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We theoretically study the relaxation of high energy single particle excitations into molecules in a

system of attractive fermions in an optical lattice, both in the superfluid and the normal phase. In a system

characterized by an interaction scale U and a tunneling rate t, we show that the relaxation rate scales as

�Ct exp½��U2=t2 lnðU=tÞ� in the large U=t limit. We obtain explicit expressions for the temperature and

density dependent exponent �, both in the low temperature superfluid phase and the high temperature

phase with pairing but no coherence between the molecules. We find that the relaxation rate decreases

both with temperature and deviation of the fermion density from half filling. We show that quasiparticle

and phase degrees of freedom are effectively decoupled within experimental time scales allowing for

observation of ordered states even at high total energy of the system.

DOI: 10.1103/PhysRevLett.107.145303 PACS numbers: 67.85.�d, 03.75.Ss

Ultracold atoms on optical lattices [1] can be used for
simulating strongly interacting quantum many-body sys-
tems [2–4] with tunable Hamiltonian parameters. Although
the main focus of cold atom experiments has been to obtain
the equilibrium phase diagram of various models, ultracold
atomic systems also provide a unique platform to study the
intrinsic nonequilibrium dynamics of strongly interacting
many-body systems. Their low energy scales and decou-
pling from external environment lead to long nonequilib-
rium time scales over which the system can be followed
without ultrafast probes.

The issues of nonequilibrium relaxation dynamics are
becoming an important consideration for the state-of-the-
art cold atom experiments [5–11] as well as recent pump-
probe experiments with electron systems [12]. The
tunability of Hamiltonian parameters to access strongly
interacting regimes is one of the central attractive features
of cold atoms. However, an implied assumption in con-
necting the results obtained on optical lattices to the phys-
ics of condensed matter systems is that the atoms on the
optical lattice have achieved thermal equilibrium at low
temperatures after tuning the parameters. Hence, it is im-
portant to understand the relaxation dynamics and associ-
ated equilibration time scales [13–20] of these systems.

The attractive Hubbard model on optical lattices is a
lattice implementation [21] of BCS–Bose-Einstein con-
densation crossover [1,22], which is a paradigm for under-
standing strongly interacting superfluids. The strong
coupling physics is governed by formation of tightly bound
molecules which undergo Bose-Einstein condensation at
low temperatures. In this Letter, we study the relaxation
dynamics of the attractive Hubbard model in the strong
coupling limit, where most fermions are paired to form
molecules. We focus on the decay of excess unpaired

fermions present in the system (either due to an external
drive like lattice modulation or due to sweeping of the
Hamiltonian parameters) to form molecules. For these high
energy excitations, energy conservation requirements lead
to a very slow decay rate that scales superexponentially
with the ratio of the interaction strength to the bandwidth
of the system. Thus, at strong coupling, the fermionic
quasiparticles and the motion of the bosonic molecules
effectively decouple in the nonequilibrium dynamics of
the system. This leads to the possibility of observing
ordered states in these systems even at a high total energy
of the system. Using a particle-hole transform to map this
problem to that of spin mediated decay of double occu-
pancies in the repulsive Hubbard model, we compute the
decay rate both in the low temperature superfluid phase and
in the high temperature paired phase for arbitrary filling
fractions in the lattice. We find that the decay rate de-
creases both with temperature and with the deviation of
the fermion density from half filling on either side. We
discuss the implications of these results for maintaining
adiabaticity during a sweep of Hamiltonian parameters.
We consider the one band attractive Hubbard model for

fermions on a 3D cubic optical lattice

H ¼ �t
X
hiji

cyi�cj� �U
X
i

ni"ni#; (1)

where t is the tunneling matrix and U is the local attraction
between the fermions. For large U=t, the fermions are
paired to form molecules with a large binding energy
�U which undergo Bose condensation at a temperature
�J ¼ 4t2=U, controlled by the kinetic energy scale of the
molecules. We consider two temperature regimes: (a)
the low temperature (T � J) superfluid phase, where
the molecules are Bose condensed, and (b) the high
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temperature (T � t � J) phase where the molecules do
not have phase coherence, and calculate the decay rate of
unpaired fermions in both phases.

