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1.    Introduction 

Modelling of the inverse background-error correlations 
(iBECs) of random fields by differential operators has gained 
considerable attention in recent years, primarily due to 
computational efficiency of their implementation in the 
iterative minimization algorithms used in variational data 
assimilation (e.g. Xu, 2005; Pannekoucke and Massart, 2008; 
Mirouze and Weaver, 2010), Of particular interest are the 
iBEC models described by positive-definite polynomials of 
the diffusion operator 

D = VvV, (1) 

where v is the symmetric positive-definite spatially varying 
diffusion tensor. This type of iBEC model is attractive for 
several reasons: (a) it allows straightforward control of 
inhomogeneity and anisotropy via the diffusion tensor; (b) 
it is computationally competitive in many applications; 
and (c) it is easier to develop with regard to keeping 
the positive-definiteness property of the BEC operator. 
In contrast, in the traditional approach of the 'direct' 

correlation modelling where spatial correlations are specified 
by prescribed analytical functions, care should be taken to 
maintain positive definiteness of the respective correlation 
operator, especially in anisotropic and/or inhomogeneous 
cases (e.g. Gaspari et al, 2006; Gregori et al, 2008). 

Because of the above-mentioned properties, polynomials 
of D have been extensively used for approximating Gaussian- 
shaped BECs by either explicit (e.g. Derber and Rosati, 1989; 
Egbert et al, 1994; Weaver and Courtier, 2001; Weaver 
et al, 2003) or implicit (Ngodock et al., 2000; DiLorenzo 
et al, 2007) integration schemes. In the latter case, the BEC 
operator is obtained via iBEC representation by a binomial 
of D. Second-order polynomials of D were considered 
recently by Hristopulos (2003) and Hristopulos and Elogne 
(2007, 2009) for construction of the correlation models 
for geostatistical and other applications. Our research 
(Yaremchuk et al, 2011) also indicates that low-order 
iBEC models can provide extra computational savings 
in three-dimensional variational (3D-Var) analysis while 
keeping the predictive skill of oceanographic assimilation 
systems. A comprehensive treatment of representing the 
iBECs   by   the   polynomials   of  D   was   given   by   Xu 
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(2005), who obtained Taylor expansions approximating 
the propagator of the diffusion equation in one, two 
and three dimensions and obtained recursive relations 
for the polynomial coefficients associated with spatially 
homogeneous correlation functions. 

It should be noted that, among the numerous classes 
of analytic correlation functions (CFs), only a few can 
be effectively implemented within the operator-based 
approach, because the corresponding iBEC is represented 
by a polynomial of D. In many geophysical applications, 
however, details of the shape of a CF are poorly known 
because of insufficient statistics. As a consequence, in most 
cases, heuristic CFs can be adequately approximated using 
only one or two scalar parameters that define a family of 
analytic correlation functions. Therefore, analytic CFs, with 
inverses that can be described by low-order polynomials of 
D, are of significant practical interest. 

Based on the results of the recent studies, this note presents 
analytical expressions for the CFs corresponding to two types 
of the iBEC models: the first type is the mth-order binomial 
of D, which approximates the Gaussian-shaped CF; and the 
second type is a quadratic function of D that is capable 
of reproducing negative lobes in the CFs. The obtained 
CFs generalize earlier results of Hristopulos and Elogne 
(2007; hereinafter HE07) and Mirouze and Weaver (2010), 
and may facilitate practical design of the cost functions 
in variational data assimilation problems, as they give 
explicit relationships between the shape of the CFs and the 
structure of the corresponding iBEC operators in the analytic 
form. 

2. CFs generated by the polynomials of the homogeneous 
diffusion operator 

Consider an anisotropic homogeneous diffusion operator 
(1) in R",n= 1,...,3 with x e R" representing points 
in the physical space and k representing points in 
the wavenumber space. By the appropriate coordinate 
transformation (e.g. Xu, 2005; HE07) the problem can 
be reduced to considering isotropic BEC operators of the 
form F( —A), where F is a positive function and A is the 
Laplacian operator. In the general case of an inhomogeneous 
operator, such transformation cannot be found, but local 
transformations of this type can be useful in constructing 
the BEC operator. 

