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ABSTRACT 

We assess and compare four sequential data assimilation methods developed for HYCOM in an identical 
twin experiment framework. The methods considered are Multi-variate Optimal Interpolation (MVOI), 
Ensemble Optimal Interpolation (EnOI). the fixed basis version of the Singular Evolutive Extended Kaiman 
Filter (SEEK) and the Ensemble Reduced Order Information Filter (EnROIF). All methods can be classified 
as statistical interpolation but differ mainly in how the forecast error covariances are modeled. Surface 
elevation and temperature data sampled from an 1/12° Gulf of Mexico HYCOM simulation designated 
as the truth are assimilated into an identical model starting from an erroneous initial state, and conver- 
gence of assimilative runs towards the truth is tracked. Sensitivity experiments are first performed to 
evaluate the impact of practical implementation choices such as the state vector structure, initialization 
procedures, correlation scales, covariance rank and details of handling multivariate datasets, and to iden- 
tify an effective configuration for each assimilation method. The performance of the methods are then 
compared by examining the relative convergence of the assimilative runs towards the truth. All four 
methods show good skill and are able to enhance consistency between the assimilative and truth runs 
in both observed and unobserved model variables. Prediction errors in observed variables are typically 
less than the errors specified for the observations, and the differences between the assimilated products 
are small compared to the observation errors. For unobserved variables, RMS errors are reduced by 50% 
relative to a non-assimilative run and differ between schemes on average by about 5%. Dynamical con- 
sistency between the updated state space variables in the data assimilation algorithm, and the data ade- 
quately sampling significant dynamical features are the two crucial components for reliable predictions. 
The experiments presented here suggest that practical implementation details can have at least as much 
an impact on the accuracy of the assimilated product as the choice of assimilation technique itself. We 
also present a discussion of the numerical implementation and the computational requirements for 
the use of these methods in large scale applications. 

ffi 2011 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Ocean forecasting systems seek to accurately predict the evolv- 
ing three dimensional distribution of currents, temperature, salin- 
ity, and associated mesoscale features such as position of fronts 
and eddies. These systems typically fuse information from ocean 
models and observations through the process of data assimilation 
and provide an integrated view of the ocean state. During the last 
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decade a multi-institutional partnership has been developing 
ocean forecasting systems based on the HYbrid Coordinate Ocean 
Model (Chassignet et al., 2009). Forecasting system development 
with HYCOM has focused on the twin essentials: model improve- 
ment and data assimilation. Since its inception, HYCOM has under- 
gone numerous improvements and rigorous testing and is capable 
of simulating the ocean state and its spatio-temporal variability 
with a high degree of realism1 (Bleck. 2002; Chassignet et al., 
2003; Halliwell, 2004). Concomitantly, a suite of data assimilation 
methods have been developed for operational use with HYCOM. 
The purpose of this paper is to present a comparative assessment 
of the data assimilation methods available for HYCOM and to pro- 
vide a synthesis of the data assimilation efforts within the HYCOM 
community. 

Data assimilation treats both data and models as sources of 
information and estimates the most likely state of the ocean given 
a set of observations and an ocean circulation model. Several 
monographs and review papers describe the numerous approaches 
to data assimilation (Ghil and Melanotte-Rizzoli, 1991; Daley, 
1991; Bennet, 1992; Wunsch, 1996; Kalnay, 2003). The suitability 
of any particular approach to data assimilation is largely deter- 
mined by the targeted application. HYCOM-based forecasting sys- 
tem development has primarily focused on eddy-resolving, global 
ocean prediction systems with an emphasis on accurate depiction 
of mesoscale variability and physics of the upper ocean. This re- 
quires assimilation methods to handle high resolution ocean mod- 
els with large state vectors, address specific complexities 
introduced by HYCOM's generalized vertical coordinate, and be 
computationally efficient to fit within operational constraints. In 
light of these requirements, four sequential assimilation methods 
were adapted for operational use with large scale systems. They 
are Multi-variate Optimal Interpolation (MVOI) available as a com- 
ponent of the Coupled Ocean Data Assimilation (NCODA) system 
(Lorenc. 1981; Daley, 1991; Cummings. 2005), Ensemble Optimal 
Interpolation (EnOI) used as a simplified variant of the Ensemble 
Kaiman Filter (Oke et al., 2002; Evensen, 2003, 2009; Counillon 
and Bertino, 2009a,b), the fixed basis variant of the Singular Evol- 
utive Extended Kaiman (SEEK) Filter family (Pham et al., 1998; 
Brankart et al., 2003a; Brasseur and Verron, 2006) and an Ensemble 
version of the Reduced Order Information Filter (EnROIF) (Chin 
et al., 1999, 2001; Chin, 2001). These methods share a conceptual 
formalism in that they all combine a forecast state, conditioned 
by space-time extrapolation of past observations through the 
model dynamics, with new observations in a recursive analysis 
step. The analysis is computed as a weighted least square fit of 
the forecast state to the observations using prescribed error covar- 
iances for the forecast and observations. The principal difference 
among them is in the modeling of the forecast error covariance 
matrix and its numerical representation. The methods have been 
successfully demonstrated in ocean reanalysis and prediction 
applications in systems ranging from basin to global scale 
(Brankart et al., 2003a; Chassignet et al., 2006, 2009; Counillon 
and Bertino, 20O9a,b; Cummings et al., 2009). 

With the successful development and demonstration of a basic 
capability for sustained and efficient ocean prediction at eddy- 
resolving resolutions, attention (both within the HYCOM commu- 
nity and the ocean forecasting community as a whole) is now 
turning to evaluating the relative merits of the data assimilation 
systems and consolidating the developments thus far. Tradition- 
ally, model intercomparison exercises have served as an effective 
means to understand diverse results and provide feedback that 
promotes model improvement and community cohesion (Boer, 

2000). The recently concluded Global Ocean Data Assimilation 
Experiment (GODAE) featured an intercomparison of data assimi- 
lation systems which included three of the four assimilation meth- 
ods available for HYCOM.2 In these and other earlier comparisons, 
the assimilation systems used different ocean model configuration, 
resolution, forcing, and observations, and performance of the entire 
assimilation system was assessed as an integrated unit (Bmsd.il 
et al.. 2003; Cummings et al., 2009). A necessary complement to 
such comparisons is an intercomparison of assimilation systems 
performed in a strictly controlled environment with all systems 
using identical forward model configuration, forcing fields and 
observations with an aim to explicitly assess the data assimilation 
component of the assimilation systems (Nerger et al., 2005). Such a 
controlled intercomparison of the four assimilation methods is 
now underway within the HYCOM community. The overall intent 
of this exercise is to identify best practices and effective data 
assimilative system configuration for reliable operational ocean 
predictions with HYCOM. 

Apart from the differences in the way the forecast error covari- 
ances are modeled, the operational use of these methods also differ 
in practical implementation details such as state vector structure, 
reinitialization methods, parameter choices and others. Years of 
experience within the Numerical Weather Prediction (NWP) com- 
munity has shown that practical implementation details are just 
as important as the assimilation technique itself. Further, the com- 
putational cost is also dependent on the implementation choices. 
Therefore, in assessing the assimilation methods our specific goals 
are: (1) to examine the sensitivity of the results to implementation 
details including state vector structure, re-initialization methods, 
correlation scales, vertical projection of surface information, covari- 
ance rank and observation processing to identify the most effective 
setup and (2) to use the results of the sensitivity experiments to 
evaluate the assimilation methods with respect to the covariance 
models and numerical efficiency. 

In this paper, we present results from identical twin experi- 
ments with a Gulf of Mexico HYCOM (GOM-HYCOM). The twin 
experiment methodology and the approximations employed in 
the estimation of the error covariance allows us to identify a com- 
parable set of assimilation parameters and conduct sensitivity 
studies, performance evaluations and inter comparisons. Sensitiv- 
ity experiments illustrate implementation considerations and 
choices that are crucial to obtaining effective performance with 
these methods. Based on the twin experiments, we find all four er- 
ror covariance models to be equally effective and that comparable 
performance can be obtained from all the methods when they are 
used in configurations that minimize differences in practical 
implementation details. The experiments provide a baseline per- 
formance assessment given a perfect model, surface data, and erro- 
neous initial conditions. The results are likely to be useful for the 
design of operational data assimilation systems (Korres et al., 
2007), and for better understanding results from operational sys- 
tems using these methods. In Section 2, we describe the model, 
the assimilation methods and the experimental setup are detailed 
in Sections 3 and 4. We then present the results from several sen- 
sitivity experiments in Section 5. We compare the assimilation 
schemes in Section 6 and conclude with a discussion in Section 7. 

2. The Ocean Model-HYCOM 

The HYbrid Coordinate Ocean Model (HYCOM) is a widely used 
Ocean General Circulation Model (OGCM) that solves the hydro- 
static Navier-Stokes equations (primitive equations) applied to a 

' An exhaustive list of references on HYCOM development and its applications are 
available at http://www.hycom.org. 

2 Of the three, two methods EnOI and SEEK were used with ocean models other 
than HYCOM. 
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thin layer of stratified ocean on a rotating Earth. HYCOM's distin- 
guishing feature is a generalized vertical coordinate system that 
optimizes the distribution of vertical computational layers by mak- 
ing them isopycnal in stratified regions, terrain-following in shal- 
low coastal regions, and isobaric in the unstratified mixed layer 
(Bleck, 2002). The ocean is described as a stack of shallow water 
layers of specified target density. The vertical coordinate layers 
are isopycnal when water of a specified target density is present 
in a given water column, otherwise the layers transition to fixed- 
coordinates (pressure and terrain following a levels). The optimal 
configuration of the coordinate layers is generated every time step 
by a vertical grid generator. This arrangement makes HYCOM a 
good choice for application domains that include both the open 
ocean and shallow or unstratified regions (Chassignet et al., 2003, 
2006; Winther and Evensen, 2006), and allows the use of sophisti- 
cated vertical mixing models (Halliwell, 2004). Further technical 
details are available in the HYCOM Users Manual (www.hycom. 
org) and references therein. 