The formation of a molecule from two unpaired fermi-
ons is forbidden unless the binding energy of the molecule
(�U) is carried off by other excitations in the system.
There are two different modes of excitations where this
excess energy can be dumped: (a) kinetic energy of other
unpaired fermions (with scale�t) and (b) kinetic energy of
the molecules (with scale �J). In this Letter, we assume
(b) is dominant, which limits the density of unpaired
fermions �ex < J=t� t=U. To absorb the binding energy
n�U=J �U2=t2 molecular excitations have to be cre-
ated. The corresponding matrix element is

M� t
t

J

t

2J
� � � t

nJ
¼ t

n!

�
t

J

�
n � t exp

�
��

U2

t2
ln
U

t

�
;

where, to leading order, we have used n!� nn for large n
and nJ ¼ U to write the final form. Here� is a temperature
and density dependent constant which depends on the
details of the process. Within Fermi’s golden rule, the
decay rate ��M2 and thus decreases superexponentially
with U=t.

To obtain a physical picture of the decay process, it is
instructive to use a particle-hole transformation [23] which
maps the attractive (negative U) Hubbard model to a
repulsive (positive U) Hubbard model. The attractive
model with zero magnetization at any density is equivalent
to the repulsive model at half filling (one particle per site)
with a finite magnetization proportional to the deviation of
the fermion density in the attractive model from half fill-
ing, i.e.,m ¼ ð1=2Þð1� �Þ, where � is the fermion density
in the attractive Hubbard model. Under this transforma-
tion, molecule formation is mapped to the formation of a
Mott insulator, and the unpaired fermions are equivalent to
the high energy double occupancy (doublon) hole excita-
tion, with the binding energy of the molecules playing the
role of the Mott gap. At half filling, the low energy physics
of the repulsive Hubbard model reduces to an antiferro-
magnetic Heisenberg model which exhibits a canted anti-
ferromagnetic (CAFM) order in its ground state in the
presence of finite magnetization. This spin ordering is
equivalent to the emergence of superfluidity in the attrac-
tive model with the kinetic energy of the molecules playing
the role of spin wave fluctuations. The equivalence of the
relevant quantities under the mapping is shown in Table. I.
Here, we will use the language of the spin model to look at
quantitative estimates of the decay time scales.

Decay in the superfluid phase.—The superfluid phase of
the attractive fermions is represented by the CAFM phase
for the spins in the repulsive model. As a hole (doublon)
hops in the background of a Mott insulator with CAFM
ordering [shown in Fig. 1(a)] from a site i to a site j, it
disrupts the spin texture and creates purely ferromagnetic
bonds between nearest neighbors, each of which gains an

energy of (Jx=2), where x ¼ 1� 4m2 is proportional to the
antiferromagnetic component of the spin order. Hopping of
the hole along a path creates ferromagnetic bonds in the
directions transverse to this path, thus creating a domain
wall in the system, as shown in Figs. 1(b) and 1(c). In a
cubic lattice each hop creates z� 2 ¼ 4 broken bonds. In
order to absorb the energy U, the hole needs to traverse a
path of length n ¼ 2U=½ðz� 2ÞJx�. Within Fermi’s golden
rule, the decay rate is

� ¼ 2��ex�ðnÞjMfiðnÞj2; (2)

where �ex is the density of holes (or equivalently of un-
paired fermion excitations), and MfiðnÞ is the matrix ele-

ment connecting the initial state with a doublon and a hole
to the final state with a domain wall of length n

MfiðnÞ ¼ t

n!

�
2t

ðz� 2ÞJx
�
n � tðt=UÞn: (3)

Here, �ðnÞ is proportional to the number of self-avoiding
paths of length n connecting the doublon and the hole

�ðnÞ ¼
Z

d3r
2n

ðz� 2ÞJx Sðn; rÞGðrÞ; (4)

where Sðn; rÞ is the number of self-avoiding paths of length
n connecting two points at a distance r, and GðrÞ is
the dimensionless doublon-hole-pair correlation function.

TABLE I. Equivalence of different quantities under the map-
ping between the attractive and the repulsive Hubbard model.

