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Variational assimilation of glider data in Monterey Bay 

by Chudong Pan1   , Max Yaremchuk3, Dmitri Nechaev1 and Hans Ngodock1 

ABSTRACT 

Temperature and salinity profiles observed by gliders in the Monterey Bay in August 2003 are 
assimilated into NCOM model in the framework of a 3dVar scheme with a hybrid background error 
covariance (BEC) representation. The model performance is validated against independent mooring 
observations for the assimilation runs with I -hour analysis cycle. In the first experiment the background 
error statistics was estimated using the ensemble of model states spanning the entire observation 
period, whereas in the second experiment the BEC information was acquired by averaging over the 3- 
day floating temporal window (FTW) centered at the analysis time. It is found that the FTW scheme 
provides lower discrepancy between the values of temperature, salinity and velocity predicted by 
the model and observed at the moorings. The improvement becomes more clearly visible during the 
upwelling and relaxations events, associated with intermittent wind forcing. During these periods the 
FTW scheme provides a significantly (2-3 times) better fit to the mooring data. 

1. Introduction 

Most of ensemble-based data assimilation methods evolved from the ensemble Kaiman 

filter (EnKF) (Evensen, 2003). It is a common presumption that ensemble-based techniques 

are capable of generating flow-dependent background error covariances (BEC) which con- 

trol the proper weighting of the background field and observations (Wang et ai, 2007). 

Unlike ensemble-based methods, variational data assimilation techniques utilize heuris- 

tic BEC models, which simulate BECs without direct analysis of the model statistics. These 

methods (Courtier et ai, 1998; Weaver and Courtier, 2001; Wang et ai, 2007; Dobricic 

and Pinardi, 2008; Li et ai, 2008) are widely used in operational schemes of many oceano- 

graphic institutions like the Naval Research Laboratory (NRL) and National Centers for 

Environmental Prediction (NCEP) because of the increasing amount of observations caused 

by the improvement of observational technologies each year. Traditional 3dVar methods 

approximate BEC by a Gaussian or near-Gaussian function in one way or another (Courtier 

et ai, 1998; Weaver and Courtier, 2001; Weaver and Ricci, 2004; Dobricic and Pinardi, 

2008; Li et at., 2008). Since the BEC models in traditional variational schemes are normally 

time-independent, they are often referred to as "static" or "stationary" BEC. Nonetheless, 
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in coastal regions, a static BEC might not be able to reflect real ocean dynamics since 
near-coastal regions are often affected by numerous factors such as tidal effects, bottom 
topography and large scale circulations (Wang et al., 2008). 

To improve performance of regional 3dVar data assimilation algorithms, hybrid BEC 
models have been under extensive development during the last decade (Hamill and Snyder, 
2000; Etherton and Bishop, 2004; Buehner, 2005; Wang etal., 2007). The major idea of the 
hybrid approach is to represent the BEC matrix by a weighted sum of the flow-dependent 
covariance derived from the ensemble of model integrations and the "static" covariance, 
represented by an operator with a smoothing kernel. By tuning the covariance weights, 
Wang et al. (2007, 2008, 2009) have demonstrated that hybrid schemes are more robust 
than traditional variational schemes and are capable of improving predictability of the 
atmospheric models by 5-15%. 

Recently, Yaremchuk et al. (2011) proposed a hybrid 3dVar scheme for assimilating 
glider data into the Navy Coastal Ocean Model (NCOM). The flow-dependent part of the 
hybrid BEC in this scheme is estimated from an ensemble of model states which contains the 
statistics of both NCOM forecasts and analyses. The static part of the hybrid BEC is modeled 
by the propagator of the diffusion equation. To retain the regional-scale error correlations, 
an explicit separation technique is adopted by restricting the action of static covariance to 
the null space of flow-dependent covariance matrix. Both the twin data experiments and real 
data experiments showed improvement for 12-hourly forecast with the hybrid scheme. In 
the real-data experiments of Yaremchuk et al. (2011), only data within two-hour intervals 
near the analysis were used; therefore, physical phenomena at scales less than one day 
were excluded from consideration and treated as noise by the assimilation algorithm. The 
Monterey Bay is known for its complicated dynamics (Rosenfeld et al., 1994; Shulman 
et al., 2002; Ramp et al, 2005) on time scales of 1-2 days and less and it is interesting to 
explore the impact of time resolution on the overall skill of the assimilation system. Another 
objective of this paper is to estimate the impact of the ensemble size on the assimilation 
skill of the system. 