In this note, the following two classes of the iBEC 
operators are considered: the first is represented by the 
binomial 

B-'=(l-a0A)m, (2) 

and the other by the second-order polynomial in A: 

B     = I-a, A +CC2& (3) 

Here I is the identity operator and a, are the real numbers, 
constrained by the positive definiteness requirement of 
B_l. In the binomial case (2), this constraint is a0 > 0. 
For the quadratic polynomial (3), the positive-definiteness 
requirement can be taken into account explicitly by 
diagonalizing B~' via the Fourier transform. In the Fourier 
representation, B~~' acts as multiplication by the polynomial 
inJt2 = |fc|2, and the positive-definiteness property translates 
into the requirement for the spectral polynomial 

ß-'(jt) = ]+a{^+a2k
A 
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(4) 

to be positive for all k2 = \k\2 (e.g. Reed and Simon, 1975). 
This constraint is equivalent to the statement that the 
polynomial in the right-hand side of (4) must not have 
real positive roots. Since we are considering biquadratic 
polynomials with real coefficients, these roots are symmetric 
with respect to both real and imaginary axes. Thus, without 
loss of generality (except for the special case of imaginary 
roots, which is treated later), B~' (k) can also be represented 
in the form 

B-'(*) = y[a2 + (k- b)2){a2 + (k + b)2), (3) 

where a and b are real numbers defining the inverse 
decorrelation scales of the covariance operator, and y = 
{a2 + b2)~2. The correspondence between ai,a2 and a,b 
can easily be established: 

a,=2(a2 -b2)(a2 + b2y2;    a2 = {a2 + b2 (6) 

Compared to the spectral representation (4) considered in 
HE07, the representation (5) has the advantage that its free 
parameters are not constrained by the positive-definiteness 
requirement. The reciprocal of B~l{k) provides the spectral 
representation of the BEC operator: 

B(k) = [y[a2 + (k- b)2){a2 + (k + b)2}]  ' (7) 

In a special case when both roots are on the imaginary axis, 
the diagonal of B_1 can be represented by 

B~x(k) = y(a2+k2)(b2+k2)y (8) 

where y = (ab)~2 and the weighting factors before the 
Laplacians are given by 

at=(a2 + b2)(abY a?23=(ab)~ (9) 

The corresponding spectrum can be reduced to the 
difference of the respective first-order (one-parameter) 
spectra 

B(k) = - 
1 

y(a2 + k2)^ + k2) 
~—i 

b2-a2\a2 + k2     b2 + k2) 

considered in the next section. 
Because of homogeneity, the matrix elements of B depend 

only on the distance r = |x| from the diagonal. They can 
be computed by applying the inverse Fourier transform to 
B(fc): 

Bn(r) = (27r)"" f B(k)exp(-ikx)dk (10) 

By integrating over the directions in R" (see the Appendix), 
(10) can be reduced to 

B"(r) = (2TT)-"
/2
 /" B(*)Jt"-' (fcr)-^/,(Jtr) dfc,        (11 

where / denotes the Bessel function of the first kind 
and s = n/2 — 1. The respective matrix elements of the 
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correlation operator (correlation functions) are obtained by 
normalization: 

C» = B"(r)/B"(0). (12) 

In practical applications, the diffusion operator is not 
homogeneous, and the analytic representations (4)-(ll) 
cannot be obtained. However, the action of the BEC operator 
on a state vector can be computed numerically at a relatively 
low cost. The major problem with such modelling is the 
efficient estimation of the diagonal elements 

B"(x,x) ./B- (x,y)8(x-y)dy, (13) 

which are necessary to rescale B to have its diagonal elements 
equal to unity. In practice, the rescaling factors N"(x) are 
defined as reciprocals of B"(x, x). 

Taking the integral in (13) numerically is expensive, 
because the convolutions with the 5-functions have to 
be performed at all numerical grid points x. However, 
reasonable approximations for N"(x) can be obtained by 
using the homogeneous analytical versions of (13) (e.g. 
Purser et ai, 2003; Mirouze and Weaver, 2010). Therefore, 
analytical formulae describing homogeneous BEC operators 
are of significant practical interest. Another benefit of the 
analytical models, is their ability to provide guidance in the 
design of the correlation functions. In the case considered, 
the type of spectral polynomial defines the CF's shape 
as a function of a,. Conversely, it provides the values of 
or, after the CF parameters are (optimally) fitted to the 
available data. In this note, two types of such polynomials are 
considered: the first type describes power approximations 
of the Gaussian-shaped CF, and the second is a general 
second-order polynomial given by (5) and (8). 