Attractive model Repulsive model

Unpaired fermions Doublon hole pairs

Binding energy Mott gap

Deviation from half filling Magnetization

Superfluid order Canted antiferromagnetic order

Kinetic energy of molecules Superexchange energy

(a) 

(b) (c)

FIG. 1 (color online). Hopping of a hole in a canted antiferro-
magnetic background. (a) A single hop moves back one
spin, creating broken bonds shown by dashed lines. (b),
(c) Configurations before and after multiple hops of a hole.
The solid line denotes the trajectory of the hole, while the dashed
lines in (c) shows the broken bonds.
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We assume that the doublons and holes are uncorrelated,
i.e., GðrÞ ¼ 1. This assumption is valid in the limit of low
density of doublons, precisely the limit we are interested
in. Then, �ðnÞ ¼ 2n

ðz�2ÞJx SðnÞ, where SðnÞ, the total number

of self-avoiding paths of size n. SðnÞ � gnnk for large n,
and the constants g ¼ 4:68 [24] and k ¼ 1=6 [25] for a
cubic lattice have previously been computed in the context
of polymer physics. Using these, we obtain the relaxation
rate of doublons in the repulsive Hubbard model or equiv-
alently the relaxation rate of the unpaired fermions in the
attractive Hubbard model,

�� t�exffiffiffi
g

p
�
g

8x

�
2þk

exp

�
�
�
U2

4xt2
� 3� 2k

�
ln

�
Uffiffiffi
g

p
t

��
:

Note that, for the attractive case, x ¼ 2�� �2 is a measure
of the filling factor which vanishes both at � ¼ 0 (empty
band) and � ¼ 2 (completely filled band) and attains its
maximum value at half filling (� ¼ 1). The low tempera-
ture decay rate, plotted for different densities in Fig. 2(a),
shows the expected superexponential scaling with U=t. As
we move away from half filling, the energy lost in a single
hop decreases, and longer domain walls are required to
absorb the excess energy, leading to a slower decay rate.

Decay in the high temperature normal state.—We now
consider the decay of the single particle excitations in the
high temperature phase (T � t � J), where the fermions
are still paired into molecules but there is no superfluidity.

In terms of the spin model, this regime corresponds to a
completely spin disordered phase with no spatial or dy-
namic correlations. The single site Hilbert space can be
occupied by an " spin with probability 1=2þm or by a
down spin with probability 1=2�m (we are working at
fixed magnetization).
As in the low temperature phase, the motion of holes

(doublons) pushes the spins along the trajectory by one
site. However, the energy lost in a given hop now depends
on the configuration of the neighboring spins along the
path. Since there is no spatial correlation between the
spins, the energy lost in each hop can be treated as an
independent random variable which takes the values

Jr=2 (r ¼ �4;�3; . . . ; 4), with the probability PðrÞ ¼
ða=bÞr=2 P4�r

i¼04 Ci4Ciþra
ib4�i, where nCk are the binomial

coefficients, a ¼ ð1=2�mÞ2, and b ¼ ð1=2þmÞ2. The
mean energy lost in each hop is 0, while the variance of
the distribution is given by J2x=2. By central limit theo-
rem, the total energy lost in l steps is a Gaussian random
variable with zero mean and a variance lJ2x=2,

PðE; lÞ ¼ 1ffiffiffiffiffiffiffiffi
�xl

p
J
exp½�E2=ðJ2lxÞ�: (5)

Since the doublon needs to lose an energy U to decay, one
must now average over decay processes from paths of
length l � n with the probability distribution PðU; lÞ.
The square of the matrix element for a process involving
l hops is given by M2 � t2ðt2=�21Þðt2=�22Þ � � � ðt2=�2l Þ�
t2ð2t2=lJ2xÞl, where �i is the energy lost after i steps and,
to leading order, we have replaced �2i by its average value
iJ2x=2. To see the scaling in t=U, we note that the
Gaussian probability distribution PðU; lÞ has a width
l� 2U2=ðxJ2Þ, and hence the square of the matrix
element scales as t2ðt=UÞ2l. Then, summing over all paths
with l > n,

�� 2�t2�ex

Z 1

n
dlgllkPðU; lÞ

�
t

U

�
2l
: (6)

