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Deteetion of single or multiple optieal subsurface laminar features (e.g., thin layers) in marinc waters
has many implieations on ceologieal studies, management of fisheries, and military applications. This
study has four objectives: 1) to eorroborate a previous index based on remote sensing refleetance ratio
(R1=R5(443)/R 5(490)) for predieting depth of lidar-derived baekseattering layers, 2) to evaluate at
what extent these relationships hold in different marine regions, 3) to examine the nature of R1
variability in terms of inherent optieal properties, and 4) to investigate the influenee of water
stratification on spatial distribution of R1 values. Measurements of inherent optical properties
(absorption coeffieient and seattering cocfficient) were obtained from a towed underwater vchicle
(Scanfish) in three geographie loeations, two in US (Monterrey Bay, MB, and East Sound, ES) and one
in Turkish (Black Sea, BS) eoastal waters. For each site, case studies were examined based on
subsurface optical layers distributed at two different depths (ES: 7 and 20 m, MB: 7 and 20 m, and ES:
15 and 27 m). R1 was theoretically derived from each Seanfish profile and the R1 skewness (y) was
calculated for cach case study. The magnitude of the total absorption eoeffieient at 675 nm suggested
large differenees (>100%) in trophie status between the studied areas. However, a eommon statistical
pattern eonsisting of lower y - deeper optieal layer was found in all study eases. This variation was
explained by optieal differenees above the ‘optieline’ and mainly related to changes on seattering
eocfficient of partieulates. In general, skewness of R1 was more influenced by 5(440)/a(440) rather
than by a(488)/b(488) spatial variability. The observed relationships between y and the depth of the
optieal marine layer confirmed a previous finding using airborne lidar and oeean eolor data. Also, our
analysis supports the use of yR1 to identify the relative vertical position of optical submerged
structures in marine environments with variable eoupling between water stratifieation and
phytoplankton layers.

INTRODUCTION

A eommon assumption of remote sensing algorithms based on ocean color sensors is the vertieal
homogeneity of the water column in terms of optical properties. This approximation is very often not
met in eoastal and oceanie stratified waters duc to the presence of laminar features altering the
underwater light field. These submerged layers commonly eorrespond with thin layers (i.e., <3 m
thick), have typically high concentration of dissolved and particulate material with respeet to the
surrounding medium, and arc preferentially developed along the horizontal component (Churnside and
Donaghay, 2009). Technologies used to detect vertical location of subsurface optical laycrs are
eommonly based on lidar (Light and Range deteetion) systems (Hoge ef al., 1988; Barbini et al., 2003;
Churnside and Donaghay, 2009). Unlike these investigations, in a reeent eontribution, we showed a
new approach to discriminate waters with shallow versus deep optieal layers based on passive optieal
measurements (Montes-Hugo ef al., 2010). Briefly, the relative distanee of the optieal layer to the sea



surfaee is estimated by ealculating the third moment around the mean (i.¢., skewness or y) of a specifie
remote sensing refleetanee ratio (R1= R5(443)/R5(490)). As yR1 deereases the subsurface optieal
layer becomes deeper. The present study has four main objeetives. First, it will test optieal
relationships found by Montes-Hugo ef al. (2010) using an alternativc approach eonsisting in
independent caleulations of yR1 based on in situ measurements of inherent optical properties (IOPs)
obtained with an undulating ROTV (remotely operated towed vehiele). Second, it will examine
whether the aforementioned approach ean be generalized aeross different marine eoastal domains
located at different latitudes and charaeterized by different trophie status. Third, it will investigate the
mechanisms explaining yR1 changes in terms of IOPs modifications. Lastly, it will quantify the
influence of water stratifieation on biologieal ‘layering’ and its impaet on yR1 patterns.