The paper is organized as follows. In Section 2, we briefly review the hybrid BEC model of 
Yaremchuk et al. (2011), document its tuning parameters with an emphasis on the ensemble 
size issue, and present the overall strategy of the assimilation experiments. The numerical 
model NCOM and glider observations are described in Section 3. In Section 4 we present 
and discuss the results of experiments. Conclusions and summary are provided in Section 5. 

2. Hybrid 3dVar assimilation scheme 

The considered 3dVar assimilation scheme finds an optimal increment 8x of a model state 
vector x by minimizing the cost function: 

7(SJC) = -t8xrB-'8x + (Hhx - 8y)rR_l(//8x 8y)] mm 
Sx 

(1) 
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where B is the M x M BEC matrix, R represents K xK observation error covariance matrix, 
8y is the innovation vector, H denotes linearized observational operator, projecting model 
state onto the observations, M is the number of model grid points occupied by temperature 
and salinity fields, and K is the number of observations of temperature and salinity at the 
analysis time. 

The hybrid BEC model is formulated in terms of the inverse covariances and has two 
terms scaled by the adjustable coefficients a and ß: 

B"1 = otB"1 + ßPiBö1 Pi = aPAm' PT + ßP± exp(-p2A)/>I (2) 

The first term accounts for the flow-dependent part of the covariance (Bm) which is 
derived from the analysis of model statistics: P is a m x M matrix whose m columns 
are the eigenvectors e* (k = 1,..., m) of the sample covariance, and Am is a m x m 
diagonal matrix whose diagonal elements are the variances of e*. Initially, model statistics 
are generated as an ensemble of model states from a free run. In the course of assimilation at 
every analysis time, the ensemble is updated by replacing the respective members of the free 
run by the forecasts initialized using this analysis. The coefficients a and ß are respectively 
determined by minimizing (1) in the subspace spanned by e* and by using the technique 
for computation of the Kaiman filter inflation factor (e.g. Wang et al., 2007). The optimal 
number m of the eigenmodes is computed by the Bayesian information criterion (Schwarz, 
1978). 

The second term in Eq. (2) is the static part of the BEC represented by projection of the 
inverse static covariance operator on the subspace orthogonal to e*: here Pi = I« - PPr 

is the corresponding projector and 1^ is the identity operator in state space. The static 
covariance operator is represented in the standard Gaussian form: Bo = exp(p2A), where 
p is the decorrelation radius, and A is the Laplacian operator. 

By constraining the action of Bo to null space of Bm, the static and flow-dependent 
parts of BEC are statistically separated. Coefficients a and ß and the optimal number m of 
eigenvectors are determined from model statistics using separate algorithms based on the 
Bayesian information criterion and statistical separability of Bo and Bm (see Yaremchuk 
etai, 2011 for details). 

The only type of data used in the present study is temperature and salinity profiles from 
gliders. Therefore, balance constraints are introduced by applying the linearized equation of 
state and the geostrophic/hydrostatic relationships directly to the temperature and salinity 
increments (e.g., Li et al., 2008) obtained from minimization of the cost function. 

