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Objectives & Motivation

Objectives

@ Develop a fluid code on the GPU for modeling flows with
complex chemical kinetics. The entire code is written using
CUDA C/C++ for maximum flexibility.

@ Explore different strategies for optimizing the performance of
the code for a general chemistry mechanism.

e Emphasis on the kinetics solver since it is more
computationally expensive.

@ Benchmark with standard test cases.

Distribution A: Approved for Public Release; Distribution Unlimited H. P. Le and J.-L. Cambier



Objectives & Motivation

Motivation

@ Detail study of non-equilibrium processes associated with
high-speed flow.
o Detonation instability
e Partially ionized gas
e MHD
@ Development of a multi-physics code utilizing Object-Oriented
and CUDA technology. Both of these features are available in
CUDA C/C++.
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Approach

Governing Equations

Euler equations with source term for chemical kinetics

o 1 .
8t+V7£F"d5_Q (1)
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Solution method:
@ Finite Volume method for hyperbolic conservation laws

@ Source terms are solved by using operator splitting technique
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Approach

Numerical Schemes

@ Monoticity Preserving! (MP) Schemes
e 3rd and 5th order spatial discretization was used in
conjunction with 3rd order TVD-Runge-Kutta time integration
@ Arbitrary Derivative Riemann solver with Weighted Essential
Non-Oscillatory? (ADERWENO) scheme
o b5th order spatial and 3rd order temporal without Runge-Kutta
time integration
o Utilizes Cauchy-Kowalewski procedure and Taylor series
expansion of WENO fluxes for high order in time

'Suresh & Huynh (1997) J. Comp. Phys. 136, 83-99
Titarev & Toro (2001) J. Comp. Phys. 204, 715-736
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Approach

Chemical Kinetics

Implicit formulation

dQ _ o dQ :

Elementary Reaction:
MALEDIAS 3)
Species production/destruction rate

Ws = Z VrSKfr H[XS]V;S _ Z Vrstr H[XS]V;; (4)
r s . ;

where
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GPU Implementation

Graphic Processing Unit

What is GPU?

@ Graphic processing units containing a massive amount of
processing cores

@ Designed specifically for graphic rendering which is a highly
parallel process

Why GPU?

@ GPU is faster than CPU on SIMD execution model
@ GPU is now very easy to program
@ GPU is much cheaper than CPU
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GPU Implementation

GPU versus CPU
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Figure: Single and double precision floating point operation capability of
GPU and CPU from 2003-2010
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GPU Implementation

GPU Programming

Programming languages for GPU: CUDA, OpenCL,
DirectCompute, BrookGPU, ...
CUDA is the most mature programing environment for GPU.

@ similar to C/C++
@ support OO features
@ easy to debug
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GPU Implementation

GPU Programming Model

@ Each device contains a set of streaming multi-processor (SM).
Each SM contains a set of streaming processors (SP).

o Parallel based on grid and thread blocks

@ Execution instruction called kernel

Thread
per-Thread Private
Local Memory

Thread Block

per-Block
Shared Memory

Grid 1
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GPU Implementation

GPU Programming Model

Multithreaded CUDA Program

!
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GPU Implementation

CFD:
@ Cell-based parallelization: EQS, time marching, etc.
@ Face-based parallelization: Reconstruction, flux, etc.
Strategies:
@ Global memory
o large but high latency; requires coalesced access

@ Shared memory
e small but very fast; not useful in this case since Ng ~ N

@ Reduce block occupancy to utilize more registersS.

3Volkov (2010) Better Performance at Lower Occupancy, GPU Tech. Conf.
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GPU Implementation

Chemical Kinetics

Main strategies

@ Coalesce memory access pattern for high global memory
bandwidth

@ Utilize shared memory to reduce DRAM latency
@ Texture binding for read-only data

Issues:
@ How to overcome shared memory limitation?

@ How effective is global memory?
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GPU Implementation

Summary of Steps in Gaussian Elimination Algorithm

o Forward substitution:
for np = 1:N-1
for ns = np+1:N
P := A(ns,np)/A(up,np)
RHS(ns) := RHS(ns)-RHS(np)*P
for ms = np+1:N
A(ns,ms) := A(ns,ms)-A(np,ms)*P

@ Backward substitution:
for np = N-1:1
P:=0
for ns=np+1:N
P := P+A(np,ns)*RHS(ns)
RHS(np) := (RHS(up)-P)/A(np,np)
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GPU Implementation

Shared Memory Limit

system can we put on shared memory (48

How many kinetics
KB/CUDA block)?
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GPU Implementation

rage Pattern

Store one row of matrix in shared memory for each row elimination
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GPU Implementation

Algorithms

@ Algorithm 1: store matrix data on global memory and
coalesce memory access pattern

o Inverse several matrices per CUDA block
@ Algorithm 2: store part of matrix data (one row at a time) on
shared memory

e Load and reload after row pivoting
o Inverse one matrix per CUDA block
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Results

CFD Results: Forward Step

@ Mach 3 flow over a step with reflective boundary on top
@ No special treatment at the corner of the step
@ MP5 scheme with RK3 using 630,000 cells
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Results

CFD Results: Backward Step

@ Mach 2.4 shock diffracted from a step
@ MP5 scheme with RK3 using 300,000 cells

@ Comparison with experiment shows excellent agreement
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Results

CFD Results: Rayleigh-Taylor Instability

@ Acceleration of a heavy fluid to a lighter fluid

@ MP5 scheme with RK3 using 1.6M cells

o Contact discontinuity well resolved; evidence of fine scale
instability structure
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Results

Cellular Detonation

Test setup:
o Wall sparked ignition (P = 40 atm; T = 1500 K) with
premixed Stoichiometric Mixture of HAir
@ Contact discontinuity initially disturbed in 2-D simulation

e Maas and Warnatz* Hp-O, reaction mechanism

P = 40 atm
T = 1500 K
P =1 atm
T = 300K
L
k 30 cm 3

*Maas, U. and J. Warnatz (1988). Combust. Flame 74, 5369.

H. P. Le and J.-L. Cambier
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Results

Cellular Detonation

@ Pressure and temperature evolution of flow field

@ Cellular structure developed due to to flame front instability
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Results

Performance Results: Algorithm 1

How effective is global memory access?

200 . .
—o— Coalesced
—o— Non-coalesced
— — — Theoretical Peak
<150
s YL -
o
=
]
Z 100 W
g
K
>
2
3 50
=
0
0 50 100 150 200

Numbers of Species

Distribution A: Approved for Public Release; Distribution Unlimited H. P. Le and J.-L. Cambier



Results

Performance Results: Algorithm 1 vs. 2

@ Measurement of the performance of the kinetics solver for
different species sizes.
@ Grid size is varied due to limitation of global memory
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Results

Performance Results: CFD

o ADERWENO shows substantial advantages over the MP5 due
to single step integration
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Results

Performance

@ Speed-up obtained for a larger mechanism (CHs — O;) is
nearly 40 times faster

T
—o— 9 species, 38 reactions
45 + —o— 36 species, 308 reactions -

Speed-up

103 10*

H. P. Le and J.-L. Cambier
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Conclusion and Future Works

Conclusion and Future Works

Accomplishment:

@ Basic CFD framework for fluid simulation with detailed
chemical kinetics.

@ Performance obtained in both cases are very promising: up to
60 times for non-reacting flow and up to 40 for reacting flow

Future Works:
o Extension to Multi-GPU using MPI
o Collisional-Radiative kinetics for partial ionized gas

@ MHD simulation for electromagnetic field effects
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Conclusion and Future Works
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