3.    Power approximations of the Gaussian-shaped CF 

An important family of one-parameter correlation spectra 
provides approximations to the Gaussian-shaped correlation 
function: 

/       ^r /   a2kl\ 
(14) 

Although the binomial approximation (14) converges fast 
enough (e.g. Abramowitz and Stegun, 1972), only small 
values of m are of practical interest. In this section we derive 
the binomial-generated CFs and the correction coefficient 
needed for efficient approximation of the Gaussian CF when 
m is small. 

Substituting (14) into (11), integrating over k and 
normalizing the result by B"(0) yields the correlation 
functions of the Matern family (Stein, 1999) enumerated 
by s = m — n/2 and scaled by a, = a/ •Jim: 

rW (15) 

where p = r/a,, T is the gamma function and K stands 
for the modified Bessel function of the second kind 
(e.g. Abramowitz and Stegun, 1972). The respective 
normalization factors are 

K = T^f (2vW'. 
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(16) 

In the limiting case m — 
take the Gaussian form: 

co, the correlation functions (15) 

C" exp(-r2/2a2); H= 1, (17) 

Consecutive approximations of the Gaussian CF by (15) are 
shown in Figure 1. It is remarkable that, when m = 1, the 
correlation functions (15) have singularities at p = 0 in both 
two and three dimensions (also Table 1). This means that in 
the continuous case the first-order approximations become 
invalid when n > 1. Numerically, however, the correlation 
functions do exist for n > 1, but their decorrelation scale is 
limited by the grid size ä (the corresponding CF is shown 
by the dotted line in Figure 1(a)). This occurs because the 
numerical analogue of the <5-function is never singular, but 
has a finite amplitude inversely proportional to the volume 
of a grid cell, therefore resulting in a finite value of the 
convolution (13) even if it is infinite in the continuous case. 
After normalization by that finite value, the CF is 1 at r = 0, 
but its effective decorrelation scale remains proportional to 
the local grid size <5 if a S> <5. 

It is also noteworthy that the mth-order correlation 
functions in 3D coincide with the (m — l)th-order CFs 
in ID. In particular, the ID second-order autoregression, 
or SOAR function, widely used in operational analyses, 
corresponds to the third-order approximation of the 
Gaussian function in 3D. 

Figure 1(a) shows that low-order power approximations 
(14) underestimate the decorrelation scale a of the target 
Gaussian function. This unpleasant property can be 
corrected by optimizing the value of a in (14) to obtain 
the best fit with the Gaussian CF. Because the Gaussian 
and its approximating functions are both positive and have 
similar shapes, a reasonable optimization criterion is to set 
their integral decorrelation scales equal to each other: 

oo oo 

00 
(18) 

Expression (18) shows that aop, = ££«, with the rescaling 
coefficient 

C = V*m 
00 

/c (y)dy 
r(s) 

r(s+i/2) 
yfa. (19) 

The   values   of   ££   for   m < 4   and   their   respective 
approximation errors are assembled in Table I. 

The coefficients ££ along with relationship (14) provide 
an expression for estimating a0 in the binomial iBEC model 
(2) which approximates the Gaussian-shaped correlation 
function with a given radius a: 

<*o = (C«)2/2m 

4.    Two-parameter correlation functions 

(20) 

In the genera] case of the two-parameter approximation 
(5) there are two complex roots located symmetrically with 
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(c) 
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Figure 1. (a) Power approximations (14) of the Gaussian CF in two dimensions (n = 2). The CF form = I is shown by the dotted line for the numerical 
realization with the grid step S = a/4, (b) Same approximations, but with optimally adjusted correlation radii for various combinations of m and n. (c) 
Differences between the Gaussian CF and its approximation shown in (b). The horizontal axes are scaled by a. 