HYCOM's generalized vertical coordinates and its dynamic nat- 
ure introduces some additional complexities when assimilating 
data. First, there is choice of vertical coordinates for the analysis. 
The analysis can either use pressure levels or can be cast in the 
models native hybrid coordinates. Both these choices have been 
implemented in the assimilation schemes used with HYCOM 
although analysis in native coordinates might be more appropriate. 
Because of the models hybrid vertical coordinates, adjusting the 
model state requires corrections to the densities of the models 
pressure and sigma layers and changes to temperature or (and) 
salinity and thickness of the isopycnal layers. Further, the cor- 
rected state should also satisfy constraints on the state variables 
such as non-negative layer thickness, minimum layer thickness 
and other conditions as in Table B.l. At present, all assimilation 
methods have a post-processing step after the assimilation proce- 
dure in which final corrections to the model layers are determined 
based on the analysis increments and constraints listed on Table 
B. 1. Approaches to enforce these constraints as a part of the assim- 
ilation procedure by using inequality constraints and anamorpho- 
sis transformations (Thacker, 2007; Lauvernet et al., 2009; Simon 
and Bertino, 2009) have been proposed, and in future might elim- 
inate these aspects from the post-processing step. Here, we exam- 
ine the sensitivity of the results to the post-processing choices in 
Section 5. 

3. Assimilation methods 

All methods examined here use a common linear formula for 
updating the model-forecast x^ to obtain data-analysis x": 

x°=x/ + K(y    Hx7) (1) 

where y is the data to be assimilated, H is the observation operator, 
and K is a matrix of optimization parameters often called the gain 
matrix. The Gauss-Markov formula prescribes the gain matrix that 
is optimal in a least-square sense (Bennet, 1992; Wunsch, 1996) as 

K = PfHT(HPfHr + R) (2) 

where P^ is the forecast error covariance, R is the observation error 
covariance, and T denotes matrix transpose. 

Formally, P^ is the covariance matrix of the forecast error 
ef-xf - xrm', or pf- £ (eV). assuming statistically unbiased fore- 
cast E(eO - 0, where E is an ensemble average and x,ru' is the true 
state of the ocean. Due to a lack of complete and accurate data on 
the true oceanic state, Pf is a difficult quantity to determine. More- 
over, P^ has an impractically large number of variables (exceeding 
the capacity of present-day computer memory) due to the dimen- 
sion of the model state x. All assimilation methods must therefore 
approximate P* in a numerically efficient fashion, while accurately 
capturing the multivariate and spatial correlations. The covari- 
ances in Pf essentially prescribe how the model-data misfit is pro- 
jected onto the model state. The main difference distinguishing the 
four methods examined here is in the way Pf is modeled and 
numerically represented. However, in all schemes considered here 
information required to represent P^ is derived from a sequence of 
model states with one or more of the following assumptions: (i) 
the covariance of the oceanic variability can be used as a proxy 
of the forecast error covariance, (ii) the model variability is identi- 
cal to the real ocean variability, and (iii) the model run samples the 
model variability adequately. In the twin experiment framework 
the oceanic variability is identical to the model variability, and 
the first two of these assumptions are automatically satisfied 
while the third is addressed by using a sufficiently long free run. 
In the implementation of the schemes considered in this paper 
forecast errors are assumed to be uncorrelated to the observation 
errors as are errors in observations at different locations and time. 

3.1. Multi-variate Optimal Interpolation 

Table B.1 
List of HYCOM state variables and constraints. The constraints are imposed during a 
post-processing step after the analysis. Layer thickness constraints are indicated in 
pressure units used in the formulation of HYCOM as a non Boussinesq mass 
conserving model. 

State variable Constraint 

1. Layer temperature. Tk.k-\..N 
2. Layer salinity, S». k-\..N 
3. Baroclinic zonal velocity. ut, 

Jc-1..N 
4. Baroclinic meridional velocity, i^, 

k-l..N 
5. Barotropic zonal velocity, ub 

6. Barotropic meridional velocity, ft 
7. Bottom pressure anomaly. ;>„ 
8. Baroclinic layer thickness. 6pk, k - 1    . N 

Limited to 0-32 °C range 
Limited to 10-40psu range 

(1) Non-negative - <ipk ? 0 
(2) Should satisfy the specified 
minimum thickness criteria - 
t>pk > ip-1 

(3) Sum of layer thicknesses 
should be equal to the initial 
bottom pressure (or local depth) 

E*o'Pt = !>!!•*= 1      N 

The MVOI method considered here is the data assimilation com- 
ponent in the Navy Coupled Ocean Data Assimilation (NCODA) sys- 
tem (Cummings, 2005). The NCODA implementation of the method 
is essentially an oceanographic version of the MVOI method that 
was widely used in the atmospheric forecasting systems (Lorenc, 
1981; Daley, 1991). In MVOI, covariances in P'are expressed as a 
product of correlation matrix, C, and a diagonal matrix, D, of 
variances: 

P' = D,/2CD 1   2 (3) 

The correlations are further separated into horizontal and vertical 
components. All scalar auto correlations between values at loca- 
tions separated by scaled horizontal distances, sj,, and scaled verti- 
cal distances, s„ are modeled as products of Second Order Auto 
Regressive (SOAR) functions: 

C/, = (l + sh)exp{-sh) 

C„ = (l + sv)exp(-sv) 

(4. 

(5) 

The multi-variate correlation functions between geopotential 
and velocity are derived from the first and second derivatives of 
the SOAR functions (Fig. 1). Flow dependence is incorporated by 
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Fig. 1. Auto and cross-correlations of horizontal multivariate correlation functions for geopotential (p), and velocity components (u. t») used In the MVOI scheme. Warm (cool) 
colors indicate positive and negative correlations. 

scaling the horizontal and vertical correlations further by a corre- 
lation C/ computed from geopotential height differences between 
two locations scaled by a geopotential length scale hs: 

C, = (\+s,)exp(-sf) (6) 

Finally the total background correlation, Cb is modeled as 

c„ = qcc, (7) 
In our use of MVOI background variances are computed from a 

3-year time series of 1 day differences in a free running GOM- 
HYCOM (see Section 4). These variances vary with location, depth 
and analysis variable. The variances are also updated prior to sub- 
sequent analysis based on past increments, expected values, and 
age of data. 

3.2. Ensemble Optimal Interpolation 

In the EnOI method, a stationary ensemble of anomalies is used 
to approximate the forecast error covariance ^ (Oke et al., 2002; 
Evensen, 2003). The EnOI method considered here is derived as a 
simplification of the Ensemble Kaiman Filter (EnKF) as put forth 
in Evensen (2003). In this method, the forecast covariance matrix 
is essentially the sample covariance of an ensemble of model states 

M T £(>£,-*)«-*: (8, 

where dm is the mth sample of the forecast ensemble, x' is the 
ensemble mean, M is the number of samples and a e (0,1) is a scal- 
ing parameter used to adjust the ensemble variability. The analysis 
is done with a static ensemble generated from a free running model 
state trajectory. In the experiments described here, the static 
ensemble is built using model states sampled every 10 days from 
a 3-year GOM-HYCOM free run (see next section). Such a multi-year 
ensemble is expected  to capture major mesoscale variability, 

including the dynamic modes of the Loop Current and associated 
rings, as well as some features of seasonal variability. These aspects 
are captured in the multivariate correlations obtained from the 
ensemble (Fig. 2). 

3.3. Fixed basis variant of the SEEK filter 

In the SEEK filter and its variants, the forecast error covariance 
matrix, & is assumed to be of low rank, M, and is usually repre- 
sented by dominant modes of empirical orthogonal functions (EOFs) 

M ]   / .JmJm (9) 

where Sfm, m ^ 1 M, are the M most dominant EOF modes. The 
full SEEK filter evolves the forecast error covariance either through 
linearization or through integration of an ensemble of model states. 
Here, we use a simplified version of the filter in which the basis is 
fixed and static in time as in Brankart et al. (2003a). 

In this study, the EOFs required to build the low rank forecast 
error covariance are obtained from the 3 year GOM-HYCOM free 
run sampled every 10 days. These multi-variate EOF are generated 
by removing the mean and using the correlation matrix obtained 
by scaling the elements by their respective variances. The first 
three EOFs of the SSH and SST components are shown in Fig. 3 
illustrating modes associated with different stages of the Loop 
Current. 