In their original tests of the hybrid scheme, Yaremchuk et al. (2011) conducted experi- 
ments with glider observations in the Monterey Bay using the 12-hour analysis cycle and 
found that hybrid approach improved the forecast skill of the model. The objective of the 
present study is to explore the impact of the length of analysis cycle on the quality of assim- 
ilation. In the experiments we shorten the assimilation interval to 1 hour and reduce to three 
days the length of the averaging period used for estimating Bm and other parameters of the 
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BEC model. Model statistics were extracted from either the analyses/forecasts of the whole 
assimilation period or from the floating temporal window (FTW) centered at the analysis 
time.The idea of FTW is to introduce a temporal radius whose magnitude is small enough 
to keep the scheme computationally efficient and large enough to retain the flow-dependent 
information and keep the assimilation skill of the system. When the ensemble is used for 
statistical analysis, only the ensemble members within this radius (three days in the present 
study) are chosen. 

The FTW was introduced for several reasons. First, the overall length of assimilation 
period (27 days) appears to be too small for the assimilation algorithm to spin up and show 
good skill in retrieving the background error statistics from the model analyses/forecasts: the 
number of statistically significant eigenvectors m diagnosed by the Bayesian information 
criterion never exceeded four in the experiments. As a consequence, these vectors cap- 
tured regional phenomena that were most persistent during the averaging period and never 
accounted for the processes caused by rapid changes in external forcing (e.g., upwelling and 
relaxation events described by Rosenfeld et ai, 1994; Shulman et al, 2002; Ramp et ai, 
2005). The second reason was purely computational: the cost of updating the covariance 
estimates grows substantially with the dimension of the ensemble. With a FTW ensemble 
size of 72 members (three days with hourly analyses), the computational cost for the scheme 
is less than 5% of the one using the full ensemble (639 members, 26.6 days). In the present 
study, the hourly model forecasts are updated by the optimized increments: x" = x? + hx 
to obtain the analysis which is then used as initial condition to produce the next hourly 
forecast. 

3. Numerical model and observations 

a. Numerical model 

The numerical model used in this study is Navy Coastal Ocean Model (NCOM), which is 
a three-dimensional oceanic model with hydrostatic approximation (Martin, 2000; Rhodes 
et al., 2002). NCOM is a primitive equation model with options of using pure z-coordinate, 
or pure sigma layer, or hybrid layers with sigma coordinate in the upper layers and z 
coordinate in the lower layers (e.g., Shulman et al., 2007). A pure sigma coordinate with 29 
levels is adopted in present study. The model runs on an orthogonal curvilinear grid, which 
adapts to local complex geometry and has horizontally variable resolution (1^ km, Fig. 1). 
NCOM is set up to be one-way coupled with a global NCOM model at open boundaries 
(Shulman et ai, 2009). Cross-shelf open boundaries are near-orthogonal to the isobaths, 
which accommodates local bathymetry and allows flow to be almost normal to the open 
boundaries (Shulman et ai, 2002). The model is driven by three-hourly atmospheric fluxes 
produced by the Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS) 
(Hodur etal, 2002). 

This model setting has been used successfully in a number of the studies of the Mon- 
terey Bay area (Shulman et ai, 2007, 2009), which demonstrated reasonably good skill in 
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Figure I. NCOM model grid (gray points) and bottom topography. The two black dots are locations 
of independent moorings M1 and M2. 

reproducing complex dynamics of the currents in the region (Kamenkovich, 1977; Rosen- 
fe\detal., 1994; Rampe/ al., 2005). Meanwhile it is known that the free (unconstrained by 
data) model runs tend to produce biased solutions (e.g. Yaremchuk et al., 2011). We attribute 
this rather to the specifics of NCOM regional setting with low resolution open boundary 
forcing than to the inconsistencies in model physics and/or numerics (Kamenkovich, 1999; 
Dinniman and Klinck, 2002; Ezer et al., 2002; Kamenkovich and Nechaev, 2009). With 
availability of new observations in the region, model solutions can be improved by data 
assimilation. 

b. Observations 

During the second Autonomous Ocean Sampling Network (AOSN-II) experiment in 
2003, five Spray gliders and ten Slocum gliders were deployed in the Monterey Bay region, 
collecting temperature and salinity profiles (Ramp et al., 2008). Since the horizontal diving 
distance (about 0.5 km) of a glider is much smaller than grid resolution, all the temperature 
and salinity profiles are treated as vertical profiles. All the raw glider data (Fig. 2) collected 
from August 2 (0:00) to August 28 (14:00) are assimilated in our experiments (639 hours 
of data in total, containing 11,231 temperature-salinity profiles with 2,428,378 individual 
samples of temperature and salinity). Figure 3 presents distribution of the number of glider 
data over the considered time period and depth. 
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Figure 2. Locations of glider profiles near Monterey Bay during AOSN-II experiment (gray dots). 
The two black dots are locations of independent moorings M1 and M2. 

