encoding schemes. However, if fast incremental updates
are not needed, then any range encoding scheme may be
chosen for the ITCAM.

C. Incremental Updates

When an update request is received, the priority graph is
updated as described in Section III-C1. Then Trie1 and, if
necessary, Trie2 are updated as described in Section III-C2.
As the tries are updated, it may be necessary to carve the tries
at different trie nodes. This is discussed in Section III-C3.
Updating the TCAMs is discussed in Section III-C4.

1) Updating the priority graph:To insert a new rule, the
first step is to store the rule in the priority graph. A new vertex
v is created for the rule. The existing rules that overlap with
v are identified and new edges are formed betweenv and
the vertices of overlapping rules, with directions of the edges
set from the higher to the lower priority rules. Then, a block
number is assigned tov, which is one more than the maximum
block number of the nodes from whichv has an incoming
edge. If the block number of a child vertex is not more than
that assigned tov, the child’s block number is updated so that
it is at least one more than the block number ofv. If the
rule r corresponding to this child vertex is stored in ITCAM,
then, r must be moved to the ITCAM block represented by
its updated block number, and the ISRAM entry forr is also
updated with the changed block number. On the other hand, if
r is in one of the LTCAMs, then, we simply changer’s block
number in the corresponding LSRAM entry. Updates to block
numbers are propagated to all vertices reachable fromv.

To process a delete request, the vertex corresponding to the
rule along with the incident edges is removed from the priority
graph.

2) Updating the tries: To insert a new rule, the rule is
first added to Trie1. If the rule is an independent rule in a
protocol node in the leaves of leaves set, then it is inserted
in the LTCAM1. Otherwise, the rule is added to Trie2. If the
rule is an independent rule in a protocol node in the leaves of
leaves set for Trie2, then the rule is inserted in the LTCAM2.
Otherwise, the rule is inserted in the ITCAM.

If a new rule is stored in the LTCAM1 or the LTCAM2,
then some of the existing rules in that TCAM may no longer
be independent. If such a non-independent rule exists in the
LTCAM1, then that rule is added to the Trie2 and if the rule
can be added to the LTCAM2 it is moved from the LTCAM1
to the the LTCAM2. Otherwise, the rule is moved from the

LTCAM1 to the ITCAM. Similarly, a new rule added to the
LTCAM2 may cause some of the existing LTCAM2 rules to
be moved to the ITCAM.

To delete a rule, the rule is deleted from Trie1 and also
from Trie2 if it was stored in Trie2. The rule is then deleted
from the TCAM that stores the rule.

3) Updating the trie carving:We now discuss the dynamics
of creation and merging of LSRAM words when a new rule
is added or an existing rule is deleted. Both Trie1 and Trie2
contain nodes that were carved to create TCAM and SRAM
entries. We describe how these entries change for Trie1. The
process is similar for Trie2. When a rule is added to Trie1 at
nodet, if there is an ancestora of t, where carving was done
to create a wide LSRAM1 words, and if there is space in
s to place the action, block number, port ranges of the new
rule, then, the new rule is placed ins. If there is no space
in s, then the contents ofs are split, by carving descendants
of a to create two or more LTCAM1 entries. If, on the other
hand,t does not have an ancestora, then one of the two things
below may happen. If there is an ancestorb of t, such thatb
has at least one carved descendant and the subtrie rooted atb

needs fewer SRAM bits than the width of a SRAM word to
represent the classifier rules, thenb is carved. As a result, the
new rule is stored with some existing rules in a new SRAM
word. Note that the existing rules, have additional suffix bits
in the newly created SRAM word and old LTCAM1 entries
for the existing rules are deleted. If no suchb exists, a new
LTCAM1 entry is created by carving att. The corresponding
LSRAM1 word contains only the newly added rule.

When a rule in an LTCAM1 is deleted, then the rule is
first removed from the LSRAM1 word. If the LSRAM1 word
becomes empty, then the corresponding LTCAM1 word is
deleted. Otherwise, if the contents of the LSRAM1 word can
be merged with another LSRAM1 word then a new LTCAM1
entry is created while the LTCAM1 entries for the merged
words are deleted.

The algorithms to merge and split buckets on the LTCAMs
are similarly based on manipulating the carving in Trie1 and
Trie2.

4) Updating the TCAMs:To insert or move a rule in a
TCAM we need a free slot at an appropriate location in the
TCAM. This slot can be obtained efficiently using memory
management algorithms developed for TCAMs. In particular,
the memory management schemes from DUO [20] may be
used. For the ITCAM of PC-TRIO, we implemented the
DLFS PLO scheme, as its the most efficient scheme known
to us for moving free slots to adesired location in a TCAM.
In the DLFS PLO initial rule placement scheme, free slots
are kept in the region between two blocks. Additionally, there
may be free slotswithin a block. So a list of free slots is
maintained for each block on the TCAM, with the list being
empty initially. As rules are deleted from a block, the freed
slots are added to the list for that block. Thus, DLFSPLO
requires no moves for most of thetime to get or return a free
slot.

The memory management scheme for the LTCAM of DUO
is relatively simple as all the rules in the LTCAM are in-
dependent so a new rule may be inserted anywhere in the

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
33

7

PC−DUOS

1.

2.

3.

PC−DUOS+

LTCAM stores highest

Uses single LTCAM

LTCAM stores highest

Uses two LTCAMs

index TCAMs

LTCAMs store

Uses single LTCAM

4.

No wide SRAMs or
index TCAMs

No wide SRAMs or
index TCAMs

Uses wide SRAMs and

priority independent
rules

priority independent
rules

independent rules

when LTCAM search
Aborts ITCAM search

succeeds succeeds
when LTCAM search
Aborts ITCAM search

search to finish
Waits for ITCAM

Independent rules are
filtered leaves of
leaves set in trie

leaves of leaves set
Independent rules are

in trie

5. Independent rules are
vertices in priority
graph with indegree=0

PC−TRIO PC−DUOS+W

LTCAM stores highest
priority independent
rules

Aborts ITCAM search
when LTCAM search
succeeds

Independent rules are

graph with indegree=0
vertices in priority

Uses two LTCAMs

Uses wide SRAM and
index TCAM

Fig. 8. Differences among the architectures

TCAM. However, we still needto locate a free slot. The
LTCAM memory management algorithm of DUO creates a
linked list of the free slots. When a free slot is needed, a slot
is obtained from the head of the free slot list. PC-TRIO uses
the memory management algorithm in DUO for its LTCAM1
and LTCAM2.

D. Differences among PC-DUOS, PC-DUOS+, PC-DUOS+W
and PC-TRIO

We note that the methodology used in this paper for PC-
TRIO may be used to add index TCAMs and wide SRAMs
to PC-DUOS+ to arrive at a new architecture PC-DUOS+W.
Although PC-DUOS [21] may be similarly extended to obtain
PC-DUOSW, we do not consider this extension here as PC-
DUOS+ was shown to be superior to PC-DUOS [24]. Figure 8
highlights the differences among PC-DUOS, PC-DUOS+, PC-
DUOS+W and PC-TRIO.

Unlike the other architectures, PC-TRIO does not guarantee
that the rules in the LTCAMs are of the highest priority among
all overlapping rules. Thus, PC-TRIO must wait for an ITCAM
lookup to complete even if there are matching rules in the
LTCAMs. Although the rule assignment algorithms for PC-
TRIO may be modified so that the LTCAM rules are the
highest priority among all overlapping rules (and thus avoid
having to wait for an ITCAM lookup to complete in cases
when a match is found in an LTCAM), doing so retards the
performance of PC-TRIO to the point where it offers little or
no power and lookup time benefit over PC-DUOS+W.

IV. EXPERIMENTAL RESULTS

We compare PC-TRIO, with PC-DUOS+W and PC-DUOS+
[24]. We first give the setup used by us for the experiments in
Section IV-A and then describe our datasets in Section IV-B.
Finally we present our results in Section IV-C.

A. Setup

We programmed the rule assignment, trie carving and
update processing algorithms of PC-TRIO using C++. We
designed a circuit for processing wide SRAM words using
Verilog and synthesized it using Synopsys Design Compiler to
obtain power, area and gate count estimates. We used CACTI
[25] and a TCAM power and timing model [17] to estimate
the power consumption and search time for the SRAMs and
the TCAMs respectively. The process technology used in the
experiments is 70nm and the voltage is 1.12V. It is assumed
that the TCAMs are being operated at 360MHz [29].

The TCAM and SRAM word sizes used are consistent for
all the architectures used in the comparison. The word size is
144 bits for the TCAMs. For SRAMs we have different word
sizes depending upon the TCAMs they are used with. The
ISRAM words of all the architectures, as well as the LSRAM
words of PC-DUOS+, are 32 bits wide. The LSRAM1 and
LSRAM2 words of PC-TRIO and the LSRAM words of PC-
DUOS+W are 512 bits, while the ILSRAMs are 144 bits wide.
The bucket size for LTCAMs in PC-TRIO and PC-DUOS+W
is set to 65 TCAM entries. PC-DUOS+ uses DIRPE [1] to
encode port ranges. The classifier rules stored in the ITCAMs
of PC-TRIO and PC-DUOS+W also use DIRPE to encode
port ranges. Since the TCAM word size is set to 144 bits, we
assume that 36 bits are available for encoding each port range
in a rule. With this assumption, we use the strides 223333 as
these give us minimum expansion of the rules [1], [21].

B. Datasets

We used two sets of benchmarks derived from ClassBench
[5]. The first set of benchmarks consists of 12 datasets each
containing about 100,000 classifier rules and is generated from
seed files in ClassBench. This dataset is used to compare
the number of TCAM entries, power, lookup performance
and space requirements of PC-TRIO, PC-DUOS+W and PC-
DUOS+ [24].

The second set of benchmarks was reused from [24]. There
are 13 datasets here which are used to compare incremental
update performance of PC-TRIO, with PC-DUOS+ [24] and
PC-DUOS+W.

C. Results

1) Number of TCAM entries:Using wide SRAM words to
store portions of classifier rules, reduces the number of TCAM
entries. Figure 9 gives the results of storing our datasets in
the three architectures. The first, second and third columns
show the index, name, and the number of classifier rules,
respectively, of a dataset. The fourth, fifth and sixth and
seventh columns give for PC-DUOS+, the total number of
TCAM entries, the number of ITCAM entries, the TCAM
power and lookup time, respectively. Similarly, the eighth,
ninth, tenth and eleventh columns give the corresponding
numbers for PC-DUOS+W and the remaining four columns
give those for PC-TRIO.

