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1. INTRODUCTION:   

Our objective is to exploit the wealth of physiological, metabolic, morphological and molecular 
sources of optical contrast to develop novel strategies that focus on two breast cancer 
applications: tumor margin assessment and prediction of response to neo-adjuvant therapy. The 
proposed aims of this grant are expected to result in three major contributions. The first has the 
most immediate impact. An optically based strategy that can quickly and non-destructively 
detect positive tumor margins will decrease the need for re-excision surgery and thereby 
decrease the local recurrence rate and rate of distant metastases in women electing BCS. 
Gaining insight into the physiological, metabolic, morphological and molecular sources of 
heterogeneity within and among tumors and how they are modulated by therapy, drug 
resistance and metastatic potential will directly benefit prognostication, prediction of outcome 
and planning of cancer therapies. With these tools, clinicians and clinical researchers can get a 
better understanding of this disease and how it might react to a drug. Basic science researchers 
could use it as an informed approach to study tumor biology and assay the effect of novel 
therapeutic agents in vivo. 

a. Original Statement of Work for 5 Years 

Aim 1: Optical imaging of margin morphology on breast lumpectomy specimens: To 
evaluate the role of wide-field imaging (coverage) and high-resolution interrogation (localization) 
of breast margin morphology to guide surgical resection intra-operatively and pathologic 
assessment of the tumor margin post-operatively (Timeframe: year 1-5). 

1a. Development of one optical spectral imaging system that integrates sensing capabilities 
for aims 1 and 2 and a high-resolution probe that can image absorption, scattering and 
fluorescence contrast (timeframe, year 1). 

1b. Conduct clinical studies on lumpectomy margins on 200 patients (time frame, years 2-4)  

1c. Data analysis and interpretation (timeframe, years 3-5) 

Test the sensitivity and specificity of wide-field imaging to detect positive tumor 
margins 

Test sensitivity and specificity of high-resolution probe to detect IDC and DCIS. 

 
Aim 2: Optical quantitative biology of different sub-types of breast cancer: To investigate 
biomarkers of oxygenation, carotenoids (β-carotene) and ECM proteins (collagen) in human 
breast cancer stratified by tumor sub-type and receptor status and their association with neo-
adjuvant chemotherapy response. 

2a. Development of rotating needle compatible spectroscopy probe (timeframe, year 1). 

2b.Conduct clinical studies to measure optical biomarkers in vivo in 150 patients undergoing 
surgery (timeframe, years 2-4). 

2c. Conduct clinical studies to measure optical biomarkers from 75 patients before neo-
adjuvant therapy 

2d. Data analysis and interpretation (years 3-5): 

Determine association of biomarkers with tumor subtype 

Determine association of biomarkers with receptor status 

Determine association of biomarkers with genomic signatures 

Determine association of biomarkers with pathologic sub-total and complete 
response 



Aim 3: Optical quantitative biology to assess therapy response in different sub-types of 
breast cancer: To investigate biomarkers of oxygenation and ECM proteins (collagen and αvβ3 
expression) in rodent breast cancer stratified by tumor sub-type, receptor status and metastatic 
potential in response to targeted and chemotherapies. 

3a. To determine if multi-parametric intra-vital optical microscopy, measuring hemoglobin 
saturation, total hemoglobin, redox ratio, collagen, and integrin expression can monitor 
tumor response to tamoxifen in parental and tamoxifen-resistant MCF-7 tumors in the 
mouse dorsal skin fold window chamber (timeframe, years 1-2). 

 A total of 40 athymic nude mice will be required for this study (10 
mice/group).  

3b. Monitor optical parameters in the dorsal skin fold window chamber in response to 
doxorubicin chemotherapy in MCF-7 parental and doxorubicin-resistant tumors 
(timeframe, years 2-3). 

 A total of 40 athymic nude mice will be required for this study. 

3c. Monitor optical parameters in the dorsal skin fold window chamber in response to 
doxorubicin chemotherapy in tumors that express high (MDA-435) and low (MCF-7) 
levels of αvβ3 integrin (timeframe, years 3-4). 

 A total of 40 athymic nude mice will be required for this study. 

3d.  Data and statistical analysis (timeframe, year 5). 

 

2. BODY  

Aim 1: Optical imaging of margin morphology on breast lumpectomy specimens 

In Aim 1, our objective is to develop a strategy for high resolution fluorescence imaging of tumor 
margins, and to combine that with wide-field diffuse spectral imaging in a complementary 
fashion.  For the high resolution fluorescence imaging component of the project, last year we 
demonstrated the feasibility of high resolution fluorescence imaging for detection of residual 
carcinoma in the normal tissue milieu.  Here we focus primarily on image analysis techniques 
and our quantitative approach for diagnosing high resolution anatomical images of 
heterogeneous tissue. To do so we are employing the use of two ex vivo test beds: 1) murine 
sarcoma margins and 2) human mastectomy specimens.  Each of these approaches is 
subsequently discussed in more detail. 
 
 
High Resolution Imaging  
 
Introduction: 
One strategy for accurate assessment of tumor margins is to adopt approaches that exploit 
features that are already leveraged in traditional pathology, such as nuclear size and density, 
and relationships between tumor cells and surrounding support structures (collagen, fat). There 
is evidence in the literature of the success of such approaches.1-4 This compelling evidence, 
which is detailed in Table 1, suggests that high resolution imaging of the tumor microanatomy, 
in particular nuclei, can provide exquisite contrast for the detection of microscopic residual 
disease that could be effective across different cancers and patient demographics. 
 
 
 



Table 1: High resolution technologies for in situ pathology 
Group Contrast Technology Context Analysis 
Farkas et al1 DAPI Fluorescence 

microscopy 
Ex vivo rat mammary 
tumor xenografts 

Watershed algorithm 
(nuclear size, count) 

Gareau et al2 Acridine 
orange 

Confocal 
fluorescence 
microscopy 

Skin excisions from 
Mohs 

Human-observer 

Gmitro et al3 Acridine 
orange 

Confocal 
fluorescence 
microscopy 

Ex vivo ovarian tissue First order statistics, 
spatial frequency content 

Kortum et al4 Acriflavine Fluorescence 
microendoscopy 

Esophageal biopsies First order statistics, 
spatial frequency content 

 
Most of these approaches focus on (1) epithelial sites in which the primary diagnostic feature is 
the size, spacing, and density of nuclei and (2) calculate statistical features related to the 
intensity information captured from raw images (entropy, variance, etc.). While these 
approaches work well for the detection of epithelial cancers, the translation of such approaches 
to heterogeneous tissue sites is limited. Additionally, it is difficult to interpret quantitative 
parameters such as variance and relate them directly to tissue morphology. Therefore, to 
address this limitation, we focus on quantifying features that directly reflect tissue 
morphology in highly heterogeneous tissues with the ultimate goal of developing a tool 
for quantitative in situ pathology that can be used in combination with our wide field 
spectral platform to diagnose breast margins intra-operatively.  
 
