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Objectives

Develop a fluid code on the GPU for modeling flows with
complex chemical kinetics. The entire code is written using
CUDA C/C++ for maximum flexibility.

Explore different strategies for optimizing the performance of
the code for a general chemistry mechanism.

Emphasis on the kinetics solver since it is more
computationally expensive.

Benchmark with standard test cases.
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Motivation

Detail study of non-equilibrium processes associated with
high-speed flow.

Detonation instability
Partially ionized gas
MHD

Development of a multi-physics code utilizing Object-Oriented
and CUDA technology. Both of these features are available in
CUDA C/C++.
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Governing Equations

Euler equations with source term for chemical kinetics
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Solution method:

Finite Volume method for hyperbolic conservation laws

Source terms are solved by using operator splitting technique
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Numerical Schemes

Monoticity Preserving1 (MP) Schemes

3rd and 5th order spatial discretization was used in
conjunction with 3rd order TVD-Runge-Kutta time integration

Arbitrary Derivative Riemann solver with Weighted Essential
Non-Oscillatory2 (ADERWENO) scheme

5th order spatial and 3rd order temporal without Runge-Kutta
time integration
Utilizes Cauchy-Kowalewski procedure and Taylor series
expansion of WENO fluxes for high order in time

1Suresh & Huynh (1997) J. Comp. Phys. 136, 83-99
2Titarev & Toro (2001) J. Comp. Phys. 204, 715-736
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Chemical Kinetics

Implicit formulation

dQ

dt
= Ω̇→

(
I −∆t

∂Ω̇

∂Q

)
dQ

dt
= Ω̇ (2)

Elementary Reaction:
∑
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Species production/destruction rate
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Graphic Processing Unit

What is GPU?

Graphic processing units containing a massive amount of
processing cores

Designed specifically for graphic rendering which is a highly
parallel process

Why GPU?

GPU is faster than CPU on SIMD execution model

GPU is now very easy to program

GPU is much cheaper than CPU
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GPU versus CPU
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Figure 1: Single and double precision floating point operation capability of GPU and CPU from
2003-2010 (adapted from NVIDIA[8])

attempts had been made in writing scientific codes on the GPU, and promising results were
obtained both in terms of performance and flexibility.[1, 6]

In this work, we attempt to follow the same path on the design of numerical solvers on
the GPUs. However, our focus is different from the previous attempts such that we place
more attention to the kinetics solver than the fluid dynamics. This is due to the fact that for
the simulation of high-speed fluid flow, the computation is dominated by solving the kinetics.
While the current implementation is only for chemical kinetics, we aim to extend it to a more
complicated and computationally intensive kinetics model for plasma.

2 Governing Equations

The set of the Euler equations for a reactive gas mixture can be written as

∂Q

∂t
+∇ · F̄ = Ω̇ (1)

where Q and F are the vectors of conservative variables and fluxes. We assumed that there is
no species diffusion and the gas is thermally equilibrium (i.e., all species have the same velocity
and all the internal energy modes are at equilibrium). The right hand side (RHS) of Eq. 1
denotes the vector of source terms Ω̇. In this case, the source terms are composed of exchange
terms due to chemical reactions. By applying Gauss’s law to the divergence of the fluxes, one
could obtain

∂Q

∂t
+

1

V

∮

S

FndS = Ω̇ (2)

2

Figure: Single and double precision floating point operation capability of
GPU and CPU from 2003-2010
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GPU Programming

Programming languages for GPU: CUDA, OpenCL,
DirectCompute, BrookGPU, ...
CUDA is the most mature programing environment for GPU.

similar to C/C++

support OO features

easy to debug
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GPU Programming Model

Each device contains a set of streaming multi-processor (SM).
Each SM contains a set of streaming processors (SP).
Parallel based on grid and thread blocks
Execution instruction called kernel

6 

�

A Quick Refresher on CUDA 

CUDA is the hardware and software architecture that enables NVIDIA GPUs to execute 

programs written with C, C++, Fortran, OpenCL, DirectCompute, and other languages. A 

CUDA program calls parallel kernels.  A kernel executes in parallel across a set of parallel 

threads.  The programmer or compiler organizes these threads in thread blocks and grids of 

thread blocks.  The GPU instantiates a kernel program on a grid of parallel thread blocks.  

Each thread within a thread block executes an instance of the kernel, and has a thread ID 

within its thread block, program counter, registers, per-thread private memory, inputs, and 

output results. 

A thread block is a set of 

concurrently executing threads 

that can cooperate among 

themselves through barrier 

synchronization and shared 

memory.  A thread block has a 

block ID within its grid.   

A grid is an array of thread 

blocks that execute the same 

kernel, read inputs from global 

memory, write results to global 

memory, and synchronize 

between dependent kernel calls. 