3.4. The Reduced Order Information Filter 

In ROIF a Markov random field (MRF) is used to model the fore- 
cast error process as 

e(f J) =    5Z   ^J'Ai'Aj)e(l " ^J ~ Aj) + <5(I'J) 
(Ai.4/)<=.r 

(10) 
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Fig. 2. Horizontal multivariate correlations for surface elevation (p) and velocity components (u. v) derived from model states sampled every 10 days from the 3 year COM- 
HYCOM free running simulation. The correlations shown are between the target point marked by the white star with all other points in the model domain. 
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Fig. 3. Multivariate EOFs of the mesoscale variability in the Gulf of Mexico derived from the 3 year GOM-HYCOM free running simulation. These EOFs are used in the fixed 
basis SEEK filter to parameterize the covariance matrix. The first three dominant modes of the surface elevation and surface temperature are shown. The first 15 modes 
represent more than 70% of the variability. 
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where e[i,j) is the multi-variate vector of forecast error e^ at grid- 
point {i,j).. t specifies a set of local grid locations, y is the regression 
coefficient (small matrix), and S(iJ) is a white noise with unit vari- 
ance. This parameterization results in a sparse block-banded struc- 
ture for the forecast information matrix (Pf)"1 (Chin et al., 1999, 
2001). The MRF model is a spatial generalization of the standard 
auto-regression model, and the neighbor set . • is the analog of 
regression order. ROIF specifies the local neighborhood . r to be 
the grid-points within a 50 km radius from each {i,j). In standard 
MRF modeling, the coefficient matrices y are usually homogeneous, 
i.e., dependent only on the distance (Ai, A/) but not on location (i,j); 
however, in ROIF they are location dependent so that flow depen- 
dent correlation structures can be represented. Also, using the mod- 
el (10), the linear multi-variate dynamic balance formula can be 
directly incorporated into the correlation structure of ef. In particu- 
lar, a geostrophy-like balance is imposed numerically on the errors 
associated with the triplet of state variables (u, v, p) at each grid. 
The auto and cross covariance structures derived from the MRF for- 
malism are illustrated in Fig. 4. In the experiments presented here 
we use a simplified static ensemble version called EnROIF in which 
the random field parameters y of the horizontal error components 
are evaluated empirically from the 3 year GOM-HYCOM free run. 

3.5. Horizontal and vertical correlations 

The spectral structure of the correlations determine the interpo- 
lation and filtering properties of each scheme. To adequately ad- 

dress the mesoscale prediction problem in the Gulf, the 
horizontal correlations should represent the scales of both the 
Loop Current eddies (diameter 100-300 km) and smaller scale fea- 
tures such as the Loop Current frontal eddies (diameter 50- 
150 km) which are important to represent the Loop Current 
dynamics and variability. Thus the approximate covariance matri- 
ces used in the four schemes have generally similar scales and rep- 
resent correlations on the order of 100-150 km (Figs. 1-4). For the 
subsurface projection of surface information, MVOI uses the 
Cooper-Haines lifting and lowering of layers while the ensemble 
methods use ensemble based correlations to modify layer thick- 
ness/interfaces. The expected behavior of the vertical projection 
is seen in the correlations between surface elevation and state vari- 
ables (Fig. 5). For example, an elevation in the sea surface at 86W/ 
24N causes a deepening of the upper layers and a draining of the 
lower layers. Salinity in the upper layers (100-200 m) is negatively 
correlated with SSH because an increase in SSH leads to a stronger 
inflow of fresher Yucatan Current into the GOM (Rivas et al., 2005; 
Counillon and Bertino, 2009a). 

4. Experimental setup 

We need a dynamically relevant ocean domain for assessing the 
ability of assimilation schemes to accurately predict evolving meso- 
scale processes. At the same time, the domain should be computa- 
tionally tractable for testing the sensitivity of assimilation schemes 
to the numerous practical implementation details. The Gulf of 
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Flg. S. Multivariate vertical correlations derived from an ensemble of model states 
sampled from 3 year Culf of Mexico free running simulation. The panels show 
correlations between surface elevation at 86W/24N and state variables layer 
thickness, temperature and salinity. 

Mexico offers an environment that satisfies both these require- 
ments. The Culf forms a semi-enclosed sea connected to the Carib- 
bean Sea by the Yucatan Channel in the South, and to the Atlantic 
Ocean in the east by the Florida Straits. Its circulation is dominated 
by the Loop Current that enters as an intense northerly jet, known 
as the Yucatan Current, bringing warm Caribbean water into the 

Gulf, and exits southeast of the COM through the Florida Straits. Ed- 
dies pinch off the meandering Loop Current at irregular intervals 
and form anti-cyclonic warm core rings that propagate into the 
western GOM where they dissipate. The non-linear nature of the 
Loop Current and eddy shedding makes the GOM a dynamically 
relevant region for testing assimilation schemes designed for 
ocean prediction. Further, the size of the state vector in eddy resolv- 
ing configurations of the GOM is O(106 107) which requires 
2-10 min in modern multi-core machines permitting efficient runs 
for sensitivity testing. We therefore, use the GOM as a testbed. 

The experiments presented here are cast in an identical twin 
experiment framework. They are based on a 1/12° GOM-HYCOM 
nested within a 1/12° North Atlantic HYCOM. This configuration 
is similar in many respects to the current HYCOM based global 
ocean prediction system and has approximately 8 km resolution 
for this region. There are 20 isopycnal-sigma-pressure layers based 
on potential density referenced to the ocean surface.3 Horizontal 
mixing is parameterized as a sum of Laplacian and biharmonic mix- 
ing. The vertical mixing scheme is based on the K-Profile Parame- 
terization (KPP) scheme of Large et al., 1994. The model 
bathymetry is derived from the Naval Research Laboratory Digital 
Bathymetry Data Base 2-min resolution (NRL DBDB2). The coastline 
is at the 5 m isobath and the minimum model depth is 10 m. All 
model runs are forced by 6 hourly Navy Operational Global Atmo- 
spheric Prediction System (NOGAPS) wind stress, wind speed, heat 
flux and precipitation. The surface latent and sensible heat fluxes 
are derived from daily averaged 2 m fields of air temperature and 
relative humidity using bulk formulae (Kara et al., 2005). Boundary 
conditions for the barotropic and baroclinic modes are formulated 
separately. For the barotropic mode, information exchange be- 
tween the inner and outer models is along characteristic lines for 
the normal components of velocity and pressure, and with pre- 
scribed values for the tangential components. The baroclinc veloc- 
ity components, temperature, salinity and interace pressure are 
relaxed to the outer model solution within a relaxation buffer zone. 
The buffer zone used here is 10 grid points wide on the south and 
east boundaries and the relaxation time is 1-10 days. 

We perform three different simulations (Table B.2): one to gen- 
erate the error statistics controlling the assimilation, another to 
generate the data to assimilate and a third into which data is 
assimilated. Thus, a first 3 year simulation from January 2000 to 
December 2002, referred to here as the "GOM-HYCOM free run", 
is used to generate the static ensemble, EOFs, MRF parameters 
and background variances used in the four methods. We designate 
a second 3 year simulation Qanuary 1999-December 2001) as the 
"truth". Synthetic observations of SSH and SST are generated from 
the truth run for the time period August 1999-December 1999. 
The observations are sampled from the "truth" at actual reported 
altimeter and Multi-Channel Sea Surface Temperature (MCSST) 
sampling locations for this time period (Fig. 6). These synthetic 
observations are then assimilated into a third GOM-HYCOM start- 
ing on August 30th, 1999, designated as the assimilative run. 

The truth and the assimilative runs are nudged using boundary 
conditions specified daily from the outer model while the free run 
is nudged at the boundaries with bi-weekly conditions from the 
outer model. The bi-weekly boundary condition used here is de- 
rived from a synoptically forced basin scale Atlantic HYCOM run 
for the period 1999-2002 and provides a representative climatol- 
ogy of the Yucatan Inflow and Florida Strait Outflow. These bound- 
ary conditions have been generated by the HYCOM community to 
allow GOM-HYCOM simulations in situations where appropriate 

3 The target potential density of these layers in units of kgm ' are: 1019.50. 
1020.25. 1021.00. 1021.75. 1022.50, 1023.25. 1024.00. 1024.70. 1025.28. 1025.77. 
1026.18. 1026.52. 1026.80. 1027.03. 1027.22. 1027.38. 1027.52. 1027.64. 1027.74. 
1027.82. 
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Table B.2 
The GOM-HYCOM experiments. The experimental setup is identical except for the 
nesting conditions. The free run used climatological boundary conditions provided 
bi-weeky while the truth and assimilative runs used daily conditions from the outer 
model. 

Name Time period Forcing Nesting fields 

Free run January 2000-December NOCAPS 6 Bi-weekly 
2002 hourly climatological fields 

Truth run January 1999-December NOCAPS 6 Daily fields 
2001 hourly 

Assimilative August 30 1999 - NOCAPS 6 Daily fields 
run December 31 1999 hourly 

outer model solutions may not be available. Model runs forced 
with the climatology show similar Loop Current extension and 
eddy shedding statistics as runs forced with daily data. 

In general, twin experiments can be setup to assess the perfor- 
mance of the assimilation methods given an erroneous initial state, 
forcing and boundary conditions. However, in our experiments, we 
assume that all of the error is in the initial condition and that the 
forcing and boundary conditions are known exactly. Obviously, 
this is a less stringent test than the most general case, but the drift 
in the forecast model is generally much greater for errors in the ini- 
tial conditions than for errors in forcing or boundary conditions 
(Counillon and Bertino, 2009b). The initial state used here is sam- 
pled from an earlier spinup run and is chosen to drastically misrep- 
resent the Loop Current state. The Loop Current is at a dynamical 
opposite extreme compared with the truth (Fig. 7). In the truth, 
the Loop Current is well developed and extends to 26.5 N and there 
is a Loop Current eddy just to the northwest of the Loop Current. 
These features cover a significant fraction of the horizontal area 

of the Gulf and have significant vertical extents (800 m) and are 
completely absent in the initial state. The water properties associ- 
ated with the truth and the initial state also differ significantly. The 
temperature/salinity difference between the truth and initial state 
in the upper 800 m are on average 1.5 °C and 0.2 psu. The maxi- 
mum differences are on the order of 10°C and 1.5 psu. Below 
800 m the maximum differences in water properties are 0.4 °C 
and 0.2 psu. We assume that these differences in the initial state 
are sufficient to assess the methods. 