Figure 10(a) gives the TCAM compaction ratio of the three
architectures, obtained by dividing the number of TCAM
entries for each dataset by the number of rules in the classifier.
PC-DUOS+ does not use wide SRAMs, hence there is no

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
34

8

Index Dataset #Rules PC-DUOS+ PC-DUOS+W PC-TRIO
Entries #ITCAM Watts Time(ns) Entries #ITCAM Watts Time(ns) Entries #ITCAM Watts Time(ns)

1 acl1 99309 117033 379 36 2624.39 21146 379 0.23 0.50 21085 182 0.19 1.00
2 acl2 74298 101857 19421 31 1122.39 37491 19421 6.35 30.36 36593 18439 6.04 149.43
3 acl3 99468 131243 30859 40 1640.47 52632 30859 9.47 80.49 26823 1017 0.40 2.19
4 acl4 99334 127320 25189 39 1730.46 49912 25189 7.98 45.95 34034 6547 2.32 24.12
5 acl5 98117 105375 1535 32 2072.16 32932 1535 0.53 0.41 34993 2209 0.77 4.98
6 fw1 89356 142085 91473 43 2466.72 98425 91473 27.92 2318.82 26610 4864 1.60 15.01
7 fw2 96055 129249 27084 39 1543.76 43146 27084 8.30 86.77 22196 1494 0.53 3.18
8 fw3 80885 117731 39199 36 1007.04 51228 39199 11.99 215.21 26269 7479 2.38 30.09
9 fw4 84056 211403 116149 64 3182.03 131505 116149 35.46 2139.21 27617 4894 1.60 15.16
10 fw5 84013 111989 55650 34 930.94 65598 55650 17.00 615.49 22361 3454 1.15 9.02
11 ipc1 99198 112154 22165 34 1288.02 41920 22165 6.82 45.11 23894 567 0.26 1.40
12 ipc2 100000 100000 30133 30 784.69 47247 30133 9.23 113.77 20195 0 0.09 0.75

Fig. 9. Number of TCAM entries, ITCAM entries and TCAM power and lookup time in PC-DUOS+, PC-DUOS+W, PC-TRIO

compaction,instead, there is expansion to handle port ranges.
Thus, the compaction ratio for PC-DUOS+ is at least 1
for every dataset. The compaction achieved by PC-TRIO is
more than that of PC-DUOS+W for almost all the datasets.
This is because, PC-TRIO has fewer ITCAM entries and
therefore stores more rules in wide SRAM words. For acl5,
PC-DUOS+W identified more independent rules compared
to PC-TRIO. The algorithm to identify independent rules is
the same for PC-DUOS+W and PC-DUOS+ which results in
identical ITCAM entries for these two architectures.

No classifier rules in the LTCAMs of PC-DUOS+W
and PC-TRIO needed partial port range expansion (Sec-
tion III-B2d). So all LTCAM entries in PC-DUOS+W and
PC-TRIO were at most 72 bits.

2) Power: Figure 9 gives the TCAM power consumption
during a lookup, while Figure 10(b) gives the normalized total
power obtained for each dataset by dividing the total TCAM
and SRAM power in an architecture by that of PC-TRIO
during a lookup. The vertical axis is scaled logarithmically

1 2 3 4 5 6 7 8 9 10 11 12
0

1

2

3
(a) Compaction

Dataset Index

C
om

pa
ct

io
n

R
at

io

1 2 3 4 5 6 7 8 9 101112
10

−2

10
0

10
2

10
4

Dataset Index

P
ow

er
(n

or
m

al
iz

ed
)

(b) Power

1 2 3 4 5 6 7 8 9 10 11 12
0

20

40

60

Dataset Index

A
re

a
(m

m
2)

(d) Area

1 2 3 4 5 6 7 8 9 101112
10

−2

10
0

10
2

10
4

(c) Time

Dataset Index

T
im

e
(n

or
m

al
iz

ed
)

PC−TRIO

PC−DUOS+W

PC−DUOS+

Fig. 10. Comparison of compaction ratio, total power, lookup time and area

and based at 1. PC-TRIO uses lesspower for all datasets
except acl5. The average improvement in power with PC-
TRIO is 96% relative to PC-DUOS+, and 65% relative to
PC-DUOS+W. The average improvement in power with PC-
DUOS+W is 71%, relative to PC-DUOS+. The maximum
improvement with PC-TRIO is observed for ipc2 (99%) and
the minimum for acl2 (80%), compared to PC-DUOS+. The
maximum improvement with PC-DUOS+W is observed for
acl1 (99%) and the minimum for fw1 (35%), compared to

PC-DUOS+. The maximum improvement with PC-TRIO is
observed for ipc2 (98%) and the minimum for acl1 (2%),
compared to PC-DUOS+W.

3) Lookup Performance:Figure 10(c) gives the average
lookup time, normalized with respect to that of PC-TRIO.
TCAM search time is proportional to the number of TCAM
entries. Hence, PC-DUOS+ requires the maximum time.

PC-DUOS+W is faster than PC-TRIO for the ACL tests
acl1, acl2 and acl5. For these datasets, the number of ITCAM
entries in PC-DUOS+W and PC-TRIO (columns 9 and 13
of Figure 9) are comparable. Thus, the ITCAM search times
are comparable, as are the number of lookups served by the
ITCAMs. This, coupled with the fact that ITCAM searches
are slower, give PC-DUOS+W an immediate advantage since
it, unlike PC-TRIO, aborts an ITCAM search after finding
a match in the LTCAM. However, for these three tests, the
lookup times using PC-TRIO are quite reasonable (column 15
of Figure 9). For the other datasets PC-TRIO has fewer rules
in the ITCAM, which makes PC-TRIO lookups faster even
though it has to wait for ITCAM search to finish.

The average improvement in lookup time with PC-TRIO
and PC-DUOS+W (relative to PC-DUOS+) are 98% and 76%,
respectively. The average improvement in lookup time with
PC-TRIO (relative to PC-DUOS+W) is 68%. The maximum
improvement using PC-TRIO rather than PC-DUOS+ is ob-
served for acl1 (99.96%) and the minimum for acl2 (86.6%).
The maximum improvement using PC-DUOS+W rather then
PC-DUOS+ is observed for acl1 (99.98%) and the minimum
for fw1 (5%). The maximum improvement with PC-TRIO
rather than PC-DUOS+W is observed for tests fw1, fw4 and
ipc2 (99%) and the minimum for acl4 (47%).

4) Space requirements:We obtained SRAM area from
CACTI results and estimated TCAM area using the same
technique as used in PETCAM [19], where area of a single
cell is multiplied by the number of cells and then adjusted
for wiring overhead. Figure 10(d) gives the total area needed
for the TCAMs and associated SRAMs. The total area is
comparable for the three architectures. PC-TRIO and PC-
DUOS+W have lower TCAM area (due to fewer TCAM
entries) and higher SRAM area (due to wider SRAM words)
than PC-DUOS+.

5) Update Performance:Figure 11 shows the average
number of TCAM writes used per update on the datasets
from [24]. PC-TRIO needs comparable number of writes
as PC-DUOS+ and hence supports efficient and consistent
incremental updates. PC-DUOS+W needs more writes than
PC-TRIO to preserve the property that all rules stored in the

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
35

9

1 2 3 4 5 6 7 8 9 10 11 12 13
0

1

2

3

4

tests

T
C

A
M

 w
rit

es
 p

er
 u

pd
at

e

PC−TRIO
PC−DUOS+W
PC−DUOS+

Fig. 11. TCAM writes

LTCAM have the highest priority compared tooverlapping
rules.

6) Characteristics of the logic that processes wide SRAM
words: A circuit designed to process the contents of a wide
LSRAM word was synthesized using a 0.18µm library [26],
[27] and it was found found that the design successfully met
the timing constraints with a 500MHz clock. The results are

Process Time
(ns)

Throughput
(Msps)

Voltage
(V)

Power
(mW)

Gate Count

0.18µm 2 500 1.8 61.13 59724

Fig. 12. Timing and power results for additional hardware

presented in the Figure 12. The throughput is representedin
terms of million searches per second (Msps). An example of
a TCAM with a speed of 143MHz (effectively, 143 Msps) is
found in [28], using 0.13µm technology. It is expected that
the delay overhead and throughput of our design will improve
on using a 0.13µm library. Thus, our design can operate at the
same speed as that of a TCAM.

V. CONCLUSION

We presented an indexed TCAM architecture, PC-TRIO,
for packet classifiers. The methods to add indexing and wide
SRAMs were applied on PC-DUOS+ [24] to obtain another
indexed TCAM architecture PC-DUOS+W. These two archi-
tectures were then compared with PC-DUOS+. Both PC-TRIO
and PC-DUOS+W may be updated incrementally. The average
improvement in TCAM power and lookup time using PC-
TRIO were 96% and 98%, respectively, while that using PC-
DUOS+W were 71% and 76%, respectively, relative to PC-
DUOS+.

PC-DUOS+W performed better on the ACL datasets com-
pared to the other types of classifiers. There was 86% reduc-
tion in TCAM power, and 98% reduction in lookup time with
PC-DUOS+W on the ACL datasets on an average compared to
PC-DUOS+. Even though PC-DUOS+W lookup performance
was better than that of PC-TRIO on three ACL tests, PC-
TRIO lookup performance was quite reasonable and in fact,
using PC-TRIO, there was a reduction in TCAM power by
94% and lookup time by 97% on an average for the ACL
tests, compared to PC-DUOS+.

So, we recommend PC-TRIO for packet classifiers.

REFERENCES

[1] K. Lakshminarayan, A. Rangarajan and S. Venkatachary, Algo-
rithms for Advanced Packet Classification with Ternary CAMs,
SIGCOMM, 2005.

[2] F. Zane, G. Narlikar and A. Basu, CoolCAMs: Power-Efficient
TCAMs for Forwarding Engines,INFOCOM, 2003.

[3] W. Lu and S. Sahni, Low Power TCAMs For Very Large
Forwarding Tables,INFOCOM, 2008.

[4] R. Draves, C. King, S. Venkatachary, and B.Zill, Constructing
Optimal IP Routing Tables,INFOCOM, 1999.

[5] D. E. Taylor and J. S. Turner, ClassBench: A Packet Classifica-
tion Benchmark,TON, 15, 3, Jun 2007, 499-511.