Towards this end, we employ the use of a high resolution fluorescence microendoscope  
(HRME) combined with a fluorescent contrast agent called acriflavine developed by Rebecca 
Richards-Kortum at Rice Univeristy.5 Unlike DAPI, acriflavine binds to cell nuclei as well as 
other support tissues such as collagen, elastin, and adipose tissues allowing for full visualization 
of the tissue microanatomy. Also, acriflavine is safe and is currently being used in humans 
under IND approval in the oral cavity and ovary.6 The HRME, which consists of a LED, dichroic, 
emission filter, CCD, and coherent fiber bundle, was chosen because of it can resolve 
subcellular structures (such as nuclei), which is needed to recapitulate pathology, and because 
of its portability, low cost, and high SNR.5 
 
Our ultimate goal is to use the wide field spectral platform to identify suspicious areas on a 
margin and then use the HRME imaging and subsequent quantitative analysis to assess 
margins intraoperatively. However, we acknowledge that detecting the small focal areas of 
residual cancer that characterize lumpectomy margins poses challenges and is therefore not the 
optimal setting in which to complete preliminary studies of high resolution imaging and 
quantitative analysis for surgical margins. Therefore, we first completed a preliminary study of 
HRME imaging and analysis in a transgenic murine sarcoma margin model, which was 
developed by our collaborator, David Kirsch.7 This model was chosen because transgenic 
tumors are better suited for margin imaging than implanted or chemically induced tumors. 
Implanted tumors tend to grow within a fibrous capsule, and don’t exhibit the problematic in-
growths of tumor tissue into surrounding tissue that is characteristic of spontaneous tumors. 
Also, these models (including chemically-induced tumors) grow in immuno-deficient animals, 
which do not provide a normal tumor microenvironment. 
 
Next we have applied our image analysis techniques to a cohort of HRME images captured 
from clinical mastectomy specimens. We chose to start with mastectomy specimens as 



opposed to lumpectomy margins due to the increased yield of malignant samples that can be 
acquired from bisected mastectomies. Having a cohort of images that contains the breadth of 
normal tissue variants as well as malignant variants enables us to more appropriately evaluate 
the potential of our analytical imaging approach.  

1) Ex vivo murine sarcoma margins study 

Methods:   
Imaging system. For this work, we used a high resolution fluorescence microendoscope 
(HRME) to collect high resolution microscopic images of stained tissues. The HRME device has 
previously been described in detail.5 Briefly, the system contains a 455 nm light emitting diode 
(LED) to excite acriflavine, a dichroic mirror, emission filter, CCD camera, and coherent fiber 
bundle.  
 
Mice and sarcoma generation. All animal work was performed in accordance with Duke 
University Institutional Animal Care and Use Committee approved protocols.  The generation of 
the temporally- and spatially-constrained transgenic model of murine sarcoma is described in 
detail in Kirsch et al. Briefly, mouse genotypes used to generate sarcomas include LSL-
KrasG12D/+;Trp53Flox/Flox, BrafCa/+;Trp53 Flox/Flox and BrafCa/Ca;Trp53Flox/Flox.7,8 Soft 
tissue sarcomas were generated by intramuscular injection of a calcium phosphate precipitate 
of an adenovirus expressing the Crerecombinase (Gene Transfer Vector Core, University of 
Iowa).7 For the ex vivo study, mice were euthanized immediately prior to surgical tumor 
resection and imaging. Seven animals were used in this study.  
 
Ex vivo imaging protocol. Within ten minutes of euthanasia, tumor and normal tissue sections 
were removed. Sections were laid flat followed by topical application of 0.01% (w/v) acriflavine 
(Sigma-Aldrich) dissolved in phosphate buffered saline (PBS). After 30 seconds, the distal end 
of the HRME fiber bundle was placed in contact with the tissue and images were acquired. In a 
few cases frozen tissue slices mounted on glass slides were raster-scanned to create mosaics 
of the tissue face by systematically moving the probe in 1 mm increments in rows over the 
tissue surface. In order to improve the accuracy and reproducibility of these movements the 
fiber bundle was secured in a custom probe holder fiber chuck which was mounted on an x-y 
translation stage. The distal end of the probe was cleaned with 55% ethanol between each 
probe placement. 
 
During the imaging session specific sites of interest were inked with 1 mm dots using 
histological inks to facilitate pathologic coregistration. The mosaic image acquisition was  
performed on frozen tissue sections in order to facilitate direct spatial coregistration with 
histopathology regions. After imaging and inking was complete, the tissue was submitted for 
fixing, paraffin-embedding and sectioning.  The resulting hematoxylin and eosin (H&E) stained 
slides were reviewed by an expert oncology pathologist and an expert veterinary pathologist, 
both of whom were blinded to the results of HRME imaging. For each inked area, the tissue was 
diagnosed as tumor, muscle, adipose, or any combination thereof. For mosaics a diagnosis was 
given for the entire section.  
 
Image analysis. Since the most clinically relevant goal is to detect the presence of microscopic 
disease, we focused our quantitative approach on first isolating features of interest, such as 
nuclei, and then calculating features that may be used to determine the presence of tumor cells 
in an image, such as the size and density of those nuclei. Our first step was to remove the fiber 
core pattern that is superimposed onto each image (since the images are discretely sampled 
through a fiber bundle) by applying a Gaussian filter to remove the high frequency content. This 



step smoothed the image without removing spatial frequency information inherent to the tissue 
structure, and was done in order to remove the bias or artifact that the fiber pattern could 
introduce during subsequent image processing.  
 
Next, in order to isolate the cell nuclei from other structures, such as muscle fibers or 
adipocytes, we utilized a sparse decomposition algorithm. This approach is based on sparse 
component analysis, which to our knowledge has never been applied to high-resolution 
anatomical images or more broadly as a tool for margin analysis.9,10  By leveraging elements 
that are sparse in a given basis, the decomposition algorithm can separate an image into three 
constituents based on sparsity in the spatial basis, discrete cosine transform (DCT) basis, and 
curvelet basis.11 These bases were chosen because they nicely correspond to morphological 
characteristics; more specifically, nuclei are sparse in the spatial basis, whereas muscle is 
sparse in the DCT basis and adipose is sparse in the curvelet basis. Thus, through leveraging 
these sparse elements, our goal is to isolate nuclei in an image and subsequently calculate 
parameters that can describe the presence or absence of disease.  More specifically, when 
applying the algorithm we let y denote the acquired image and obtain estimates of the tissue 
components by solving a regularized least squares inverse problem: 
 

ˆ x spatial,
ˆ DCT , ˆ curvelet  argmin

xspatial , DCT , curvelet

1
2 y  (xspatial  FDCT C curvelet ) 2

2

  spatial xspatial 1
DCT DCT 1

 curvelet  curvelet 1

ˆ x DCT  F ˆ DCT

ˆ x curvelet C ˆ curvelet

ˆ x approx  ˆ x spatial  ˆ x DCT  ˆ x curvelet  
 
where the operators F and C represent the inverse DCT and curvelet transform respectively. An 
example of the power of this algorithm is shown in Figure 1. Essentially, the nuclei can be 
isolated from the heterogeneous background, which typically contains muscle, captured by the 
DCT dictionary, and adipose, which is captured by the curvelet dictionary.  



 
Figure 1: Sparse decomposition illustration. An image containing longitudinal muscle fibers with 
tumor nuclei scattered throughout can be separated into its constituents through the sparse 
decomposition algorithm. The spatial image captures the randomly distributed nuclei, while the 
DCT image describes the periodic muscle components and the curvelet image captures the 
curved outline of adipose cells. In this example the curvelet image is black because there is no 
adipose tissue present in the original image. 
 
Once images were decomposed into their constituents, quantitative image parameters were 
calculated from the resulting segmented images. In order to calculate parameters such as size 
and density of nuclei, the decomposed spatial images were converted to binary images using 
Otsu’s method, which chooses a threshold to minimize the intraclass variance of the black and 
white pixels. From the binary images, parameters including the size and density of nuclei, and 
the distance between nuclei (nearest neighbor calculated through the Euclidean distance 
transform) were calculated. 
 