We assimilate data daily for 4 months, August 30th to December 
31,1999 during the experiments. The performance of the assimila- 
tion schemes is assessed by examining the convergence of assimi- 
lative runs towards the truth run. The difference between the 
model state at any given time in the assimilation run and that in 
the truth run is measured by the corresponding Root-Mean-Square 
(RMS) error calculated as: 

RMS = xrr (ID 

where xr is the state variable from the truth and xF is the next day 
assimilative model forecast for the state variable with the RMS val- 
ues computed over the whole domain. In addition to RMS errors, we 
also examine the performance relative to a non-assimilative free 
run, and use the Relative Root Mean Square Error (RRMS) in forecast 
fields to assess the assimilation methods. The RRMS is computed as 
below. 

RRMS = (12) 

MCSST-30Aug. 1999 

96°W   92°W   88°W   84°W   80°W 

Longitude 
96°W  92°W  88°W  84°W   80°W   76°W 

Longitude 

altimeter data Aug - Dec. 1999 
1000 

MCSST data Aug - Dec. 1999 
10000 

Fig. 6. The observations used in the twin experiments. The upper panels show sample altimeter tracks for a 10 day period (August 30-September 09, 1999) and surface 
temperature sampling locations (MCSST) for August 30,1999. The bottom panels show daily data counts of altimeter and MCSST data. On average there are approximately 
300 altimeter and 3000 MCSST observations per day.The synthetic data were generated at locations where real altimeter observations were reported for August 30th to 
December 31 1999. Further, three altimeters, ERS2 + CFO • TOPEX. were combined together with the same observation error in these experiments. 
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Fig. 7. The state of the truth run and the initial state for the assimilative runs on August 30.1999. Sea surface height map and sections along 25.44N illustrating differences in 
flow and water properties between the states are shown. The states are vastly different and represent two dynamical extremes of the Loop Current. The Loop Current extends 
well into the Central COM in the truth state. Its signature extends to about 1000 m and has a significant impact on the water properties. In contrast, the Loop Current 
penetration into the Culf is at a minimum in the initial state. 

5. Sensitivity experiments 

A naive use of the assimilation methods with configurations re- 
ported in the literature gave widely scattered results. Further, as 

each scheme was developed independently, we were confronted 
with a situation where we had to deal with multiple observation 
pre-processing strategies, file naming conventions, interfaces and 
data formats. Early during our efforts we decided to standardize 
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the data handling infrastructure to facilitate systematic compari- 
sons. Subsequently, numerous twin experiments were done to 
tune the four schemes and to understand the sensitivity of the 
schemes to various parameters. Each scheme was tested with dif- 
ferent implementations and parameter choices with respect to 
state vector structure, reinitialization method, covariance rank, 
correlation scales and different observation types. In this section, 
we present results from these sensitivity experiments which are 
of a general nature (useful to more than one assimilation method). 

5./. Sensitivity to the state vector structure 

In general the estimation space containing the set of variables 
for which corrections are computed could include the complete 
state vector. However, in previous applications of these methods 
the choice of state variables to include in the estimation space 
has differed among the operational setups. For example, Brankart 
et al. (2003a) in their use of the SEEK filter exclude variables that 
lack reliable covariances (baroclinic velocities) or which are af- 
fected by high-frequency errors which cannot be controlled by 
the available observations (barotropic variables). Instead these 
variables are adjusted in a post-processing step so that they are 
consistent with the corrected variables before restarting the model 
for the next forecast. In contrast to this approach all the prognostic 
variables, including baroropic velocities, are used in the estimation 
space in EnOI (Counillon and Bertino, 2009a,b). In MVOI, all model 
state variables are converted from the computational space into 
pressure space and estimation is done on pressure levels. The 
choice of the set of variables to update is handled during the 
remapping of the estimate to the hybrid coordinates. 

Although all choices discussed in the literature are based on va- 
lid arguments and practical insight, the optimal choice of the state 
vector structure is not clear. We therefore, ran several twin exper- 
iments to test the sensitivity of the results to the different choices 
of state variables. Starting with a minimal state vector that 

considered only the surface elevation, prognostic variables were 
successively added to the estimation space. Not surprisingly, we 
consistently found that the results improved as more variables 
were included in the state vector. Further, all methods produced 
better results when barotropic variables were the included 
(Fig. 8) only SSH RMS errors are shown but there is an overall 
improvement in all other variables. Error levels are reduced during 
the entire duration of the assimilation compared to the runs 
excluding the barotropic variables. The better results produced 
by all methods when barotropic variables are included in the state 
vector are probably a consequence of the twin experiment frame- 
work with no error in high-frequency forcing. In the presence of 
high-frequency errors (real or twin experiments) it would probably 
require relevant additional observations to constrain the barotrop- 
ic mode. 

Another finding was the sensitivity of the results to the use of 
layer pressure thickness versus layer interface pressure in the esti- 
mation space. In Fig. 8, there is a strong growth of errors towards 
the end of the run (days 100-110). During this time, very few 
altimeter data are available to constrain the model in the energetic 
regions of the Central GOM. Consequently the assimilative runs 
start to drift from the truth. All else being equal, the growth of er- 
rors is minimal for state vector configurations that use layer thick- 
ness in the estimation space. In contrast, the runs with layer 
interface pressure as a state variable show larger error growth dur- 
ing this period. The reason for this difference is not obvious. In the- 
ory, a linear scheme should produce identical results with layer 
interface pressure or interface thickness as state variables. How- 
ever, the nature and strength of the correlations of layer thickness 
with other variables are different than those between layer inter- 
face pressure, a cumulative quantity, and other variables. This 
might result in different adjustment of layer thickness fields during 
the post-processing step depending on whether layer thickness or 
layer interface pressure is used as a state variable. In any case, layer 
thickness is the prognostic variable, and configurations which 
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Fig. 8. Time evolution of relative RMS errors in the next day forecast SSH fields for assimilative runs with different state vector structure. The variables in the state vector for 
each of these runs are indicated in the figure (UT. total eastward velocity; VT, total northward velocity; DP. layer pressure thickness; P. layer interface pressure; T. layer 
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Sensitivity to Re-initialization Procedure 
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Fig. 9. Time evolution of relative RMS errors in the next day forecast SSH fields for runs using different initialization procedures. The difference in the initialization 
procedures are indicated in the figure. The restart file based initialization corresponds to a full insertion at one instant and subsequent integration from the restart file. 
Incremental updates are added over 80 time steps (6 h). T/S update in the legend corresponds to simultaneous T and S update. In all cases the best state vector structure as 
determined above was used. 

correct it directly, as in Counillon and Bertino (2009a) seem to pro- 
duce a better balanced state than configurations which correct 
layer interface pressure derived from layer thickness. 

5.2. Sensitivity to the re-initialization procedure 

The analyzed variables are usually adjusted as a part of the ini- 
tialization procedure to render the analyzed state vector suitable 
for model restart in the sequential analysis update cycle. Apart 
from restoring the constraints on the state variables listed in Table 
B.I there are several issues that require careful consideration. First, 
the multivariate analysis provides both salinity and temperature 
increments. Simultaneous update of salinity and temperature in 
the upper pressure-like layers does not cause any particular diffi- 
culties, but it can be problematic for the isopycnal layers. Due to 
the non-linear equation of state of seawater, modifying both salin- 
ity and temperature in these layers can lead to artificial caballing 
and can alter model stratification in the absence of in situ T/S 
observations to constrain the increments. The issue is handled 
quite differently in the operational use of the assimilation schemes. 
In EnOI, when assimilating sea level anomalies in the COM, both 
temperature and salinity are updated simultaneously in all layers 
(Counillon and Bertino, 2009a). They recommend updating both 
temperature and salinity, and any high frequency noise due to arti- 
ficial caballing in regions where the updates are damped rapidly. In 
the case of MVOI, the analyzed temperature and salinity are 
mapped from pressure space to HYCOM's vertical coordinates. 
Both T/S are updated in the pressure layers. In the isopycnal layers, 
either temperature or salinity is updated while the other variable is 
diagnosed. 

We performed several experiments to gauge the sensitivity of 
the assimilated product to the above issues (Fig. 9). In the case of 
SEEK, EnOI and EnROIF, updating both salinity and temperature 
in the isopycnal layers generally improved the performance during 

the first 2 months compared to updating only one of the variables 
or updating none at all (not shown). However, after 60 days there 
was a gradual degradation in the temperature and salinity fields 
(see Section 6.2). In MVOI, the altimeter data are assimilated with 
a modified form of the Cooper and Haines (1996) method.4 The 
surface height innovations are converted into innovations of tem- 
perature and salinity on analysis levels and these innovations are 
subsequently used in the analysis. In this case, updating both tem- 
perature and salinity in the isopycnal layers generally degraded the 
interior water mass properties and worsened the overall perfor- 
mance. Acceptable performance was obtained when simultaneous 
temperature and salinity updates were restricted to the upper 
pressure layers. For the isopycnal layers updating layer interface 
pressures only gives the best results. We find that updating either 
T or S and diagnosing the other in the isopycnal layers leads to 
large errors in the diagnosed variable. We also experimented by 
alternating the updates of T and S every few assimilation cycles. 
The results, while better than updating only one variable, were still 
problematic. 

Another issue is the possible generation of gravity waves when 
the analysis updates are not in balance. These waves can interfere 
with model dynamics and degrade the forecast. In operational use 
of MVOI, the model state is incrementally updated to suppress any 
spurious gravity waves. However, in operational use of EnOI, incre- 
mental updates were found to be unnecessary as dynamically bal- 
anced updates are ensured by choosing an appropriate the 
localization radius (see below). We tested both restart-file based 
full updates and incremental analysis with the SEEK and MVOI 
methods. We found a slight improvement in model performance 

4 An option exists in NCODA to assimilate altimeter using stored regression 
coefficients, between SSH anomalies and temperate and salinity in the water column, 
from the Modular Ocean Data Assimilation System (MODAS) database, but it is not 
used here. 
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Fig. 10. Time evolution of relative RMS errors in the next day forecast SSH fields for different choices of covariance rank for EnOI and SEEK methods. The covariance rank is a 
crucial choice for the overall performance and computational cost of these schemes. The best configuration for the state vector structure and initialization methods as 
identified previously was used here to examine the sensitivity to covariance rank. 

with incremental updates but results are generally similar to full 
updates (Fig. 9). 