[6] H. Che, Z. Wang, K. Zheng and B. Liu, DRES: Dynamic Range
Encoding Scheme for TCAM Coprocessors,TOC 57, 7, Jul
2008, 902-915.

[7] A. Bremler-Barr, D. Hay and D. Hendler, Layered Interval
Codes for TCAM-based Classification,INFOCOM 2009.

[8] H. Song and J. Turner, Fast Filter Updates for Packet Classifica-
tion using TCAM, Routing Table Compaction in Ternary-CAM,
GLOBECOM, 2006

[9] D. Pao, P. Zhou, B. Liu, and X. Zhang, Enhanced Prefix
Inclusion Coding Filter-Encoding Algorithm for Packet Classi-
fication with Ternary Content Addressable Memory,Computers
& Digital Techniques, IET, 1, 5, Sep 2007, 572-580.

[10] S. Suri, T. Sandholm and P. Warkhede, Compressing Two-
Dimensional Routing Tables,Algorithmica, 35, 4, 2003, 287-
300.

[11] E. Spitznagel, D. Taylor, and J. Turner, Packet Classification
Using Extended TCAMs,ICNP, 2003, 120-131.

[12] C. R. Meiners, A. X. Liu, and E. Torng, TCAM Razor: A
Systematic Approach Towards Minimizing Packet Classifiers in
TCAMs, ICNP, 2007, 266-275.

[13] H. Liu, Efficient Mapping of Range Classifier into Ternary-
CAM, Hot Interconnects, 2002, 95-100.

[14] A. X. Liu, C. R. Meiners, and Y. Zhou, All-Match Based Com-
plete Redundancy Removal for Packet Classifiers in TCAMs,
INFOCOM, 2008, 574-582.

[15] Q. Dong, S. Banerjee, J. Wang, D. Agrawal, and A. Shukla,
Packet Classifiers in Ternary CAMs can be Smaller,SIGMET-
RICS, 2006, 311-322.

[16] J. van Lunteren and T. Engbersen, Fast and Scalable Packet
Classification,IJSAC, 21, 4, May 2003, 560-571.

[17] B. Agrawal and T. Sherwood, Ternary CAM Power and Delay
Model: Extensions and Uses,TVLSI, 16, 5, May 2008, 554-564.

[18] O. Rottenstreich and I. Keslassy, Worst-Case TCAM Rule
Expansion,INFOCOM, 2010.

[19] T. Mishra and S.Sahni, PETCAM – A
Power Efficient TCAM For Forwarding Tables,
http://www.cise.ufl.edu/˜sahni/papers/petcam.pdf,

[20] T. Mishra and S.Sahni, DUO – Dual TCAM Archi-
tecture for Routing Tables with Incremental Update,
http://www.cise.ufl.edu/˜sahni/papers/duo.pdf

[21] T. Mishra, S.Sahni, and G. Seetharaman, PC-DUOS: Fast
TCAM Lookup and Update for Packet Classifiers,ISCC, 2011.

[22] Z. Wang, H. Che, M. Kumar, and S.K. Das, CoPTUA: Consis-
tent Policy Table Update Algorithm for TCAM without Locking,
TOC, 53, 12, Dec 2004, 1602-1614.

[23] T. Mishra and S. Sahni, CONSIST - Consistent Internet Route
UpdatesISCC, 2010.

[24] T. Mishra, S. Sahni and G. Seetharaman, PC-
DUOS+: A TCAM Architecture for Packet Classifiers
http://www.cise.ufl.edu/˜sahni/papers/pcduos+.pdf

[25] N. Muralimanohar, R. Balasubramonian and N. P. Jouppi,
Optimizing NUCA Organizations and Wiring Alternatives for
Large Caches with CACTI 6.0,ISM December 2007, 3-14

[26] J. B. Sulistyo, J. Perry and D. S. Ha, Developing Standard
Cells for TSMC 0.25um Technology under MOSIS DEEP Rules,
Virginia Tech, Technical Report VISC-2003-01Nov 2003.

[27] J. B. Sulistyo and D. S. Ha, A New Characterization Method for
Delay and Power Dissipation of Standard Library Cells,VLSI
Design15, 3, Jan 2002, 667-678.

[28] H. Noda, K. Inoue, M. Kuroiwa, F. Igaue and K. Ya-
mamoto, A Cost-Efficient High-Performance Dynamic TCAM
With Pipelined Hierarchical Searching and Shift Redundancy
Architecture,IJSSC, 40, 1, Jan 2005, 245-253.

[29] Renesas R8A20410BG 20Mb Quad Search Full Ternary CAM.
http://am.renesas.com/products/memory/TCAM/tcamroot.jsp.

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
36

http://www.cise.ufl.edu/%CB%9Csahni/papers/petcam.pdf
http://www.cise.ufl.edu/%CB%9Csahni/papers/duo.pdf
http://www.cise.ufl.edu/%CB%9Csahni/papers/pcduos+.pdf
http://am.renesas.com/products/memory/TCAM/tcam

PETCAM–A Power Efficient TCAM For Forwarding Tables ∗

Tania Mishra and Sartaj Sahni

Department of Computer and Information Science and Engineering,

University of Florida, Gainesville, FL 32611

{tmishra, sahni}@cise.ufl.edu

November 10, 2008

Abstract

We investigate various TCAM architectures recently proposed for TCAM power and memory reduction and
show that far better power and memory performance is possible when we use an optimal prefix set for the given
router table than when the original prefix set or the reduced prefix set as proposed in other work is used. For
EaseCam [8, 9], our experiments show a power and TCAM memory reduction of 96% to 98% and 62% to 69%
respectively. For the suffix node architecture of [3], we get a power and TCAM memory reduction of 16% to
25% and 45% to 78% respectively.

Keywords

Packet forwarding, TCAM, power.

1 Introduction

Internet packets get from source to destination via a number of hops. At each hop, a forwarding engine uses the

destination address of the packet and a set of rules to determine the next hop for the packet. A packet forwarding

rule (P, H) comprises a prefix P and a next hop H . A packet with destination address d is forwarded to H where

H is the next hop associated with the rule that has the longest prefix that matches d (we assume, throughout this

paper, that no two rules have the same prefix). We refer to the set of rules as the rule table or router table. Figure 1

shows a small router table with 6 prefixes. The prefix associated with rule R4 is 01 (the * at the end indicates a

sequence of don’t care bits) and the associated next hop is H4. Rule R4 matches all destination addresses that

begin with 01. The length of the prefix 01 associated with R4 is 2. A destination address that begins with 010 is

matched by rules R1, R2, R4, and R5. Of these rules, R5 is the one with the longest prefix. So, H5 is the next

hop for packets with a destination address that begins with 010.

[11, 12] survey the many solutions that have been proposed for longest prefix matching in the context of packet

forwarding. Our focus, in this paper, is longest prefix matching using a TCAM (ternary content addressable

memory). Each bit of a TCAM may be set to one of the 3 states 0, 1, and x (don’t care). A simple and fast

solution to longest prefix matching results from the use of a TCAM in conjunction with an SRAM. The prefix of

a rule is stored in a word of TCAM and the next hop is stored in the corresponding SRAM word. Figure 2 shows

a TCAM in which each word is 4 bits long; the prefixes of our 6-rule example of Figure 1 have been stored in the

∗This research was supported, in part, by the National Science Foundation under grant ITR-0326155

1

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
37

APPENDIX C:

Prefixes Next Hop
R1 * H1
R2 0* H2
R3 1* H3
R4 01* H4
R5 010* H5
R6 111* H6

Figure 1: An example 6-prefix forwarding table

TCAM in decreasing order of length along with an SRAM in which the next hop information has been stored. A

TCAM searches all its words, in parallel, for the first word that matches the content of its search register. By

loading a destination address into the search register of a TCAM we can determine the index of the first TCAM

word that matches this destination address. Using this index, we then access the corresponding SRAM word to

determine the next hop. So, when router-table prefixes are stored in a TCAM in decreasing order of length, we

can determine the next hop in 1 TCAM cycle! We note that, in practice, using the described strategy, a TCAM

word will be 32 bits for IPv4 applications.

010*

111*

1*

0*

*

H3

H1

01* H4

H2

H5

H6

Figure 2: TCAM for the 6 rules of Figure 1

Although TCAMs lead to a very simple and fast solution to the packet forwarding problem of finding the

next hop associated with the longest matching prefix, there are several pitfalls associated with their use. These

pitfalls include high power consumption, limited capacity, and high cost. Several researchers have recently proposed

methods to alleviate the power consumption and capacity limitations. Central to the proposed methods [8, 9, 3, 19]

to reduce power consumption is the observation that the power consumed by a TCAM search is proportional to

the size of the portion of the TCAM that needs to be searched rather than to the TCAM’s overall size. Zane et

al. [19] propose a two-level architecture in which the first level extracts some number of bits from the destination

address and these extracted bits are used to index into a segment of the TCAM that is to be searched for the

longest matching prefix. Ravikumar et al. [8, 9] propose a similar two-level architecture. However, the extracted

bits are restricted to be a prefix of the destination address (first 8 bits) and the TCAM segments are of variable

2

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
38

size. The use of variable size segments requires the use of a table of segment start addresses but reduces wasted

TCAM space. The two-level schemes of [8, 9, 19] also increase the effective capacity of a TCAM as the word size of

the TCAM is reduced by the number of extracted bits. So, in an IPv4 application, for example, if 8 bits are used

for the first-level indexing, a TCAM word need only be 24 bits rather than 32 bits (as in the scheme of Figure 3).

Liu [7] proposes the use of pruning and mask extension to compact a TCAM table and hence reduce the number of

rules that has to be stored. This compaction reduces power consumption and also increases the effective capacity

of the TCAM. Lu and Sahni [3] propose table segmenting methods and the use of wide SRAMs to reduce power

consumption and increase effective table capacity.

In this paper, we propose the use of a minimum set of rules equivalent to those in the given router table coupled

with the wide SRAM strategy of [3]. We perform batch updates to the set of rules to accomodate the incoming

route advertisements. We begin in Section 2 by reviewing related work. In this section, we clarify the proposal of

[7] and point out deficiencies in the scheme of [8, 9]. In Section 5 we describe our proposed PETCAM method. An

experimental evaluation of the various methods proposed for low-power TCAMs is done in Section 6.