METHODS

ROTV surveys

High vertical resolution profiles (0.02 to 0.56 m) of in situ optieal (i.e., total absorption coefficient of
dissolved + particulate matter, a, and beam attenuation coefficients, ¢) and CTD measurements werc
obtained using a ROTV (Seanfish MK II, intelligent undulating vehicle, EIVA, Denmark) in eoastal
oligotrophie (Black Sea, BS, 41.22-43.70 °N, 28.90-31.26°E), mesotrophic (Montcrrey Bay, MB,
36.33-36.83 °N, 121.05-122.85°W) and eutrophic (East Sound, ES, 48.62-48.67 °N, 122.86-
122.89°W) waters. The ROTV (0.9 x 0.3 x 1.8 m, length, height, wide) was operated using an
undulating mode eomplemented with a wineh to expand horizontal sampling range up to 400 m. The
ROTYV has a weight of 75 kg, a maximum depth range of 400 m, and a payload of approximately 50
Kg. ROTV data were collected between 14 and 16 pm (local time) and two casc studies were selected
per study site: ‘shallow’ (NS) and ‘deep’ (FS) subsurfaee optieal layer. The ROTV diving ‘saw tooth’
pattern varied between studied areas (Fig. 1). Depth interval, vertical resolution and horizontal spacing
between profiles were 2.8-65, 0.25-0.56 and 370.9 m, for BS, 1.6-48, 0.36 and 268.5 m for MB, and
0.7-22,0.02 and 87.4 m for ES, respeetively.
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Figure 1. An example of Scanfish MK II dives (ups and downs) in the Black Sea (BS), Monterrey
Bay (MB), and East Sound (ES). BS, MB and ES sampling locations had an averaged bottom depth
of 125, 120 and 27 m, respectively.



Analysis of optical and CTD profiles

Raw a’s and ¢’s coefficients were derived from an ac-9 (WetLabs) at three wavelengths (440, 488 and
675 nm) and corrceted by salinity and temperature effeets (Pegau ef al., 1997; Langford et al., 2001)
using CTD (SeaBird 911) measurements. Scattering residuals were removed (Zanaveld et al., 1994).
Only descending dives including ROTV-derived IOPs (i.e., total absorption and beam attenuation
cocfficients), temperature and conduetivity were processed and smoothed every 1-m along the vertical.
Salinity and seawater density at each depth was derived from CTD variables (i.c., temperature and
conductivity without pressure correction) and using the standard UNESCO polynomial equation of
state (Millero et al., 1980; Fofonoff and Millard, 1983). For each variable, data gaps were removed by
lincar interpolation. Missing determinations were more common at finer spatial sampling frequencies
(e.g., in ES). The upper mixed laycr depth (UML) was computed based on a density difference
threshold with depth of 0.015 Kg m™.

Modeling of ocean color

Spectral remotc sensing reflectance (R(A)) was cstimated for cach descending profilc bascd on
vertical distribution of @ and ¢ values at specific wavelengths. A light propagation model (Hydrolight,
Sequoia Ine.) and ancillary data provided from airport-based meteorological stations (Black Sea,
www.infospace.ru, Monterrey and Eastsound, www.wunderground.com) were used to simulate
R5(440) and R5(488). Spatial skewness () in each experiment was calculated for theoretical
R5(440)/R (488) ratios, and vertically-avcraged optical propertics mcasurcd abovc the subsurfacc
layer (c.g., a(675)). Contribution of total scattering (b = ¢ - a) with rcspect to absorption coefficient to
wRI1 was also investigated. First optical depth (Zop) was calculated as the inverse of K 4(488) or the

vertical attenuation coefficient of downwelling diffuse light, with K 4(488) ~ a(488)/ ., (Moblcy, 1994),

where 4 is the average cosine and was equal to 1 based on cloud eover conditions.