5.3. Sensitivity to the covariance rank 

The choice of the rank of the error covariance matrices (number 
of members in the ensemble for EnOI and the number of EOFs for 
the SEEK filter) is yet another crucial factor in the use of these 
schemes. The performance and the computational cost of these fil- 
ters are strongly dependent on the covariance rank. The use of a 
covariance matrix based on too few samples or too few EOFs can 
significantly degrade performance. On the other hand, a large 
covariance rank can significantly increase the computational costs. 
Several experiments were performed to assess the sensitivity of 
these schemes to these choices (Fig. 10). A maximum of 106 states 
or EOFs were used for the EnOI and SEEK, and best performance 
was obtained when all 106 members or EOFs were used. The per- 
formance of EnOI is slightly degraded when 75 members (not 
shown) are used, but is significantly reduced when only 50 states 
are used. In the case of SEEK, performance with 50 EOFs is very 
similar to the case when 106 EOFs are used but starts to degrade 
when 25 or fewer EOFs are used. It is seen that the use of EOFs 
to represent the dominant modes of system variability can signif- 
icantly reduce computational costs. In this case, 90% of the system 
variability is captured by the first 40 EOFs and the use of 50 EOFs is 
almost as good as using 106 EOFs. However, the use of too few 
EOFs might not be enough to represent all the dynamically rele- 
vant modes. The optimal number is sensitive to the spatial scales 
of the processes that are relevant, and will have to found through 
sensitivity experiments. Similar sampling strategies for EnOI are 
discussed in (Evensen, 2004). For EnROIF, performance again in- 
creases when using more states to parameterize the information 
matrix. In all experiments reported here we use 106 states to 
parameterize the information matrix in EnROIF. 

5.4. Sensitivity to correlation scales 

Correlation scales essentially determine the spatial extent of the 
corrections induced by a particular observation. Correlations scales 
also determine data selection and can influence the computational 
cost of the updates. In the methods considered here, the analysis 
for each grid point is effectively local and is computed based on 
covariances and innovations within a specified distance from the 
grid point but the localization strategy can be explicit or implicit 
depending on the method. In the EnOI and SEEK versions used here, 
explicit localization is implemented by nulling covariances and 
innovations falling outside the radius of influence.5 In MVOI, the 
horizontal covariances are based on compact support provided by 
the SOAR functions for a specified length scale. In contrast in EnROIF, 
the order of the MRF neighborhood used in the information matrix 
implicitly imposes this locality and the covariances smoothly taper 
off with distance without the need for direct truncation. 

In all cases results are sensitive to the choice of length scales. Is 
there an optimal length scale or a range of length scales over which 
localization is effective? We tested the sensitivity of ensemble- 
based schemes to localization at three different length scales of 
75,150 and 300 km, corresponding to the size of the mesoscale ed- 
dies in the COM (Fig. 11). Overall lowest forecast errors in SSH are 
obtained by using a larger radius of 300 km but a radius of 150 km 
appears effective considering the error reduction and the computa- 
tional costs of the update which increases as the number of 
observations grow within the localization radius. Conversely, per- 
formance is degraded when a smaller radius of influence of 
75 km is used. Oke et al. (2007) point out that this is due to the 
breakdown of the dynamical balance when the radius of influence 
is smaller than the correlation scales, and as the localization radius 

5 The actual implementation of localization is slightly different between EnOI and 
SEEK, EnOI uses a cosine tapering while SEEK uses a Gaussian tapering of the 
innovations. 
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Fig. 11. Time evolution of relative RMS errors in the next day forecast SSH fields for different choices of correlation scales (localization). The correlations scales (localization 
radius) for these runs are indicated in the figure. Optimal length scale is dependent on the size of the mesoscale features. In the case of the GOM. effective performance is 
obtained when a 1 SO km length scale is used. The best configuration for the state vector structure and initialization methods as identified above, and 106 ensemble members 
were used here. 

decreases the updates approach a direct insertion. It is also impor- 
tant to note that the localization radius and the covariance rank are 
not entirely independent. Localization serves to increase the effec- 
tive covariance rank in comparison to the model subspace and an 
effective value is dependent on the number of states or the number 
of EOFs used. 

In MVOI, correlation length scale is normally chosen as propor- 
tional to the first baroclinic Rossby radius. We tested the perfor- 
mance of MVOI by varying the Rossby radius-based length scales 
and by computing the length scales from the ensemble. The best 
performance was obtained when the length scale was specified 
as twice the Rossby radius. For EnROIF, the index set defining the 
MRF neighborhood was specified based on the above results so 
that correlations smoothly taper off after 150 km. 

5.5. Sensitivity to observation type and multivariate observation 
assimilation 

We examined the sensitivity of the assimilation system to the 
type of assimilated data. We performed experiments assimilating 
only SSH or SST and compared these with experiments assimilating 
both SSH and SST (Fig. 12). As expected, best results were obtained 
when both observing systems were used. The results were almost 
as good when using only SSH. But results were generally poor 
when only SST observations were used. This is as expected since 
changes in the SSH are strongly correlated with the changes in 
the underlying structure of the water column, but correlations of 
SST with interior variables in the absence of a dynamical coupling 
are expected to be relatively weak. 

The analysis updates in the ensemble schemes are based on sta- 
tistical relationships and require some care when multivariate 
datasets are updated simultaneously, as a degradation in the per- 
formance can result due to spurious correlations. In SEEK and En- 
ROIF, this issue is handled by treating the variables updated by 

each observing system as a separate subsystem. In the twin exper- 
iments presented here, the dynamical variables are updated by SSH 
and the thermodynamic variables are updated by SST. In essence, 
this reduces the multi-variate nature of the method but the perfor- 
mance is as good as a full multi-variate analysis. In the EnOI exper- 
iments, we have used both SSH and SST to modify all model state 
variables. Because of the relatively weak seasonal signal and a lin- 
ear relationship between SSH and SST in the Gulf, this approach 
does not introduce significant problems due to spurious correla- 
tions (Counillon and Bertino, 2009a).6 Simultaneous assimilation 
of SSH and SST does not seem to be an issue in MVOI since the mul- 
ti-variate correlations between variables are dynamically based, 
and coupled by geostrophic and hydrostatic relations. 

A final issue relates to the analysis in shallow regions. We find 
that using synthetic data from areas shallower than 300 m de- 
grades the performance of all ensemble-based assimilation sys- 
tems. When assimilating altimeter observations, analysis updates 
are not done in coastal regions due to inaccuracies in the altimeter 
signal in coastal regions. This is not expected to be a problem when 
using pseudo observation as done here, so the degradation in per- 
formance is probably due to spurious correlations in these regions. 
The model vertical coordinate layers in shallow regions near the 
coasts are dynamic, and correlations obtained from model states 
in these regions can be problematic if layer changes are not taken 
into account. The correlations are probably non-linear in these re- 
gions and might be better represented by a dynamic error covari- 
ance matrix. Counillon et al. (2009) in their experiments with a 
hybrid EnKF-EnOI application find that using a small number of 
dynamic states improves performance in coastal regions. However, 
in all experiments reported here, we do not use data in shallow re- 
gions where water depth is less than 300 m. 

6 In more recent use of the EnOI seasonal ensembles are used to limit spurious 
correlations. 
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Sensitivity to Observation Type and Processing 

Fig. 12. Time evolution of the relative RMS errors in the next day forecast SSH fields for different observation types and processing strategies. SST subsystem indicates that 
updates based on SST are limited to temperature and salinity components of the state vector. The best configuration determined in the preceding experiments was used here. 

5.6. Summary of the sensitivity experiments 

The best setup for each assimilation scheme as determined by 
the sensitivity studies detailed in the previous section and numer- 
ous other scheme-specific tuning experiments are listed in Table 
B.3. Appropriate choices for parameters listed in Table B.3 will have 

Table II. 1 
Assimilation scheme configurations for intercomparison. 

MVOI       Separable covariances based on SOAR functions 
State vector (U. V. interface pressure, T, S), analysis on pressure 
levels 
T/S update in pressure layers/ thickness updates in isopycnal layers 
Incremental updates introduced as nudging for 6 h (80 time steps) 
Correlation scale: 2 • Rossby radius 
Direct method for SSH assimilation: Level of No Motion » 3500 m 
Simultaneous SSH and SST assimilation 
Observation errors - SSH (0.05 m) and SST (0.5 °C) 

SEEK        Fully 3D covariances based on EOFs from the free run 
Full native HYCOM state vector 
Full update of all based variables on restart files 
No of modes (EOFs): 106 
Localization Radius: 150 km 
2 Subsystems (SSH-Momentum/SST-Thermodynamic variables) 
Observation errors - SSH (0.05 m) and SST (0.5 °C) 

EnOI        Fully 3D covariances based on model states from the free run 
Full native HYCOM state vector 
Full updates of all variables based on restart files 
No of states in the Ensemble: 106, parameter a - 1 
Localization Radius: 150 km 
Sequential assimilation of SSH and SST 
Observation errors - SSH (0.05 m) and SST (0.5 °C) 

EnROlF    Vertically decoupled information matrix derived from the Free Run 
Full native HYCOM state vector 
Full updates of all variables based on restart files 
Localization Radius: 150 km 
No of states used in the MRF based covariance: 106 
2 Subsystems (SSH-Momentum/SST-Thermodynamic variables 
Observation errors - SSH (0.05 m) and SST (0.5 °C) 

to revisited for using these methods in other scenarios or regions of 
the world. Overall best performance is obtained when corrections 
are estimated for the full state vector consisting of state variables 
listed in Table B.l. Further, the smaller drift for SEEK and EnOI runs 
during periods of limited data availability suggest that fully three 
dimensional error covariances used in these schemes are more 
effective than horizontally and vertically separable covariances 
used in MVOI or the vertically decoupled covariance used in En- 
ROlF. These aspects are best addressed when the analysis problem 
is cast in the models native hybrid vertical space. This also avoids 
any mapping back and forth from hybid to pressure coordinates 
which is known to be diffusive. 