2 Background and Related Work

Much research has been done to improve the power efficiency of TCAM-based router tables [7, 3, 8, 9, 19, 13, 14,

15, 16, 17]. Pure hardware approaches for power reduction are presented in [13, 14, 15, 16]. Z. Wang et al in

[17] present an algorithm for consistent and incremental updates to TCAMs. We describe the results reported in

[7, 3, 8, 9, 19] in this section as these are most relevant to the work we report in this paper.

Definition 1 P1 ⊂ P2 iff addr(P1) ⊂ addr(P2), where addr(P) is the set of addresses matched by prefix P . Note

that P1 ⊂ P2 iff P2 is a proper prefix of P1.

Definition 2 A rule (P1, H1) is Type I redundant iff (a) there exists a rule (P2, H2) such that P1 ⊂ P2 and H1

= H2 and (b) there is no rule (P3, H3) such that P1 ⊂ P3 ⊂ P2.

Definition 3 A generalized prefix is a sequence comprised of the symbols 0, 1, and ? and possibly terminated by

the symbol *. A simple prefix (or simply, prefix) is a generalized prefix that has no occurrence of the symbol ?.

(Alternatively, we may limit the occurrence of the symbol ? to the right end of the sequence. Note that ?s at the

right end of a sequence may be replaced by a * so that the sequence 10??? may be regarded as a simple prefix by

rewriting it is 10*.)

For example, 0??1??0* and ??100?11* are generalized prefixes. In router table applications, a generalized prefix

may be stored in a word of TCAM by replacing * with a suitable number of ?s.

Definition 4 Two sets of generalized prefixes are equivalent iff they match the same addresses.

Liu [7] proposes two schemes–pruning and mask extension–to compact the rules of a router table. In pruning,

rules with type I redundant prefixes are eliminated from the rule table. It is easy to see that the elimination

3

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
39

of type I redundant prefixes does not change the next-hop decision for any destination address. Following the

elimination of type I redundant prefixes, each set, S, of prefixes that have the same length and the same next

hop is subjected to mask extension in which S is replaced by an equivalent set of generalized prefixes T such that

|T | ≤ |S|. Liu [7] proposes the use of a logic minimization heuristic–Espresso II–to compute a nearly minimal

equivalent set T . Liu [7], however, does not address the issue of how to assign lengths to the generalized prefixes

of T (or, equivalently, how to place the generalized prefixes of T into the TCAM) so that a TCAM search reports

the same next hop as reported using longest prefix matching on the original set of simple prefixes. We address

this issue in Section 3. Liu [7] reports that pruning and mask extension result in a reduction of 42% to 48% in

the number of generalized prefixes that need to be stored in the TCAM. Note that without pruning and mask

extension, we store simple prefixes in the TCAM. However, the TCAM word size is the same regardless of whether

simple or generalized prefixes are stored. So, a 42% reduction (say) in the number of generalized prefixes translates

to a 42% reduction in TCAM memory.

Ravikumar et al. [8, 9] extend the work of Liu [7] and propose the 2-level EaseCAM architecture for router

tables (Figure 3). For an IPv4 router table, the first level stores 8-bit sub-prefixes. Prefixes that have the same

first 8 bits define a prefix cluster. Pruning, prefix aggregation, and prefix expansion are used to replace the simple

prefixes in each cluster with a smaller set of generalized prefixes with the property that a search of the TCAM

segment that contains this smaller set of generalized prefixes results in the same next hop as does a search in

the TCAM segment for the original cluster of simple prefixes. Since the generalized prefixes in a cluster have the

same first 8 bits, it is necessary to store only the remaining 24 bits of each generalized prefix in the second-level

TCAM (note that to store the terminating * of a generalized prefix, we must replace it with a sufficient number of

?s so that the total number of symbols in the generalized prefix is 32). Consequently, second-level TCAM words

are 25% smaller than the TCAM words in the design of [7]. Prefixes shorter than 8 bits are stored in a separate

bucket. The pruning process of Ravikumar et al. [8, 9] is identical to that of Liu [7]–type I redundant prefixes

are eliminated. The compaction process of Ravikumar et al. [8, 9] differs from that of Liu [7] in how generalized

prefixes are created from a set of same-hop prefixes that is free of type I redundancies. In an effort to reduce the

time required by Espresso to process same length same hop prefixes, Ravikumar et al. [8, 9] propose aggregating

prefixes (in a cluster) that have the same hop into sets in which the prefixes have a common longest sub-prefix

of size a multiple of 8. Then, prefixes in each such aggregated set are expanded using prefix expansion [8, 9] so

that the length of each prefix is a multiple of 8. For example, following aggregation the prefixes in an aggregated

set may have length between 16 and 23 with all prefixes in this set having the same first 16 bits. Using prefix

expansion, the lengths of all prefixes in the set becomes 24. Since all prefixes in this prefix-expanded aggregated

set have the same first 16 bits, Espresso may be used to find a minimum number of generalized prefixes equivalent

to the 7-bit suffixes in this set. Working with 7-bit suffixes rather than full 23-bit prefixes reduces the run time

of Espresso [9]. The fact that the aggregated prefix-expanded sets are relatively small (compared to sets of same

hop same length prefixes) is another (and significant) contributing factor to the observed reduction in time spent

on Espresso optimization. Although prefix aggregation and expansion reduce Espresso time with little loss in

4

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
40

compaction effectiveness [8, 9], there are correctness issues that we address in Section 4. Since the power consumed

by a TCAM lookup is proportional to the size of the TCAM segment that is searched rather than to the overall

TCAM size, the scheme of [9] achieves power reduction from using a compacted set of prefixes, storing only the

last 24 bits of each prefix in TCAM, and from searching only the prefixes in a cluster.

255

254

253

252

251

250

3

2

1

.

..

249

1x

251x

255x

254x

253x

252x

250x

2x

Variable Sized Segment

24 bits

8 bits

2nd Level

1st Level

Figure 3: EaseCam architecture of [9]

Zane et al. [19] propose two schemes to achieve power reduction. In the first, bit selection, a few bits (not

necessarily the first few) of each prefix are used to partition the prefix set so that each partition agrees on these

selected bits. The bits are called the partition selector bits. Prefixes in the same partition are stored together in

decreasing order of length. To search for the longest matching prefix for a given destination address d, the partition

selector bits are extracted from d and used to determine which partition is to be searched. Although all prefixes

of an uncompacted router table are stored in the TCAM, power reduction results from having to search only one

partition 1. Additional power reduction is possible if the partition selector bits are extracted from the prefixes

before storage in the TCAM as this results in a reduction in the total number of bits in a partition. Note that bit

selection, which predates the work of [9], is similar to the 2-level strategy employed in [9], where the first 8 bits

are used to determine the partition to search.

The second strategy proposed by Zane et al. [19] is a 2-level TCAM architecture in which the first level TCAM

is an index to the partitions in the second level TCAM. The partitions and index are constructed by decomposing

the binary trie representation of the router-table prefixes. Although both Zane et al. [19] and Ravikumar et al. [9]

propose 2-level TCAM architectures, Zane et al. [19] do not compact the router table (except when bit selection

is used and the partition selector bits are not stored in the second level TCAM) while Ravikumar et al. [9] do. As

a result, the total TCAM memory required by the schemes of Zane et al. [19] is more than that required by the

1The power required by a TCAM lookup is proportional to the total number of bits in the TCAM partition that is searched.

5

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
41

scheme of Ravikumar et al. [9].

The most recent work on TCAM power reduction in the context of router tables appears to be that of Lu and

Sahni [3]. They augment the traditional 1-level TCAM lookup structure as well as the 2-level TCAM structure

of Zane et al. [19] with wide SRAMs and store the suffixes of several prefixes in a single wide SRAM word. This

enables a reduction in both power consumption and total TCAM memory requirement.

3 Issues Related to [7]

As noted in Section 2, when logic minimization is applied to a set of same-hop same-length prefixes, we get a

set of equivalent generalized prefixes. So, for example, A = {000∗, 001∗, 010∗, 011∗} optimizes to B = {0∗}.

While it may be natural to assign 0* a length of 1, such a length assignment can result in an incorrect next

hop computation. To see this, suppose that the next hop associated with the prefixes of A is H1 and that the

router table has another prefix 00∗ whose next hop is H2 and H1 6= H2. When using the original prefix set

C = {000∗, 001∗, 010∗, 011∗, 00∗}, packets with destination address beginning with 000 are sent to H1. Consider

what happens when we apply the compaction scheme of Liu [7]. Since C has no type I redundancy, pruning does

not weed out any member of C. Mask extension compacts A to B. So, the compacted prefix set is D = {0∗, 00∗}

with 0* having H1 as its next hop and 00* having H2. Using the prefix set D, packets with destination addresses

that begin with 000 are sent to H2! We can overcome this difficulty in one of two ways. The first and simplest

is to declare the length of each generalized prefix in the optimized set D to be the same as that of the prefixes in

the set A. This ensures that, when prefixes are loaded to the TCAM in length order, the outcome is the same (in

terms of next hop) as when the original prefix set is loaded in length order. For example, using this definition of

length for a generalized prefix, 0* in set D has length 3, and prefix 00* has length 2. Thus, 0* is loaded first in

the TCAM followed by 00*.

The second strategy is to use a more intuitive definition of length such as the index of the rightmost symbol

that is not a ? or a *. So, the length of 1??01* is 5 and the length of ??00??1* is 7. This is consistent with

the accepted definition of the length of a simple prefix where, for example, the length of 001* is 3. We use the

notation |G| to denote the length (using the just stated intuitive definition) of the generalized prefix G. Using such

a definition works provided we remove also type II redundant rules as is shown below.

Definition 5 A rule (P1, H1) is Type II redundant iff the router table contains a set of rules {(P2, H2), · · · , (Pk, Hk)}

such that |P1| < |Pi|, 2 ≤ i ≤ k and every address matched by P1 is also matched by a Pi, 2 ≤ i ≤ k.

In the rule set {(10*,H1), (100*,H2),(101*,H3)}, no prefix is type I redundant. However, (10*,H1) is type

II redundant. Neither Liu [7] nor Ravikumar et al [8, 9] remove type II redundant rules. We note that every

generalized prefix may be written as the sum of simple prefixes that have the same length as the generalized prefix

and such that the addresses matched by the generalized prefix are the union of those matched by the simple prefixes.

So, for example, 1?00?1* = 100001* + 100011* + 110001* + 110011*. This decomposition of a generalized prefix

6

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
42

into the sum of simple prefixes that have the same length as the generalized prefix is referred to as generalized

prefix decomposition (GPD) and GPD(X) is the generalized prefix decomposition of the generalized prefix X .