Since one of our goals is to isolate cell nuclei in an image and then measure their properties 
computationally, an appropriate quantitative gold standard was required to validate the 
approach (in this case, given by the nuclear size calculated from H&E micrographs of the same 
tissue).  H&E micrographs were analyzed by isolating the blue nuclei through converting to the 
L*a*b color space, applying clustering functions, and converting to binary images. From the 
binary images, the average size and size distribution of nuclei were calculated and compared to 
the size of nuclei in the corresponding high resolution image taken from the same tissue site. 
Scatterplots of these results are shown below in Figure 4.  
 
Results: 
First in order to illustrate that our high resolution imaging system can directly recapitulate 
anatomical features, frozen tissue slices mounted on glass slides were raster-scanned to create 
mosaics of the tissue face. Because these sections were already mounted on the slides, they 
could be directly stained with H&E to enable side by side comparison. This comparison is 



shown in Figure 2. Purple tumor is seen throughout the left hand side of the H&E micrograph, 
while pink muscle fibers are present in the right hand side of the section. Similarly, HRME 
imaging shows a dense collection of disorganized nuclei, characteristic of tumor tissue 
throughout the left hand side of the panel, while muscle fibers in cross section can be seen 
throughout the right hand side.  
 

 
Figure 2: Ex vivo imaging mosaic. Panel A) delineates a tissue section that was raster-scanned to 
create mosaics of the tissue face. The HRME images in A) can be directly compared to the 
spatially concordant H&E micrograph shown in B). 
 
Next we applied the sparse decomposition algorithm to segment the panel of images into its 
constituents. First, the central regions of the images were cropped so as to remove the fiber 
bundle edge that is present in each individual image (Figure 3A). These cropped images were 
the input into the sparse decomposition algorithm. The output from sparse decomposition is 
shown below in Figure 3. More specifically, Figure 3B, C, and D show the spatial, DCT, and 
curvelet outputs from sparse decomposition respectively. Figure 3B captures the nuclei present 
in the image, whereas Figure 3C and 3D capture more of the background, which in this example 
is comprised of muscle fibers in cross section. Most notably, we can see a much denser 
collection of nuclei in areas that spatially correspond to the presence of tumor tissue, whereas 
there are much fewer nuclei present in the normal tissue areas. Additionally, we observe that 
some of the muscle fibers are represented in the curvelet as well as the DCT images—this is 
due to the fact that muscle fibers in cross section are very similar in size and shape to adipose 
cells.  
 

A BA B



 
Figure 3: Sparse decomposition applied to the ex vivo mosaic in figure 2. A) shows the original 
images that have been cropped to remove the fiber bundle rim. B), C), and D) show the spatial, 
DCT, and curvelet outputs from sparse decomposition respectively. The region containing tumor 
cells corresponds to more representation in the spatial panel (B), whereas more of the muscle 
fibers/background is represented in the DCT and curvelet panels (C and D). 
 
Since one of our goals is to isolate cell nuclei in an image and then measure their properties 
computationally, an appropriate quantitative gold standard was required to validate the 
approach. H&E micrographs were converted to binary images, and then the density, average 
size, and distance between nuclei (nearest neighbor or NN) were calculated and compared to 
the density, size, and NN of nuclei in the corresponding high resolution image taken from the 
same tissue site. 5 tumor HRME/H&E pairs and 5 tumor + muscle HRME/H&E pairs were 
included in this analysis. Scatterplots of these results are shown below in Figure 4. Figure 4A 
shows that sites that contain tumor only have a denser collection of nuclei than sites that 
contain both tumor + muscle. What is more, this relationship holds not only for the gold standard 
H&E, but is also directly reflected in our HRME image analysis. We can see a similar trend in 
Figure 4C. There appears to be a smaller distance between nuclei in tumor only sites than for 
the tumor + muscle sites. Again this trend is reflected in both the H&E micrographs and HRME 
images. Lastly, we see no trend in nuclear sizes, either with H&E or HRME. This is expected 
because in both cases we are examining tumor nuclei, which we expect to be approximately the 
same size across tissue specimens.    



 
Figure 4: HRME sparse decomposition output compared directly to H&E micrographs. Nuclei were 
isolated through sparse decomposition and then their density, median size, and average distance 
in between (nearest neighbor or NN) were calculated. The same set of parameters was calculated 
from the corresponding H&E micrographs. Trends for density, size, and NN are shown in A), B), 
and C) respectively. 

2) Ex vivo clinical mastectomy study 

Methods: 

As mentioned previously, we also applied our image analysis techniques to a cohort of HRME 
images captured from clinical mastectomy specimens. Mastectomy specimens were used in 
order to enable us to more quickly assemble a “library” of both malignant and benign 
representative high resolution fluorescence images.  Ultimately, having a library of images that 
contains the breadth of normal tissue variants as well as malignant variants enables us to more 
appropriately evaluate the potential of our analytical imaging approach. 

Imaging protocol: For this pilot study, patients undergoing a mastectomy were consented.  
Immediately after the breast was removed from the patient, the collaborating pathologist inked 
the deep margin of the breast, and then bisected the tissue with a knife to expose the tumor 
inside the breast.  To be clear, no ink was present on the tumor or normal tissue on the inner 
surface of the cut tissue. Once the tumor was bisected, 0.01% (w/v) acriflavine (Sigma-Aldrich) 
dissolved in phosphate buffered saline (PBS) was applied topically to regions within the 
bisection (tumor) and to fatty regions surrounding the bisection (normal tissue). The distal end of 
the HRME fiber bundle was placed in contact with the tissue and images were acquired. 
Between each probe placement the distal end of the probe was cleaned with 55% ethanol. 

Pathologic co-registration: During the imaging session specific sites of interest were inked with 1 
mm dots for pathologic co-registration. After imaging and inking was complete, the tissue was 
returned for standard pathologic processing, and the resulting hematoxylin and eosin (H&E) 
stained slides were reviewed by an expert oncology pathologist who was blinded to the results 
of HRME imaging. For each inked area a diagnosis was given.  

Results: 
Seventeen patients were consented for this study. A break down of the pathology confirmed 
sites stratified by tissue type is shown in  
 
 



Table 2. Normal tissue variants include adipose, fibroadipose, fibroglandular, fibrous, and fat 
necrosis. Malignant tissue variants include invasive ductal carcinoma (IDC), invasive lobular 
carcinoma (ILC), and mucinous carcinoma.   
 
 

Table 2: Pathology confirmed sites 

 

A panel of normal tissue variants can be seen in Figure 5. Each row corresponds to a different 
tissue type, while each column corresponds to the input and outputs from the sparse 
decomposition algorithm. Column 1 contains the original image that has been cropped to 
remove the fiber bundle rim. Column 2 contains the approximation of the image, which is the 
sum of the spatial image (column 3), DCT image (column 4), and curvelet image (column 5). As 
seen, the spatial column picks up the nuclei that are associated with either the adipose cells or 
fibrous components of the tissue, while the DCT column picks up the stringy fibrous structures, 
and the curvelet column picks up the curved outline of adipose cells.  



 
Figure 5: Sparse decomposition applied to representative clinical breast images of normal tissue. 
The original image was cropped to remove the fiber bundle (column 1). The outputs from sparse 
decomposition are shown in columns 2 through 5. Column 2 contains the approximation of the 
image, which is the sum of the spatial image (column 3), DCT image (column 4), and curvelet 
image (column 5). 
 