Table I. Correlation functions associated with the power approximations (14) of the Gaussian CF in n dimensions. 
The CFs for n = 1,3 are rewritten in terms of elementary functions for convenience. The correlation radius adjustment 
coefficients f^ are shown below the formulae together with (in bold) the corresponding relative errors in approximation 

of the Gaussian CF. 

n= 1 n = 2 n = 3 

m= 1 

m = 2 

m = 3 

m = oo 

exp(-p) 
V/TT 0.33 

(1 + p)exp(-p) 
y/Wj2 0.13 

(l+p + p2ß)exp(-p) 
S/27JT/S     0.08 

exp(-rz/2a2) 

K0(p) 

pKx(p) 
yßjn       0.19 

P2K2(p)/2 
V/16/3TT    0.10 

exp(-rV2a2) 

exp(-p)/p 

exp(-p) 
•Jlli       0.33 

(1 + p)exp(-p) 
yßW/4     0.13 

exp(-r2/2a2) 

respect to imaginary axis. Plugging (7) into (11), integrating   which is n/2b away from the origin for n = 3, and depends 
over k, and renormalizing yields the following CFs: 

(21) 

where z = (a + ib)r, the overline denotes the complex 
conjugation, s = 1 — M/2, and the coefficients ß„ are 

ß •3 = N-JT* ßi = 2 arctan 
(-:) 

(22) 

Note that, despite a seemingly complex-valued expression in 
the right-hand side of (21), its imaginary part is identically 
zero. Similar to the binomial case, ID and 3D two-parameter 
CFs can also be expressed in terms of elementary functions: 

C\a,b,r) = 
vV+F 

C (a, b, r) = exp( -ar) 

x exp( —ar) cos I br — arctan ( r) f . 

sin(br) 

br 

(23) 

(24) 

Figure 2 shows the dependence of the correlation 
functions (21) on the magnitude of b for various n. As 
can be seen from (23) and (24), CFs in ID and 3D have 
equidistant zeros separated by n/b except for the first zero 

on both a and b for n = 1. Although analytical expressions 
are quite different for n — 2 and n = 3, the behaviour of the 
CFs is rather similar. In the 1D case, the first zero is somewhat 
farther away from the origin and the CF is less damped. 

In the special case (8), the CFs can be expressed via the 
differences of the first-order CFs (15) discussed in section 3: 

C\a,b,r) = 

C2{a,b,r) = 

C\a,b,r) = 

aexp(-br) - bexp(-ar) 

Ko(ar) - K0(br) 

log(J»/fl)      ' 
exp(-ar) - exp(-br) 

(fc-o)r ' 

(25) 

(26) 

(27) 

In the expressions (25), (27) the representations of the 
Bessel functions_in terms of elementary functions were used. 
Also note that C2,i(r) are non-singular at r = 0 because the 
singularities are cancelled out by taking the difference in 
the numerator. In this special case, the second parameter 
gives little extra freedom in adjusting the shape of the CFs, 
because the resulting curves remain positive functions of r. 
The extra degree of freedom can be used to partly control, 
for example, the CF derivative at r = 0. 
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Figure 2. Two-parameter CFs corresponding to the quadratic inverse BEC (5) with a — 1. The horizontal axis is scaled by a. Dotted lines show CFs 
corresponding to the case (8) with two imaginary roots of the spectral polynomial. 

The normalization constants for the functions (21) and 
(25)-(27) are respectively 

N' = 
4fl 

a2+b2 N2 = 
Sirab 

and 

N1 2(a + b) 

ab     ' 
Nz = 

ß2(a
2 + b2)2' 

2n(a2 - b2) 

a2b2\og(a/b)' 

N3 = 
8na 

{a2 + b2)2 

(28) 

~i = 47T(a + b) 

aW 
(29) 

Equations (21) and (25)-(27) provide explicit expressions 
for the CFs of the two-parameter BEC model. Combining 
them with the relationships (6)-(9) allows the parameters 
of inverse BEC operator (3) to be computed after the values 
of a and b are adjusted to experimental data using (21) or 
(25)-(27). 