6. Comparison of the assimilation schemes 

We now compare the assimilation schemes using the best setup 
for each scheme as identified in the previous section. It should be 
noted that the comparison presented below is still under the twin 
experiment framework using synthetic observations. Further the 
full surface height field (SSH) is assimilated implying a hypotheti- 
cal scenario of a accurately known mean sea level. As before we 
compare the performance of the four schemes based on their con- 
vergence towards the truth run. RMS errors in the 1 day forecasts 
(difference between the truth and the assimilation runs) for all 
variables over the whole basin, locally and the entire depth range 
relative to a non-assimilative run are discussed below. 

6./. Observed surface fields 

As expected, the time evolution of the basin averaged RMS error 
in the forecast SSH fields shows significant error reduction in all 
cases (Fig. 13). In all cases, the prediction errors are less than the 
observation errors of 0.05 m by 30 days into assimilation. Further, 
errors are reduced by more than 50 % when compared to the non- 
assimilative run. The only significant difference between the 
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Fig. 13. Time evolution of RMS errors in next day forecast SSH fields comparing the four assimilation schemes. The prediction errors are generally smaller than the 
observation errors after the initial adjustment period. The differences between the schemes are also much smaller than observation errors of 0.05 m. RMS errors from a 
parallel non-assimilative run are also shown. 

schemes is in the initial rate of error reduction. Apart from any dif- 
ferences due to implementation choices, the rate of error reduction 
is also affected by the representation of the forecast error covariance 
matrix. In the case of the fixed basis SEEK filter, the columns of this 
matrix are the leading eignevetors, and define the dominant direc- 
tions of error. Corrections along these orthogonal directions are effi- 
cient and lead to quick error reduction. In the case of EnOI, the 
corrections are along the representers defined by a collection of 
model states. The rate of error reduction is slower but eventually 
is equal to the corrections computed by the EOF representation. Sim- 
ilarly, the properties of the empirical covariance in MVOI and MRF 
based «variances in EnROIF determines the rate of error reduction. 

The evolution of the Loop Current and eddy-shedding is linked 
to mesoscale processes in both the deep and the shallow regions of 
the Gulf. The ability of the assimilation schemes to address the 
mesoscale prediction problem can be assessed by examining the 
performance of the schemes during an eddy-shedding event. The 
chosen time frame for the experiments include an Loop Current 
eddy-shedding event in the "truth" run on day 53. All the assimi- 
lative runs are able to capture this event within 2 days of the truth 
(Fig. 14). Further, the eddy shedding event is linked to the presence 
of cyclonic frontal eddies in the shallower regions such as the 
Campeche Bank in both the truth and the assimilative runs. These 
features are non-deterministic and are linked to instabilities 
associated with the Loop Current. The performance of the schemes 
in capturing these features is quite similar when data coverage is 
regular in space and time. Locally, prediction error levels are still 
less than observation error even during strong dynamical events 
such as a Loop Current eddy shedding. 

It is also interesting to note the difference between the schemes 
towards the end of the experiment between days 100 and 110. 
During this time, data availability is reduced with no altimeter 
observations in the Central COM. EnROIF and MVOI methods exhi- 
bit somewhat more drift than the SEEK and EnOI methods. An 

examination of the horizontal distribution of the errors shows that 
growth during this time is concentrated mainly in the highly ener- 
getic regions in the central GOM for all schemes (Fig. 15). As dis- 
cussed in Section 5.1, the better performance of SEEK and EnOI 
during this time is probably due to the analysis performed in the 
native hybrid vertical geometry using fully three dimensional 
covariances and all of HYCOM's native state variables as done in 
Counillon and Bertino (2009a). 

The time evolution of relative RMS errors in SST (Fig. 16) reveal 
similar error reduction as in the SSH case. Prediction errors are 
smaller than the specified observation errors (0.5 °C) by day 20. 
However, the relative error reduction compared to the non-assim- 
ilative parallel run is a bit smaller (40%) and slower than the SSH 
case for all schemes. The relative error reduction is slow since 
SST is mainly influenced by surface forcing which also reduces 
the errors in the non-assimilative model. However, the non- 
assimilative model drifts away after the eddy-shedding event on 
day 53 while the assimilative runs show a much better conver- 
gence towards the truth. There are differences in the rate of error 
reduction between the schemes during the first 2 months, but 
eventually all asymptote to about 40% error reduction with EnROIF 
consistently showing maximum error reduction. The differences 
between the schemes are much smaller compared to the observa- 
tion error of 0.5 °C. The horizontal distribution of errors 50 days 
into assimilation shows a similar pattern for all the schemes with 
most of the error concentrated in the southwestern GOM (Fig. 17). 
Errors in the simulated SST due to errors in forcing and model 
physics lead to errors in sensible and latent heat flux calculations 
which feedback and ampilfy the SST errors. In the absence of 
assimilation these errors amplify and lead to large SST drift seen 
in the non-assimilative run. 

Both SSH and SST are the measured quantities and so error 
reductions are expected. A more stringent test is the improvement 
in three dimensional unobserved variables discussed below. 
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Fig. 14. Sea surface elevation on day 53 in the truth and assimilative runs. The assimilative runs capture the Loop Current eddy shedding event in the truth with minor phase 
errors. The eddy shedding in both the truth and the assimilative runs are preceded by the presence of cyclonic frontal eddies near the Campeche Bank and the Tortugas area. 

6.2. Unobserved and subsurface fields 

A global view of the convergence of the assimilative runs with 
the truth is seen in the three-dimensional, basin averaged error 
evolution in velocities, temperature and salinity (Fig. 18). Signifi- 
cant error reduction is seen in both the non-assimilative run and 
the assimilative runs during the 4 months. However, the assimila- 
tive runs show a much more rapid decrease in the first 40 days fol- 
lowed by a more gradual decrease. Overall, the error reduction in 

the unobserved variables is qualitatively similar to that of the ob- 
served variables with the assimilative runs reducing error by about 
50% compared to the non-assimilative run. After the initial error 
decrease, the only significant difference between the schemes is 
during days 100-110 when there is a slight error increase (most 
prominent in the velocity components) in schemes that use a sep- 
arable covariances. 

The extent of subsurface corrections can be seen in the vertical 
profiles of basin averaged RMS errors on day 50. Error reduction 
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Fig. 16. Time evolution of RMS errors in next day forecast SST fields comparing the four assimilation schemes. As in the SSH case, the prediction errors are generally smaller 
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Fig. 17. Horizontal distribution errors in forecast SST fields at day 50 into assimilation. Most of the error is in the southwest COM where the forecast has a cool bias. 

and convergence with the truth relative to the non-assimilative 
run is mainly in the upper 1000 m. Much of the error reduction 
in the velocities is in the upper 250 m of the water column with 
a gradual decrease to about 20% in the upper 1000 m (Fig. 19). Be- 
low 1000 m the effects of assimilation are quite weak (5% improve- 
ment compared to the non-assimilative case) and in the case of 
EnROIF results show a slight degradation of the northward velocity 
component. The magnitude of error reduction differs by about 5- 
10% between the schemes but the overall pattern is quite similar. 
Similar results are apparent in the vertical error profiles of salinity 
and temperature (Fig. 19). However, the vertical distribution of er- 
rors is different than for the velocities. The maximum error reduc- 
tion for both temperature and salinity is between 300 and 500 m 
and not at the upper levels as for velocities. This is due to the rel- 
atively weak correlations between surface height and temperature 
and salinity in the upper 200 m compared to much stronger corre- 
lations in the 300-500 m range. In contrast, the upper layer veloc- 
ities are strongly correlated to the SSH and undergo strong error 
reduction at these depths. All schemes have problems in correcting 
temperature and salinity below 1500 m. Correcting both tempera- 
ture and salinity as done in the ensemble schemes leads to slightly 
worse performance than no correction at all as in MVOI. 

Apart from the global performance, it is also of interest to exam- 
ine the performance locally. The error evolution in the vicinity of 
the Loop Current in the deep Central GOM is shown in Fig. 20. 
The error in the velocity components in the upper 1000 m are rap- 
idly reduced and remain low even during strong dynamical events 
such as the eddy shedding event (day 53) as long as data coverage 
is regular in space and time. Temperature errors in the upper 
1000 m are undergo significant reduction in the assimilative runs 
during the first 60 days but after this time the error levels gradu- 
ally increase. Salinity corrections are much less effective and slow 
compared to other three variables. The assimilation runs begin to 

improve the salinity fields only after the first month. After 60 days 
correcting salinity with surface information as in the ensemble 
schemes is generally worse than no correction at all. Below 
1000 m, the error levels are generally much lower and the differ- 
ences might not be significant. However, at these depths, assimila- 
tion initially worsens the convergence with the truth but after the 
first month the assimilative runs gradually do better than the non- 
assimilative run. There is also a tendency to introduce errors in the 
temperature and salinity during the later stages of the run. The cor- 
rections at depth largely depend on the vertical correlations which 
may be poorly represented. Therefore, problems can be expected 
when only surface information is used to estimate subsurface cor- 
rections. Additional in situ data might help to better constrain the 
corrections at depth. 