The high temperature decay rate, plotted as a function of
U=t in Fig. 2(b), is orders of magnitude smaller than the
low temperature decay rate. To understand this, note that
the motion of the high energy pair can both excite and
deexcite low energy modes in the background system. At
zero temperature, these low energy modes are unoccupied
and the motion of the high energy pair then leads to
excitation of these modes. As temperature increases, the
occupation probability of the low energy modes increases
and the motion of the high energy pair randomly leads to
excitation and deexcitation of these modes. Thus the high
energy pair loses its energy more efficiently at lower
temperatures and decays faster.
Adiabaticity and sweep rates.—In cold atom experi-

ments the strongly interacting regime of model systems
is accessed by tuning the Hamiltonian parameters at a finite
rate, which is limited by the lifetime of the atoms in the
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(b)

FIG. 2 (color online). The decay rate of unpaired fermions
(a) in the superfluid phase and (b) in the high temperature normal
state as a function of U=t for different fermion densities: (i) half
filling (solid black line), (ii) �f ¼ 0:7 (red dashed line), and

(iii) �f ¼ 0:5 (blue dotted line).
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trap. The tuning process should be adiabatic to remain in
the interesting low temperature regime for the system.
Since the microscopic relaxation processes determine the
time scale for equilibration, the relaxation time scales,
along with experimental sweep rates, would determine
the limits of adiabaticity in these experiments. We now
make these ideas more precise by looking at the constraints
due to the slow decay of unpaired fermions.

In the large U=t limit of the attractive Hubbard model,
the unpaired fermion density in equilibrium �ex �
expð�U=TÞ, where T is the temperature of the system.
We assume an adiabatic sweep of U=t at a constant rate
� ¼ ð _U=tÞ and try to assess the limits where adiabaticity
fails. At low temperatures, the entropy mainly comes from
the kinetic motion of the molecules; so for a constant
entropy process, T=J ¼ �=4 or U=T ¼ U2=ð�t2Þ along
the sweep, where � is a constant. Now, adiabaticity will
be maintained in the regime where

_� ex ¼ �ð _U=TÞ�ex ¼ � 2

�

U

t
��ex � ��ðU=tÞ�ex: (7)

As the microscopic rate � goes down superexponentially
with U=t, this criterion would set an upper limit of
ðU=tÞmaxð�Þ, which is the maximum U=t up to which the
system remains adiabatic with a sweep rate �. Our analysis
shows that it is extremely difficult to keep the system fully
adiabatic in the strong coupling limit when either the
tunneling or the interaction is being changed, as the re-
laxation time scale of unpaired atoms (or doublons for the
repulsive case) can be anomalously long. Experimentally
this long time scale should manifest itself as a saturation in
the molecular fraction with the saturation occurring at
smaller values of U=t for faster sweep rates.

At the same time, if relaxation of unpaired fermions is
very slow (longer then the time scale of experimental
measurements), then they can be considered as infinitely
long lived and completely decoupled from other degrees of
freedom in the system like the phase fluctuations of the
superfluid order parameter. Similarly, in the repulsive
Hubbard model, if the goal is to observe antiferromagne-
tism, one may worry that a small number of doublons can
release enough energy to destroy magnetic order. If the
doublons are very long lived, there will be a long time scale
over which one can neglect relaxation of doublons and
analyze the quasiequilibrium with ‘‘unbreakable’’ dou-
blons. Thus, within experimental time scales, there is an
effective spin-charge decoupling which makes it easier to
observe spin ordering even in the presence of high energy
charge excitations. The idea of realizing metastable states
with long-lived doublons has also been discussed in the
context of the 	-paired state in the repulsive Hubbard
model [26].

We have studied the decay of unpaired fermions in an
attractive Hubbard model. We have shown that the decay
rate scales as �Ct exp½��U2=t2 lnðU=tÞ� for large U=t
and computed the exponent � both at low temperatures

(superfluid phase) and high temperatures (normal state of
molecules). We find the decay rate decreases with increase
in both temperature and the deviation of the fermion den-
sity from half filling. We also discussed implications of our
analysis for realizing many-body states in optical lattices.
The downside of the long relaxation times is that it is
difficult to change parameters of the system fully adiabati-
cally. The upside of slow relaxation is that there is effective
decoupling of different degrees of freedom. So, for ex-
ample, one may be able to achieve equilibration of phase
(magnetic) degrees of freedom, even when there is a finite
density of unrelaxed single fermions (doublons).
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