Definition 6 Let R = {R1, R2, · · · , Rr} be a set of generalized prefixes that is equivalent to the set of simple

equal-length same-hop prefixes S = {S1, · · · , Ss}. R is a canonical equivalent set iff each Ri is the sum of some of

the Sqs.

Theorem 1 Let R and S be as in Definition 6. There exists a canonical equivalent set for S that has the same

number of generalized prefixes as does R.

Proof Consider an Ri in R. Let Ri = Ri1 + Ri2 + · · · + Riq(i) be the GPD of Ri. Since R and S are equivalent

and prefixes of the same length are disjoint (i.e., have no common matching address), there is exactly one f(i, j),

1 ≤ f(i, j) ≤ s, such that Rij and Sf(i,j) are not disjoint, 1 ≤ i ≤ r, 1 ≤ j ≤ q(i). We consider 3 cases.

Case 1: If |Ri| = |S1|, Rij = Sf(i,j) for all j and so Ri is the sum of some of the Sqs.

Case 2: If |Ri| > |S1|, let R∗

i be the first |S1| bits of Ri. So, the addresses matched by Ri are a subset of those

matched by R∗

i = R∗

i1 + R∗

i2 + · · ·+ R∗

iq(i) = Sf(i,1) + Sf(i,2) + · · ·+ Sf(i,q(i)), where R∗

ij is obtained from Rij

by truncating the last |Ri| − |S1| bits. Since R∗

i matches no address not matched by S, replacing Ri by R∗

i

in R preserves the equivalence between R and S and doesn’t increase the number of Ris in R. We may use

this replacement transformation as often as need to replace all Ris in R whose length is more than |S1| with

R∗

i s whose length equals |S1|. From Case 1, it follows that each of the replacing R∗

i s is the sum of some of

the Sqs.

Case 3: When |Ri| < |S1|, we may use prefix expansion to represent each Rij as the sum of 2t, t = |S1| − |Ri|

simple prefixes whose length is |S1|. From the equivalence of R and S and the fact that prefixes of the same

length are disjoint, it follows that each expanded prefix is one of the Sqs. So, each Rij and hence Ri is the

sum of some of the Sqs.

The prefixes of a canonical equivalent set are called canonical prefixes and CD(Rij) is the set of prefixes of S

that sum to Rij . From Theorem 1, it follows that for every set of equivalent generalized prefixes computed by

a minimization algorithm, there is a canonical equivalent set with the same number of generalized prefixes. So,

henceforth, we assume that minimization algorithms return canonical prefixes.

Theorem 2 Let U be a set of rules comprised of simple prefixes that is free of type II redundancies. Let V be

the set of rules comprised of (canonical) generalized prefixes obtained from U by applying logic minimization to the

equal-length same-hop prefixes of U as is done in mask extension [7]. Longest prefix matching in U and V results

in the same next hop for every destination address A.

7

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
43

Proof Suppose there is an address A for which the longest matching simple prefix in U is U1 with next hop

H1 and for which the longest matching generalized prefix in V is V2 with next hop H2 and H1 6= H2. Let V21 be

the prefix of GPD(V2) that matches A. Note that since all prefixes in GPD(V2) have the same length, they are

disjoint and so exactly one of these matches A. Further, let U2 be the prefix of CD(V21) that matches A. Again,

exactly one prefix of CD(V21) matches A. Since U1 is the longest prefix of U that matches A, |U1| > |U2|. Let V1

be the generalized prefix of V such that V11 ∈ GPD(V1) matches A and U1 ∈ CD(V11). Such a V1 must exist in V

because of the way V is constructed from U using logic minimization. Since V2 is the longest matching generalized

prefix for A in V and V1 also matches A, |V21| = |V2| ≥ |V1| = |V11|. Now, since two prefixes are either disjoint or

nest and since U1, U2, V11, and V21 match A,

addr(U1) ⊂ addr(U2) ⊆ addr(V21) ⊆ addr(V11)

From this and the observation that all prefixes in CD(V11) are of the same length and hence are disjoint, it

follows that some subset of CD(V11) that includes U1 sums to U2. Hence, U2 is type II redundant.

From Theorem 2, it follows that if we start with a set of prefixes that contains no type II redundancy, apply

the reductions of [7] to obtain generalized prefixes, and enter these generalized prefixes into a TCAM in decreasing

order of length, then lookups yield the same next hops as when we load the TCAM with the non-reduced prefix

set in length order.

4 Issues Related to [8, 9]

The issues with the mask extension method of Liu [7] may be resolved by either using an unnatural definition for

the length of a generalized prefix (i.e., length equals that of the equal-length simple prefixes that were input to the

logic minimizer) or by eliminating type II redundancies prior to logic minimization and defining length as in the

definition of |G| provided in Section 3. These resolution methods do not, however, extend to the aggregation and

prefix expansion techniques proposed in [8, 9] to reduce the number of rules to be stored in the TCAM.

4.1 Prefix Aggregation

In prefix aggregation, prefixes that have the same hop are aggregated into clusters with each cluster containing

prefixes that have the same common sub-prefix. The common sub-prefix length is constrained to be a multiple

of 8. So, for example if two prefixes that have the same next hop agree on their first 18 bits only, then they will

be in a cluster of same-hop prefixes that agree on their first 16 bits. Logic minimization is then applied to each

cluster. Since the prefixes in a cluster have different length, there appears to be no reasonable way to determine

where to place the generalized prefixes that result from logic minimization into the TCAM so as to correctly route

packets. Neither of the length resolution methods proposed for mask extension in Section 3 work when aggregation

is employed. For example, consider the rule set {(1*,A), (10*,B), 101*,A)}, where the first 8 bits of each prefix are

omitted and are the same. The rule set is devoid of type I and type II redundancies and so no rule is eliminated in

8

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
44

the initial pruning step. In the aggregation step, 1* and 101* form a cluster and 10* is in a different cluster as it

has a different next hop. Logic minimization reduces the first cluster to 1* and has no effect on the second cluster.

The new rule set is {(1*,A), (10*,B)}. 1* was derived from a prefix of length 1 and one of length 3. Neither length

assignment 1 or 3 for 1* allows the new rule set to work like the original rule set. For example, with the natural

length assignment of 1 to 1*, packets destined to 101* addresses get routed to B rather than to A and with a

length assignment of 3, packets to 10* get sent to A rather than to B!

4.2 Prefix Expansion

[8, 9] propose using prefix expansion within an aggregated cluster to improve the runtime performance of logic

minimization. In prefix expansion, short prefixes in a cluster are replaced by a set of prefixes whose length equals

that of the longest prefix in the cluster. So, following prefix expansion, all prefixes in a cluster have the same length.

Since logic minimization is faster when the input prefixes are of the same size, runtime efficiency is achieved [8, 9].

In the example cluster {1*,101*} of Section 4.1, prefix expansion yields the cluster {100*, 101*, 110*, 111*}, which

is reduced to 1* by logic minimization. The new rule set is {(1*,A),(10*,B)}, which, as noted in Section 4.1 cannot

be made to work the same as the original rule set.

5 PETCAM

Our power-efficient TCAM, PETCAM, employs the following construction steps:

Step 1: Transform the given routing table to an equivalent optimal routing table using the dynamic programming

algorithm of [10].

Step 2: Use mask extension as in [7] to reduce the number of prefixes in the optimal routing table obtained in

Step 1 even further. This is possible as the optimal routing table is limited to be comprised of simple prefixes

alone whereas mask extension results in generalized prefixes.

Step 3: Map the reduced set of generalized prefixes constructed in Step 2 to a 2-level TCAM augmented with a

wide SRAM by extending the suffix node method developed in [3].

Since the dynamic programming algorithm of [10] transforms a set of prefix rules into a provably optimal

equivalent set of prefix rules, the transformed set is guaranteed to be free of type I and type II redundancies.

Hence, the generalized prefixes that result from the mask extension done in step 2 correctly classify packets when

these prefixes are entered into a TCAM in decreasing order of length (|G|). For step 3, we need to adapt the suffix-

node method of [3] so as to accommodate generalized prefixes rather than simple prefixes. For this adaptation,

we need to modify the structure of a suffix node as well as develop an algorithm to map suffixes into suffix nodes.

Before developing these adaptations, we provide a brief overview of the suffix-node method of [3].

9

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
45

5.1 Suffix-Node Method of [3]

Lu and Sahni [3] propose the use of wide SRAMs in conjunction with TCAMs so as to reduce power consumption

and increase effective TCAM capacity. Although Lu and Sahni [3] propose methods for both 1- and 2-level TCAMs,

we review only the 1-level method here and adapt this to generalized prefixes. A similar adaptation may be done

for the 2-level methods of [3].

Lu and Sahni [3] make the observation that the simple TCAM organization of Figure 2 does not make effective

use of modern wide access SRAMs. Whereas a next hop can often be encoded using 10 to 12 bits we can fetch, in

a single memory fetch cycle, 72 bits from a QDRII SRAM in dual burst mode and 144 bits in quad burst mode. A

larger number of bits may be fetched per cycle by employing multiple SRAMs that may be simultaneously accessed.

Further, given the orders of magnitude discrepancy between the time for an SRAM fetch cycle and the time to

perform an arithmetic, it is possible to do significant processing of the data stored in a word of a wide SRAM in

much less time than it takes to fetch that word of data from the SRAM. To capitalize on these observations, Lu

and Sahni [3] propose packing the suffixes of several router-table prefixes that are in the same subtree of the binary

trie for the router-table prefixes into a suffix node, which is then stored in one or more SRAM words in such a way

that the entire suffix node may be retrieved in a single memory cycle. Figure 4 gives the structure of the suffix

node of [3]. We have added a 5-bit match start position field which indicate the bit position in the destination

prefix from where suffix matching can start for all suffixes encoded in the suffix node. The suffix count field gives

the number of suffixes packed in the suffix node. For each suffix Si stored in a suffix node, we keep the suffix

length, len(Si), the suffix, Si, and the next hop associated with the suffix. Using the suffix node creation scheme

in [3], each suffix node must have exactly one suffix of length 0. This suffix can come from either a prefix that

is stored in the root of the subtree that is carved to form the suffix node, or a covering prefix which is inherited

from the nearest ancestor with a prefix in case the root of the subtree does not store a prefix. To optimize SRAM

further, we store this suffix as the first suffix in the node, and since it has a length 0, we drop the suffix length

field for the first suffix. Thus a suffix of length 0 appears as the first suffix in a suffix node, and is represented only

by its next hop.

unusednext hop
of Sk

len (Sk)
Match start
position Suffix count

next hop
of S1 len (S2) S2

next hop
of S2 Sk...