In the CUDA parallel 

programming model, each 

thread has a per-thread private 

memory space used for register 

spills, function calls, and C 

automatic array variables.  Each 

thread block has a per-Block 

shared memory space used for 

inter-thread communication, 

data sharing, and result sharing 

in parallel algorithms. Grids of 

thread blocks share results in 

Global Memory space after 

kernel-wide global 

synchronization.  �

�  

CUDA Hierarchy of threads, blocks, and grids, with corresponding 

per-thread private, per-block shared, and per-application global 

memory spaces. 
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GPU Programming Model
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CFD

CFD:

Cell-based parallelization: EOS, time marching, etc.

Face-based parallelization: Reconstruction, flux, etc.

Strategies:

Global memory

large but high latency; requires coalesced access

Shared memory

small but very fast; not useful in this case since NQ ∼ Ns

Reduce block occupancy to utilize more registers3.

3Volkov (2010) Better Performance at Lower Occupancy, GPU Tech. Conf.
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Chemical Kinetics

Main strategies

Coalesce memory access pattern for high global memory
bandwidth

Utilize shared memory to reduce DRAM latency

Texture binding for read-only data

Issues:

How to overcome shared memory limitation?

How effective is global memory?
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Summary of Steps in Gaussian Elimination Algorithm

Forward substitution:

for np = 1:N-1

for ns = np+1:N

P := A(ns,np)/A(np,np)

RHS(ns) := RHS(ns)-RHS(np)*P

for ms = np+1:N

A(ns,ms) := A(ns,ms)-A(np,ms)*P

Backward substitution:

for np = N-1:1

P := 0

for ns=np+1:N

P := P+A(np,ns)*RHS(ns)

RHS(np) := (RHS(np)-P)/A(np,np)

Distribution A: Approved for Public Release; Distribution Unlimited H. P. Le and J.-L. Cambier
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Shared Memory Limit

How many kinetics system can we put on shared memory (48
KB/CUDA block)?

solved at every computational cell. Storing the whole Jacobian and the RHS vector on shared memory is
not an ideal situation here. Figure 4 shows the memory requirement for storing the Jacobian and RHS on
the typical shared memory (48 KB for a Tesla C2050/2070). If we associated an entire thread block to the
chemical system in a cell, the number of species is limited to 75. Storing more than 1 system per block
makes this limit go even lower, as can be seen for 1 thread per cell (32 threads block size).

32 cells/CUDA block

1 cell/CUDA block
M
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S
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Figure 4: Chemistry size limit
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Reduced Storage Pattern

Store one row of matrix in shared memory for each row elimination
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Figure 5: Chemistry size limit
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Algorithms

Algorithm 1: store matrix data on global memory and
coalesce memory access pattern

Inverse several matrices per CUDA block

Algorithm 2: store part of matrix data (one row at a time) on
shared memory

Load and reload after row pivoting
Inverse one matrix per CUDA block

Distribution A: Approved for Public Release; Distribution Unlimited H. P. Le and J.-L. Cambier
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CFD Results: Forward Step

Mach 3 flow over a step with reflective boundary on top

No special treatment at the corner of the step

MP5 scheme with RK3 using 630,000 cells

Figure 4: Forward step problem

The second test is the shock diffraction problem which is modeled as the diffraction of a
shock wave (M = 2.4) down a step[12]. The diffraction results in a strong rarefaction generated
at the corner of the step which can cause a problem of having negative density when performing
the reconstruction. The problem is modeled using 27,000 cells. The numerical simulation is
shown in pair with the experimental images in figure 5. It has been shown that the solver was
able to reproduce the correct flow features in the region of the rarefaction fan.

Figure 5: Diffraction of a Mach 2.4 shock wave down a step. Comparison between
numerical schlieren and experimental images

We also modeled the Rayleigh-Taylor instability problem. The problem is described as the
acceleration of a heavy fluid into a light fluid driven by gravity. For a rectangular domain of

9
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CFD Results: Backward Step

Mach 2.4 shock diffracted from a step

MP5 scheme with RK3 using 300,000 cells

Comparison with experiment shows excellent agreement
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CFD Results: Rayleigh-Taylor Instability

Acceleration of a heavy fluid to a lighter fluid
MP5 scheme with RK3 using 1.6M cells
Contact discontinuity well resolved; evidence of fine scale
instability structure

[0, 0.25]× [0, 1], the initial conditions are given as follows:

ρ = 2, u = 0, v = −0.025 cos(8πx), P = 2y + 1 for 0 ≤ y ≤ 1

2

ρ = 1, u = 0, v = −0.025c cos(8πx), P = y +
3

2
for

1

2
≤ y ≤ 1

where c is the speed of sound.
The top and bottom boundaries are set as reflecting and the left and right boundaries are

periodic. As the flow progress, the shear layer starts to develop and the Kelvin-Helmholtz insta-
bilities become more evident. The gravity effect is taken into account by adding a source term
vector which modifies the momentum vector and the energy of the flow based on gravitational
force. The source term in this case is relatively simple and contributes very little to the overall
computational time. The performance of the fluid dynamics calculation is discussed in the next
section of this report.