The error evolution in two representative shallow regions, one 
at the West Florida Shelf region and the other in the vicinity of 
the Campeche Bank are shown in Fig. 21. The initial errors in the 
West Florida Shelf region are small and are reduced steadily in 
the non-assimilative run as a deterministic response to the applied 
forcing. The assimilative runs do not use data in these regions 
which are shallower than 300 m. As a result the corrections are 
due to the spreading of the innovations by the background covari- 
ance and the model dynamics. The assimilative runs slightly wor- 
sen the velocity errors in this region. Temperature and salinity 
errors are reduced in the assimilative runs during the first 60 days. 
After this time there is significant error growth in temperature and 
particularly in salinity in MVOI and SEEK runs. In contrast, the ini- 
tial errors in the Campeche Bank region are quite large and all the 
assimilation schemes reduce errors in velocity and tracer fields 
when compared to the non-assimilative case. 

Next, we compare the time evolution and snapshots of layer 
thickness as an indicator of the effectiveness of the vertical projec- 
tion of the surface information. The impact of the assimilation is 
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Fig. IS. Time evolution of the basin averaged RMS in unobserved variables U. V. T and S. In all cases errors are reduced by about 50% compared to the non-assimilative case. 
The global error reduction in these unobserved variables is both qualitatively and quantitatively similar to error reduction in the surface elevation field. 

mainly seen in layers 6 where the basin averaged initial difference 
between the truth and the assimilative runs is the greatest (about 
20 m). In this layer thickness errors are reduced during the first 
50 days in the assimilative runs compared to the non-assimilative 
run (Fig. 22). Other layers in the upper 200 m evolve similarly for 
both assimilative and the non assimilative runs. Between 200 
and 500 m corrections are generally smaller and not always better 
than the non-assimilative case. The convergence to the truth below 
500 m are generally poor (Fig. 23). In SEEK, EnOI and EnROIF, the 
downward projection of surface information is by vertical correla- 
tions present in the free run. In contrast, MVOI uses a dynamical 
approach based on the Cooper and Haines (1996) technique to pro- 
ject surface information downward. Both these approaches modify 
layer thickness/interfaces in a similar way. A local vertical profile 
of the adjustment from the Loop Current region (Fig. 24) shows 
that the methods primarily increase the thickness of layers 6, 7, 
8 in order to correct for the presence of the Loop Current. Corre- 
spondingly, some water is also removed from the deeper layers. 

In sequential assimilation schemes such as the ones considered 
here, the model state is adjusted with new information every anal- 
ysis step. It has been pointed out that this adjustment process can 
lead to artificial sources and sinks of physical quantities in the 
model solution. We examined the impact of assimilation on the 
integrated quantities such as mass flux across a closed section 
and the depth of the 20 °C isotherm (not shown). After the adjust- 

ment in the first 20 days, all assimilation schemes converge to the 
truth run and no major imbalances are found. As a final point, we 
mention that the assimilative runs were integrated further and 
they remained stable and consistently closer to the truth than 
the non-assimilative reference run. 

7. Summary and discussion 

In this paper, we have compared four sequential assimilation 
schemes developed for HYCOM in an identical twin experiment 
setting assimilating surface height and temperature observations. 
The twin experiments used identical model configuration, forcing, 
boundary conditions and thus allowed us to focus exclusively on 
the performance of the assimilation schemes. The sensitivity of 
the schemes to practical details such as state vector structure, re- 
initialization procedure, correlation scales, covariance rank and 
assimilation of multi-variate observation types were first evalu- 
ated. The results of these experiments underscore the important 
role of these factors in obtaining effective performance from these 
schemes, and further suggest that the best performance is obtained 
when all HYCOM's state variables are used in the estimation with 
corrections spread using covariances derived in the models native 
computational space as done in Counillon and Bertino (2009a). 
Based on the sensitivity experiments, an effective configuration 
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Fig. 19. Vertical profiles of basin averaged RMS errors (relative to a non-assimilative run) in velocities and thermodynamic variables on day 50. Large improvements are seen 
in the upper water column but gradually decrease to 20% by about 1000 m. Below this depth there is only a weak improvement with respect to the non-assimilative run. 
There are no T and S updates for the MVOI run at depth in the isopycnal part of the domain. 

for each scheme was identified, and used in the intercomparison. 
Results presented above show all four methods to be equally effec- 
tive in fitting the model to observations. Prediction errors in ob- 
served variables, SSH and SST, are typically less than the errors in 
the observations, and the differences between the assimilated 
products are also small compared to the observation errors. For 
unobserved variables, RMS errors relative to a non-assimilative 
run are reduced by about 50% and differ between schemes on aver- 
age by about 5%. One of our stated intentions was to evaluate the 
forecast error covariance models. Based on our experiments it 
can be concluded that fully 3D covariances produce better results 
than horizontally and vertically separable covariances or vertically 
decoupled covariances. However, it is difficult to further evaluate 
the forecast error covariance models based on the twin experi- 
ments presented here. Although the schemes were used here in 
configurations that minimize the differences in implementation 
details, they still differ in some aspects such as localization in EnOI 
and SEEK, analysis in pressure space in MVOI, and the vertically 
decoupled nature of EnROIF. which are hard coded. These imple- 
mentation differences cause the difference in assimilation out- 
comes even in closely related schemes such as SEEK and EnOI. 
Therefore, the difference between the methods seen in the above 
experiments can be attributed as much to the practical implemen- 
tation of the analysis procedure as to the intrinsic differences of the 

forecast error covariance models. Nevertheless, the experiments 
presented here have identified the important parameters, and al- 
lowed us to tune the schemes towards comparable performance. 
This sets the stage for examining the intrinsic differences in the 
covariance models in future experiments. 

The experiments also allowed us to evaluate two alternative ap- 
proaches to the projection of surface information into the interior 
of the ocean. The ensemble methods all used vertical statistical 
correlations in the ensemble to project the surface information 
downward while the MVOI method used a dynamical approach. 
Both approaches appear to be equally effective in correcting errors 
in the thickness of HYCOM's layers but there are problematic is- 
sues in correcting temperature and salinity errors with these meth- 
ods. The T/S updates obtained from vertical correlations generally 
allow the simultaneous update of these variables in all model 
layers for short-term integrations. However, results indicate that 
performance during long-term integrations is dependent on avail- 
ability of in situ data to constrain corrections at depth and the 
appropriate handling of the dynamic nature of the model layers 
by using covariances appropriate for a given time of the year. 
Simultaneous T/S updates with increments obtained from the 
dynamical method of Cooper and Haines (1996), used here in 
MVOI, were only possible in the upper pressure layers. T and/or S 
updates in the isopycnal layers generally degraded the interior 
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Fig. 20. Time evolution of RMS errors in U. V. T and S in the Central Gulf of Mexico, between 84-88W/24-27N. The left panels show error evolution in the top 1000 m while 
the right panels show errors below 1000 m. 
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Fig. 21. Time evolution of RMS errors in U. V, T and S in two representative shallow regions. The left panels show error evolution in the West Florida Shelf region while the 
right panels show errors evolution in the Campeche Bank region. Both these regions are shallower than 300 m. Data in these regions are not used for assimilation. Changes to 
the model state in these regions are due to forcing and indirect effects of assimilation in deeper regions. 
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Fig. 22. Time evolution of basin averaged layer thickness in truth, the non-assimiative reference and assimilative runs in layers 5-12. The impact of assimilation is mainly 
seen in layer 6 where the initial basin averaged difference in layer thickness is about 20 m. The errors in this layer are reduced in the assimilative runs by 50 days compared to 
the non-assimilative case. The changes in the other layers are generally similar in both the assimilative and non-assimilative case (the axis scales are different for each layer). 
The average depth of the layer center in the Central GOM is also indicated. 
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Fig. 23. Time evolution of basin averaged layer thickness in truth, the non-assimiative reference and assimilative runs in layers 13-20. The convergence to truth in these 
layers is generally poor (the axis scales are different for each layer) and the performance is similar to the non-asimilative case. The average depth of the layer center in the 
Central COM is also indicated. 
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Vertical Profile of Layer Thickness Corrections at 86W/24N (Day 50) 
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Fig. 24. Vertical profiles of the layer thickness corrections shown as thickness difference between assimilative runs and the non-assimilative reference run. The thickness 
corrections introduced by the ensemble based vertical correlations in SEEK, EnOI and EnROIF and the Cooper-Haines lifting and lowering scheme used in MVOI are similar. 
Layers in the upper water column are inflated while layers near the bottom undergo a corresponding deflation. 

water mass properties and worsened the results. This is probably a 
consequence of the MVOI analysis in pressure coordinates and the 
subsequent remapping of the analysis to the models hybrid vertical 
coordinates. 

Overall, inspection of results reveals that the prediction errors 
for all the methods generally increase and decrease during the 
same time periods with more or less the same rates of change. 
Once the covariance parameters of a stable algorithm are opti- 
mized for a given set of computational resources and the model 
is realistic, it is the data sampling that determines how reliable a 
prediction is. In particular, at times of a relatively large prediction 
error, the observations did not adequately sample the energetic 
COM eddy field. It is important for the data to sample all energetic 
features, a well-known result from the Shannon sampling theorem. 
Nevertheless, all schemes recover when better data is available. All 
assimilation methods considered here continue to evolve and sev- 
eral improvements in statistical parameterizations and computa- 
tional aspects are underway. The developments are likely to 
further minimize differences between the schemes. 