During the experiment, two moorings Ml and M2 (Fig. 1) were set up by Monterey Bay 
Aquarium Research Institute (MBARI) to record vertical temperature, salinity and current 
velocity (Ramp et ai, 2005). Temperature and salinity data from Ml and M2 buoys are 
available on 11 levels ranging from 0 to 300 m, while ADCP (Acoustic Doppler Current 
Profilers) velocity observations are recorded on 18 levels ranging from 15 to 455 m. The 
mooring observations are used to verify our experiment results and are not directly involved 
in the data assimilation. 

4. Numerical experiments and results 

Comparison of a traditional 3dVar scheme (with static BEC only) and the hybrid scheme 
has been performed by Yaremchuk et al. (2011). The objective of the present study is to 
explore the impact of the length of analysis cycle and the ensemble size on the quality 
of assimilation. To achieve this objective we analyze the results of the free run NCOM 
model (hereinafter referred to as Run 1), the results of hybrid 3dVar data assimilation run 
with the 639-member ensemble (Run 2) and the results of the hybrid 3dVar with the 72- 
member FTW ensemble (Run 3). All model runs are initiated at 0:00 August 2, and ended 
at 14:00 August 28 (639 hours in total). Assimilation runs are verified against independent 
observations from the moorings Ml and M2 (Fig. 1). The comparisons are made between 
the mooring data and one hour NCOM forecasts, initiated by the analysis made 1 hour prior 
to observations. 
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Table 1. Description of NCOM runs and comparison of temperature and salinity solution errors 
at 60 meters. 

Ml Ml M2 M2 
August 26-28 August 20-22 August 14-18 August 21-23 

upwelling relaxation upwelling relaxation 
event event event event 

temperature salinity temperature salinity 

Run 
Data 

assimilation FTW 
Bias 
(°C) 

RMS 
(°C) Bias RMS 

Bias 
(°C) 

RMS 
(°C) Bias RMS 

1 No No 0.85 0.87 -0.06 0.07 0.79 0.84 -0.17 0.18 

2 Yes No 0.55 0.91 0.19 0.20 0.51 0.68 -0.15 0.17 

3 Yes Yes 0.06 0.22 0.03 0.04 0.04 0.39 -0.05 0.08 

a. Comparison with mooring observations at 60 m 

Northwesterly winds cause pronounced upwelling events in the Monterey Bay area 
(Tracy, 1990; Tseng etal., 2005). According to Shulman et al. (2009), August 2-20 was an 
extended upwelling period. It was followed by a brief relaxation during the period August 
20-23. Another upwelling period happened in August 23-31. Table 1 presents the results of 
model-data comparison typical for upwelling and relaxation periods for the mooring data at 
60 m. At this depth we expect to see strong variability of the oceanic parameters and largest 
discrepancies between the three model runs. While the direct influence of the surface fluxes 
(which are the same for all three runs) at the depth of 60 m is significantly reduced, the 
impact of the length of analysis cycle on the quality of assimilation at this depth should be 
pronounced due to the high density of glider data (see Fig. 3). 

Results from all three runs at 60 m as well as observations from mooring M1 are presented 
in Figure4. Although the general behavior of the Run 1 results matches the Ml observations. 