A panel of malignant tissue variants can be seen in Figure 6. As seen, the spatial column picks 
up many of the nuclei present in the original image, while there is very little structure picked up 
in the DCT or curvelet columns. This is expected because the main feature of malignant tissue 
is the disorganized collection of dense nuclei.  



 
Figure 6: Sparse decomposition applied to representative clinical breast images of malignant 
tissue. The original image was cropped to remove the fiber bundle (column 1). The outputs from 
sparse decomposition are shown in columns 2 through 5. Column 2 contains the approximation of 
the image, which is the sum of the spatial image (column 3), DCT image (column 4), and curvelet 
image (column 5). 

Through validating the image analysis on murine sarcoma specimens and through applying the 
algorithm to mastectomy samples, we feel confident in moving forward to start the 200 patient 
lumpectomy study.  As discussed in the original document (and above), we plan to acquire data 
with both the spectral imaging platform and the HRME on the same clinical lumpectomy 
specimen to determine if we can improve our detection accuracy through harnessing the 
advantages of each approach.  

Plans for year 3:  
Plans for year 3 include fine tuning this algorithm for clinical breast specimens, identifying 
endpoints/parameters that have diagnostic potential (such as the density of nuclei in the spatial 
images), and building predictive models that can quantitatively diagnose high resolution images 
in real time.  

 

Spectral imaging component: Wide-field Quantitative Diffuse Reflectance Imaging of 
breast tumor margins 

Introduction 
The second aspect of our proposed work in Aim 1 is to conduct a prospective validation study of 
our previously developed wide-field, quantitative diffuse reflectance imaging device, for 
detecting residual carcinoma at the margins of resected partial mastectomy specimens. In Year 
1, we have been preparing for this study in 2 primary areas: 1) technology refinement, and 2) 
algorithm development. In Year 2, we have 1) continued algorithm development, 2) clinical data 
collection with refined technology.   
 



1. Algorithm Development: Effects of Patient Demographics on Optical Properties 
Introduction:  In addition to the high resolution fluorescence imaging, we have been refining 
our wide-field spectral imaging approach.  In last years report we discussed in detail our 
methodology for acquiring wide-field spectral images with the 8CH probe, how the data from 
that study was analyzed in over 100 patients, and discussed the use of a conditional inference 
tree model to predict surgical margin status.  We also had initial data that suggested that patient 
demographics could impact the accuracy of predictive models for margin diagnosis.  Since then 
we have further investigated the impact of patient demographics (specifically radiographic 
breast density and neoadjuvant chemotherapy status) on the optical properties of normal tissue 
and how these changes impact optical contrast and the accuracy of the conditional inference 
tree model.  These results are described in more detail below. 
 
Methods:   
Details of the analysis of the diffuse reflectance data from the partial mastectomy specimens 
can be found in prior publications13-16 and were discussed in previous reports.  Briefly, spectra 
were corrected for daily variations in optical throughput using a Spectralon reflectance standard, 
and were normalized by the CCD integration time.  An inverse Monte Carlo model13,17-19 was 
used to obtain values for THb concentration, β-carotene concentration and the wavelength-
averaged reduced scattering coefficient from 450-600 nm (<µs’>), for each measured site (or 
pixel) on the specimen surface.  Using all pixels from the lumpectomy specimens, empirical 
cumulative distribution functions (eCDFs) were created and separated by various patient 
demographics.  We found that the demographics that impact the optical data most are 
radiographic breast density and neoadjuvant chemotherapy status.  Therefore, the eCDFs were 
separated by breast density and neoadjuvant status.  Each patient is assigned a value for 
radiographic breast density based on a mammogram: 1 (fatty), 2 (scattered fibrous), 3 
(heterogeneously dense), or 4 (extremely dense).  For the analyses in this paper a score of 1 or 
2 was considered to be low density, while a score of 3 or 4 was considered to be high density.  
Patients who received chemotherapy prior to surgery were considered “neoadjuvant-chemo” 
cases and patients who did not receive any prior therapy (chemotherapy, endocrine, or 
radiation) were considered to be “neoadjuvant naïve”.  To calculate statistical differences 
between the eCDFs, empirical p-values for a Kolmogorov-Smirnov statistic were computed 
using blocked permutation to maintain the correlation structure of multiple site level 
measurements within each margin.   
 
The conditional inference tree described in our previous report is compared to new models 
which take into account breast density and neoadjuvant therapy status (both chemotherapy and 
endocrine therapy).  The sensitivity, specificity, and classification accuracy of the wide-field 
spectral images are also compared to the performance of the surgeon at detecting residual 
cancer on the primary specimen that is excised.   
 
Results:   
Our previous spectroscopy studies16 have shown that the local microenvironment of the breast 
greatly affects the optical signatures of both benign and malignant sites.  The composition of the 
human breast is highly variable from person to person; although the organ is composed of the 
same tissue types, the specific arrangements and relative contributions of these tissue types are 
patient specific.  In addition, it is well known that the composition of breast tissue can change 
significantly within a woman as a function of factors such as the menstrual cycle, pregnancy, 
lactation, menopausal status, body weight, and age.  In order to identify optical parameters 
which may be robust predictors of margin status in patients of varying demographics, it is 
important to understand how these optical parameters are modulated by normal changes in 
breast composition.  Therefore, we have been investigating how patient characteristics affect 



the absorption (THb and β-carotene) and scattering of pathologically negative surgical margins 
(benign tissue) and how this affects the ability to differentiate negative from close/positive 
surgical margins.  We have found that there are 2 patient demographics that have the greatest 
impact on our optical data; the first is radiographic breast density and the second is neoadjuvant 
therapy status. 
 
For the analysis of the breast density data; 92 margins were measured in 72 neoadjuvant naïve 
patients.  Figure 7 (below) shows eCDFs of every measured site on the negative surgical 
margins (n=46), separated by radiographic breast density.   
Table 3 shows the statistics for the differences between the eCDFs for each optical parameter.  
These plots show that β-carotene was significantly higher in the margins of high density patients 
which we believe is due to differences in adipocyte size.  In an initial analysis of histological 
images (n=20) of adipocytes we found that there were 197±51 cells in low density images and 
250±60 cells in high density images (p=0.041).  This indicates that the cells are larger in low 
density patients and could be the reason why we saw increased levels of β-carotene in the high 
density patients.  THb and <μs’> were also higher in the high density patients (although not 
significant) which was likely due more fibro-glandular tissue and an increase in vessels.   
 

 
Figure 7: Empirical cumulative distribution functions of all measured sites from pathologically 
negative, neoadjuvant naïve margins.  Data is separated by radiographic breast density. 
 
Table 3: P-values calculated using modified Kolmogorov-Smirnov tests for the differences 
between CDF’s from negative margins. 

THb (µM) 0.083 

β-carotene (µM) 0.022 

<µs’> (cm-1) 0.60 

 
For the analysis of the neoadjuvant data; 129 margins were measured (92 neoadjuvant naïve 
plus an additional 37 neoadjuvant margins).  Figure 8 (below) shows eCDFs of every measured 
site on the negative surgical margins, separated by neoadjuvant status.   
Table 4 shows the statistics for the differences between the eCDFs for each optical parameter.  
Chemotherapy can induce fibrosis so it is not surprising that we found a significant increase in 
<μs’> in the negative margins of patients who had undergone chemotherapy prior to surgery.  
Although not significant, we found that THb and β-carotene were lower in patients who had 
neoadjuvant chemotherapy. 



 
Figure 8: Empirical cumulative distribution function of all measured sites from histologically 
negative margins.  Data is separated by neoadjuvant status.  Patients who didn’t receive any 
neoadjuvant therapy are considered “naïve” versus those who received chemotherapy (chemo). 
 