While twin experiments are bound to perform better than real 
data assimilation, they do provide a reference and show what is 
possible, and importantly in the present context provide a frame- 
work for consolidating the progress made by individual assimila- 
tion groups. In a future paper we will use the infrastructure 
setup here for intercomparisons assimilating real observations into 
HYCOM. Several additional issues have to be dealt with before real 
data can be assimilated including model errors, data errors, and a 
choice of a mean sea level. Furthermore, all experiments presented 
here use a static forecast error covariance matrix. A key question is 
whether assimilation schemes can produce consistent error statis- 
tics and propagate these statistics from one assimilation cycle to 
next. Due to computational constraints, this has been only been 
investigated in idealized configurations or in models of small 
dimension. The computational power available now will allow 
examining error dynamics and adaptive schemes in operational 

configurations such as the one used in this study and such exper- 
iments are planned as a follow up. 

Acknowledgement 

This is contribution number 168 from the Center of Computa- 
tional Science, University of Miami. 

Appendix A. Implementation details of the assimilation 
schemes 

AI. Multi-variate Optimal Interpolation 

In the use of MVOI with HYCOM the state variables are interpo- 
lated to pressure levels for the analysis.7 Temperature, salinity, 
layer interface pressure, horizontal velocity and geopotential are 
all analyzed simultaneously. The MVOI formulation ensures that 
the increments are in geostrophic and hydrostatic balance. The de- 
fault horizontal length scales are specified as proportional to the 
first baroclinic Rossby radius of deformation computed from a his- 
torical profile archive (Chelton et al., 1998), but can be replaced by 
user defined correlation scales. Vertical correlation scales can be 
specified as constant, monotonically increasing or decreasing with 
depth, or as dependent on density gradients. 

For computational efficiency, near-zero distant correlations 
are neglected, and the analysis is carried out in overlapping vol- 
umes. The volume size is a function of the local correlation scales 
and a total of eight volume solutions are obtained for each grid 
point. The final estimate is formed by weighting the eight solu- 
tions by grid point distance from the volume center. The analysis 
increments are then  remapped from pressure coordinates to 

7 This is not an intrinsic requirement of the MVOI method but reflects an 
implementation choice. 
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HYCOM's hybrid vertical coordinate by Piecewise Linear interpo- 
lation. This remapping prevents any new extrema, enforces over- 
all conservation, and maximizes smoothness across the cell 
interfaces and produces an output profile of increments that is 
an average of the input profile in model layers. The remapping 
procedure takes into account the constraints between the state 
variables in Table B.l. In the non-isopycnal part of the hybrid 
domain, both salinity and temperature are corrected and density 
is diagnosed. In the isopycnal domain, normally, the layer 
interface depths and one of either temperature or salinity are 
corrected. The uncorrected thermodynamic variable is then diag- 
nosed from the layer target density and the equation of state. An 
incremental analysis (Bloom et al„ 1996) is used to re-initialize 
the model. 

A.2. Ensemble Optimal Interpolation 

The EnOI analysis is computed using Eqs. (1) and (2) as 

x° = x/ + PrHT(HPfHT + R)^'(y-Hx/) (A.1) 

The covariance matrices, P^and R are not formed explicitly, but 
are implicit in the analysis which is computed using representers, 
PW, derived as a combination of the ensemble states. The analysis 
updates can be computed either in the ensemble space or the 
observation space depending on the ensemble size and the number 
of observations. The EnOI version used here computes the analysis 
in the observation space (Sakov et al„ 2009). 

In operational use of EnOI, all HYCOM state variables are in- 
cluded in the static ensemble and updated in the EnOI analysis 
(Counillon and Bertino, 2009a,b). The updates are calculated grid 
point by grid point, and localization is used to increase the effective 
rank of the covariance with respect to the model subspace. In prac- 
tice, observations influencing a grid point are selected within a ra- 
dius of influence. The latter varies with depth and the weight of the 
observation depends on the distance to the target point as de- 
scribed in Counillon and Bertino (2009a). 

The corrected state is then adjusted in a post-processing step 
that ensures that the constraints on the HYCOM state variables 
are satisfied. In this process, if the thickness of a layer is negative 
it is reset to its minimal allowed thickness, and the deficit thick- 
ness is added to the neighboring layers. The layers are traversed 
twice, once from top to bottom, and a second time from bottom 
to top. The values of temperature and salinity are checked and lim- 
ited to the range listed in Table B.l. 

A3. Fixed basis variant of the SEEK filter 

We use the SEEK filter as implemented in the SESAM package 
(Brankart et a!., 2003b). In the SEEK analysis, the Kaiman Gain in 
Eq. (2) is rewritten using the Sherman-Morrrison-Woodberry 
matrix identity (Colub and Loan, 1989) as 

The analyzed state is then obtained as 

x° = x' + S^y (A.6) 

K = Sf[l+ (HS')R '(HSYp'fHS^R- (A.2) 

Two different algorithms are available in the SESAM package to 
compute the analysis. The version used in the experiments here is 
implemented as follows. First, the matrix C is computed: 

C={HSf)R-\HSf)T (A.3) 

In the next step, the innovation is computed in the reduced space 

ö = (HSf)R-\y-Hxf) (A.4) 

and is followed by a correction in the reduced space 

y-p + q-'J (A.5) 

As in EnOI, a local analysis for each grid point is performed 
using observations within a specified radius. Here we adjust the 
analyzed state in a post-processing step that is identical to EnOI. 

A4. Reduced Order Information Filter 

Computation of the state analysis x° in ROIF is performed as 

L0(x°-xf) = HTR-,(y-Hx/) (A.7) 

where the sparsly banded analysis information matrix L° - 
L + H7R 'H is numerically inverted. Eq. (A7) is equivalent to (1), ex- 
cept that (A.7) avoids explicit representation of the full covariance 
matrix P which has no inherent banded structure. ROIF hence 
achieves numerical efficiency by a block-banded truncation of the 
forecast information matrix, and the exact structure of this trunca- 
tion is dictated by the neighborhood parameter ( of the underlying 
MRF model. The horizontal and vertical covariance components are 
decoupled in EnROIF. The MRF parameterization is applied only on 
the horizontal components, and the momentum (u, v, p) and ther- 
modynamic (T, S) variables have separate random field models for 
their forecast errors. The vertical covariance components are repre- 
sented separately for each variable using an ensemble of vertical 
profiles at each horizontal grid point. These vertical profiles have 
been sampled from the 3-year GOM-HYCOM free run. At present, 
EnROIF follows the layering geometry given by HYCOM to perform 
its horizontal data analysis. The surface observations are first objec- 
tively interpolated along the vertical using ensembles of sample 
profiles in order to produce profiles of data innovation for HYCOM's 
layers. These profiled data are then analyzed independently over 
each horizontal layer using the MRF-based update Eq. (A.7). 

Appendix B. Computational aspects 

Data assimilation algorithms used for mesoscale ocean predic- 
tion have to operate on very large state vectors O(108) and 
0(106-107) observations. Apart from performance in terms of qual- 
ity of the analysis product, computational efficiency is an impor- 
tant consideration in their operational use. The costliest part of 
the analysis is the inversion of the innovation covariance (term 
in the parenthesis in Eq. (2)) and scales as 0(m3) where m is the 
number of observations when done in observation space. The 
methods considered here implement different algorithms to effi- 
ciently calculate this inverse. In MVOl, a volume approach is used 
which allows the update of a large number of grid points within an 
analysis volume from one set of observations. This has the advan- 
tage that the costly matrix inversion and vector-matrix multiplica- 
tion operations need to be performed only once for the all grid 
points in entire volume (Lorenc, 1981). In the version of EnOI used 
here, the inversion is by a singular value decomposition in observa- 
tion space which is costly. However, in a newer version of EnOI the 
analysis is done in ensemble space when observation counts are 
large and in observation space if a large ensemble is used (Sakov 
et al., 2009). The analysis in the ensemble space scales as the 
square of the number of ensemble members. 

In the SEEK filter, the analysis update is reformulated from 
observation space to the reduced error space so that the cost of 
the inversion scales as the square of the rank of the covariance ma- 
trix provided a diagonal error covariance matrix is used or if its in- 
verse is already known. This algorithm makes it very efficient to 
handle large datasets. The EnROIF formulation of the analysis prob- 
lem is similar to variational methods and due to the sparse struc- 
ture of the information matrix the inverse is efficiently calculated 
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Table B.4 
Computational scaling and wall clock times. 

Assimilation 
method 

Scaling Memory 
requirements 

Wall clock update 
minutes 

SEEK Ofmr2) (Km 14 
EnOI Otm1) (X.nN) 31 
EnROIF 0(sN). 10 - - 20    0(sN) a 
MVOI (Km*) 0(m2) n 

• m is the number of observations used in the local analysis for each grid point. 
. N is the size of the forecast model state (258 x 175 x 20). 
• r is the effective rank of the Covariance Matrix used in the SEEK analysis. 
• n is the no of members in the ensemble for ENOI. 
• sis the size of the Markov Random Field neighborhood used in EnROIF. 
• All wall clock times are for experiments carried out on an 8 core 2.3 GHz Intel/ 
12 GB memory Linux machine. The sample times are for execution on one pro- 
cessing core. All methods are fully parallel and have been ported to several shared 
and distributed memory architectures. 
• All codes were compiled with Intel Fortran compilers with 03 optimization 
level. 
• The wall clock listed for EnOI corresponds to an older version of the code that 
scales as CUm1). A significantly faster newer version with the analysis in the 
ensemble space now exists but became available after the experiments presented 
here were completed. 

using iterative methods. A pre-conditioned conjugate gradient 
algorithm is used for the inversion. The cost is dominated by 
matrix-vector products and scales linearly with the size of the 
Information Matrix which is O (nN) where N is the size of the state 
vector and n is size of the MRF neighborhood. A few tens of itera- 
tions are usually sufficient for convergence. The scaling and sample 
wall clock times for an analysis using these methods are listed in 
Table B.4. 
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