10 15 20 
August, 2003 

Figure 3. Distribution of the number of glider data over the considered time period and depth. 
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Figure 4. Temperature comparisons between results of run 1, run 2, run 3 and Ml observations at 
60m depth (a). Salinity comparisons between run 1, run 2, and run 3 and Ml observations at 60m 
depth (b). 

the magnitudes of both modeled temperature and salinity are considerably different from 
the observed. Temperature predicted by the run 1 is about 0.5°C higher than the observed 
temperature over the whole model run period (Fig. 4a), while salinity is about 0.05 lower 
than observations from 2 to 18 of August (Fig. 4b). Besides, the model fields of Run 1 are 
too smooth to capture temporal variation of the observed temperature and salinity. Shulman 
et al. (2009) reported similar results for the free NCOM run. 

Run 2 substantially improves model results by assimilating glider temperature and salinity 
data. Both temperature and salinity are in better agreement with observations. However, 
at the very end of the model run (from 26 to 28 of August) temperature solutions deviate 
considerably from observations (modeled temperature becomes about 1 °C wanner, Fig. 4a). 
Results of run 2 also overestimate salinity by approximately 0.3 (Fig. 4b) during the wind 
relaxation event on August 20-22. 

Run 3 successfully predicts both temperature and salinity variations (Fig. 4), especially 
during the August 26-28 upwelling (for temperature) and August 20-22 relaxation events 
(for salinity). According to Table 1, temperature bias is reduced from 0.55°C (run 2) to 
0.06°C (run 3), and the root mean square error (RMS) is reduced from 0.91 °C (run 2) to 
0.22°C (run 3) during August 26-28. Salinity bias is reduced from 0.19 (run 2) to 0.03 (run 
3), and respective RMS is reduced from 0.20 (run 2) to 0.04 (run 3) during August 20-22. 

Observations from M2 are also used to evaluate model results (Fig. 5). The dynamics at 
M2 is much more complicated than at Ml because of the onshore-offshore translation of 
Monterey Bay Eddy (MBE) during wind relaxation and upwelling events (Rosenfeld et al., 
1994; Ramp et al., 2005; Shulman et al., 2009). Similar to Figure 4, run 1 results deviate 
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Figure 5. Temperature comparisons between results of run 1, run 2, run 3 and M2 observations at 
60 m depth (a). Salinity comparisons between run 1, run 2, and run 3 and M2 observations at 60 m 
depth (b). 

substantially from observations most of the time (Fig. 5). The highest bias of temperature 
reaches 1.5°C on August 24 (Fig. 5a). During the upwelling period (Shulman etal., 2009) on 
August 14—18, run 2 overestimates temperature by approximately 0.8°C (Fig. 5a). Salinity 
for both run 2 and run 3 differs substantially from observations during this period and an 
earlier upwelling period (August 5-8, Fig. 5b), indicating poor performance of assimilation 
scheme at M2 location. This could be attributed to the complex dynamics of this region and 
to an insufficient number of glider observations during these periods (Fig. 3). Nonetheless, 
the temperature bias is still reduced from 0.51°C (run 2) to 0.04°C (run 3) during August 
14-18 time period and respective RMS bias is also reduced by half (Table 1). 

b. Comparison with mooring observations throughout the water column 

Comparisons of model temperature fields with M1 observations over the whole water 
column are presented in Figure 6. It is obvious that the model free run (run 1) has a very 
low forecast skill, especially for small temporal scale phenomena. This might be caused 
by the following factors. First of all, the model is one-way coupled with a global NCOM 
model. This means the open boundary conditions of the model are directly inherited from 
a low resolution model, causing the results of a model-free run to be much smoother than 
observations. Second, the atmospheric fluxes used to drive the model come from COMAPS, 
which has an input frequency of three hours rather than one hour. For that reason the initial 
ensemble was of very low quality and the Bayesian criterion rejected all the eigenmodes. 
After several hours of assimilation, the forecast skill improved as the ensemble was updated 
by the analyses and respective forecasts. 
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Figure 6. Temperature comparisons between model runs and M1 observations from surface down to 
60 m: (a) MI observations; (b) run I; (c) run 2; (d) run 3. 