Figure 4: Suffix node of [3] with a 5-bit match start position field and an optimized representation of the first
suffix.

Figure 5 shows the binary trie for the prefixes of Figure 1 together with a mapping of these prefixes into a

simple TCAM with wide SRAM. For this example, we assume an SRAM word width of 32 bits with 2 bits allocated

for the match start position field (allowing prefixes to be of length 5 bits), 2 bits allocated for the count field of a

suffix node (permitting up to 4 suffixes to be stored in a node), 2 bits for the suffix length field (permitting suffixes

of length between 0 and 3), and 12 bits for the next-hop field (permitting upto 4096 different next hops). In the

worst-case, a suffix node stores a single suffix of length 0, for which a next hop field of 12 bits is used along with the

10

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
46

match start position and suffix count fields, utilizing only 16 of the 32 bits. In the best case, we may store a suffix

of length 0 and one of length 2 resulting in the utilization of all 32 bits in the node. The allocation of suffixes to

suffix nodes is done by carving out subtries of the binary trie for the prefix set. For example, from the binary trie

of Figure 5, we first carve out the binary trie rooted at node A. The path from the root to A is Q(A) = 01. Q(A)

is stored in the TCAM and the suffixes * (length 0) and 0* (length 1) that result from eliminating Q(A) from the

front of each prefix in the carved subtrie are packed into a suffix node. This carving-packing process is repeated

at nodes B, C, and D resulting in the suffix nodes of Figure 5. When carving is done at a node R whose subtree

doesn’t contain a matching prefix for every destination address that begins with Q(R), we add a covering prefix

into the suffix node for this carving. The covering prefix for node R, which is stored as a suffix whose length is 0

is the prefix in the nearest binary trie ancestor of R. Assuming that each router table contains the default prefix

*, each node of the binary trie has a well defined covering prefix. The covering prefix for node B of the binary trie

of Figure 5 is P3 with a next hop of H3. In practice, we store a covering prefix whenever the root of the carved

subtree does not contain a prefix. Hence, every suffix node has a prefix, its first one, whose length is 0.

D

0

0

1

1

1

1

*

10

01

00

10

01

01

01

10 H410 01

1−bit Trie

TCAM SRAM

H110

32 bits

B
A

C 01*

11*

0*

H3

H2

1

0

1 H3

H5

H6

H1

H2 H3

H4

H6H5

Figure 5: Suffix node example

The Q(R)s and associated suffix nodes are assigned, respectively, to TCAM and SRAM words in descending

order of length [3].

5.2 Our Suffix-Node Structure

The suffix node method of [3] cannot be used as is for PETCAMs because, in a PETCAM, we store generalized

prefixes rather than simple prefixes. Specifically, we need to define a new format for a suffix node as well as

formulate an algorithm to populate suffix nodes with the suffixes of generalized prefixes. Our new suffix-node

structure has a 1-bit type field that permits the use of two variants. A type I suffix node is used to store simple

suffixes exclusively (i.e., all suffixes in a type I suffix node are comprised of 0s and 1s). Such a suffix node is

structured the same as the suffix node of [3] except for the addition of a type field (Figure 6).

A type II suffix node (Figure 7) stores a mix of simple and non-simple suffixes (i.e., suffixes that have at least

one don’t care bit). Simple suffixes are stored first using triples (length, suffix, next hop) as used in Figure 6. These

11

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
47

5bits

Match start
position

 ...
next hop unusedType length(S1) S1

next hop
of S1

length(Sk) Sk
of Sk

 4 bits 1 bit 4 bits 12 bits 4 bits 12 bits

Suffix count

Figure 6: Type I suffix node

triples are followed by 4-tuples (length, suffix, mask, next hop) that represent non-simple suffixes. The suffix and

mask entries are of the same length and the 1s in the mask identify the don’t cares in the suffix. For example, the

suffix x0x1 may be represented by the simple suffix 0001 and the mask 1010, for example. The index field gives

the index of the first non-simple suffix. So, for example, if we have 2 simple suffixes and 3 non-simple suffixes in a

type II suffix node, the count field would be 5 and the index field would be 3.

...next hop
of S2

M2S2
next hop

of S1 len(S2)

5 bits

unused

4 bits

Sklen(Sk) Mk
next hop

of Sk

3 bits 4 bits12 bits1 bit 12 bits 12 bits4 bits

Match start
position

TypeSuffix count Index

Figure 7: Type II suffix node

5.3 Normalized Ternary Tries

To map the generalized prefixes that result from steps 1 and 2 of our PETCAM construction algorithm we first

construct a ternary trie2. Figure 8 shows an example router table following steps 1 and 2 of our PETCAM

construction algorithm. Figure 9 shows the corresponding ternary trie.

Address Next Hop
1 x0 H1
2 00x0 H2
3 00x1 H3
4 1100 H4
5 11x1 H5

Figure 8: Router table with generalized prefixes

A normalized ternary trie is a ternary trie in which each node that is the x-child (i.e., the don’t care child) of

its parent has no sibling. So, in a normalized ternary trie, the children of degree 2 nodes are 0- and 1-children,

the child of a degree 1 node may be a 0-, 1-, or x-child, and there are no degree 3 nodes. A ternary trie may be

normalized by eliminating the x-child of each degree 3 node by merging the subtree rooted at this x-child with the

subtrees rooted at the two siblings of this x-child. For example, in the ternary trie of Figure 9, the root is a degree

3 node and the subtree rooted at its x-child may be merged with the subtree rooted at the root’s 0-child as well

as with that rooted at the root’s 1-child to obtain the ternary tree of Figure 10. One may verify that the ternary

tries of Figures 9 and 10 are equivalent in that both route all packets to the same next hop.

2A ternary trie differs from a binary trie in that each node of a ternary trie may have up to 3 children depending on whether the
branching bit is a 0, 1, or an x.

12

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
48

0 1 x

0

x

1

x

1

0

0 1

0

0

H1

H2 H3 H4 H5

Figure 9: Ternary trie for the router-table of Figure 8

0 1

0

x

0 1

0

0 1

0 1

0 x

H1 H1

H2 H4 H5H3

Figure 10: Ternary trie following the merging of the x-child of the root of Figure 9

The trie of Figure 10 is not yet a normalized ternary trie as it contains an x-child that has a sibling (i.e., the

x-child with Q(R) = 11x). This subtree rooted at this x-child may be merged with that rooted at its 0-sibling and

its empty 1-sibling to obtain the normalized ternary trie of Figure 11.

Figure 12 gives our algorithm to normalize a ternary trie. This algorithm assumes that each node y of a ternary

trie has 3 children fields with y.child[0] and y.child[1] pointing to the 0- and 1-children of node y and y.child[2]

pointing to the x-child of node y. The algorithm employs two other algorithms–delete, which deletes a subtree

given its root and merge, which merges two subtrees together. We do not further specify delete as this is a simple

13

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
49

0 1

0

x

0 1

0

0 1

1

0 1

0 1

H1 H1

H2 H3 H4 H5 H5

Figure 11: Normalized ternary trie following merging of the Q(R) = 11x subtree of Figure 10

postorder traversal. Algorithm merge is specified in Figure 13.

Algorithm normalize(root)

{

if (!root) return;

if (root.child[2]) {

if (root.child[0] || root.child[1]) {

merge (root, root.child[0], 0, root.child[2]);

merge (root, root.child[1], 1, root.child[2]);

delete(root.child[2]);

root.child[2] = NULL;

}

}

normalize(root.child[0]);

normalize(root.child[1]);

normalize(root.child[2]);

}

Figure 12: Algorithm to normalize a ternary trie

In algorithm merge, oChild and xChild are children of parent. xChild is the x-child while oChild is the

oChildID-child. Notice that when we start with a prefix set that has no type I and II redundancies and perform

mask extension, at most one of oChild and xChild may have a non-null next hop. Further, note that an optimal

prefix set is devoid of type I and type II redundancies.

5.4 Our Carving Heuristic

Our carving heuristic starts with the normalized ternary trie for the canonical prefixes that result when mask

extension is done on an optimal prefix set. To carve the normalized ternary trie into suffix nodes, we first compute

14

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
50

Algorithm merge(parent, oChild, oChildID, xChild)

{

if (!xChild) return;

if(!oChild) {

oChild = new node;

oChild.nextHop = xChild.nextHop;

parent.child[oChildID] = oChild;

}

else {

if (!xChild.nextHop) then

oChild.nextHop = xChild.nextHop;

}

merge (oChild, oChild.child[0], 0, xChild.child[0]);

merge (oChild, oChild.child[1], 1, xChild.child[1]);

merge (oChild, oChild.child[2], 2, xChild.child[2]);

}

Figure 13: Algorithm to merge an x-subtree

the following values for each node y of the normalized trie.

1. y.numP · · · number of prefixes stored in the subtrie rooted at y. This is equivalent to the number of nodes

in this subtrie that have a non-null next hop field. Let y.h = 0 if y.nextHop is null and 1 otherwise. It is

easy to see that y.numP is the sum of the numP values for its up to 2 non-empty subtrees plus y.h.

2. y.xNumP · · · number of nodes in the subtree rooted at y that have a non-null next hop stored and the path

from y to each of these nodes includes at least one x-child other than y. Note that if y has an x-child it can

have no other child and so y.xNumP is the numP value of this x-child. When y does not have an x-child,

its xNumP value is the sum of the xNumP values of its children.

3. y.size · · · number of bits needed to store the suffixes (together with suffix count, node type, index (if required),

suffix lengths, masks (if required), and next hops) for the prefixes in the subtree rooted at y. Each such suffix

is obtained by removing Q(p) from the y.numP prefixes in the subtree rooted at y. In case y.xNumP = 0,

a type I suffix node is used. Otherwise, a type II suffix node is used. y.size also includes the bits needed to

store the next hop for the covering prefix for y in case this is needed. When a covering prefix is needed, we

store a suffix of length 0 along with the next hop associated with this covering prefix.

Figure 14 gives the numP , xNumP , and size values for each of the nodes of the normalized ternary trie of

Figure 11, where size here includes only a nexthop and suffix bits for simplicity.