10
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Cellular Detonation

Test setup:

Wall sparked ignition (P = 40 atm; T = 1500 K) with
premixed Stoichiometric Mixture of H2Air

Contact discontinuity initially disturbed in 2-D simulation

Maas and Warnatz4 H2-O2 reaction mechanism

Code Validation Detonations Detonation w/ MHD Simple Detonation

Detonation Test Setup

L

30 cm

P = 1 atm
T = 300K

T = 1500 K
P = 40 atm

• Premixed Stoichiometric Mixture of H2−Air
� 11 species and 38 reaction mechanisms

• Closed Ends

• Spark ignited (L = 0.25 cm)

Distribution A: For Public Release; Distribution Unlimited

4Maas, U. and J. Warnatz (1988). Combust. Flame 74, 5369.
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Cellular Detonation

Pressure and temperature evolution of flow field

Cellular structure developed due to to flame front instability

Figure 8: Rayleigh-Taylor instability computed with the MP5 scheme on a 400× 1600 grid

Figure 9: Evolution of the pressure and temperature in a 2D detonation simulation

11 of 18

American Institute of Aeronautics and Astronautics
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Performance Results: Algorithm 1

How effective is global memory access?
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Performance Results: Algorithm 1 vs. 2

Measurement of the performance of the kinetics solver for
different species sizes.
Grid size is varied due to limitation of global memory
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Figure 12: Comparison of the speed-up factor obtained from the kinetics solver using both global and sha
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Performance Results: CFD

ADERWENO shows substantial advantages over the MP5 due
to single step integration

Figure 8: Two dimensional simulation of a detonation wave

5.2 Performance Results

Figure 9 shows the performance of the solver for the simulation considering only the fluid
dynamics aspect using the MP5 and the ADERWENO schemes. The speed-ups obtained in
both cases are very promising. Since the ADERWENO scheme only requires single-stage time
integration, it is expected that it is faster than the MP5 scheme. It can be seen in Figure 9
that the speed up scales almost linearly with the number of computational cells. For the
ADERWENO scheme, we can obtain almost 60 times speed-up for a large grid which is about
twice faster than the MP5 scheme. All the comparisons are made between a Tesla C2070 and
an Intel Xeon X5650 using double precision calculation.
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Figure 9: Performance of the fluid dynamics simulation only

Figure 10 shows the performance of only the kinetics solver (i.e., no convection). The test
is performed considering only solving the kinetics system. Although constructing the kinetics

12
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Performance

Speed-up obtained for a larger mechanism (CH4 − O2) is
nearly 40 times faster

36 species, 308 reactions
9 species, 38 reactions
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Figure 12: Performance of the reactive flow solver for two different chemistry mechanism

6 Conclusion and Future Works

In the current paper, we show the implementation of a numerical solver for simulating chemically
reacting flow on the GPU. The fluid dynamics is modeled using high-order finite volume schemes,
and the chemical kinetics is solved using an implicit solver. Results of both the fluid dynamics
and chemical kinetics are shown. Considering only the fluid dynamics, we obtained a speed-
up of 30 and 55 times compared to the CPU version for the MP5 and ADERWENO scheme,
respectively. For the chemical kinetics, we present two different approaches on implementing the
Gaussian elimination algorithm on the GPU. The best performance obtained by only solving
the kinetics problem ranges from 30-40 depending on the size of the chemical mechanism. When
the fluid dynamics is coupled with the kinetics, we obtained a speed-up factor of 40 times for a
9-species gas mixture with 38 reactions. The solver is also tested with a larger mechanism (36
species, 308 reactions) and the performance obtained is faster than the small mechanism.

The current work can be extended in different ways. First, since the framework is performing
well in shared memory architecture, it is possible to also extend it to distributed memory
architecture utilizing Message Passing Interface (MPI). The extension permits using multi-GPU
which is attracted for performing large-scale simulations. On the other hand, although the
current simulation is done for chemically reacting flow, it is desired to extend it to simulate
ionized gas (i.e. plasma) which requires additional modeling process (Collisional-Radiative) to
model the changes in the different excited level of the charged species. In adidition, the governing
equations also need to be extended to characterize the thermal non-equilibrium environment of
the plasma. Given that the physics has been well established[2, 7, 4], the extension does not
present a priori challenges.

15
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Conclusion and Future Works

Accomplishment:

Basic CFD framework for fluid simulation with detailed
chemical kinetics.

Performance obtained in both cases are very promising: up to
60 times for non-reacting flow and up to 40 for reacting flow

Future Works:

Extension to Multi-GPU using MPI

Collisional-Radiative kinetics for partial ionized gas

MHD simulation for electromagnetic field effects
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