Table 4: P-values calculated using modified Kolmogorov-Smirnov tests for the differences 
between CDF’s from negative margins. 

THb (µM) 0.31 

β-carotene (µM) 0.43 

<µs’> (cm-1) 0.0067 

 
In last years report we showed the classification results from a CIT model based on the 92 
margin (72 patient) dataset.  Since then we have found that both radiographic breast density 
and chemotherapy impact the optical properties of benign tissue.  Therefore, it should not be 
surprising that the contrast between negative and positive margins is also affected.  In Table 5 
we show the classification results of the original CIT model (non-mammographic breast density 
specific) with the margins separated by low and high density.  These results show that the 
model is better at predicting margin status in the high density patients; due to the differences in 
the benign tissue of the different types of patients.  Since the optical parameters are affected by 
breast density, we developed a classification model for each group of patients.  All patients will 
have undergone a mammogram prior to surgery; therefore, breast density will be known prior to 
the measurement process and could be used a priori in a statistical model.  Table 5 shows the 
results when a model is built with breast density known a priori (mammographic breast density 
specific).  These results also show that surgical margin status is better predicted in the high 
density patients.  It also shows that the accuracy is better when breast density is known ahead 
of time.  In addition, this table contains the surgeon’s performance based on the primary 
specimens.  These numbers do not reflect the surgeons’ true performance because it does not 
account for additional shavings of tissue that were taken during the first operation.  For our 
measurements we only measure the primary specimen, therefore, we compare the surgeons’ 
performance on the same specimens.  Compared to the surgeons’ performance, the optical 
device shows an increase in sensitivity, specificity, and accuracy.  The results also show that 
the surgeon has a more difficult time identifying positive margins in high density patients (lower 
accuracy).  The optical device would be beneficial for this patient population. 
 
 
 
 
 



Table 5: Diagnostic results of the prediction classification of the CIT model separated by 
radiographic breast density.  The first model does not account for breast density.  The second 
model uses breast density as a priori data.  The surgeon’s performance is based on the primary 
specimen and no additional shavings taken during the first operation. 

 Sensitivity Specificity PPV NPV Accuracy 

Non-mammographic breast density specific CIT model 

Low 83 64 68 80 73 

High 87 67 74 82 77 

Mammographic breast density specific CIT models 

Low 78 76 74 79 77 

High 74 90 89 76 82 

Surgeon 

Low 70 28 47 50 48 

High 61 24 47 36 43 

 
In the eCDFs above we showed that in addition to radiographic breast density, chemotherapy 
also affects the optical parameters of benign tissue.  A CIT model based on a dataset of 129 
margins (neoadjuvant and neoadjuvant naïve patients) was built without considering breast 
density or neoadjuvant status a priori.  A second model was built with breast density and 
neoadjuvant status as priors.  Table 6 shows the results of these two models.  Knowing breast 
density and neoadjuvant status prior to surgery increased the sensitivity, specificity, and 
accuracy of margin classification.   
 
Table 6: Diagnostic results of the prediction classification of the CIT model when breast density 
and neoadjuvant status are unknown and known a priori.  The first model does not account for 
breast density or neoadjuvant status.  The second model uses breast density and neoadjuvant 
status as a priori data. 

Sensitivity Specificity PPV NPV Accuracy 

Non-breast density and non-neoadjuvant specific CIT model 

63 74 70 68 69 

Breast density and neoadjuvant specific CIT models 

70 83 80 74 77 

 
 
 



2. Clinical Data Collection with Refined Technology 

Introduction:   
We have completed the development of the 49-channel imaging device which allows for faster 
acquisition of wide-field spectral images.  A schematic of the device is shown in Figure 8. In 
year 2, we have begun recruiting patients undergoing both partial mastectomy and reduction 
mammoplasty for the imaging protocol.  The goal of this imaging protocol is to use wide field 
spectral imaging of the entire margin followed by high resolution fluorescence interrogation of 
optically identified suspicious sites.   

 
Figure 9. A 49-channel optical spectral imaging system: (A) arrangement of collection fibers to be 
imaged onto the CCD, (B) arrangement of illumination fibers in the illumination adaptor, (C) layout 
of the common end, and (D) imaging probe tip cover made up of a plexi glass plate with a thin film 
layer to create a barrier with the imaging probe tip and the specimen. 
 
Methods: 
The custom 49-channel fiber optic imaging array was fabricated and the custom software 
package was implemented.  The hardware for the 49-channel system was assembled and 
tested.  In May 2011, the probe was tested and characterized using tissue mimicking phantoms 
prior to clinical use.  Prior to clinical implementation, we used the 1st generation, 8-channel 
device combined with high resolution fluorescence imaging to begin initial testing.  We were 
able to use both devices to measure 7 patients (margins) with 35 pathologically confirmed sites.  
Once the 49-channel system became clinically viable, we measured a total of 16 patients with 
this device.  Starting in July 2011, patients undergoing partial mastectomy (lumpectomy) or 
reduction mammoplasty surgery were recruited for this study.  Given the time restraints for 
using our devices in the operating room, for some procedures we have only been able to use 
one device, either the high resolution fluorescence imaging device or the spectral imaging 
device.  The specimen was oriented in a custom made specimen box and a wide-field spectral 
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image of a tumor margin was acquired.  The wavelength-dependent spectral data was analyzed 
using the inverse Monte Carlo Algorithm producing parameter maps of total hemoglobin, β-
carotene, and scattering.  From these parameter maps, “hot spots” were identified and then 
interrogated with the high resolution fluorescence imaging probe.  These “hot spots” were then 
inked to obtain histopathology of these suspicious sites.  Due to IRB protocol constraints, we 
were not able to obtain histopathology on the mammoplasty samples.  We have been able to 
image 16 full margins with 66 pathologically confirmed sites.  Due to time constraints in the OR, 
we were only able to interrogate “hot spots” on 5 margins resulting in 17 pathologically 
confirmed sites.   
 
Results:    
Hemoglobin (H0267 Ferrous Hemoglobin, Sigma-Aldrich) and 1.025μm diameter polystyrene 
spheres (Polysciences) diluted with distilled water were used to construct 12 tissue mimicking 
phantoms.  The inverse Monte Carlo model was used to extract the scattering (µs′) and 
absorption (µa) coefficients from the phantoms using each phantom as a reference to extract the 
optical properties of all 12 phantoms. The mean optical properties (420-630 nm) for these 
phantoms are shown in  
Table 7 and resulted in an average µs′ error of 3.57 ± 1.06% and an average µa error of 8.72 ± 
6.93% over all 49 channels and all reference/target phantom combinations. 
 
Table 7: Mean optical properties of the tissue mimicking phantoms from 420-630nm. 

Phantom <µs′> (cm-1) <µa>(cm-1) 

1 9.96 0.30 
2 9.54 0.57 
3 9.15 0.82 
4 8.79 1.05 
5 8.46 1.27 
6 8.15 1.46 
7 7.86 1.65 
8 7.60 1.82 
9 7.35 1.98 

10 7.11 2.13 
11 6.90 2.27 
12 6.69 2.40 

 
 
The breakdown of margin status and site diagnosis for each of the devices used to date is 
shown in Table 8.  We are still optimizing reference phantoms to extract the most accurate 
parameter maps, but demonstrate an example margin image and corresponding high resolution 
images in Figure 10. 
 
 
 
 
 
 
 
 
 



Table 8: Margin status and pathologically confirmed site diagnosis for 1st and 2nd generation 
devices used in combination with high resolution fluorescence imaging. 