RESULTS AND DISCUSSION

Cross-sections of a(675) suggested that phytoplankton was an important optical component in all
subsurface layers under investigation (Fig. 2). Consistent with an increase of solar radiation and
freshwater river discharge as the spring-summer season progresses, the main a(675) layer and
pycnocline were always deeper during the second experiment in chronological order (e.g., in BS, depth
a(675) and UML was 14 and 8.8. m in the ‘shallow’ casc and 28 and 23.2 m in the ‘decp’ case). In
general, drastic vertical changes of a(675) were observed in the vicinity of the pycnocline but during
the FS experiment in ES. In this ease, it is suggested that phytoplankton communities were not actively
growing and were probably sinking as part of a post-bloom stage mainly composed of senescent cells
(comm. Pers. Dr. Percy Donaghay). Despitc these differences, spatial patterns of ocean color above the
sca surface always refleeted similar modifications when optical submarine layering became decper.
Indeed, the skewness of R1 switched from positive to negative, as thc optical submarine layer was
placed farther from the sca surface. Also, these spatial changes in ocean color can be attributed to
variability of IOPs in the layer above the main ‘opticline’ due to the relatively shallow penetration
depth of passive sensors in these waters (i.c., Zop always smaller than depth of subsurface a(675)
layer).

In gencral, skewness of a(675) values measured above the subsurface optical layer was positively
related to R1 skewness but in Monterrey Bay experiments (Fig. 3). Likewisc, a(675) above and within
the submarine layer tended to be negatively correlated (Spearman correlation cocfficient up to —0.90 in



NS of ES) but in MB where both quantitics were often covarying in a direct way (data not shown).
Based on these findings, it is suggested that statistical distribution of phytoplankton cells abovc the
main ‘opticline’ was linked to variability of IOPs inside the submerged layer and was a major factor
cxplaining spatial patterns of R1. The discrepancy found in Monterrey Bay may be attributed to
changcs on phytoplankton composition (e.g., replacement of diatoms by dinoflagcllates, Moline et al.,
2010). However, additional experiments arc rcquired to verify this hypothesis.

For each study area, skewness of b and a at Rl wavelengths was compared between NS and FS
cxperiments in order to elucidate which optical properties and wavelengths were responsible of R1
skewness changcs due to depth variation of a single submarine optical layer. In summary, skewncss of
R1 appcarcd to be mainly connected to spatial variability of total scattering and presumably
backscattcring of particulates above the ‘opticline’. These optical modifications resembled underwatcr
light ficld pcrturbations caused by intcrnal waves (Weidemann et al., 2001). Lastly, yR1 changes were
mainly driven by 5(440)/a(440) rather than by a(488)/b(488) spatial variability.

Thermo-haling structure as inferred from vertical distribution of seawater density was usually coupled
to depth changes of biological propertics such as a(675) (Fig. 4). Dekshenicks et al. (2001) found that
in the majority of cases (i.e., >70%), thc dcpth distribution of optical layers is mainly dctcrminced by
the water column stratification.

Despitc this ovcrall bio-physical relationship, decoupling may occur (e.g., ES in Fig. 4) when optical
constituents do not behave as passive traccrs (e.g., migrant phytoplankton) or they form aggrcgates that
escape the pycnocline barrier. These ecological scenarios may introduce a large uncertaintics when
vertical localization of submarine optical layers is based on hydrographic profiles (Zawada et al.,
2005). Converscly, yR1 was very sensitive to vertical changes of subsurface optical layers for a broad
range of vertical mixing conditions. Thus, this study supports the generalized use of yR1 as a non-
invasivc optical proxy for screening relative depth (e.g., <20 m versus >20 m depth) of thin layers in
marine watcrs having a relatively large water column stability.
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Figure 3. Relationship between spatial patterns of modeled R1 and field measurements of a(675)
above the main ‘opticline’. y is the skewness of the empirical or theoretical data along the ROTV
transect. Y= 0 corresponds with a symmetrical Gaussian probability distribution (short-dash
lines). BS: Black Sea, MB: Monterrey Bay, ES: East Sound, NS and FS are near-surface and
far-from-the surface case studies, respectively.
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