Overall, assimilation of glider data (runs 2 and 3) significantly improves model results 
compared with the free model run (run 1, Fig. 6b). Both runs 2 and 3, however, seem to 
overestimate temperature in the upper layer (0~30 m) on August 8 and August 25 (Fig. 6c, 
d). Excessive deepening of the thermocline with respect to observations during these two 
periods is also observed. This might be caused by the overestimation of short wave radiation 
(SWR) in COAMPS predictions (Shulman et al., 2009). Overall, temperature solutions of 
the runs 2 and 3 are similar. Both assimilation runs are capable of predicting major spatial 
and temporal variations of thermocline and vertical water column structure. At the end of 
run 2 (from 27 to 28 of August), temperature of the whole water column appears to be 
colder than observations, while run 3 results for the same period are more consistent with 
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Figure 7. Salinity comparisons between model runs and M1 observations from surface down to 60 m: 
(a) MI observations; (b) run 1; (c) run 2; (d) run 3. 

the observations. This error could be caused by the lack of observations at the end of model 
run (Fig. 3). 

Vertical structure of salinity solutions and Ml observations are presented in Figure 7. 
Once again the results of free model run are too smooth to capture temporal variations of 
the corresponding salinity observations (Fig. 7b). Both assimilation runs (run 2 and run 
3) are in good agreement with observations, although results of both run 2 and run 3 are 
a little saltier than observed salinity at Ml (Fig. 7c, d). Given a relatively small range of 
salinity variation (32.6-34.0) and complicated dynamics in this region, this error of results 
is acceptable. During the relaxation event (August 20-22), salinity for run 2 is overestimated 
below 20 meters. For run 3 results during the same period, the overestimation of salinity is 
alleviated, but is still present. 
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Figure 8. Normalized distance between moored observations and model runs: (a) temperature; (b) 
salinity. 

c. Comparison of model assimilation skills 

To quantify the model assimilation skill, we utilize the normalized distance between a 
model solution field ^/ and respective moored observations £m that can be expressed by: 

rt = {&f-%m)W)1'2 (3) 

Here | could be temperature, salinity or velocity, am denotes depth-dependent, temporal 
variance of moored temperature T, or salinity S, or horizontal velocity components u and 
v. Angular brackets denote averaging over depth (surface to bottom) and over the two 
moorings. 

The skill of assimilation q(t) is estimated by dividing r^ by a maximum value rmax: 

q(t) 
r%(0 

(4) 

where rmax is chosen as maximum value of r^ for assimilation runs over the entire time 
interval (639 hours). 

Figure 8 compares the assimilation skill of run 2 and run 3. Consistent with the single 
layer results comparison (Fig. 4a), there is a normalized temperature error (qr) peak near 
August 27-28 for run 2 (Fig. 8a), indicating a loss of skill by the algorithm with the large 
ensemble. During the upwelling period of August 14—17, run 2 also exhibits higher qj value 
than run 3. Despite some higher qj for run 3 (e.g. August 9-11, Fig. 8a), the performance 
of run 3 is generally more satisfactory than run 2: Table 2 shows that the time-averaged 
normalized temperature error is reduced from 0.41 to 0.38 for run 3. 
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Table 2. Comparison of temporally averaged normalized errors of assimilation runs. 

343 

Run 

Averaged 
normalized 
temperature 
error (</T) 

Averaged 
normalized 

salinity 
error (</s) 

Averaged 
normalized 

velocity 
error (</v) 

0.41 0.37 0.51 

0.38 0.35 0.46 

Comparison of assimilation skill with respect to independent salinity data for the runs 2 
and 3 is presented in Figure 8b. Run 2 exhibits a higher value of gs than run 3 during wind 
relaxation period August 19-22, while <?s of run 3 has a higher value right before relaxation 
period (August 17-18) compared with run 2. This suggests that both assimilation schemes 
tend to lose skill during the transition from upwelling to relaxation events, especially for 
salinity results. This phenomenon is in agreement with the results of glider assimilation 
studies by different methods (Shulman et al., 2009). However, the time-averaged qs value 
is reduced from 0.37 to 0.35 for run 3. 