   8‐channel  49‐channel  Total 

Margin Status 

Positive  2  0  2 

Close  2  4  6 

Negative  3  11  15 

Mammoplasty  0  1  1 

Total Margins  7  16  23 

Site Diagnosis 

IDC  2 2 4

DCIS  0 0 0

Adipose  25 32 57

Fibro‐adipose  1 14 15

Fibro‐glandular  1 1 2

Mixed/Other  6 17 23

Total Sites  35 66 101

 
Of the sites shown in Table 8, we obtained high resolution images for all of the 8-channel device 
measurements, but only 17 of the sites with the 49-channel device.  These sites were 
comprised of 5 adipose sites, 4 fibro-adipose sites, 7 mixed sites, and 1 IDC site. 

 
Figure 10: A map of β-carotene/<µs′> (cm-1) from a close margin.  Sites 3 & 4 were interrogated 
with the high resolution fluorescence imaging system and inked for histopathology.  Both sites 
were diagnosed as adipose tissue but it is evident that site 3 has more fibrous tissue in the high 
resolution image which corresponds to increased scattering and a decreased ratio.  
 
 
 



Conclusions:   
In year 2, we have completed the implementation of the 49-channel device resulting in a 
clinically viable system.  We demonstrated that this system could accurately extract optical 
properties through tissue mimicking phantom studies.  We encountered a delay in clinical 
implementation of the 49-channel system, so we took the initiative and began testing and 
analyzing the protocol using the 8-channel system.  Lastly, we were able to use the 49-channel 
device to image 16 patients in an intraoperative setting followed by high resolution fluorescence 
imaging of sites.  Initial analysis shows potential for using high resolution imaging to further 
understand the underlying morphology and lead to improved margin assessment. 
 

Plans for year 3:  
In year 3, we will continue recruiting patients for the imaging protocol and will determine if the 
high resolution device enhances that ability to detect surgical margin status at time of surgery.  
We have amended our protocol to allow us to obtain pathology from mammoplasty specimens 
in order to fully understand the spectral and morphological contrast associated with all tissue 
types.   

 

Aim 2: Optical quantitative biology of different breast cancer subtypes.  

 
Introduction:   
The objective of the work in Aim 2 is to use optical spectroscopy to measure optical markers of 
the tumor microenvironment that are morphologically based (with HRME) and functionally based 
(with spectroscopy) in women with cancers representing a wide variety of molecular subtypes, 
and to determine whether these optical measures can be predictive of eventual chemotherapy 
response in a subset of the patients who are measured prior to commencement of 
chemotherapy.    In Year 2, we have completed a feasibility study using HRME to capture 
morphologically based information from biopsy specimens.  In addition, we started developing 
and building an integrated probe to simultaneously measure high resolution micro-endoscopic 
fluorescence images and corresponding diffuse reflectance spectral measurements. 
 

1. HRME biopsy study 
 
Introduction: 
The ability to predict response to therapy would be an invaluable tool to the medical community. 
However, in order to be adapted into clinical practice, it is necessary that technological 
development be compatible with current medical paradigms. A critical point in the clinical 
management of breast cancer is the initial biopsy that is taken prior to administering therapy, 
such as chemotherapy. If an additional research biopsy could be acquired at this point, 
measured and analyzed appropriately, it could be used to predict response to therapy and 
improve overall patient care and management. Towards this end, we have begun to assess the 
potential of using the high resolution microendoscope (HRME) described in detail in Aim 1 to 
measure clinical biopsy specimens in real time.  
 
Moving forward we have identified two different ways in which high resolution imaging and 
analysis could be used clinically. The first is that HRME imaging could identify if a biopsy is 
positive or negative during the biopsy procedure. Thus, if assessing the response to 
chemotherapy is dependent upon acquiring a positive biopsy (so that the cancer can be 
appropriately diagnosed and any malignant markers associated with the cancer can be 



identified), then HRME imaging could be used to ensure that a positive biopsy is acquired 
during the procedure. The second way in which HRME imaging of biopsy specimens could be 
used clinically is to potentially predict the response to chemotherapy itself. For example, there 
could be an anatomical signature, such as the orientation of collagen surrounding the malignant 
lesion that may be predictive of a response to therapy. In particular, other groups have identified 
tumor associated collagen signatures (TACS) that have been shown to be predictive of patient 
outcome and survival.12 Moving forward, we plan to assess the potential of both of these clinical 
applications through the measurement of ex-vivo biopsy samples.  Additionally, we are 
developing a probe that integrates HRME imaging with spectral measurements, allowing us to 
simultaneously acquire structural and physiological information.  This integrated device will 
allow us to examine how HRME information is related to spectral endpoints and how the 
combination can contribute to a better identification of the tissue.  We have completed the 
assembly of the probe and are moving forward with instrument characterization and 
measurements of ex-vivo clinical specimens.    
 
Methods:   
Imaging protocol: For our pilot biopsy study, patients undergoing a biopsy procedure were 
consented.  After the biopsy was removed from the patient, 0.01% (w/v) acriflavine (Sigma-
Aldrich) dissolved in phosphate buffered saline (PBS) was applied topically to the surface of the 
specimen. The distal end of the HRME fiber bundle was placed in contact with the tissue and 
images were acquired. The biopsy was scanned length-wise by systematically moving the probe 
in 1 mm increments over the tissue surface. Once one side was scanned, the biopsy was 
rotated 180 degrees and the length-wise scanning process was repeated. In order to improve 
the accuracy and reproducibility of these movements the fiber bundle was secured in a custom 
probe holder fiber chuck which was mounted on an x-y translation stage. Between each probe 
placement the distal end of the probe was cleaned with 55% ethanol.   

Pathologic co-registration: After the imaging session the surface of the specimen was inked for 
pathologic co-registration. In order to maintain the proper orientation of the specimen for 
pathological evaluation, each end was inked with a different color. After imaging and inking was 
complete, the tissue was returned for standard pathologic processing, and the resulting 
hematoxylin and eosin (H&E) stained slides were reviewed by an expert oncology pathologist 
who was blinded to the results of HRME imaging. A diagnosis for each end of the biopsy as well 
as a diagnosis for the middle portion of the biopsy was given.   

Results:   
Five patients were consented in this study. Table 9 shows the tissue types that were identified in 
each biopsy (whether from the diagnosis at each end or from the middle). Each number 
represents the number of biopsy cases in which that tissue type was identified out of the 5 total 
biopsy specimens that were measured for this pilot study. For example, in the five biopsy cases 
measured thus far, 3 of them have contained fibro-adipose tissue.  
 



Table 9.  Pathological diagnosis of 5 biopsy specimens. 

 
 
Figure 11 shows an example of one of the biopsies from this initial cohort. As described in the 
methods each side was scanned length-wise. In this example, the left hand side was inked 
green and the right hand side was inked orange. The pathological diagnosis for the green tip—
middle—orange tip is shown below the specimen. As seen, large round cells and with string-like 
fibrous tissue, characteristic of fibro-adipose tissue, can be seen on the left hand side, while the 
rest of the panel is filled with a random distribution of disorganized nuclei, which is characteristic 
of IDC.  
 

 
Figure 11: Representative HRME imaging of a biopsy specimen. Both sides of the biopsy we 
scanned length-wise. Sides are labeled as side 1 and side 2. A pathological diagnosis was given 
for the left end, middle, and right end respectively. 
 