5.    Summary and discussion 

BEC modelling with diffusion operators is an efficient 
and flexible tool for evaluating matrix-vector products of 
large dimension which emerge in minimization algorithms 
of variational data assimilation. This note has discussed 
analytic relationships between the parameters controlling 
the shape of correlation functions and the polynomial 
coefficients characterizing the structure of the respective 
inverse BEC operator. The results may be helpful in 
designing the BEC operators in variational data assimilation 
algorithms. 

Although only homogeneous operators in boundaryless 
domains were considered, the relationships (15)—(16), 
(20)-(29) may provide reasonable guidance to constructing 
more realistic BEC operators, especially in cases when the 
typical scale of variability of the diffusion tensor is much 
larger than the local decorrelation scale pc and/or most of the 
observations are separated from the boundaries by distances, 
exceeding pc. In a similar way, weak inhomogeneity can be 
introduced by variable scaling factors a{x), b(x), and the 
local CF shapes can be assessed using (21)—(27). 

Although generalizations of (21) for higher-order poly- 
nomials are possible, this study has been limited to quadratic 
polynomials for two reasons. First, the BEC operators 
encountered in geophysical fluid dynamics applications are 
rarely homogeneous and observational statistics are usually 
insufficient to capture the spatial dependence of the BEC 
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structure. Therefore experimental estimates of the BECs are 
either limited to low-rank ensemble estimates or have to rely 
on the very rough assumption of homogeneity. Needless to 
say, in the latter case the structure of a sample CF should be 
elaborated with sufficiently low detalization which can be 
well accounted for by a two-parameter CF family. The second 
reason is that the use of higher-order polynomials consider- 
ably degrades the conditioning of the linear systems that are 
being solved in the assimilation process (Yaremchuk et a/., 
2011) and, therefore, requires sophisticated preconditioners. 

It should be noted that similar problems have been 
recently studied by many authors (e.g. Xu, 2005; Hristopulos 
and Elogne, 2007, 2009; Mirouze and Weaver, 2010). In 
particular, analytic formulae analogous to (23), (24), (25) 
and (27) were derived in a somewhat different setting by 
HE07 who considered iBECs of similar structure. Xu (2005) 
analyzed Taylor expansions of the Gaussian BEC operator 
and obtained recursive relations for the polynomial 
coefficients associated with an arbitrary CF. Mirouze and 
Weaver (2010) also demonstrated a possibility to generate 
oscillating CFs using higher-order polynomials in 1D. 

The objective of this note was to present the accumulated 
information in concise form and to provide explicit 
relationships between the polynomial coefficients of the 
iBEC operators and the corresponding CF parameters that 
can be derived from experimental data. In addition to 
this, coefficients ££ for the power approximations of the 
Gaussian BEC operator, and the analytic expression (21) 
for the two-parameter model in arbitrary dimension, have 
been obtained. The latter includes, in particular, the 2D case 
formulae (26), (28), (29) absent in HE07, who considered 
only ID and 3D cases. 

We believe this note may facilitate further development of 
the BEC models in variational data assimilation. Moreover, 
since the described methodology can be used for the 
approximation of arbitrary self-adjoint operators with 
positive spectrum, results may also find applications beyond 
the BEC modelling in geophysical inverse problems. 

Appendix 

Det 9 be the angle between x and k in K" and n > 2. Then 
the integral (10) can be rewritten in spherical coordinates as 

00 

B'\r) = (2^r"/'ß(Jt)/'exp(-iJtrcosö)Jt"-1 dJtd«„-i, 

(A.I) 
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where dß„_i is the element of the surface area of the 
unit sphere. Since cos 0 changes symmetrically within the 
limits of integration, the imaginary part of the exponent 
vanishes. Furthermore, using the identity dß„_i = dß„_2 • 
sin"-2 6 dö, the integral (A.l) can be rewritten as 

nr) = (2n)-"fB(k)k"-] dJt /"dß„_2 

a„-i 
(A.2) 

x jcos(krcose) sin"~20 de . 

o 

Integration over 6 (3.715.21 of Gradshteyn and Ryzhik, 
1980) and substitution of the formula for the surface of 
(n — 2)-dimensional unit sphere into (A.2) yields (11). 

The general relationship (11) also holds for n = 1,2 
although these cases require a special (less complicated) 
treatment. 
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