The analysis of current velocity assimilation is beyond the scope of this study, but the 
change of temperature and salinity fields caused by data assimilation still has a positive 
impact on model velocities. Comparison of the normalized velocity error q\ for runs 2 and 
3 is given in Figure 9. It is evident that the overall velocity results of run 3 tend to be more 
accurate than those of run 2 except for the first few days in August. Time-averaged qv value 
is reduced from 0.51 to 0.46 for run 3 (Table 2). 

5. Summary 

We have shown that implementation of the FTW ensemble in the hybrid 3dVar scheme 
is beneficial, as it improves the skill of the assimilation system and it is cheaper computa- 
tionally. Improvement of the assimilation skill with a smaller ensemble may seem to be an 
unexpected result, because the full ensemble contains the members of the FTW ensemble. 
However, the Bayesian information criterion used for selection of the flow-dependent part 
of the BEC, selects the most persistent eigenvectors of the sample covariance matrix, which 
do not describe transient events, and, therefore, do not support the skill of the assimilation 
system on short time scales. Employing a smaller ensemble, may improve the situation. 

We have tested the hybrid 3dVar assimilation scheme in one-hourly glider data assimila- 
tion experiments with the full and FTW ensembles. Compared with the model free run, both 
assimilation runs improved model results significantly. Toward the end of August, however, 
temperature at M1 mooring location obtained with the full ensemble deviated considerably 
from observations, while the FTW-based ensemble corrected this problem. Using the FTW 
ensemble also improved salinity during wind relaxation events. Improvement of the model 
results with FTW ensemble at the M2 mooring is not as evident as in Ml because of the 
complicated dynamics in this region, but both temperature and salinity biases and RMS 
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Figure 9. Normalized distance between moored velocity observations and model runs. 

errors were reduced, especially during the August 14-18 upwelling events. We attribute 
the benefit of using FTW to the fact that in the cases of strong statistical nonstationarity a 
smaller and more localized ensemble better captures the structure of these sporadic events. 

Both assimilation runs are capable of predicting subsurface temperature and salinity 
structures compared with model free run. Overestimation of near-surface temperature can 
be observed in both assimilation runs, which might be caused by overestimation of SWR in 
COMAPS (Shulman etai, 2009). Assimilation runs also overestimated subsurface salinity 
especially during relaxation events, but the results are acceptable considering the narrow 
range of salinity variations in the region. 

Although the results from the NCOM free run are too smooth to predict small-scale 
variability in the observations, the quality of the model plays an important role in the 
data assimilation system. The primary role of the model is to propagate information from 
previous observations forward in time. The evolution of the fields predicted by the model 
is also used to assess spatial correlations in the observed fields. When there is not enough 
data, the assimilation results gradually relax to the free run solution. Hence, better data 
assimilation results are expected if the model free run were in a better agreement with the 
observations. 

The assimilation skill is tested by calculating the normalized distance between the assim- 
ilation results and observations at the mooring locations. Assimilation run with FTW-based 
ensemble reduced errors of both temperature and salinity solutions. Both hybrid schemes, 
however, exhibited loss of skill during the transition from upwelling to relaxation periods. 
In addition to sub-optimality of the data assimilation technique, the inaccuracy of NCOM 
free run and lack of data might be the cause of the skill loss. Current velocity data were not 
available for assimilation, but the changes in temperature and salinity caused by assimila- 
tion had positive impact on model predicted current fields. Normalized error with respect 
to moored velocity observations was also reduced with the FTW ensemble. 

Future work involves further testing and modifying the hybrid scheme in regional assim- 
ilation experiments involving glider data. For example, loss of the assimilation skill during 
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transition from upwelling to relaxation, or vice versa, needs to be addressed. Velocity data 

assimilation can be important in improving NCOM model results and might be incorporated 

in future studies. 
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