Plans for year 3:  
Plans for year 3 include increasing enrollment in the biopsy study, applying image analysis 
techniques described in Aim 1 to diagnose HRME images during biopsy procedures, looking for 
correlations between image features/endpoints and response to therapy, and characterizing and 
clinically implementing the integrated probe. In collaboration with Rice University, we will 
explore the correlation between morphologic biomarkers assessed from high resolution optical 
images (epithelial cell density and N/C ratio; collagen density, fiber size, fiber linearity; adipocyte 
size and density) and histologic diagnosis and biomarkers of cancer risk and progression, define 
metrics of breast density which can be calculated from high resolution optical images of breast 
tissue and correlate with histologic diagnosis, biomarkers of cancer risk and progression and 
explore correlations between microscopic definitions of breast density developed above with 
macroscopic-scale metrics of breast density. 

In addition to the data presented above, Rice University previously acquired images from 
resected tumor and needle biopsy specimens in 24 patients. Images were obtained using both a 



commercial laser scanning confocal device and the HRME described in the original proposal.  
The commercial confocal system allows for complete mapping of tissue specimens and direct 
site comparison with histological sections.  These images have been assembled into a library of 
normal, non-neoplastic features and neoplastic lesions to facilitate comparison between high 
resolution optical images and the corresponding histological sections.  This library will be used 
as part of the analyses to be carried out in the next year.   

 

Figure 12: Fiber geometry for the integrated probe.  White fibers are illumination fibers; black 
fibers indicate collection fibers.  Gray indicates a dead fiber.  All fibers are 200µm in diameter.  
The core HRME fiber bundle is about 800µm in diameter.  The source to detector separations 
range from 250-1000µm with a maximum sensing depth around 2mm. 
 

Lastly, we were able to build an integrated probe that incorporated the capabilities of both 
HRME and spectroscopy into one system.  A schematic is shown in Figure 12.  The protocol 
used will be similar to previous studies: taking measurements and inking for pathology.  This 
integrated device will allow us to examine the relationships between diffuse reflectance spectra, 
HRME images, and histological information from all specimen types. Ultimately, we can use this 
technology to better understand the combined and independent capabilities of HRME and 
spectroscopy.  Moving forward, we will perform characterization studies of the new integrated 
device and begin measuring clinical specimens.  

 

Aim 3: Optical quantitative biology to assess therapy response in different sub-types of 
breast cancer: 

As stated in our report for Year 1, the research goals for aim 3 have altered slightly from the 
original statement of work.  As proposed, murine window chambers have been implemented for 
the intra-vital monitoring of hemoglobin saturation. In addition, we have started to explore the 
possibility of using fluorescent glucose analogs to measure glucose uptake in tumors. Toward 
this end, we and other research groups have demonstrated the ability of 2-NBDG, an optical 
analog of glucose, to monitor or track changes in glycolysis. We have started to use a murine 
mammary carcinoma model (4T1) that constitutively expresses red fluorescence protein (RFP).  



We will initially measure HbSat and 2-NBDG uptake in response to specific microenvironmental 
stresses such as chronic and intermittent hypoxia. In the second phase of this study we will use 
such microenvironmental stresses to modulate the response to chemo- and radiotherapy and 
determine the feasibility of HbSat and 2-NBDG uptake to predict long-term response to therapy. 
 
Introduction:  
In addition to measuring hemoglobin saturation, which can be indicative of tumor hypoxia, 
another physiological endpoint that we have been interested in measuring is tumor metabolism. 
Hypoxia has long been associated with poor prognosis in cancer patients. Because hypoxia can 
also determine the metabolic status or pathway chosen by a cancer cell, it is important to 
identify whether hypoxia causes certain changes in metabolism that provides a favorable 
environment for cancer cells to proliferate and metastasize. We are interested in exploring the 
effects of chronic and intermittent hypoxia on the metabolic response of cancer cells and 
tumors. The form of hypoxia experienced by a cancer cell depends on its proximity to a food 
source, i.e. vasculature; cells closer to a blood vessel tend to be exposed to fluctuations in red 
cell flux due to new and tortuous vessels whereas cells present at the oxygen diffusion limit and 
beyond tend to be chronically hypoxic.  
 
Our goal is to determine specific changes in the functional and metabolic response of tumors to 
different forms of stress or hypoxia. Our long-term goal is to identify whether such endpoints 
could be used to predict long-term tumor behavior. The results from these studies will help 
guide Aims 3b and 3c. 
 
Methods: 
Cell line and animal model: 4T1-RFP cells were implanted in murine window chambers and 
allowed to grow for 6-7 days. Tumor-bearing mice were divided into 4 groups and exposed to 
different conditions: 1) alternating cycles of regular air (21% oxygen) and hypoxia (10% 
oxygen), 2) chronic hypoxia for 3 hours and 3) Regular room air for 6 hours. Normal mice (no 
cells implanted) were used as controls. We had control animals for each tumor group. Each 
group had 2-3 mice. All mice were fasted for a period of 6 hours (overlaps with treatment 
mentioned above) prior to measurement to ensure minimal glucose competition. 100 l of 6 mM 
2-NBDG was injected through the tail vein of the mouse.  
 
Image acquisition and processing: We acquired images of 2-NBDG fluorescence at 525 nm 
every 300 ms for at least 80 minutes. We used a hyperspectral microscope for acquiring white 
light transmittance, 2-NBDG fluorescence and RFP fluorescence. Using previously validated 
algorithms we can process the white transmittance to create maps of hemoglobin saturation in 
the blood vessels. We selected specific regions in the images that correspond to tumor and 
non-tumor areas for viewing 2-NBDG fluorescence as a function of time. In addition, we also 
measured 2-NBDG fluorescence using a confocal microscope to identify the time point of 2-
NBDG uptake into the cells.  
 
Results:  
Using confocal microscopy, we measured the 2-NBDG uptake in a tumor exposed to regular air. 
Our results indicate good co-registration between 2-NBDG and RFP fluorescence around 40 
minutes post-injection. This is important to know because processing images at peak 2-NBDG 
fluorescence can be misleading. 



 
Figure 13. Confocal images of the skin flap window chamber at different time points. Row 1 shows 
RFP fluorescence from the tumor. Row 2 shows 2-NBDG fluorescence. Images show good co-
registration between RFP and 2-NBDG around the 40-minute mark. 
 
We used the hyperspectral microscope to image HbSat, RFP and 2-NBDG fluorescence. Our 
results indicate that exposure to chronic and cycling hypoxia cause a significant increase in 
glucose uptake compared to tumors exposed to regular air. In addition, we observed an 
increase in HbSat in tumors subject to chronic hypoxia compared to tumors exposed to cycling 
hypoxia or normoxia. Figure 14 shows representative RFP, 2-NBDG and HbSat images from 
each tumor group. 

 
Figure 14. Representative images from each tumor group. Column 1 represents RFP fluorescence 
and indicates tumor position. HbSat is processed from the white light transmittance and is on an 
absolute scale. 2-NBDG fluorescence shown here was measured at 5 minutes. NT – normoxic 
tumor, IHT – intermittent hypoxia, CHT – chronic hypoxia.  
 
 



Because we measure 2-NBDG uptake over 80 minutes, we can get snapshots of glucose 
uptake over time. We intend to measure HbSat longitudinally immediately after hypoxic 
treatment. This can provide information to separate perfusion versus demand-related glucose 
uptake. In Figure 15, we present the average HbSat in vasculature as well as 2-NBDG uptake at 
40 minutes. Note that the selection of the 40-minute timepoint is based on the data presented in 
Figure 13. Our goal is to examine the same plot over time and determine any correlations with 
HbSat. Studying the spatial relationships between the two parameters, in response to stress, as 
a function of time could possibly capture important trends that can help predict long-term tumor 
behavior.   