To carve a normalized ternary trie into suffix nodes that use at most w bits per node, we perform a postorder

traversal of the trie using the visit function of Figure 15, which differs from that of [3] in the manner in which

size is computed. Although the visit function, as stated in Figure 15, does not make explicit use of numP and

xNumP , these values are useful in the computation of size. Note that in Figure 15, the value of y.size is its value

at the time y is visited and accounts for the fact that several of y’s original subtrees may have been carved out by

this time.

15

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
51

0

0

0 1

0

(1, 0, 12) (1, 0, 12) (1, 0, 12)(1, 0, 12) (1, 0, 12)

(2, 0, 26) (1, 0, 13)

(3, 0, 42)(3, 2, 44)

(3, 2, 49) (4, 0, 58)

(7, 2, 116)

111

0 1x

10

(1, 0, 12)

(2, 0, 26)

H1 H1

H2 H3 H4 H5 H5

Figure 14: (numP , xNumP , size) for nodes of normalized ternary of Figure 11. Nodes that require a covering
prefix are labeled *

Algorithm visit(y)

if (y.size < w) return;

if (y.size == w) {carve(y); return;}

// y.size > w

if (y has a single child z) {carve(z); return;}

// z could be 0-, 1- or x-child

// y has both a 0-child u and a 1-child v

if (u.size <= v.size) {

carve (v);

recompute y.size;

if (y.size < w) return;

if (y.size == w) carve(y);

else carve(u);

}

else // u.size > v.size

this is symmetric to the case u.size <= v.size

Figure 15: Visit function for subtree carving heuristic [3]

5.5 PETCAM Updates

PETCAM supports batch updates rather than incremental updates. To support batch updates, we use two copies

of the TCAM-SRAM lookup subsystems as shown in Figure 16. At any given time, one copy of the TCAM-SRAM

subsystem is used for lookup and the other is used to prepare an updated version of the lookup table. In a batch

update, the control plane processes all updates received. This is done using a control plane representation (e.g., a

trie) of the routing table. With some frequency, the PETCAM construction algorithm is run, creating an updated

16

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
52

TCAM-SRAM representation is the subsystem not currently used for lookup. When construction is complete,

lookup is switched to the new subsystem. So, lookups have minimal interruption; the interruption time being that

to switch from one subsystem to another. For this strategy to work, the delay between successive rebuilds must

at least equal the time to run the PETCAM construction algorithm. Hence, it is important to have an efficient

PETCAM construction algorithm.

The same strategy may be used for batch updates using the TCAM schemes of [3, 7, 8, 9]. We note that none

of these schemes provide efficient support for incremental updates.

Control
Plane

Data
Plane

TCAM

system1
TCAM

system2

Update

Search result

Management

Key

N
etw

ork P
rocessor

Figure 16: Router architecture using PETCAM.

6 Experimental Results

We programmed our PETCAM strategy in C++ and compared its performance with the power reduction schemes

of [7, 3, 8, 9]. The comparison was done using the IPv4 router tables AS1221, AS4637, AS6447, and AS65000,

which were obtained from [5] and rrc00, which was obtained from [6]. Data sets AS65000 and rrc00 are from

May 2008, AS6447 is from July 2008, and the remaining data sets are earlier than 2008 and were used in [3], for

example. Our experiments aim to measure the relative effectiveness of the scheme of Liu [7] (type I redundancy

removal followed by mask extension) and the PETCAM scheme (dynamic programming optimization followed by

mask extension) to compact the router table as well the overall relative performance of PETCAM, EaseCam, and

the method of Lu and Sahni [3] with respect to TCAM power and memory reduction. For our experiments we

assume the SRAM word size, and hence the size of a suffix node, is 144 bits.

6.1 Compaction Efficiency

The compaction efficiency is measured by the number of prefixes following the compaction steps. Figure 17 gives

the number of prefixes in each of our data sets as well as the number of prefixes following each of steps 1 and 2 of

the PETCAM strategy. The dynamic programming algorithm of [10] reduces the number of prefixes in the data

sets by between 45% and 79%. Another approximately 5% reduction is achieved when mask extension is employed

17

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
53

on the optimal prefixes produced by the algorithm of [10]. So, PETCAM reduces the number of prefixes by about

50% to 84%.

DataSet initial # of
prefixes

after Step 1 Reduction
(%)

after Steps 1 and
2

Total
reduction
(%)

AS1221 281516 153885 45.34 135879 51.73
AS4637 210119 43368 79.36 32562 84.50
AS6447 275509 149117 45.88 137151 50.22
AS65000 259026 81341 68.60 66808 74.21
rrc00 266185 92239 65.35 83146 68.76

Figure 17: Number of router table prefixes in PETCAM

Figure 18 gives the number of prefixes following the removal of type I redundant prefixes as well as following

mask extension as proposed in [7] and Figure 19 gives these numbers after the removal of type I and type II

redundancies followed by mask extension. We do not report the results of compaction using the enhancements

to Liu’s [7] compaction methods proposed in [8, 9], because, as noted in Section 4, these enhancements do not

guarantee compacted prefix sets equivalent to the input prefix set. For each of our data sets, the method of [7]

achieves less compaction than what is proposed for PETCAM. The bar chart in Figure 20 shows the relative

efficiency of the three schemes with respect to reducing the number of prefixes in a router table.

DataSet initial # of
prefixes

after type I Reduction
(%)

after mask exten-
sion

Total
reduction
(%)

AS1221 281516 210582 25.20 146101 48.10
AS4637 210119 92099 56.17 40374 80.79
AS6447 275509 231193 16.09 162575 40.99
AS65000 259026 152267 41.22 80441 68.94
rrc00 266185 173030 35.0 105534 60.35

Figure 18: Number of router table prefixes in [7]

DataSet initial # of
prefixes

after type I and
II

Reduction
(%)

after mask exten-
sion

Total
reduction
(%)

AS1221 281516 209553 25.56 145467 48.33
AS4637 210119 92066 56.18 40386 80.78
AS6447 275509 227989 17.25 159909 41.96
AS65000 259026 151590 41.48 80076 69.09
rrc00 266185 171754 35.48 104827 60.62

Figure 19: Number of router table prefixes when type II redundancies are eliminated

The input for mask extension is comprised of sets of same hop prefixes that have the same length. Logic

minimization is performed on each of these sets. The time for logic minimization is substantial (see Section 6.4)

and critically dependent on the size of the input set. Figure 21 gives the maximum size of a set input to Espresso.

18

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
54

AS1221 AS4637 AS6447 AS65000 rrc00
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

Router Tables

N
um

be
r

of
 P

re
fix

es

initial number of prefixes
type I+logic minimization
type I+II+logic minimization
using PETCAM

Figure 20: Relative efficiency for table compaction

Table Original PETCAM Liu [7]
as1221 45285 13771 25953
as4637 111921 13188 40004
as6447 18808 7818 15110
as65000 94297 14693 45602
rrc00 62744 11669 34129

Figure 21: Maximum number of prefixes, having the same length and next hop prior to logic minimization/mask
extension

6.2 Comparison With EaseCam

Although the modifications to Liu’s [7] compaction strategy suggested in [8, 9] are faulty, the two-level EaseCam

architecture, which is a specialization of the bit-selection architecture proposed by Zane et al. [19], may be employed

in conjunction with any prefix set to reduce TCAM power as well as total TCAM memory. In EaseCam, each

TCAM word is 24 bits as the first 8 bits of each prefix are used in the level-1 index to the TCAM. Prefixes shorter

than 8 bits are handled in a separate bucket and are ignored in our evaluation of EaseCam. Figure 22 gives the

number of TCAM bits required by EaseCam to store each of our sample router tables following compaction using

the strategies of [7], [7] together with type II redundancy removal, and PETCAM.

To generate the numbers for PETCAM, we employ steps 1 and 2 of the PETCAM scheme and store the

resulting generalized prefixes in a 2-level TCAM system using the M-12Wb layout of [3]. We set the word-size

of the second level TCAM (also known as data-DTCAM or DTCAM) to 32 bits for IPv4 prefixes. For the first

level TCAM (index-TCAM or ITCAM), we need a word size of 24 bits based on (1) the bit allocation scheme to

suffix nodes in Figure 7, (2) suffix node size of 144 bits and (3) our choice of DTCAM bucket size of 128 prefixes

for the experiments. For example, with the given bit allocation and the suffix node size, the minimum height of

19

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
55

a carved subtree (carving done using the algorithm in Figure 15) is 2, corresponding to the case when all the 7

nodes of the subtree store a prefix. Thus prefixes stored in a DTCAM are of length 29 or less. Similarly, with

a DTCAM bucket of size 128 prefixes, the carved subtree is of height at least 6 (log2(128) − 1, assuming a full

binary tree with each node storing a prefix). So, the length of a prefix in ITCAM is at most 29-7 = 22, and in

fact some further reduction is possible if we consider the wide SRAM being used with the ITCAM. However, for

ease of configuration, we choose 32 bits for DTCAM and 24 bits for ITCAM word size. It is easy to see that this

configuration can support DTCAM buckets of size >= 32 entries when the SRAM word size is 144 bits. When the

DTCAM bucket size is < 32, a larger word size for the ITCAM is required.

Figure 22 also gives the size, maxP , of the largest partition that is activated in a lookup. Recall that the power

needed for a lookup is proportional to the size of the activated partition. On our data sets, PETCAM requires

less than half the TCAM memory required by EaseCam and the power requirement of EaseCam is between 26 and

97 times that of PETCAM. Figure 23 presents a bar chart for the comparitive space and power consumption by

EaseCAM and PETCAM.