 
(a) (b) 

Figure 15. (a) Mean HbSat measured in each cohort of animals. (b) Mean 2-NBDG fluorescence. 
The intermittent hypoxia tumor group had a statistically significant increase in 2-NBDG uptake 
compared to control (p < 0.05) Chronic hypoxia tumor group had a significantly higher HbSat 
compared to the other groups. NN – normoxic control, NT – normoxic tumor, IHN – intermittent 
hypoxia control, IHT – intermittent hypoxia tumor, CHT – chronic hypoxia tumor. 
 
Plans for year 3:  
In year 3, our first goal is to complete the ongoing studies in window chamber models and 
publish our work. We intend to examine the relationship between functional and metabolic tumor 
response to stress in related cell models: sibling cell lines that are metastatic and non-
metastatic, responsive to therapy or non-responsive to therapy. For example, the 4T1 cell line 
used in our current study has a sibling cell line, 4T07 that is non-metastatic. The 4T1, on the 
other hand, is highly metastatic (lungs). Determining the response of each of these tumors to 
stress can help determine if a specific metabolic change is indicative or provides an advantage 
to tumors. We also plan to extend the quantitative analysis of the data to examine the kinetics of 
glucose uptake into cancer cells. Specifically, we intend to use compartment models to identify 
differences in glucose uptake by cells in response to stress. 

We have also initiated preliminary efforts to use optical spectroscopy to measure glucose 
uptake in flank tumors implanted in mice. We already possess validated algorithms that can 
quantify vascular oxygen saturation measured with optical spectroscopy. Our efforts in Year 3 
will be focused on developing and validating algorithms to quantify the 2-NBDG fluorescence 
measured from the tumor. These efforts will include quantifying the 2-NBDG fluorescence as a 
function of known concentration injected as well as determining optimal time after injection for 
data analysis. An accurate and validated algorithm for quantifying 2-NBDG uptake can then be 
incorporated in Aim 2 to measure metabolic demand, in addition to other biomarkers. 
Subsequently, we will correlate metabolic demand in tumors with tumor type, receptor status 
and genomic signatures.  

 



KEY RESEARCH ACCOMPLISHMENTS:  

AIM 1 
 Demonstrated the potential of using sparse decomposition to analyze HRME images in 

both preclinical and clinical specimens.  
 Determined that radiographic breast density and neoadjuvant chemotherapy affect the 

optical parameters of benign tissue. 
 Surgical margin status is more accurately classified in high density patients and when 

breast density and neoadjuvant status are known a priori.   
 Began patient recruitment and imaging with the 2nd generation device and high resolution 

fluorescence imaging of “hot spots”. 
 

AIM 2 
 Designed and completed a pilot ex vivo biopsy study which demonstrates the potential of 

using HRME imaging to diagnose specimens during biopsy procedures.   
 Designed and built an integrated probe that combines both the HRME fiber bundle and 

spectroscopy fibers to acquire spatially co-registrated measurements from all specimen 
types 
 

 
AIM 3  
 We have demonstrated significant differences in 2-NBDG uptake between tumors 

exposed to different forms of hypoxia.  
 The type of stress experienced by a tumor also affects hemoglobin saturation in the 

vasculature.  
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for surgical margin assessment. Department of Defense Breast Cancer Research Program 
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5. Mueller J, Harmany Z, Mito J, Kennedy S, Kim Y, Geradts J, Kirsch D, Willett R, Ramanujam 
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AIM 2: 
1. Leautaud V, Mack V, Wright JN, Lu J, Yu D, Richards-Kortum R: Optical Imaging of 

Transformed Breast Epithelial Cells and Breast Tumor Microenvironment. In Biomedical 
Optics and 3D Imaging Optics and Photonics Congress. Miami, FL: Optical Society of 
America; 2010. 

2. Ding, H, Lupinacci J, Yang W, Yu D, Richards-Kortum R. High Resolution Optical 
Microendoscopic Imaging of Breast Cancer. In Era of Hope-Breast Cancer Research 
Conference. Orlando, FL: DOD Defense Health Program; 2011. 

3. Leautaud V, Mack V, Wright JN, Lu J, Yu D, Richards-Kortum R: Optical Imaging of 
Transformed Breast Epithelial Cells and Breast Tumor Microenvironment. In Era of Hope-
Breast Cancer Research Conference. Orlando, FL: DOD Defense Health Program; 2011. 

 
AIM 3: 
 
1. Rajaram N, Fontanella AN, Frees AE, Millon SR, Hansen K, Jiang TT, Brown JQ, Dewhirst 

MW, Ramanujam N. “Optical imaging of tumor metabolic response to chronic and cycling 
hypoxia.”  Manuscript in preparation. 

2. Rajaram N, Frees AE, Jiang TT, Millon SR, Fontanella AN, Dewhirst MW and Ramanujam 
N. Effect of intermittent hypoxia on vascular oxygenation and tumor glycolytic demand in 
pre-clinical breast cancer models. Department of Defense Era of Hope Conference, 
Orlando, FL, Aug 2-5, 2011. 

3. Rajaram N, Frees AE, Jiang TT, Millon SR, Fontanella AN, Dewhirst MW and Ramanujam 
N. Optical molecular imaging of tumor metabolic demand and vascular oxygen saturation: 
Effect of cycling hypoxia. ECI Advances in Optics for Biotechnology, Medicine and Surgery, 
Naples, FL, June 5-8, 2011.  

 
 

CONCLUSIONS:   

Aim 1 
Preliminary application of sparse decomposition to high resolution images of acriflavine stained 
tissue shows promise for isolating individual tissue types and ultimately could allow for the 
automated detection of residual disease of surgical margins.  Based on our preliminary 
analyses, we believe that this image analysis approach is appropriate for HRME detection of 
residual carcinoma at the surgical margin.  In addition we have shown that both radiographic 
breast density and neoadjuvant status impact the spectroscopic data of the surgical margins 
and needs to be taken into account when diagnosing surgical margin status.  With the 
implementation of the 49-channel device we will be able to acquire wide-field images of the 
tumor margins in a shorter amount of time, and be able to do both wide-field imaging and high 
resolution imaging of suspicious sites which we have implemented in 16 patients.  Initial 
analysis shows potential for using high resolution imaging to further understand the underlying 
morphology and lead to improved margin assessment. 



 
Aim 2 
The ex vivo biopsy pilot feasibility study demonstrates that high resolution imaging of acriflavine 
stained tissue is a potential tool for rapid detection of biopsy positivity in an clinical setting with 
the goal of aiding in predicting response to therapy. In addition, we have built an integrated 
probe that will be used in the future to obtain both spectral information and high resolution 
images.  We will characterize and proceed with clinical implementation of this probe in Year 3. 
 
Aim 3 
High-resolution imaging of glucose uptake and vascular oxygenation status can provide 
unprecedented spatial information and help us understand the relationship between both 
parameters. FDG-PET imaging is currently used in clinics to identify tumor location based on a 
tumor’s avid glucose uptake. However, PET cannot provide information regarding a tumor’s 
likely future course. Our results indicate differences in tumor metabolic response dependent on 
the type of stress – chronic or cycling hypoxia. Because the type of stress has been linked to 
long-term tumor behavior, understanding the metabolic response provides us with a vital 
endpoint that could help predict a tumor’s propensity for radio- or chemo-resistance, metastasis 
or recurrence. 
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