DataSet EaseCam with [7] EaseCam with [7]+typeII PETCAM
#bits maxP #bits maxP #bits maxP

AS1221 3538608 739968 3523656 738120 1248640 7552
AS4637 1000080 138936 1000080 138912 378056 5320
AS6447 3920112 242400 3854808 237360 1239608 7624
AS65000 1968408 189888 1959000 188736 694240 6112
rrc00 2563176 203448 2545920 201384 784592 6352

Figure 22: Total number of bits and maximum partition size using EaseCam

AS1221 AS4637 AS6447 AS65000 rrc00
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
x 10

6

Router Tables

T
C

A
M

 s
iz

e
(n

um
be

r
of

 b
its

)

EaseCAM with [7]
EaseCAM with [7] + type II
PETCAM

(a) TCAM size

AS1221 AS4637 AS6447 AS65000 rrc00
0

1

2

3

4

5

6

7

8
x 10

5

Router Tables

T
C

A
M

 p
ow

er
(n

um
be

r
of

 e
na

bl
ed

 b
its

)

EaseCAM with [7]
EaseCAM with [7] + type II
PETCAM

(b) TCAM power

Figure 23: Comparison of TCAM space and power requirement between EaseCAM and PETCAM

20

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
56

6.3 Comparison With [3]

Figure 24 gives the maxP values for the power-reduction architecture of Lu and Sahni [3] when applied to the

original prefix set as is done in [3] and when applied to a compacted prefix set. In Figure 24, we use the 1-12Wc

scheme of [3], which is recommended in [3] for power optimization. The size of a DTCAM bucket is set to 128

prefixes. In Figures 24 and 25, all columns use the architecture of [3]. The column labeled No Compaction [3]

uses the original prefix set, that labeled [7] uses the compacted prefix set resulting from type I redundancy removal

followed by logic minimization as is done in [7], the next column applies types I and II redundancy removal before

logic minimization, and the column labeled PETCAM uses the 1-12Wc scheme to store the set of generalized

prefixes obtained after applying steps 1 and 2 of the PETCAM scheme to the initial prefix set. As can be seen,

PETCAM provides power reduction relative to the scheme of [3]. This reduction ranges from 18% to 25%.

DataSet No Compaction [3] [7] [7]+type II PETCAM
AS1221 200 180 180 164
AS4637 183 152 152 139
AS6447 196 185 185 164
AS65000 198 171 170 148
rrc00 198 172 172 152

Figure 24: Maximum partition size using 1-12Wc of [3]

Figure 25 gives the total TCAM memory needed by the M-12Wb scheme of [3], which is the scheme recommended

in [3] for TCAM memory optimization. The numbers in the column labeled PETCAM are obtained by applying

the steps 1 and 2 of the PETCAM scheme to reduce the prefix set and then using the step 3 to map the resulting

generalized prefixes to a 2-level TCAM system. We use the carving heuristic in Figure 15 to create the suffix

nodes and then use the M1-2Wb layout of [3] to fill the first and second level TCAMs. The size of a DTCAM

bucket is set to 128 prefixes. PETCAM requires between 22% and 54% as much TCAM memory as required by

the architecture of [3] beginning with the original prefix set. Figure 26 shows the data of Figures 24 and 25 as

bar charts.

DataSet No Compaction [3] [7] [7]+type II PETCAM
AS1221 71564 53964 53705 38913
AS4637 54076 24027 24027 11782
AS6447 70271 59728 59089 38273
AS65000 66285 39691 39560 21636
rrc00 68084 45216 44964 24449

Figure 25: Total TCAM memory using M1-2Wb of [3]

6.4 PETCAMLite

Since Step 2 (mask extension) of the compaction process for PETCAM is quite time consuming, we investigate a

light version, PETCAMLite, of PETCAM in which Step 2 is omitted. Our experiments indicate that PETCAMLite

21

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
57

AS1221 AS4637 AS6447 AS65000 rrc00
0

1

2

3

4

5

6

7

8

9

x 10
4

Router Tables

T
C

A
M

 s
iz

e
(#

 o
f e

nt
rie

s)

No Compaction [3]
[7]
[7]+typeII
PETCAM

(a) TCAM size

AS1221 AS4637 AS6447 AS65000 rrc00
0

50

100

150

200

250

300

Router Tables

T
C

A
M

 p
ow

er
 (

of

 e
na

bl
ed

 e
nt

rie
s)

No Compaction[3]
[7]
[7] + type II
PETCAM

(b) TCAM power

Figure 26: Comparison of TCAM space and power requirement

requires 0% to 6% more TCAM power and 0.5% to 2% more TCAM memory than required by PETCAM. So,

if Step 2 takes more computational resource than we wish to invest, we may use PETCAMLite and gain almost

the same power and memory benefits as provided by PETCAM. Figure 27 gives the CPU time on a Sun4u Sparc

SunOS 5.8 machine for executing steps 1 and 2. So, if a Sun4u Sparc is used as the rebuild engine, the interval

between successive rebuilds of the TCAM system will need to be at least 700 seconds for PETCAM but only about

6 seconds for PETCAMLite.

DataSet Time for Step 1 (seconds) Time for Step 2 (seconds)
AS1221 5.38 642.83
AS4637 3.7 296.62
AS6447 5.14 347.25
AS65000 4.57 600.55
rrc00 4.78 407.05

Figure 27: Execution time

7 Conclusion

We have pointed out some of the shortcomings of the power reduction methods for TCAM lookup tables proposed

in [7, 8, 9]. By starting with an optimal prefix set for the given router table prefix set, we can achieve much better

power reduction and TCAM memory requirement than when we use the compaction schemes suggested in [7, 8, 9].

This is true regardless of whether we use the EaseCam [8, 9] architecture or the architecture of [3]. For EaseCam,

worst case power is reduced between 96% and 98% while TCAM memory is reduced between 62% and 69%. The

power and memory reduction relative to the architecture of [3] is 16% to 25% and 45% to 78%. We have proposed

two memory and power efficient TCAM lookup systems – PETCAM and PETCAMLite. While PETCAM has

slightly better memory and power characteristics than does PETCAMLite, the rebuild time for PETCAM is 2

22

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
58

orders of magnitude larger than that for PETCAMLite. PETCAMLite supports acceptable rebuild times using

modest computational resources. On our data sets, the power and memory penalty using PETCAMLite are at

most 6% and at most 2%, respectively.

References

[1] M. Akhbarizadeh, M. Nourani, R. Panigrahy and S. Sharma, A TCAM-based parallel architecture for high-

speed packet forwarding, IEEE Trans. on Computers, 56, 1, 2007, 58-2007.

[2] H. Lu, Improved Trie Partitioning for Cooler TCAMs, ACST, 2004.

[3] W. Lu and S. Sahni, Low Power TCAMs For Very Large Forwarding Tables, Proceedings of INFOCOM, 2008.

[4] W. Lu and S. Sahni, Succinct representation of static packet classifiers, International Conference on Computer

Networking, 2007.

[5] http://bgp.potaroo.net, 2007.

[6] http://www.ripe.net/projects/ris/rawdata.html, 2008.

[7] H. Liu, Routing Table Compaction in Ternary-CAM, IEEE Micro, 22, 3, 2002.

[8] V.C. Ravikumar, R. N. Mahapatra, and L. N. Bhuyan, EaseCAM: An Energy And Storage Efficient TCAM-

Based Router Architecture for IP Lookup, IEEE Transactions on Computers, 54, 5, May 2005, 521-533.

[9] V.C. Ravikumar, R. N. Mahapatra, and L. N. Bhuyan, TCAM architecture for IP lookup using prefix prop-

erties, IEEE Micro, 24, 2, March 2004, 60-69.

[10] R. Daves, C. King, S. Venkatachary, and B.Zill, Constructing Optimal IP Routing Tables, Proceedings of

INFOCOM, 1999.

[11] M. Ruiz-Sanchez, E. Biersack, and W. Dabbous, Survey and taxonomy of IP address lookup algorithms, IEEE

Network, 2001, 8-23.

[12] S. Sahni, K. Kim, and H. Lu, Data structures for one-dimensional packet classification using most-specific-rule

matching, International Journal on Foundations of Computer Science, 14, 3, 2003, 337-358.

[13] C. A. Zukowski, and S. Wang, Use of Selective Precharge for Low-Power Content-Addressable Memories,

IEEE International Symposium on Circuits and Systems, 1997.

[14] N. Mohan, and M. Sachdev, Low Power Dual Matchline Ternary Content Addressable Memory, IEEE Inter-

national Symposium on Circuits and Systems, 2004.

[15] H. Miyatake, M. Tanaka, and Y.Mori, A design for high-speed low-power CMOS fully parallel content ad-

dressable memory macros, IEEE Journal of Solid State Circuits, 36, 6, June 2001, 956-968.

23

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
59

[16] C.-S. Lin, J.-C. Chang, and B.-D Liu, A low-power pre-computation based fully parallel content addressable

memory, IEEE Journal of Solid State Circuits, 38, 4, April 2003, 654-662.

[17] Z. Wang, H. Che, M. Kumar, and S.K. Das, CoPTUA: Consistent Policy Table Update Algorithm for TCAM

without Locking, IEEE Transactions on Computers, 53, 12, December 2004, 1602-1614.

[18] M. Wang, S. Deering, T. Hain, and L. Dunn, Non-random Generator for IPv6 Tables, 12th Annual IEEE

Symposium on High Performance Interconnects, 2004.

[19] F. Zane, G. Narlikar and A. Basu, CoolCAMs: Power-Efficient TCAMs for Forwarding Engines, INFOCOM,

2003.

24

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
60

LIST OF ABBREVIATIONS

Acronym Meaning
DLFS_PLO A memory management scheme
DUO Dual TCAM architecture for packet

forwarding
DUOS A simple version of DUO
ILSRAM Index SRAM for an ILTCAM
ILTCAM Index TCAM for an LTCAM
ISRAM Interion SRAM
ITCAM Interior TCAM
LSRAM Leaf SRAM
LTACM Leaf TCAM
PC - DUO Dual TCAM architecture for packet

classification
PC - DUOS A simple version of PC - DUO
PC - DUO+ An enhancement of PC - DUO
PC - DUO+W A wide SRAM version of PC - DUO+
PC - TRIO Triple TCAM architecture for packet

classification
SRAM Static random access memory
STCAM A simple TCAM architecture for packet

classification
TCAM Ternary content addressable memory
TCP Transmission control protocol

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
61

	1 INTRODUCTION
	2 METHODS, ASSUMPTIONS, AND PROCEDURES
	2.1 Background and Related Work
	2.2 PC-DUOS
	2.3 PC-DUOS+
	2.4 PC-TRIO
	2.5 Differences among PC-DUOS, PC-DUOS+ and PC-TRIO

	3 RESULTS AND DISCUSSION
	3.1 Setup
	3.2 Datasets
	3.3 Results

	4 CONCLUSIONS
	5 REFERENCES
	APPENDIX A – PC-DUOS: Fast TCAM Lookup and Update for Packet Classifiers
	APPENDIX B – PC-TRIO: An Indexed TCAM Architecture for Packet Classifiers
	APPENDIX C – PETCAM – A Power Efficient TCAM for Forwarding Tables
	LIST OF ABBREVIATIONS
	Doc1.pdf
	LIST OF ABBREVIATIONS

